光纤基础知识简介

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤简介

一、光纤概述

光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤一端的发射装置使用发光二极管〔light emitting diode,LED〕或一束激光将光脉冲传送至光纤,光纤另一端的接收装置使用光敏元件检测脉冲。

二、光纤工作波长

光是一种电磁波。可见光部分波长范围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。μμμμ,μμμm以上的损耗趋向加大。

三、光纤分类

光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。

〔1〕工作波长:紫外光纤、可观光纤、近红外光纤μμμm〕。

〔2〕折射率分布:阶跃〔SI〕型光纤、近阶跃型光纤、渐变〔GI〕型光纤、其它〔如三角型、W型、凹陷型等〕。

〔3〕传输模式:单模光纤〔含偏振保持光纤、非偏振保持光纤〕、多模光纤。

〔4〕原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤〔如塑料包层、液体纤芯等〕、红外材料等。按被覆材料还可分为无机材料〔碳等〕、

金属材料〔铜、镍等〕和塑料等。

〔5〕制造方法:预塑有汽相轴向沉积〔VAD〕、化学汽相沉积〔CVD〕等,拉丝法有管律法〔Rod intube〕和双坩锅法等。

四、单模光纤与多模光纤

光纤是一种光波导,因而光波在其中传播也存在模式问题。所谓“模”是指以一定角速度进入光纤的一束光。模式是指传输线横截面和纵截面的电磁场结构图形,即电磁波的分布情况。一般来说,不同的模式有不同的的场结构,且每一种传输线都有一个与其对应的基模或主模。基模是截止波长最长的模式。除基模外,截止波长较短的其它模式称为高次模。

根据光纤能传输的模式数目,可将其分为单模光纤和多模光纤。多模光纤允许多束光在光纤中同时传播,从而形成模分散〔因为每一个模光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散〕。模分散技术限制了多模光纤的带宽和距离。单模光纤只能允许一束光传播,所以单模光纤没有模分散特性。

〔1〕单模光纤

单模光纤(Single Mode Fiber)的中心高折射率玻璃芯直径有三种型号:8μm、9μm和10μm,只能传一种模式的光。相同条件下,纤径越小衰减越小,可传输距离越远。中心波长为1310nm或1550nm。单模光纤用激光器作为光源。单模光纤用于主干、大容量、长距离的系统。

单模口发射功率范围一般在0dBm左右,一些超长距接口会高达

+5dBm,接收功率的范围在-23 dBm到0dBm之间。〔注:最大可接收功率叫做过载光功率,最小可接收功率叫做接收灵敏度。工程上要求正常工作

接收光功率小于过载光功率3-5dBm,大于接收灵敏度3-5dBm。一般来讲不管单模接口还是多模接口,实际接收功率在-5至-15dBm之间算比较合理的工作范围。〕

单模光纤模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

〔2〕多模光纤

多模光纤(Multi Mode Fiber)μm和50μm,可传多种模式的光。中心波长为多为850nm,也有用1310nm。多模光纤用发光二极管作为光源。多模光纤用于小容量,短距离的系统。

多模口发射功率比单模口小,与GBIC或SFP的型号直接相关,一般在-9.5dBm到-4dBm之间;多模口接收功率一般在-20dBm到0dBm之间。〔注:最大可接收功率叫做过载光功率,最小可接收功率叫做接收灵敏度。工程上要求正常工作接收光功率小于过载光功率3-5dBm,大于接收灵敏度3-5dBm。一般来讲不管单模接口还是多模接口,实际接收功率在-5至

-15dBm之间算比较合理的工作范围。〕

多模光纤模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。

新一代多模光纤是一种50/125μm,渐变折射率分布的多模光纤。采用50μm芯径原因有:〔1〕50μμm多模光纤中传输模的1/2.5。这可有效降低多模光纤的模色散,增加带宽。对850nm波长,50/125μμm多模光纤带宽可增加三倍〔500MHz.km比160MHz.km〕。〔2〕以前,LED光源的输出功率低,

发散角大,连接器损耗大,使用芯径和数值孔径大的光纤以使尽多光功率注入是必须考虑的,因此μm多模光纤应用较广。随着技术的进步,LED输出功率和发散角的改良、连接器性能的提高,尤其是使用了VCSEL,光功率注入已不成问题。

〔3〕光纤标识

单模光纤上印的型号字有:SM、Single Mode Fiber、9/125、LX、等,单模跳纤多为黄色。〔注:1表示中心束管,B表示单模〕

多模光纤上印的型号字有:MM、Multi Mode Fiber、A1a、50/125、A1b、、SX等,单模跳纤多为橙色。〔注:A表示多模,a表示〕

SX/LH表示可以使用单模或多模光纤。

五、跳纤与尾纤

光纤跳线:来做从设备到光纤布线链路的跳接线。有较厚的保护层,一般用在光端机和终端盒之间的连接。(也就是双头)

下列图为集中常见的跳线。

光纤尾纤:只有一端有连接头,而另一端是一根光缆纤芯的断头,通过熔接与其他光缆纤芯相连,常出现在光纤终端盒内,用于连接光缆与光纤收发器〕〔也就是单头〕。

在生产中,为了便于测试,均生产为跳纤,即两头均有光纤连接器,施工时,从中间剪断,一根跳纤即成了两根尾纤。

在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下:“/”前面部分表示尾纤的连接器型号,“/”后面说明光纤接头截面工艺,即研磨方式。

“PC”:接头截面是平的,在电信运营商的设备中应用得最为广泛。

“APC”:接头采用带倾角的端面,斜度一般看不出来,可使反射光不沿原路径返回。在广电和早期的CATV中应用较多。它可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。一般数字信号一般不存在此问题。

“UPC”:它的衰耗比PC要小,一般有特殊需求的设备的法兰盘为FC/UPC。国外厂家ODF架内部跳纤用的就是FC/UPC,可提高ODF设备自身的指标。

六、光纤接头与光纤连接器

光纤连接器〔也叫光纤适配器、法兰盘〕是光纤与光纤之间进行可拆卸〔活动〕连接的器件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小。在一定程度上,光纤连接器也影响了光传输系统的可靠性和各项性能。

在实际应用过程中,我们一般按照光纤连接器结构的不同来加以区分。下面是一些目前比较常见的光纤接口和光纤连接器。

相关文档
最新文档