相关分析与回归分析的异同
相关与回归
相关分析与回归分析的区别与联系:一:区别1. 资料要求 直线相关分析要求x 、y 服从双变量正态分布,二者无主次之分;直线回归分析要求在给定某个x 值时y 服从正态分布,y 的均数随x 变化而变化,而x 是可以精确测量和严格控制的变量。
2. 应用 说明两变量间的相互关系用直线相关分析,此时两变量的关系是平等的;而说明两变量的数量依存关系用直线回归分析,表明y 如何依赖于x 而变化。
3. 意义 相关系数r 说明具有直线关系的两变量间相互关系的方向与密切程度;回归系数b 表示x 每改变一个单位所引起的y 的平均改变量。
4. 计算公式 rr =ll xx xx �ll xx xx ll xx xx ⁄ ,bb =ll xx xx ll xx xx ⁄。
5. 取值范围 -1≤r ≤1,−∞<b <∞。
6. 单位 r 没有单位,b 有单位。
二.联系1. 于服从双变量正态分布的同一组数据,即可作直线相关分析又可作直线回归分析,计算出的b 与r 正负号一致。
2. 相关系数与回归系数的假设检验等价,即对于同一样本,t b =t r 。
由于相关系数的假设检验可以方便地查表得到P 值,所以可用相关系数的假设检验来回答回归系数的假设检验问题。
3. 对于服从双变量正态分布的同一组资料,其相关系数r 和回归系数b 可以相互换算:rr =bbSS xx SS yy 。
4. 用回归可以解释相关。
决定系数RR 2=SSSS 回∕SSSS 总,为相关系数的平方。
它反映了回归贡献的相对程度,即在y 的总变异中能用y 与x 的回归关系所能解释的比例。
故当SSSS 总固定时,SSSS 回的大小决定了相关的密切程度。
SSSS 回越接近SSSS 总,则相关系数和决定系数都越接近1,说明引入回归效果越好。
区间估计弥补了点值估计的不足,利用样本统计量,考虑抽样误差的大小,在一定的可信度100×(1−α)%下估计总体参数所在的区间范围,得到的区间称为总体参数的置信区间或可信区间。
对统计中相关分析与回归分析的论述
对统计中相关分析与回归分析的论述作者:王娟来源:《现代经济信息》2014年第08期摘要:客观事物之间存在一定的依存关系,对这种关系的分析具有重要意义。
本文阐述了相关分析与回归分析的概念,提出了分析中应注意的问题。
关键词:依存关系;相关分析;回归分析;中图分类号:C82 文献标识码:A 文章编号:1001-828X(2014)08-0115-01一切客观事物都是互相联系的。
而且每一事物的运动都和它的周围其它事物相联系互相影响。
客观现象间的互相联系,可以通过一定的数量关系反映出来。
例如气温与降雨量之间,消费品需求量与居民收入水平之间,劳动生产率与产品成本之间,投入与产出之间等等,都存在着一定的依存关系。
一、相关分析与回归分析的概念。
(一)客观现象之间存在的互相依存关系叫相关关系,对现象之间相关关系密切程度的研究,叫相关分析。
相关分析具有如下两个特点。
1.现象之间确实存在着数量上的依存关系。
如果一个现象发生数量上的变化,则另一个现象也会相应地发生数量上的变化。
例如商品流通费增加,一般商品销售额也会增加,反过来,如果商品销售额增加,一般商品流通费也要增加。
身材较高的人,一般体重也较重。
反过来,体重较重的人,一般身材也较高。
再如,年龄与血压、播种量与粮食收获量之间等等都有数量上的依存关系。
2.现象之间数量上的关系不是确定的。
相关关系的全称为统计相关关系,它属于变量之间的一种不完全确定的关系。
这意味着一个变量虽然受另一个(或一组)变量影响,却并不由这一个(或一组)变量完全确定。
例如,身高1.7米的人其体重有许多个值;体重为60公斤的人,其身高也有许多个值。
身高与体重之间没有完全严格确定的数量关系存在。
再如产品单位成本和劳动生产率的变动之间存在着一定的依存关系,但是除了劳动生产率的变动以外,还会受到材料消耗、设备折旧、能源耗用以及管理费用等诸因素变动的影响。
由此可见,相关关系是现象间确实存在的,但相关关系数值是不完全确定的相互依存关系。
下面关于相关分析和回归分析论述正确的是
下面关于相关分析和回归分析论述正确的是
相关分析与回归分析都是统计上研究变量之间关系的常用办法。
他们都可以断定两组变量具有统计相关性。
相关分析中两组变量的地位是平等的,而回归分析两个变量位置一般不能互换。
这两种分析是统计上研究变量之间关系的'常用办法。
相同点:他们都可以推断两组变量具备统计数据相关性。
不同点:相关分析中两组变量的地位是平等的,不能说一个是因,另外一个是果。
或者他们只是跟另外第三个变量存在因果关系。
而回归分析可以定量地得到两个变量之间的关系,其中一个可以看作是因,另一个看作是果。
两者位置一般不能互换。
相关和回归
1.意义:相关反映两变量的相互关种双向变化的关系。回归是反映两个变量的依存关系,一个变量的改变会引起另一个变量的变化,是一种单向的关系。
2.应用:研究两个变量的相互关系用相关分析。研究两个变量的依存关系用回归分析。
3.研究性质:相关是对两个变量之间的关系进行描述,看两个变量是否有关,关系是否密切,关系的性质是什么,是正相关还是负相关。回归是对两个变量做定量描述,研究两个变量的数量关系,已知一个变量值可以预测出另一个变量值,可以得到定量结果。
4.相关系数r与回归系数b:r与b的绝对值反映的意义不同。r的绝对值越大,散点图中的点越趋向于一条直线,表明两变量的关系越密切,相关程度越高。b的绝对值越大,回归直线越陡,说明当X变化一个单位时,Y的平均变化就越大。反之也是一样。
相关与回归区别与联系
直线回归与相关的区别和联系1.区别:①资料要求不同:直线回归分析中,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。
直线相关分析要求服从双变量正态分布;②应用目的不同:说明两变量间相关关系用相关,此时两变量的关系是平等的;说明两变量间的数量变化关系用回归,用以说明Y 如何依赖于X 的变化而变化;③指标意义不同:r 说明具有直线关系的两变量间相互关系的方向与密切程度;b 表示X 变化一个单位时Y 的平均变化量; ④计算不同:YY XX XY l l l r /=,XX XY l l b /=;⑤取值范围不同:?1≤r ≤1,∞<<∞-b ;⑥单位不同:r 没有单位,b 有单位。
2.联系:① 二者理论基础一致,皆依据于最小二乘法原理获得参数估计值;② 对同一双变量资料,回归系数b 与相关系数r 的正负号一致。
b >0与r >0,均表示两变量X 、Y 呈同向变化;同理,b <0与r <0,表示变化的趋势相反; ③ 回归系数b 与相关系数r 的假设检验等价。
即对同一双变量资料,r b t t =。
由于相关系数较回归系数的假设检验简单,在实际应用中,常以相关系数的假设检验代替回归系数的假设检验;④ 用回归解释相关。
由于决定系数总回归SS SS R /2 ,当总平方和固定时,回归平方和的大小决定了相关的密切程度,回归平方和越接近总平方和,则2R 越接近1,说明引入相关的效果越好。
例如,当r =0.20,n =100时,按检验水准0.05拒绝0H ,接受1H ,认为两变量有相关关系。
但2R =0.202=0.04,表示回归平方和在总平方和中仅占4%,说明两变量间的相关关系实际意义不大。
回归分析与相关分析
回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。
回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。
回归分析可以分为线性回归和非线性回归两种。
线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。
回归分析可用于预测、解释和控制因变量。
回归分析的应用非常广泛。
例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。
回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。
相关分析是一种用来衡量变量之间相关性的方法。
相关分析通过计算相关系数来度量变量之间的关系的强度和方向。
常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。
Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。
相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。
相关分析的应用也非常广泛。
例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。
相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。
回归分析与相关分析的主要区别在于它们研究的对象不同。
回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。
此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。
综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。
回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。
回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。
相关与回归区别与联系
直线回归与相关的区别和联系1.区别:①资料要求不同:直线回归分析中,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。
直线相关分析要求服从双变量正态分布; ②应用目的不同:说明两变量间相关关系用相关,此时两变量的关系是平等的;说明两变量间的数量变化关系用回归,用以说明Y 如何依赖于X 的变化而变化;③指标意义不同:r 说明具有直线关系的两变量间相互关系的方向与密切程度;b 表示X 变化一个单位时Y 的平均变化量; ④计算不同:YY XX XY l l l r /=,XX XY l l b /=;⑤取值范围不同:−1≤r ≤1,∞<<∞-b ;⑥单位不同:r 没有单位,b 有单位。
2.联系:① 二者理论基础一致,皆依据于最小二乘法原理获得参数估计值; ② 对同一双变量资料,回归系数b 与相关系数r 的正负号一致。
b >0与r >0,均表示两变量X 、Y 呈同向变化;同理,b <0与r <0,表示变化的趋势相反;③ 回归系数b 与相关系数r 的假设检验等价。
即对同一双变量资料,r b t t =。
由于相关系数较回归系数的假设检验简单,在实际应用中,常以相关系数的假设检验代替回归系数的假设检验;④ 用回归解释相关。
由于决定系数总回归SS SS R /2=,当总平方和固定时,回归平方和的大小决定了相关的密切程度,回归平方和越接近总平方和,则2R 越接近1,说明引入相关的效果越好。
例如,当r =0.20,n =100时,按检验水准0.05拒绝0H ,接受1H ,认为两变量有相关关系。
但2R =0.202=0.04,表示回归平方和在总平方和中仅占4%,说明两变量间的相关关系实际意义不大。
【毕业论文】相关分析和回归分析
相关分析和回归分析客观事物之间的关系分为函数关系和统计关系,函数关系也就是我们通常所说的一一对应的关系,而统计关系是指两事物之间的一种非一一对应的关系,即当一个变量x取一定值时,另一变量y无法依确定的函数取唯一确定的值。
事物之间的统计关系是普遍存在,且有的关系强,有的关系弱。
相关分析和回归分析都是以不同方式测度事物之间统计关系的有效工具。
实际应用中。
这两种分析方法经常互相结合渗透。
一、相关分析相关分析通过图形和数值两种方式,能够有效的揭示事物之间统计关系的强弱程度。
1、散点图能直观的显示数据之间的相关关系,可以利用曲线将点散布的主要轮廓描述出来,使数据的主要特征更突出。
如下图:研究04年四层金指的报废面积与入仓面积的相关关系上图看出:数据集中分布在直线周围,说明是高度正相关的。
2、相关系数散点图能直观的展现变量之间的统计关系,但并不精确。
相关系数以数值的方式精确的反映了两个变量间线形相关的强弱程度。
➢ R=yyxx xy L L L ,其中xx L =∑=--ni ix x12)(,∑=----=ni i i xy y y x x L 1))((,∑=--=ni i yy y y L 12)(.➢ 相关系数R 的取值在-1~+1之间。
➢ R>0表示两变量之间存在正的线性相关关系;R<0表示两变量之间存在负的线性相关关系。
➢ R=1表示两变量存在完全正相关;R=-1表示两变量存在完全负相关;R=0表示两变量不存在线性相关关系。
➢ |R|>0.8表示两变量之间具有较强的线性关系;|R|<0.3表示两变量之间的线性相关关系较弱。
上例中,R=0.974,说明报废面积与入仓面积之间是强正相关的。
二、一元线性回归在实际应用中,我们常常需要考虑某一现象与影响它的最主要因素的关系,回归分析不仅可以揭示变量x 对变量y 的影响大小,还可以由回归方程进行预测和控制。
一元线性回归是最简单的回归模型。
流行病学中的相关分析与回归分析
流行病学中的相关分析与回归分析流行病学是研究人群中疾病的分布和疾病与可能有关的因素之间的关系的科学。
相关分析和回归分析是流行病学中常用的统计方法,用于研究和解释疾病与各种因素之间的关联。
一、相关分析相关分析是一种用于研究两个或多个变量之间关系的统计方法。
在流行病学中,我们可以使用相关分析来探讨疾病与可能的危险因素之间的关系。
以某地区的疾病发病率和饮食习惯为例,我们可以使用相关分析来判断饮食习惯与该疾病之间的相关性。
首先,我们需要收集一定数量的样本数据,包括疾病发病率和个体的饮食情况。
然后,我们可以使用相关系数来衡量两个变量之间的相关程度。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数适用于两个连续变量之间的相关性分析,斯皮尔曼相关系数适用于两个有序变量之间的相关性分析。
通过计算相关系数,我们可以确定疾病与饮食习惯之间的关系强度和方向,从而进一步研究与预测疾病的风险因素。
二、回归分析回归分析是流行病学中常用的一种统计方法,用于研究一个或多个自变量对一个因变量的影响程度和方向。
与相关分析不同的是,回归分析可以对多个潜在的危险因素进行控制,以确定每个因素对疾病风险的相对作用。
在进行回归分析之前,我们需要收集相关的数据,包括疾病的发病率和各种潜在的风险因素,比如年龄、性别、饮食习惯等。
然后,我们可以运用回归模型来预测疾病风险和研究各种因素对疾病的相对贡献度。
常用的回归模型包括线性回归模型和逻辑回归模型。
线性回归适用于研究连续因变量的影响因素,而逻辑回归适用于研究二分类因变量的影响因素。
通过回归分析,我们可以确定每个自变量对疾病风险的相对影响,并制定相应的预防措施。
总结:流行病学中的相关分析和回归分析是一种有力的统计工具,用于研究疾病与各种因素之间的关联。
通过相关分析,我们可以确定变量之间的关系强度和方向;通过回归分析,我们可以确定各个潜在因素的相对作用。
这些分析方法的运用可以帮助我们更加准确地了解疾病的成因和预测风险因素,从而采取相应的预防措施来保护公众健康。
相关分析与回归分析的异同
问:请详细说明相关分析与回归分析的相同与不同之处相关分析与回归分析都是研究变量相互关系的分析方法,相关分析是回归分析的基础,而回归分析则是认识变量之间相关程度的具体形式。
下面分为三个部分详细描述两种分析方法的异同:第一部分:相关分析一、相关的含义与种类(一)相关的含义相关是指自然与社会现象等客观现象数量关系的一种表现。
相关关系是指现象之间确实存在的一定的联系,但数量关系表现为不严格相互依存关系。
即对一个变量或几个变量定一定值时,另一变量值表现为在一定范围内随机波动,具有非确定性。
如:产品销售收入与广告费用之间的关系。
(二)相关的种类1. 根据自变量的多少划分,可分为单相关和复相关2. 根据相关关系的方向划分,可分为正相关和负相关3. 根据变量间相互关系的表现形式划分,线性相关和非线性相关4.根据相关关系的程度划分,可分为不相关、完全相关和不完全相关二、相关分析的意义与内容(一)相关分析的意义相关分析是研究变量之间关系的紧密程度,并用相关系数或指数来表示。
其目的是揭示现象之间是否存在相关关系,确定相关关系的表现形式以及确定现象变量间相关关系的密切程度和方向。
(二)相关分析的内容1. 明确客观事物之间是否存在相关关系2. 确定相关关系的性质、方向与密切程度三、直线相关的测定(一)相关表与相关图1. 相关表在定性判断的基础上,把具有相关关系的两个量的具体数值按照一定顺序平行排列在一张表上,以观察它们之间的相互关系,这种表就称为相关表。
2. 相关图把相关表上一一对应的具体数值在直角坐标系中用点标出来而形成的散点图则称为相关图。
利用相关图和相关表,可以更直观、更形象地表现变量之间的相互关系。
(二)相关系数1. 相关系数的含义与计算相关系数是直线相关条件下说明两个变量之间相关关系密切程度的统计分析指标。
相关系数的理论公式为:(1)协方差x的标准差y的标准差(2)协方差对相关系数的影响,决定:简化式变形:分子分母同时除以得======2. 相关系数的性质(1)取值范围:1 -11(2)=1=1 表明x与y之间存在着确定的函数关系。
回归分析与相关分析联系、区别
回归分析与相关分析联系、区别简单线性回归分析是对两个具有线性关系的变量,研究其相关性,配合线性回归方程,并根据自变量的变动来推算和预测因变量平均发展趋势的方法。
回归分析(Regression analysis)通过一个变量或一些变量的变化解释另一变量的变化。
主要内容和步骤:首先依据经济学理论并且通过对问题的分析判断,将变量分为自变量和因变量,一般情况下,自变量表示原因,因变量表示结果;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;接着要估计模型的参数,得出样本回归方程;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验,计量经济学检验、预测检验;当所有检验通过后,就可以应用回归模型了。
回归的种类回归按照自变量的个数划分为一元回归和多元回归。
只有一个自变量的回归叫一元回归,有两个或两个以上自变量的回归叫多元回归。
按照回归曲线的形态划分,有线性(直线)回归和非线性(曲线)回归。
相关分析与回归分析的关系(一)相关分析与回归分析的联系相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
(二)相关分析与回归分析的区别1.相关分析中涉及的变量不存在自变量和因变量的划分问题,变量之间的关系是对等的;而在回归分析中,则必须根据研究对象的性质和研究分析的目的,对变量进行自变量和因变量的划分。
谈一谈相关性分析和回归分析
谈一谈相关性分析和回归分析
相关性分析和回归分析都是一种对某种特定变量之间的关联性以及它们之间的变化趋势进行研究的技术。
它们的主要用途在于发现两个或多个变量之间的关系,进而为我们更深入地了解其产生的原因提供理论支持,甚至可以倾斜这种关系来影响和预测特定结果。
首先,相关性分析用于检查不同变量之间的线性关系,以检测两个变量之间的关系是否相关,以及这种相关性的强弱程度。
它的研究范围可以扩展到多个变量,这就是所谓的多重相关性。
相关性分析为研究者提供了一种简单而有效的方法来识别多个变量之间的关联,以便提供直观的洞察力。
而回归分析对相关性分析来说又稍微有些不同,它旨在建立一种线性模型,以探索变量之间存在的动态关系。
这种模型可以帮助我们研究多变量之间的联系,并根据它们之间的变化趋势来预测下一次变化可能出现的值。
当已知两个变量之间的关系时,回归分析可以让研究者实证地预测其中一个变量对另一个变量的影响。
因此,总的来说,相关性分析和回归分析可以在研究者的帮助下识别特定变量之间的线性关系,并研究它们之间变化的趋势,从而推断出影响这些变量的原因和结果,最终用以影响整个研究的结果。
相关分析和回归分析
回归分析和相关分析的联系和区别回归分析(Regression):Dependant variable is defined and can be forecasted by independent variable.相关分析(Correlation):The relationship btw two variables. --- A dose not define or determine B.回归更有用自变量解释因变量的意思,有一点点因果关系在里面,并且可以是线性或者非线形关系;相关更倾向于解释两两之间的关系,但是一般都是指线形关系,特别是相关指数,有时候图像显示特别强二次方图像,但是相关指数仍然会很低,而这仅仅是因为两者间不是线形关系,并不意味着两者之间没有关系,因此在做相关指数的时候要特别注意怎么解释数值,特别建议做出图像观察先。
不过,无论回归还是相关,在做因果关系的时候都应该特别注意,并不是每一个显著的回归因子或者较高的相关指数都意味着因果关系,有可能这些因素都是受第三,第四因素制约,都是另外因素的因或果。
对于此二者的区别,我想通过下面这个比方很容易理解:对于两个人关系,相关关系只能知道他们是恋人关系,至于他们谁是主导者,谁说话算数,谁是跟随者,一个打个喷嚏,另一个会有什么反应,相关就不能胜任,而回归分析则能很好的解决这个问题回歸未必有因果關係。
回歸的主要有二:一是解釋,一是預測。
在於利用已知的自變項預測未知的依變數。
相關係數,主要在了解兩個變數的共變情形。
如果有因果關係,通常會進行路徑分析(path analysis)或是線性結構關係模式。
我觉得应该这样看,我们做回归分析是在一定的理论和直觉下,通过自变量和因变量的数量关系探索是否有因果关系。
楼上这位仁兄说“回归未必有因果关系……如果有因果关系,通常进行路径分析或线性结构关系模式”有点值得商榷吧,事实上,回归分析可以看成是线性结构关系模式的一个特例啊。
相关与回归区别与联系
直线回归与相关的区别和联系1.区别:①资料要求不同:直线回归分析中,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。
直线相关分析要求服从双变量正态分布;②应用目的不同:说明两变量间相关关系用相关,此时两变量的关系是平等的;说明两变量间的数量变化关系用回归,用以说明Y 如何依赖于X 的变化而变化;③指标意义不同:r 说明具有直线关系的两变量间相互关系的方向与密切程度;b 表示X 变化一个单位时Y 的平均变化量; ④计算不同:YY XX XY l l l r /=,XX XY l l b /=;⑤取值范围不同:1≤r ≤1,∞<<∞-b ;⑥单位不同:r 没有单位,b 有单位。
2.联系:① 二者理论基础一致,皆依据于最小二乘法原理获得参数估计值;② 对同一双变量资料,回归系数b 与相关系数r 的正负号一致。
b >0与r >0,均表示两变量X 、Y 呈同向变化;同理,b <0与r <0,表示变化的趋势相反; ③ 回归系数b 与相关系数r 的假设检验等价。
即对同一双变量资料,r b t t =。
由于相关系数较回归系数的假设检验简单,在实际应用中,常以相关系数的假设检验代替回归系数的假设检验;④ 用回归解释相关。
由于决定系数总回归SS SS R /2=,当总平方和固定时,回归平方和的大小决定了相关的密切程度,回归平方和越接近总平方和,则2R 越接近1,说明引入相关的效果越好。
例如,当r =0.20,n =100时,按检验水准0.05拒绝0H ,接受1H ,认为两变量有相关关系。
但2R =0.202=0.04,表示回归平方和在总平方和中仅占4%,说明两变量间的相关关系实际意义不大。
⑤。
回归分析与相关分析联系、区别
回归分析与相关分析联系、区别简单线性回归分析是对两个具有线性关系的变量,研究其相关性,配合线性回归方程,并根据自变量的变动来推算和预测因变量平均发展趋势的方法。
回归分析(Regressionanalysis)通过一个变量或一些变量的变化解释另一变量的变化。
主要内容和步骤:首先依据经济学理论并且通过对问题的分析判断,将变量分为自变量和因变量,一般情况下,自变量表示原因,因变量表示结果;其次,设法找出合适的数学方程式(即回归模型)描述变量间的关系;接着要估计模型的参数,得出样本回归方程;由于涉及到的变量具有不确定性,接着还要对回归模型进行统计检验,计量经济学检验、预测检验;当所有检验通过后,就可以应用回归模型了。
回归的种类回归按照自变量的个数划分为一元回归和多元回归。
只有一个自变量的回归叫一元回归,有两个或两个以上自变量的回归叫多元回归。
按照回归曲线的形态划分,有线性(直线)回归和非线性(曲线)回归。
相关分析与回归分析的关系(一)相关分析与回归分析的联系相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。
相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。
只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。
如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”。
与此同时,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,因此,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。
(二)相关分析与回归分析的区别1.相关分析中涉及的变量不存在自变量和因变量的划分问题,变量之间的关系是对等的;而在回归分析中,则必须根据研究对象的性质和研究分析的目的,对变量进行自变量和因变量的划分。
相关与回归区别与联系
直线回归与相关的区别和联系1.区别:①资料要求不同:直线回归分析中,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。
直线相关分析要求服从双变量正态分布; ②应用目的不同:说明两变量间相关关系用相关,此时两变量的关系是平等的;说明两变量间的数量变化关系用回归,用以说明Y 如何依赖于X 的变化而变化;③指标意义不同:r 说明具有直线关系的两变量间相互关系的方向与密切程度;b 表示X 变化一个单位时Y 的平均变化量; ④计算不同:YY XX XY l l l r /=,XX XY l l b /=;⑤取值范围不同:−1≤r ≤1,∞<<∞-b ;⑥单位不同:r 没有单位,b 有单位。
2.联系:① 二者理论基础一致,皆依据于最小二乘法原理获得参数估计值;② 对同一双变量资料,回归系数b 与相关系数r 的正负号一致。
b >0与r >0,均表示两变量X 、Y 呈同向变化;同理,b <0与r <0,表示变化的趋势相反;③ 回归系数b 与相关系数r 的假设检验等价。
即对同一双变量资料,r b t t =。
由于相关系数较回归系数的假设检验简单,在实际应用中,常以相关系数的假设检验代替回归系数的假设检验;④ 用回归解释相关。
由于决定系数总回归SS SS R /2=,当总平方和固定时,回归平方和的大小决定了相关的密切程度,回归平方和越接近总平方和,则2R 越接近1,说明引入相关的效果越好。
例如,当r =0.20,n =100时,按检验水准0.05拒绝0H ,接受1H ,认为两变量有相关关系。
但2R =0.202=0.04,表示回归平方和在总平方和中仅占4%,说明两变量间的相关关系实际意义不大。
8、这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批忍不断往前走的人手中。
9、障碍与失败,是通往成功最稳靠的踏脚石,肯研究、利用它们,便能从失败中培养出成功。
线性回归模型中相关概念的对比
在最小二乘估计 2 为总体方差 2 的估计量, ˆ 2 ei 样本数据去估计即 , 其中 (n k 1)
2
n 为样本数,k 为解释变量的个数
ˆ 的离散程度, (3) 回归系数估计量的方差反映的是回归系数估计量 i ˆ 、 ˆ 的方差分别为: 在一元线性回归模型中,两参数估计量 0 1
2/3
醉客天涯之计量经济学
ˆ ) Var ( 0
n ( X i X )
Xi2
ˆ) 和 Var ( 1 2
(X
2
i
X )2
。从公式可以看出,
要得出回归系数估计量的方差,则必须先估计出总体方差 2 。 五、 t 统计量 和 F 统计量 (1)T-Statistic=平均值 / 标准误,标准误=标准差 / 样本量的开平方 。 T-Statistic 中的平均值指的是平均差值之类的概念, 有单样本 t 检验和 双样本 t 检验之分,具体如下。 (A)单样本 t 检验:T-Statistic=(样本平均值 - 靶值)/ 标准误 靶值就是你想要与你的样本均值相比较的数值。 在单样本 t 检验中,T-statistic 的绝对值越大,则样本平均值偏离靶值 越远,也就是样本平均值与靶值有显著差异的概率越大。 (B)双样本 t 检验:T-Statistic=(样本 1 的平均值 - 样本 2 的平均值) / 标准误 T-statistic 用于检验变量否有显著性, 其数值大小不存在好坏之分, 具 体意义如下。 在双样本 t 检验中,T-statistic 的绝对值越大,则两组样本平均值的差 距越大,也就是两组样本平均值有显著差异的概率越大。 (2)F 统计量
将总体被解释变量的条件期望表示为解释变量的某种函数这个函数就称为总体回归函数其一般表达形式为将被解释变量y的样本观测值的拟合值表示为解释变量的某种函数样本回归函数是总体回归函数的一个近似
相关与回归区别与联系
直线回归与相关的区别和联系1.区别:①资料要求不同:直线回归分析中,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。
直线相关分析要求服从双变量正态分布; ②应用目的不同:说明两变量间相关关系用相关,此时两变量的关系是平等的;说明两变量间的数量变化关系用回归,用以说明Y 如何依赖于X 的变化而变化;③指标意义不同:r 说明具有直线关系的两变量间相互关系的方向与密切程度;b 表示X 变化一个单位时Y 的平均变化量; ④计算不同:YY XX XY l l l r /=,XX XY l l b /=;⑤取值范围不同:−1≤r ≤1,∞<<∞-b ;⑥单位不同:r 没有单位,b 有单位。
2.联系:① 二者理论基础一致,皆依据于最小二乘法原理获得参数估计值; ② 对同一双变量资料,回归系数b 与相关系数r 的正负号一致。
b >0与r >0,均表示两变量X 、Y 呈同向变化;同理,b <0与r <0,表示变化的趋势相反;③ 回归系数b 与相关系数r 的假设检验等价。
即对同一双变量资料,r b t t =。
由于相关系数较回归系数的假设检验简单,在实际应用中,常以相关系数的假设检验代替回归系数的假设检验;④ 用回归解释相关。
由于决定系数总回归SS SS R /2=,当总平方和固定时,回归平方和的大小决定了相关的密切程度,回归平方和越接近总平方和,则2R 越接近1,说明引入相关的效果越好。
例如,当r =0.20,n =100时,按检验水准0.05拒绝0H ,接受1H ,认为两变量有相关关系。
但2R =0.202=0.04,表示回归平方和在总平方和中仅占4%,说明两变量间的相关关系实际意义不大。