自动控制原理电子教案

合集下载

自动控制原理电子教案-第二章

自动控制原理电子教案-第二章
第二章 自动控制系统的数学描述
第一节 概论 第二节 机理分析建模方法 第三节 拉氏变换和传递函数 第四节 典型环节的动态特性 第五节 系统方框图等效变换和信号流图 第六节 实验建模方法 第七节 PID 控制器
第一节
控制系统数学模型的定义
概论
揭示系统各变量内在联系的数学表达式和关系图表
数学模型的类型
2 M d y f dy f dx 2 y x K dt K dt K dt
y
2.2.2.1 建模举例---机械系统
4). 机械转动系统
已知: 转动惯量 J , 转矩 T , 摩擦系数 f , 转角 . 求: 系统动态方程式. 解: T 根据牛顿第二定律 J
(2)
解: 根据物质守恒定律 和流量近似公式
Q2 K1 H1 H 2
(3)
Q3 K 2 H 2
中间变量为 Q2, Q3, H1, 由(2),(4) dH 2 1 Q2 K 2 H 2 dt F2 dH 2 K 2 H 2 Q2 或 F2 dt
(4)
(5)
2.2.2.3 建模举例---液力系统
Le
1

at

0
e e dt e
at st 0

a s t
1 dt sa
1 L e at s a
2.3.1.2 典型函数的拉氏变换(续)
4)正弦函数的拉氏变换
x(t ) sin t
0
t0
Lx(t ) sin t e st dt 1 jt e e jt e st dt 0 2j 1 1 1 s j s j s 2 2 2j

自动控制原理电子教案

自动控制原理电子教案

自动控制原理电子教案第一章:绪论1.1 自动控制的概念解释自动控制的定义强调自动控制在现代工业和日常生活中的重要性1.2 自动控制系统的分类介绍开环控制系统和闭环控制系统解释数字控制系统和模拟控制系统的区别1.3 自动控制系统的性能指标介绍稳定性、线性、收敛性和鲁棒性等性能指标解释这些指标对系统性能的影响第二章:反馈控制系统2.1 反馈控制系统的组成介绍控制器、执行器和传感器的功能和作用2.2 反馈控制系统的类型解释正反馈和负反馈的区别和应用场景2.3 控制器的设计方法介绍PID控制器和模糊控制器的原理和方法第三章:线性系统的状态空间分析3.1 状态空间表示法介绍状态空间的概念和数学表示方法3.2 状态方程和输出方程推导状态方程和输出方程的求解方法3.3 线性系统的可控性和可观测性解释可控性和可观测性的概念和判断方法第四章:非线性控制系统分析4.1 非线性系统的分类介绍线性与非线性的区别和常见的非线性特性4.2 非线性方程的求解方法解释求解非线性方程的数值方法和解析方法4.3 非线性控制系统的稳定性分析介绍李雅普诺夫理论和Lyapunov 函数的应用第五章:现代控制理论5.1 现代控制理论的概念解释现代控制理论的背景和发展5.2 鲁棒控制理论介绍鲁棒控制的概念和设计方法5.3 自适应控制理论解释自适应控制的概念和应用场景第六章:控制系统的设计方法6.1 系统设计的基本原则介绍控制系统设计中的稳定性、准确性和快速性原则6.2 控制器设计方法详细讲解PID控制器、模糊控制器、自适应控制器的设计步骤和注意事项6.3 系统仿真与实验介绍使用MATLAB等工具进行控制系统仿真的方法强调实验在控制系统教学和工程应用中的重要性第七章:线性调节器的设计7.1 调节器的作用与分类解释调节器的作用以及比例、积分、微分调节器的特点7.2 调节器的设计方法介绍Ziegler-Nichols方法等经典调节器设计方法7.3 调节器的参数整定讲解如何通过观察系统响应来整定调节器参数第八章:系统辩识8.1 系统辩识的基本概念解释系统辩识的目的和方法8.2 输入输出数据采集介绍如何采集系统的输入输出数据8.3 系统模型的建立与参数估计讲解如何根据采集到的数据建立数学模型并进行参数估计第九章:数字控制系统9.1 数字控制系统的组成介绍数字控制系统的硬件和软件组成部分9.2 数字控制算法详细讲解离散PID控制、模糊控制等数字控制算法9.3 数字控制器的实现介绍如何实现数字控制器,包括硬件实现和软件实现第十章:自动控制系统的应用10.1 工业自动化讲解自动控制系统在工业生产中的应用案例10.2 家居自动化介绍自动控制系统在智能家居中的应用案例10.3 汽车自动化探讨自动控制系统在现代汽车工业中的应用案例重点和难点解析重点环节:1. 自动控制的概念和分类2. 反馈控制系统的组成和类型3. 状态空间分析方法4. 非线性控制系统分析5. 现代控制理论6. 控制系统的设计方法和步骤7. 调节器的设计和参数整定8. 系统辩识的方法和模型建立9. 数字控制系统的组成和算法实现10. 自动控制系统的应用案例难点解析:1. 自动控制的概念和分类:理解自动控制的基本原理和不同类型控制系统的特点。

自动控制原理电子教案-新ac

自动控制原理电子教案-新ac

开环系统性能改善
通过串联校正、反馈校正 等方法改善开环系统性能 ,提高系统稳定性和动态 性能。
闭环系统频率特性及性能指标计算
闭环系统频率特性
根据闭环传递函数,绘制 闭环幅频特性和相频特性 曲线,分析系统稳定性、 抗干扰能力和动态性能。
性能指标计算
计算系统的相位裕度、幅 值裕度、谐振频率和谐振 峰值等指标,评估系统性 能。
二阶系统
响应可能呈现振荡形式,其性能指标如峰值时间、超调量与系统的阻尼比ζ和自 然频率ωn有关。根据ζ的大小,二阶系统可分为过阻尼(ζ>1)、临界阻尼( ζ=1)和欠阻尼(0<ζ<1)三种类型。
稳定性判据及应用举例
01
劳斯判据
通过构造劳斯表,判断特征方程根在复平面的位置,从而确定系统的稳
定性。若劳斯表中第一列元素均为正,则系统稳定;若存在负数,则系
在零初始条件下,系统输出与输入之 间的拉普拉斯变换比,描述系统动态 特性。
传递函数性质
传递函数与微分方程关系
探讨传递函数与微分方程之间的联系 ,理解两者在描述系统时的等价性。
分析传递函数的稳定性、幅频特性、 相频特性等性质,了解系统性能。
状态空间模型描述及转换
状态空间模型建立

01
根据系统内部状态变量和输入输出关系,建立状态空间模型,
统不稳定。
02
赫尔维茨判据
通过判断特征方程的各项系数是否满足一定条件来判断系统的稳定性。
若各项系数均大于零,且满足赫尔维茨行列式大于零的条件,则系统稳
定。
03
应用举例
在控制系统设计中,常利用稳定性判据来判断所设计的控制器是否能使
系统稳定。例如,在PID控制器设计中,可通过调整比例、积分和微分

自动控制原理电子教案

自动控制原理电子教案

一、教案基本信息自动控制原理电子教案课时安排:45分钟教学目标:1. 理解自动控制的基本概念和原理。

2. 掌握自动控制系统的分类和特点。

3. 了解常用自动控制器的原理和应用。

教学方法:1. 讲授:讲解自动控制的基本概念、原理和特点。

2. 互动:提问和回答,让学生积极参与课堂讨论。

3. 案例分析:分析实际应用中的自动控制系统,加深学生对知识的理解。

教学工具:1. 投影仪:用于展示PPT和视频资料。

2. 计算机:用于播放教学视频和演示软件。

二、教学内容和步骤1. 自动控制的基本概念(5分钟)讲解自动控制系统的定义、作用和基本组成。

通过举例说明自动控制系统在实际中的应用,如温度控制、速度控制等。

2. 自动控制系统的分类和特点(10分钟)讲解自动控制系统的分类,包括线性系统和非线性系统、连续系统和离散系统、开环系统和闭环系统等。

介绍各种系统的特点和应用场景。

3. 常用自动控制器原理和应用(15分钟)介绍常用的自动控制器,如PID控制器、模糊控制器、神经网络控制器等。

讲解其原理和结构,并通过实际案例分析其应用。

4. 课堂互动(5分钟)提问和回答环节,让学生积极参与课堂讨论,巩固所学知识。

可以设置一些选择题或简答题,检查学生对自动控制原理的理解。

三、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的积极性等。

2. 作业完成情况:检查学生作业的完成质量,包括答案的正确性、解题思路的清晰性等。

3. 课程测试:在课程结束后进行一次测试,检验学生对自动控制原理的掌握程度。

四、教学资源1.PPT:制作精美的PPT,用于展示教学内容和实例。

2. 视频资料:收集相关自动控制原理的教学视频,用于辅助讲解和演示。

3. 案例分析:挑选一些实际应用中的自动控制系统案例,用于分析和学习。

五、教学拓展1. 开展课后讨论:鼓励学生在课后组成学习小组,针对课堂所学内容进行讨论和交流。

2. 参观实验室:组织学生参观自动控制实验室,实地了解自动控制系统的原理和应用。

自动控制原理电子教案新a

自动控制原理电子教案新a

自动控制原理电子教案新a第一章:自动控制概述1.1 自动控制的基本概念引入自动控制的概念解释自动控制系统的组成强调自动控制系统的作用和应用1.2 自动控制系统的分类介绍开环控制系统和闭环控制系统解释数字控制系统和模拟控制系统的区别探讨混合控制系统的特点1.3 自动控制系统的性能指标介绍稳态性能和动态性能解释稳定性、快速性和精确性的概念探讨系统性能的改善方法第二章:反馈控制原理2.1 反馈控制的基本原理引入反馈控制的概念解释反馈控制系统的组成强调反馈控制系统的优点2.2 反馈控制系统的类型介绍正反馈和负反馈解释闭环控制和开环控制的关系探讨复合控制系统的应用2.3 反馈控制系统的稳定性分析介绍劳斯-赫尔维茨准则解释奈奎斯特准则和波特-瓦泽尔准则探讨李雅普诺夫方法在系统稳定性分析中的应用第三章:PID控制原理3.1 PID控制的基本概念引入PID控制的概念解释PID控制器的组成强调PID控制器在工业中的应用3.2 PID控制器的参数调整介绍比例、积分和微分的作用解释参数调整的方法和步骤探讨参数调整对系统性能的影响3.3 PID控制的改进和优化介绍模糊PID控制和自适应PID控制解释神经网络PID控制和滑模变结构控制的应用探讨PID控制在现代控制系统中的地位第四章:现代控制原理4.1 现代控制理论的基本概念引入现代控制理论的概念解释状态空间和传递函数的关系强调现代控制理论在系统分析和设计中的应用4.2 状态反馈和观测器设计介绍状态反馈的概念解释观测器的作用和类型探讨状态反馈和观测器在控制系统中的应用4.3 鲁棒控制和最优控制介绍鲁棒控制的概念和应用解释最优控制的目标和约束探讨鲁棒控制和最优控制在现代控制系统中的应用第五章:自动控制系统的仿真与实验5.1 自动控制系统仿真的基本概念引入自动控制系统仿真的概念解释仿真软件的作用和类型强调仿真在控制系统分析和设计中的应用5.2 自动控制系统实验的基本方法介绍实验设备和实验步骤解释实验数据处理和分析的方法探讨实验在控制系统教学和科研中的应用5.3 自动控制系统仿真与实验案例分析分析实际案例中的控制系统问题运用仿真和实验方法解决实际问题总结仿真和实验在控制系统中的应用经验第六章:线性系统的稳定性分析6.1 劳斯-赫尔维茨准则详细解释劳斯-赫尔维茨准则的原理和应用通过例题展示如何应用准则判断系统稳定性探讨准则的局限性和扩展方法6.2 奈奎斯特准则介绍奈奎斯特准则的概念和图形表示解释如何利用奈奎斯特准则分析系统稳定性通过实例演示奈奎斯特准则的实际应用6.3 李雅普诺夫方法阐述李雅普诺夫方法的原理和分类介绍李雅普诺夫第一定理和第二定理通过案例分析展示如何利用李雅普诺夫方法判断系统稳定性第七章:根轨迹法7.1 根轨迹的基本概念解释根轨迹法的原理和作用介绍根轨迹图的绘制方法和步骤强调根轨迹法在系统分析和设计中的应用7.2 根轨迹的绘制详细讲解如何绘制根轨迹图通过实例演示根轨迹法的应用探讨根轨迹法的局限性和改进方法7.3 根轨迹设计控制器介绍如何利用根轨迹法设计控制器解释根轨迹法在控制系统中的应用通过案例分析展示根轨迹法在控制器设计中的实际应用第八章:频率响应法8.1 频率响应的基本概念引入频率响应法的概念和作用解释频率响应图的绘制方法和步骤强调频率响应法在系统分析和设计中的应用8.2 频率响应的绘制详细讲解如何绘制频率响应图通过实例演示频率响应法的应用探讨频率响应法的局限性和改进方法8.3 频率响应设计控制器介绍如何利用频率响应法设计控制器解释频率响应法在控制系统中的应用通过案例分析展示频率响应法在控制器设计中的实际应用第九章:数字控制原理9.1 数字控制的基本概念引入数字控制的概念和作用解释数字控制与模拟控制的区别强调数字控制在现代控制系统中的应用9.2 数字控制器的实现介绍数字控制器的结构和工作原理解释Z变换和反Z变换在数字控制中的应用探讨数字控制器设计的算法和方法9.3 数字控制系统的仿真与实验介绍数字控制系统仿真的方法和工具解释数字控制系统实验的步骤和注意事项通过实例演示数字控制系统仿真与实验的应用第十章:自动控制系统的应用案例分析10.1 工业过程控制分析工业过程中自动控制的应用案例介绍工业控制器的设计和实施方法强调自动控制系统在提高工业生产效率和质量中的作用10.2 控制系统探讨控制系统中自动控制的应用解释控制器的设计和实现方法展示自动控制系统在技术发展中的重要性10.3 交通运输控制系统分析交通运输领域自动控制的应用案例介绍交通运输控制器的设计和实施方法强调自动控制系统在提高交通运输安全和效率中的作用10.4 家居自动化系统探讨家居自动化系统中自动控制的应用解释家居控制器的设计和实现方法展示自动控制系统在提升家居生活品质中的重要性10.5 总结回顾本课程的重要概念和原理强调自动控制系统在各个领域的应用价值鼓励学生积极参与自动控制领域的创新和发展第十一章:非线性控制系统的分析与设计11.1 非线性系统的基本概念引入非线性系统的概念和特点解释非线性系统的数学建模方法强调非线性控制在工程实践中的应用11.2 非线性系统的分析方法介绍李雅普诺夫方法在非线性系统分析中的应用解释奇异摄动法和非线性动态系统的稳定性分析探讨同伦分析法和反馈线性化方法在非线性系统分析中的应用11.3 非线性控制系统的设计方法介绍非线性PID控制和模糊控制的设计方法解释自适应控制和滑模控制在非线性系统中的应用探讨神经网络控制在非线性控制系统设计中的优势和挑战第十二章:智能控制原理12.1 智能控制的基本概念引入智能控制的概念和特点解释智能控制系统的组成和分类强调智能控制在复杂系统和不确定性系统中的应用12.2 模糊控制原理介绍模糊控制的基本原理和设计方法解释模糊逻辑和模糊规则在控制中的应用探讨模糊控制器的参数调整和优化方法12.3 神经网络控制原理阐述神经网络在控制系统中的应用原理介绍前馈神经网络和递归神经网络在控制中的应用探讨神经网络控制器的设计方法和训练算法第十三章:自适应控制原理13.1 自适应控制的基本概念引入自适应控制的概念和作用解释自适应控制系统的设计方法和分类强调自适应控制在变化环境和不确定性系统中的应用13.2 自适应控制律的设计介绍自适应控制律的设计方法和原理解释比例积分微分(PID)自适应控制和模型参考自适应控制的应用探讨自适应控制器参数的更新规则和收敛性分析13.3 自适应控制系统的仿真与实验介绍自适应控制系统仿真的方法和工具解释自适应控制系统实验的步骤和注意事项通过实例演示自适应控制系统仿真与实验的应用第十四章:控制系统在工程实践中的应用14.1 控制系统在工业过程中的应用分析工业过程中控制系统的应用案例介绍工业控制器的设计和实施方法强调控制系统在提高工业生产效率和质量中的作用14.2 控制系统在技术中的应用探讨控制系统中控制的应用解释控制器的设计和实现方法展示控制系统在技术发展中的重要性14.3 控制系统在交通运输领域的应用分析交通运输领域控制系统的应用案例介绍交通运输控制器的设计和实施方法强调控制系统在提高交通运输安全和效率中的作用14.4 控制系统在家居自动化中的应用探讨家居自动化系统中控制的应用解释家居控制器的设计和实现方法展示控制系统在提升家居生活品质中的重要性第十五章:总结与展望15.1 自动控制原理课程总结回顾本课程的重要概念、原理和方法强调自动控制在工程实践中的应用价值鼓励学生积极参与自动控制领域的创新和发展15.2 自动控制技术的未来发展趋势介绍当前自动控制技术的研究热点和发展趋势探讨、大数据和云计算在自动控制领域的应用前景激发学生对自动控制技术的兴趣和热情,为未来的学习和工作做好准备重点和难点解析第一章:自动控制概述重点:自动控制系统的组成、作用和应用难点:自动控制系统性能指标的理解和应用第二章:反馈控制原理重点:反馈控制系统的类型和优点难点:闭环控制系统和开环控制系统的区别第三章:PID控制原理重点:PID控制器的组成和参数调整方法难点:模糊PID控制和神经网络PID控制的设计与应用第四章:现代控制原理重点:状态空间和传递函数的关系难点:鲁棒控制和最优控制的应用第五章:自动控制系统的仿真与实验重点:自动控制系统仿真和实验的方法与工具难点:实验数据处理和分析的方法第六章:线性系统的稳定性分析重点:劳斯-赫尔维茨准则、奈奎斯特准则和李雅普诺夫方法难点:李雅普诺夫方法在系统稳定性分析中的应用第七章:根轨迹法重点:根轨迹图的绘制方法和步骤难点:根轨迹法在控制系统分析和设计中的应用第八章:频率响应法重点:频率响应图的绘制方法和步骤难点:频率响应法在控制系统分析和设计中的应用第九章:数字控制原理重点:数字控制器的实现方法和Z变换、反Z变换的应用难点:数字控制器设计的算法和方法第十章:自动控制系统的应用案例分析重点:自动控制系统在各个领域的应用案例难点:工业过程控制、控制系统和交通运输控制系统中自动控制的应用第十一章:非线性控制系统的分析与设计重点:非线性系统的基本概念和分析方法难点:非线性控制系统的设计方法第十二章:智能控制原理重点:模糊控制、神经网络控制和智能控制系统的基本原理难点:模糊控制器和神经网络控制器的设计方法第十三章:自适应控制原理重点:自适应控制系统的设计方法和分类难点:自适应控制律的设计和参数更新规则的确定第十四章:控制系统在工程实践中的应用重点:控制系统在工业过程、技术、交通运输和家居自动化领域的应用难点:控制系统在复杂系统和不确定性系统中的应用第十五章:总结与展望重点:自动控制原理课程的重要概念、原理和方法的总结难点:自动控制技术未来发展趋势的理解和把握。

《自动控制原理》电子教案

《自动控制原理》电子教案

《自动控制原理》电子教案自动控制原理是一门应用于工程系统中的基础课程,主要教授控制系统的基本原理、方法和技术。

本教案分为导入、教学过程、课堂活动、作业布置和教学总结五个部分。

一、导入控制系统是现代工程中不可或缺的部分,它在各个领域中都有着广泛的应用,如机械、电子、航空航天、化工等。

本课程将重点介绍控制系统的基本原理和常用的控制方法,通过理论与实践相结合的方式,让学生对自动控制有一个全面的了解。

二、教学过程1.引入控制系统的概念和意义-通过举例说明控制系统在日常生活中的应用,如电梯、温度调节器等。

-引导学生思考控制系统的目的是什么,如稳定性、精确度、鲁棒性等。

2.基本概念和术语-介绍控制系统的基本构成要素,如输入、输出、传感器、执行器等。

-解释控制系统的基本术语,如开环控制、闭环控制、反馈、控制器等。

3.数学模型建立与分析-介绍控制系统的数学建模方法,如微分方程、状态空间等。

-通过实例演示如何建立系统的数学模型,如电机控制系统、液位控制系统等。

-分析系统的稳定性和动态响应,引入根轨迹和频率响应的概念。

4.控制方法与技术-介绍常见的控制方法,如比例、积分、微分控制器,PID控制器等。

-讲解先进的控制技术,如自适应控制、鲁棒控制、优化控制等。

-针对不同的控制任务,介绍相应的控制算法和调参方法。

5.实验与仿真-安排实验课程,让学生通过实际操作来深入理解控制系统的原理和方法。

-使用仿真软件进行虚拟实验,提供学生自主学习和实践的机会。

三、课堂活动1.小组讨论:请学生分小组讨论不同控制系统的应用,并分享自己的观点和想法。

2.解答问题:教师提供一些与课程内容相关的问题,鼓励学生积极参与回答,加深对知识的理解。

3.实例分析:教师提供一些典型的控制系统实例,让学生逐步分析其数学模型和控制方法。

四、作业布置1.阅读相关文献资料,进一步了解控制系统的发展和应用。

2.完成课后习题,加强对知识的巩固。

3.准备下一堂课的报告,选择一个感兴趣的控制系统进行介绍。

《自动控制原理》电子教案

《自动控制原理》电子教案
大纲制订人:杨志超 大纲审定人:李先允 制订日期:2005 年 6 月
5
《自动控制原理》电子教案
《自动控制原理》课程实验教学大纲
一、实验教学目标与基本要求
《自动控制原理》课程实验通过上机使用 MATLAB 软件,使学生初步掌握 MATLAB 软件在控制理论中的 基本应用,学会利用 MATLAB 软件分析控制系统,从而加深对自动控制系统的认识,帮助理解经典自动控 制的相关理论和分析方法。通过本课程上机实验,要求学生对 MATLAB 软件有一个基本的了解,掌握 MATLAB 软件中基本数组和矩阵的表示方法,掌握 MATLAB 软件的基本绘图功能,学会 MATLAB 软件中自动控制理论 常用函数的使用,学会在 MATLAB 软件工作窗口进行交互式仿真和使用 M_File 格式的基本编程方法,初步
制系统的性能。了解开环零、极点对系统性能的影响。
5.熟悉频率分析法分析控制系统性能的方法 熟悉典型环节频率特性的求取以及频率特性曲线,掌握系统开环对数频率特性曲线、极坐标曲线绘制 的基本方法。了解根据开环对数频率特性曲线分析闭环系统性能的方法。熟悉用奈奎斯特稳定判据判断系
1
《自动控制原理》电子教案
4.频率法反馈校正的基本原理和方法(选讲)
(七)非线性控制系统 了解非线性系统与线性系统的区别,了解非线性特性和非线性系统的主要特征,学会非线性系统的描 述函数分析方法,了解非线性系统的相平面分析法(选讲)。
3
《自动控制原理》电子教案
1. 非线性系统的基本概念
2. 典型非线性特性、非线性系统的主要特征
三、实验方法、特点与基本要求
本课程实验采用计算机 MATLAB 软件仿真方法,其特点是利用 MATLAB 软件丰富的功能函数、灵活的编 程和调试手段以及强大的人机交互和图形输出功能,可以实现对控制系统直观和方便的分析和设计。

自动控制原理电子教学案

自动控制原理电子教学案

第一章自动控制原理的基本概念主要内容:自动控制的基本知识开环控制与闭环控制自动控制系统的分类及组成自动控制理论的发展§1.1 引言控制观念生产和科学实践中,要求设备或装置或生产过程按照人们所期望的规律运行或工作。

同时,干扰使实际工作状态偏离所期望的状态。

例如:卫星运行轨道,导弹飞行轨道,加热炉出口温度,电机转速等控制控制:为了满足预期要求所进行的操作或调整的过程。

控制任务可由人工控制和自动控制来完成。

§ 1.2 自动控制的基本知识1.2.1 自动控制问题的提出一个简单的水箱液面,因生产和生活需要,希望液面高度h维持恒定。

当水的流入量与流出量平衡时,水箱的液面高度维持在预定的高度上。

当水的流出量增大或流入量减小,平衡则被破坏,液面的高度不能自然地维持恒定。

所谓控制就是强制性地改变某些物理量(如上例中的进水量),而使另外某些特定的物理量(如液面高度h)维持在某种特定的标准上。

人工控制的例子。

这种人为地强制性地改变进水量,而使液面高度维持恒定的过程,即是人工控制过程。

1.2.2 自动控制的定义及基本职能元件1. 自动控制的定义自动控制就是在没有人直接参与的情况下,利用控制器使被控对象(或过程)的某些物理量(或状态)自动地按预先给定的规律去运行。

当出水与进水的平衡被破坏时,水箱水位下降(或上升),出现偏差。

这偏差由浮子检测出来,自动控制器在偏差的作用下,控制阀门开大(或关小),对偏差进行修正,从而保持液面高度不变。

2. 自动控制的基本职能元件自动控制的实现,实际上是由自动控制装置来代替人的基本功能,从而实现自动控制的。

画出以上人工控制与动控制的功能方框图进行对照。

比较两图可以看出,自动控制实现人工控制的功能,存在必不可少的三种代替人的职能的基本元件:测量元件与变送器(代替眼睛)自动控制器(代替大脑)执行元件(代替肌肉、手)这些基本元件与被控对象相连接,一起构成一个自动控制系统。

下图是典型控制系统方框图。

自动控制原理电子教案,胡寿松

自动控制原理电子教案,胡寿松
实验成绩20分,平时成绩10分,期中考试成绩15分,阶段测验10 分,期末考试45分。
其中平时成绩:作业5分、课堂笔记2分、表现3分 九、教案书写说明:
1、带有下划线的为板书内容; 2、思考题一部分是作业题,一部分是课堂讨论题; 3、多媒体教学中,部分内容没有列入教案; 4、课堂讨论主要以习题课为主。
2、解决难点:将典型信号分析与系统实例有机结合。
授课方法
通过系统实例分析,阐述自 动控制系统的基本要求
(现代化) 教学手段
多媒体课件与板书结 合
作业 思考题 师生互动
P17 1.2 1.5 思考题:评价系统性能的三大要素是什么? 1、 对控制系统设计有哪些要求? 2、 静态指标主要指什么?
1. 3自动控制系统的分类
2、 本课主要内容 自动控制系统的基本概念、控制系统的数学模型建立、介绍线性系 统的时域分析、根轨迹分析、频域分析三大分析设计方法,并介绍校正 的相关概念与系统校正的设计方法。 3、 如何学好该课程 要学好这门课程主要把握几个环节:
1、 知识的连续性,一环扣一环,及时消化理解; 2、 要掌握好电路、电机拖动及模拟电子技术方面的知识; 3、 加强作业练习,作好课堂笔记; 4、 利用好答疑时间,发现问题及时解决; 5、 加强实践环节,上好实验课。 四、参考书 1、卢京潮编著,自动控制原理,西北工业大学出版社,2004年 9月 2、蒋大明等编著,自动控制原理,清华大学出版社,2003年3
《自动控制原理》课程教案
前言
1、 重要性 1、 自动控制原理是自动化专业主干课程,是最重要的专业基础
课,该课程涉及到电路、电机拖动、电子技术等方面的知 识,为学好专业课打下良好的基础。 2、 自动控制原理课不仅是高校控制类专业必修课程,而且越

自动控制原理电子教案新a

自动控制原理电子教案新a

自动控制原理电子教案新a一、前言1. 课程简介:自动控制原理是研究自动控制系统的基本理论、方法和应用的学科。

本课程旨在使学生掌握自动控制的基本概念、原理和设计方法,为后续专业课程和实际工程应用打下基础。

2. 教学目标:通过本课程的学习,学生应能理解自动控制系统的组成、工作原理和性能评价,掌握常见控制器的设计方法和应用,具备分析解决自动控制问题的能力。

3. 教材及参考书:(1)教材:《自动控制原理》,作者:何贵林,出版社:清华大学出版社。

(2)参考书:《现代自动控制原理》,作者:陈玉祥,出版社:机械工业出版社。

二、课程内容1. 自动控制基本概念1.1 自动控制系统的定义1.2 自动控制系统的分类1.3 自动控制系统的性能指标2. 经典控制理论2.1 传递函数2.2 动态响应2.3 稳定性分析2.4 控制器设计方法3. 现代控制理论3.1 状态空间描述3.2 状态空间分析3.3 控制器设计三、教学方法与手段1. 讲授:通过课堂讲授,使学生掌握自动控制原理的基本概念、理论和方法。

2. 实验:安排实验课程,让学生亲手操作,加深对自动控制原理的理解。

3. 案例分析:分析实际工程案例,提高学生解决实际问题的能力。

4. 习题讨论:组织学生进行习题讨论,巩固所学知识。

四、课程考核1. 期末考试:包括选择题、填空题、计算题和简答题,考察学生对自动控制原理的基本知识和应用能力的掌握。

2. 实验报告:评估学生在实验过程中的操作能力和分析问题能力。

3. 课程设计:培养学生解决实际自动控制问题的能力。

五、课程安排1. 课时:共计32课时,其中理论课时24课时,实验课时8课时。

2. 授课安排:每课时45分钟,共8周完成。

3. 实验安排:第9周开始,共2个实验。

六、自动控制系统的数学模型6.1 系统的微分方程系统的输入输出关系系统的状态变量微分方程的建立6.2 系统的传递函数传递函数的定义传递函数的性质典型环节的传递函数6.3 状态空间描述状态空间的概念状态空间的建立状态空间的性质七、系统的稳定性分析7.1 稳定性概念系统稳定的定义稳定性的判定方法稳定性的性质7.2 劳斯-赫尔维茨定理定理的表述定理的应用定理的推广7.3 李雅普诺夫方法李雅普诺夫函数的定义李雅普诺夫第一定理李雅普诺夫第二定理八、系统的控制器设计8.1 概述控制器的作用控制器设计的目标控制器设计的步骤8.2 比例积分微分(PID)控制器PID控制器的原理PID控制器的参数调整PID控制器的应用8.3 模糊控制器模糊控制器的原理模糊控制器的结构模糊控制器的应用九、系统的准确度分析与校正9.1 系统准确度的概念系统准确度的定义系统准确度的评价指标系统准确度的改善方法9.2 系统校正的方法系统校正的目的系统校正的原理系统校正的方法9.3 系统校正的实例分析实例一:线性系统的校正实例二:非线性系统的校正实例三:时变系统的校正十、自动控制系统的应用10.1 工业控制系统工业控制系统的类型工业控制系统的应用工业控制系统的案例分析10.2 航空航天控制系统航空航天控制系统的特点航空航天控制系统的应用航空航天控制系统的案例分析10.3 生物医学控制系统生物医学控制系统的类型生物医学控制系统的应用生物医学控制系统的案例分析十一、非线性控制系统11.1 非线性系统的特点非线性系统的定义非线性系统的常见类型非线性系统分析的挑战11.2 非线性控制理论非线性系统的数学模型非线性系统的稳定性分析非线性控制策略11.3 非线性控制应用实例实例一:倒立摆控制系统实例二:控制系统实例三:电子电路控制系统十二、现代控制理论12.1 状态空间法的优势状态空间法的概念状态空间法的应用状态空间法与传统控制理论的比较12.2 李雅普诺夫理论李雅普诺夫理论的基本概念李雅普诺夫稳定性分析李雅普诺夫理论的应用12.3 鲁棒控制理论鲁棒控制的概念鲁棒控制的设计方法鲁棒控制在实际系统中的应用十三、自适应控制系统13.1 自适应控制的需求自适应控制的概念自适应控制的目标自适应控制的重要性13.2 自适应控制算法自适应控制算法的基本原理自适应控制算法的类型自适应控制算法的实现13.3 自适应控制的应用实例实例一:自适应PID控制实例二:自适应模糊控制实例三:自适应神经网络控制十四、自动控制系统的仿真14.1 仿真在自动控制系统中的应用仿真技术的概念仿真软件的选择与使用仿真在系统设计与分析中的重要性14.2 系统仿真的方法离散时间系统的仿真连续时间系统的仿真非线性系统的仿真14.3 仿真案例分析案例一:飞行器控制系统仿真案例二:工业过程控制系统仿真案例三:生物医学控制系统仿真十五、课程总结与展望15.1 自动控制原理课程总结课程主要内容的回顾重点和难点的梳理学生学习情况的评估15.2 自动控制技术的未来发展趋势新型控制理论的发展智能化控制的应用跨学科融合的创新15.3 课程实践与研究建议学生如何进行课程实践教师如何进行教学研究课程改进的方向和建议重点和难点解析:一、前言重点:自动控制原理的概念、意义和应用领域。

《自动控制原理》电子教案

《自动控制原理》电子教案

自动控制原理电子教案第 1 次课授课时间2学时授课题目(章、节)第一章绪论(1-3节)主要内容1.自动控制在各领域的应用2.自动控制的作用3.自动控制定义:自动控制就是在没有人直接参与的情况下,利用控制器使被控对象(或过程)的某些物理量自动地按预先给定的规律去运行。

4.自动控制系统的基本职能元件及基本框图等5.开环控制与闭环控制目的与要求了解自动控制系统的基本职能元件、基本术语及方框图掌握自动控制定义掌握开环、闭环控制的定义、基本框图重点与难点重点:自动控制的定义、开环控制与闭环控制的定义及框图教学手段授课、例题讲解思考题或作业题1-21.1 引言 无论是人们的日常生活、工业生产,还是空间探索、导弹制导等尖端科技领域中,自动控制技术无所不在、无所不能。

自动控制理论和技术已经渗透到社会、经济和科学研究的各个方面。

 自动控制技术是建立在控制论基础上的,而控制论研究的是控制的一般性理论,它不具体面对某一类控制系统的,因此它是一门以理论为主的课程。

 自动控制理论是一门理论性和工程性的综合科学。

 1.控制理论的基础观念 控制理论是建立在有可能发展一种方法来研究各式各样系统中控制过程这一基础上的理论(也即,它是研究系统共性的控制过程的理论,可以把实际对象的物理涵义抽象出来,因此,它一定是以数学工具作为主要研究手段的)。

 2.控制理论的研究对象 控制论的研究是面向系统的。

 广义地讲:控制论是研究信息的产生、转换、传递、控制和预报的科学; 狭义地讲:根据期望的输出来改变控制输入,使系统的输出能达到某中预期的效果。

 3.控制论与数学及自动化技术的关系 控制论是应用数学的一个分支,它的某些理论的研究还要借助于抽象数学。

而控制论的研究成果若要应用于实际工程中,就必须在理论概念与用来解决这些实际问题的实用方法之间架起一座桥梁。

 1.2 自动控制和自动控制系统 1.2.1自动控制问题的提出 人们存在着一种普遍的要求或希望,即要求某些物理量维持在某种特定的(如恒定不变或按某种规律变化或跟踪某个变化的量等等)标准上。

电科电信西电版自动控制原理教案

电科电信西电版自动控制原理教案

电科-电信-西电版自动控制原理教案一、课程简介1.1 课程背景自动控制原理是电子信息工程、通信工程等电类专业的核心课程,旨在培养学生掌握自动控制理论的基本概念、原理和方法,为后续从事电子信息技术领域的研究和工作打下基础。

1.2 课程目标通过本课程的学习,使学生了解自动控制系统的分类、性能指标及基本环节,掌握线性系统的时域分析、频域分析方法,熟悉现代控制理论的基本思想,具备分析和设计简单自动控制系统的能力。

1.3 教学内容本课程主要内容包括自动控制系统的基本概念、框图表示、性能指标,线性系统的时域分析、频域分析,以及现代控制理论的基本方法。

二、教学方法2.1 讲授与实践相结合通过课堂讲授,使学生掌握自动控制原理的基本概念和方法;结合实验教学,培养学生的动手能力和实际问题解决能力。

2.2 案例分析引入实际案例,使学生更好地理解自动控制系统的应用背景和实际效果。

2.3 互动式教学鼓励学生提问、发表见解,提高课堂互动性,激发学生的学习兴趣和主动性。

三、教学安排3.1 课时安排本课程共计48课时,其中包括理论讲授40课时,实验教学8课时。

3.2 授课计划按照教材章节顺序,合理安排每个章节的授课时间和内容。

四、考核方式4.1 平时成绩包括课堂表现、作业完成情况,占总成绩的30%。

4.2 期末考试包括选择题、填空题、计算题和论述题,占总成绩的70%。

五、教学资源5.1 教材《自动控制原理》(西电版),作者:X。

5.2 实验设备自动控制系统实验装置,包括控制器、传感器、执行器等。

5.3 辅助教材提供相关参考书籍、学术论文、网络资源等,以便学生课后自主学习和拓展。

六、教学内容与重点6.1 教学内容自动控制系统的基本概念与组成系统的数学模型及其建立方法线性系统的时域分析法线性系统的频域分析法系统的稳定性分析系统的设计与校正非线性控制系统分析现代控制理论基础自动控制系统的应用实例6.2 教学重点自动控制系统的基本概念与组成系统的数学模型及其建立方法线性系统的时域分析法与频域分析法系统的稳定性分析与判据系统的设计与校正方法非线性控制系统分析方法现代控制理论的基本概念与方法七、教学过程与教学策略7.1 教学过程理论教学:通过PPT演示、板书和互动讨论等方式进行理论知识的教学。

自动控制原理电子教案新a

自动控制原理电子教案新a

自动控制原理电子教案新a第一章:绪论1.1 自动控制的概念介绍自动控制的定义和意义解释自动控制系统的分类和特点1.2 自动控制系统的数学模型介绍自动控制系统的数学建模方法讲解状态空间表示和传递函数表示1.3 自动控制系统的稳定性解释系统稳定性的概念和条件介绍劳斯-赫尔维茨稳定判据和奈奎斯特稳定判据第二章:经典控制理论2.1 线性系统的时域分析讲解系统的时域性能指标介绍系统的单位阶跃响应和单位冲激响应2.2 线性系统的频域分析讲解系统的频域性能指标介绍频率响应和波特图2.3 线性系统的校正方法讲解系统的校正器和校正方法介绍PID控制器和状态反馈控制第三章:现代控制理论3.1 非线性系统的数学模型介绍非线性系统的数学建模方法讲解非线性方程和微分方程的解法3.2 非线性系统的稳定性分析解释非线性系统稳定性的概念和条件介绍李雅普诺夫稳定性和哈恩-巴拿赫定理3.3 非线性系统的控制方法讲解非线性系统的控制策略介绍自适应控制和滑模控制第四章:智能控制4.1 模糊控制介绍模糊控制的基本概念和方法讲解模糊逻辑和模糊控制器的设计4.2 神经网络控制介绍神经网络的基本概念和方法讲解神经网络结构和控制器设计4.3 遗传算法控制介绍遗传算法的概念和方法讲解遗传算法在控制中的应用第五章:实例分析5.1 温度控制系统分析温度控制系统的特点和需求设计温度控制系统的控制器和参数调节5.2 直流电机控制系统分析直流电机控制系统的特点和需求设计直流电机控制系统的控制器和参数调节5.3 控制系统分析控制系统的特点和需求设计控制系统的控制器和参数调节第六章:控制系统的设计与仿真6.1 控制系统设计流程介绍控制系统设计的基本流程讲解系统建模、目标设定、控制器设计等步骤6.2 控制系统仿真讲解控制系统仿真的概念和方法介绍仿真软件和仿真结果分析6.3 控制系统实验讲解控制系统实验的目的和方法介绍实验设备和技术第七章:线性反馈控制系统7.1 线性反馈控制系统的性质介绍线性反馈控制系统的特点和优势讲解系统的稳定性和性能指标7.2 线性反馈控制系统的分析方法介绍线性反馈控制系统的分析方法讲解频域分析和时域分析7.3 线性反馈控制系统的设计方法介绍线性反馈控制系统的设计方法讲解控制器设计和参数调节第八章:非线性控制系统8.1 非线性控制系统的性质介绍非线性控制系统的特点和挑战讲解非线性方程和微分方程的解法8.2 非线性控制系统的分析方法介绍非线性控制系统的分析方法讲解李雅普诺夫稳定性和哈恩-巴拿赫定理8.3 非线性控制系统的设计方法介绍非线性控制系统的设计方法讲解控制策略和控制器设计第九章:鲁棒控制系统9.1 鲁棒控制系统的概念介绍鲁棒控制系统的定义和意义讲解鲁棒控制系统的目标和要求9.2 鲁棒控制系统的分析方法介绍鲁棒控制系统的分析方法讲解系统稳定性和性能指标9.3 鲁棒控制系统的设计方法介绍鲁棒控制系统的设计方法讲解控制器设计和参数调节第十章:自适应控制系统10.1 自适应控制系统的概念介绍自适应控制系统的定义和意义讲解自适应控制系统的基本原理10.2 自适应控制系统的分析方法介绍自适应控制系统的分析方法讲解系统稳定性和性能指标10.3 自适应控制系统的设计方法介绍自适应控制系统的设计方法讲解控制器设计和参数调节第十一章:数字控制系统11.1 数字控制系统的概述介绍数字控制系统的定义、特点和应用讲解模拟-数字转换器和数字-模拟转换器的作用11.2 数字控制系统的数学模型介绍离散时间控制系统的数学建模方法讲解差分方程和状态空间表示11.3 数字控制算法讲解Z变换和Z逆变换介绍PID控制、模糊控制和神经网络控制等算法第十二章:现代控制策略12.1 预测控制介绍预测控制的基本概念和方法讲解模型预测控制(MPC)的设计和应用12.2 优化控制介绍优化控制的基本概念和方法讲解线性二次调节器和最优控制律12.3 自适应控制讲解自适应控制的基本概念和方法介绍自适应控制器的设计和性能分析第十三章:控制系统在工程应用中的挑战13.1 系统建模不确定性讲解系统建模不确定性的来源和影响介绍不确定性分析和鲁棒控制方法13.2 非线性效应讲解非线性效应的来源和影响介绍非线性控制方法和算法13.3 传感器和执行器噪声讲解传感器和执行器噪声的来源和影响介绍噪声抑制和滤波方法第十四章:控制系统实验与实践14.1 实验设备与工具介绍控制系统实验所需的设备与工具讲解实验设备的选择和使用方法14.2 实验项目与流程讲解控制系统实验的项目和流程介绍实验数据的采集、处理和分析方法介绍实验报告的结构和内容要求第十五章:控制系统发展趋势与展望15.1 智能控制讲解智能控制的概念、发展和应用介绍智能控制方法和技术15.2 网络化控制讲解网络化控制的概念、发展和应用介绍网络控制系统和协议15.3 分布式控制讲解分布式控制的概念、发展和应用介绍分布式控制系统和算法重点和难点解析自动控制的概念、分类和特点数学模型的建立,包括状态空间表示和传递函数表示系统稳定性的分析和判断方法,如劳斯-赫尔维茨稳定判据和奈奎斯特稳定判据经典控制理论和现代控制理论的基本概念、方法和应用非线性系统的数学建模、稳定性分析和控制方法智能控制、神经网络控制和遗传算法控制的基本概念和方法数字控制系统的概述、数学模型和控制算法现代控制策略,包括预测控制、优化控制和自适应控制控制系统在工程应用中的挑战,如系统建模不确定性、非线性效应和传感器执行器噪声控制系统发展趋势与展望,如智能控制、网络化控制和分布式控制。

《自动控制原理》电子教案(共8章)

《自动控制原理》电子教案(共8章)

第一章自动控制的一般概念第一节控制理论的发展自动控制的萌芽:自动化技术学科萌芽于18世纪,由于工业革命的发展,如何进一步降低人的劳动强度和提高设备的可靠性被提到了议程。

特点:简单的单一对象控制。

1. 经典控制理论分类线性控制理论,非线性控制理论,采样控制理论2. 现代控制理论3. 大系统理论4. 智能控制理论发展历程:1. 经典控制理论时期(1940-1960)研究单变量的系统,如:调节电压改变电机的速度;调整方向盘改变汽车的运动轨迹等。

⏹1945年美国人Bode出版了《网络分析与放大器的设计》,奠定了控制理论的基础;⏹1942年哈里斯引入传递函数;⏹1948年伊万恩提出了根轨迹法;⏹1949年维纳关于经典控制的专著。

特点:以传递函数为数学工具,采用频率域法,研究“单输入—单输出”线性定常控制系统的分析和设计,而对复杂多变量系统、时变和非线性系统无能为力。

2. 现代控制理论时期(20世纪50年代末-60年代初)研究多变量的系统,如,汽车看成是一个具有两个输入(驾驶盘和加速踏板)和两个输出(方向和速度)的控制系统。

空间技术的发展提出了许多复杂的控制问题,用于导弹、人造卫星和宇宙飞船上,对自动控制的精密性和经济性指标提出了极严格的要求。

并推动了控制理论的发展。

⏹Kalman的能控性观测性和最优滤波理论;⏹庞特里亚金的极大值原理;⏹贝尔曼的动态规划。

特点:采用状态空间法(时域法),研究“对输入-多输出”、时变、非线性系统等高精度和高复杂度的控制问题。

3. 大系统控制时期(1970s-)各学科相互渗透,要分析的系统越来越大,越来越复杂。

大系统控制理论是一种过程控制与信息处理相结合的动态系统工程理论,研究的对象具有规模庞大、结构复杂、功能综合、目标多样、因素众多等特点。

它是一个多输入、多输出、多干扰、多变量的系统。

4. 智能控制时期这是近年来新发展起来的一种控制技术,是人工智能在控制上的应用。

它的指导思想是依据人的思维方式和处理问题的技巧,解决那些目前需要人的智能才能解决的复杂的控制问题。

自动控制原理电子教案

自动控制原理电子教案

自动控制原理电子教案第一章:绪论1.1 自动控制的概念介绍自动控制的定义和意义解释自动控制系统的组成和功能1.2 自动控制系统的分类介绍连续控制系统和离散控制系统的区别介绍开环控制系统和闭环控制系统的区别1.3 自动控制的发展历程介绍自动控制的发展历程和重要里程碑介绍自动控制在我国的发展状况第二章:自动控制系统的数学模型2.1 数学模型的概念介绍数学模型的定义和作用解释数学模型在自动控制系统中的应用2.2 连续系统的数学模型介绍连续系统的微分方程表示法介绍连续系统的传递函数表示法2.3 离散系统的数学模型介绍离散系统的差分方程表示法介绍离散系统的Z域表示法第三章:自动控制系统的稳定性分析3.1 稳定性概念介绍系统稳定性的定义和重要性解释稳定性的判定标准3.2 连续系统的稳定性分析介绍劳斯-赫尔维茨稳定性判据介绍尼科尔斯-李雅普诺夫稳定性判据3.3 离散系统的稳定性分析介绍离散系统的稳定性判定方法介绍离散系统的劳斯-赫尔维茨判据第四章:自动控制系统的控制器设计4.1 控制器设计概述介绍控制器设计的意义和目标解释控制器设计的基本方法4.2 连续系统的PID控制器设计介绍PID控制器的原理和结构介绍PID控制器的参数调整方法4.3 离散系统的控制器设计介绍离散PID控制器的设计方法介绍离散控制器的实现和优化方法第五章:自动控制系统的仿真与实验5.1 自动控制系统仿真概述介绍自动控制系统仿真的意义和目的解释仿真软件的选择和使用方法5.2 连续系统的仿真实验介绍连续系统的仿真实验方法和步骤分析实验结果和性能指标5.3 离散系统的仿真实验介绍离散系统的仿真实验方法和步骤分析实验结果和性能指标第六章:线性系统的状态空间分析6.1 状态空间的概念介绍状态空间及其在自动控制系统中的应用解释状态向量和状态方程的含义6.2 状态空间表示法介绍状态空间表示法的基本原理解释状态转移矩阵和系统矩阵的概念6.3 状态空间分析法介绍状态空间分析法在系统稳定性、可控性和可观测性方面的应用解释李雅普诺夫理论在状态空间分析中的应用第七章:非线性系统的分析与控制7.1 非线性系统概述介绍非线性系统的定义和特点解释非线性系统分析的重要性7.2 非线性系统的数学模型介绍非线性系统的常见数学模型解释非线性方程和方程组的求解方法7.3 非线性控制策略介绍非线性控制的基本策略和方法分析非线性控制系统的性能和稳定性第八章:现代控制理论及其应用8.1 现代控制理论概述介绍现代控制理论的定义和发展历程解释现代控制理论在自动控制系统中的应用8.2 鲁棒控制介绍鲁棒控制的定义和目标解释鲁棒控制在自动控制系统中的应用和优势8.3 自适应控制介绍自适应控制的定义和原理解释自适应控制在自动控制系统中的应用和效果第九章:自动控制系统的实现与优化9.1 系统实现概述介绍自动控制系统实现的意义和目标解释系统实现的方法和技术9.2 数字控制器的实现介绍数字控制器的实现方法和步骤解释数字控制器实现中的主要技术问题9.3 系统优化方法介绍系统优化方法的定义和目标解释系统优化方法在自动控制系统中的应用和效果第十章:自动控制技术的应用案例分析10.1 工业自动化控制系统案例分析工业自动化控制系统的组成和功能解释工业自动化控制系统在工业生产中的应用案例10.2 控制系统案例分析控制系统的组成和功能解释控制系统在现代工业和生活中的应用案例10.3 航空航天控制系统案例分析航空航天控制系统的组成和功能解释航空航天控制系统在航空航天领域的应用案例重点和难点解析重点环节1:自动控制的概念与系统组成自动控制系统的定义和功能是理解自动控制理论的基础,需要重点关注。

自动控制原理电子教案-胡寿松

自动控制原理电子教案-胡寿松

《自动控制原理》课程教案前言一、重要性1、自动控制原理是自动化专业主干课程,是最重要的专业基础课,该课程涉及到电路、电机拖动、电子技术等方面的知识,为学好专业课打下良好的基础。

2、自动控制原理课不仅是高校控制类专业必修课程,而且越来越多的非控制专业也列入必修课,也各高校研究生入学考试的课程。

3、自动化的核心是控制技术,控制技术的的基础是控制理论,没有先进的控制理论就没有先进的控制技术。

二、本课主要内容自动控制系统的基本概念、控制系统的数学模型建立、介绍线性系统的时域分析、根轨迹分析、频域分析三大分析设计方法,并介绍校正的相关概念与系统校正的设计方法。

三、如何学好该课程要学好这门课程主要把握几个环节:1、知识的连续性,一环扣一环,及时消化理解;2、要掌握好电路、电机拖动及模拟电子技术方面的知识;3、加强作业练习,作好课堂笔记;4、利用好答疑时间,发现问题及时解决;5、加强实践环节,上好实验课。

四、参考书1、卢京潮编著,自动控制原理,西北工业大学出版社,2004年9月2、蒋大明等编著,自动控制原理,清华大学出版社,2003年3月3、谢克明等编著,自动控制原理,电子工业出版社,2004年4月4、杨自厚编著,自动控制原理,冶金工业出版社,2002年5月卢京潮编著:主要特点:(1)内容较丰富;(2)有系统仿真分析;(3)第一章有相关新知识。

蒋大明等编著:主要特点:(1)系统实例较多,具有一定的实用性。

(2)主要参考第二章和第五章内容。

杨自厚编著主要特点:(1)系统设计方面讲述全面、系统。

(3)主要参考第三章、第五章和第六章内容。

五、学时分配(80学时)六、本课程自学内容1、动态误差系数(2学时)提纲:广义误差系数:动态位置误差系数、动态速度误差系数、动态加速度误差系数等。

要求:能求系统的动态误差。

所需知识:传递函数、稳态误差2、高阶系统(2学时)提纲:(1)高阶系统的单位阶跃响应。

(2)高阶系统的动态性能估算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章自动控制原理的基本概念主要内容:➢自动控制的基本知识➢开环控制与闭环控制➢自动控制系统的分类及组成➢自动控制理论的发展§1.1 引言控制观念生产和科学实践中,要求设备或装置或生产过程按照人们所期望的规律运行或工作。

同时,干扰使实际工作状态偏离所期望的状态。

例如:卫星运行轨道,导弹飞行轨道,加热炉出口温度,电机转速等控制控制:为了满足预期要求所进行的操作或调整的过程。

控制任务可由人工控制和自动控制来完成。

§ 1.2 自动控制的基本知识1.2.1 自动控制问题的提出一个简单的水箱液面,因生产和生活需要,希望液面高度h维持恒定。

当水的流入量与流出量平衡时,水箱的液面高度维持在预定的高度上。

当水的流出量增大或流入量减小,平衡则被破坏,液面的高度不能自然地维持恒定。

所谓控制就是强制性地改变某些物理量(如上例中的进水量),而使另外某些特定的物理量(如液面高度h)维持在某种特定的标准上。

人工控制的例子。

这种人为地强制性地改变进水量,而使液面高度维持恒定的过程,即是人工控制过程。

1.2.2 自动控制的定义及基本职能元件1. 自动控制的定义自动控制就是在没有人直接参与的情况下,利用控制器使被控对象(或过程)的某些物理量(或状态)自动地按预先给定的规律去运行。

当出水与进水的平衡被破坏时,水箱水位下降(或上升),出现偏差。

这偏差由浮子检测出来,自动控制器在偏差的作用下,控制阀门开大(或关小),对偏差进行修正,从而保持液面高度不变。

2. 自动控制的基本职能元件自动控制的实现,实际上是由自动控制装置来代替人的基本功能,从而实现自动控制的。

画出以上人工控制与动控制的功能方框图进行对照。

比较两图可以看出,自动控制实现人工控制的功能,存在必不可少的三种代替人的职能的基本元件:➢测量元件与变送器(代替眼睛)➢自动控制器(代替大脑)➢执行元件(代替肌肉、手)这些基本元件与被控对象相连接,一起构成一个自动控制系统。

下图是典型控制系统方框图。

1.2.3 自动控制中的一些术语及方框图1.常用术语控制对象控制器系统系统输出操作量参考输入扰动特性2.系统方框图将系统中各个部分都用一个方框来表示,并注上文字或代号,根据各方框之间的信息传递关系,用有向线段把它们依次连接起来,并标明相应的信息。

§1.3 自动控制系统的基本控制方式控制方式:开环控制和闭环控制1.3.1 开环控制定义:控制量与被控量之间只有顺向作用而没有反向联系。

开环控制系统的典型方框图如图所示。

例如:交通指挥红绿灯,自动洗衣机,自动售货机1.按给定控制下图是一个直流电动机转速控制系统。

工作原理:以上的控制过程,用方框图简单直观地表示出来。

2.按扰动控制图示是一个按扰动控制的直流电动机转速控制系统。

控制过程可用方框图表示成如图示的形式。

把负载变化视为外部扰动输入,对输出转速产生的影响及控制补偿作用,分别沿箭头的方向从输入端传送到输出端,作用的路径也是单向的,不闭合的。

有时我们称按扰动控制为顺馈控制。

开环控制的特点:➢结构简单、调整方便、成本低。

➢给定一个输入,有相应的一个输出。

➢作用信号是单方向传递的,形成开环。

➢输出不影响输入。

➢若系统有外界扰动时,系统输出量不可能有准确的数值,即开环控制精度不高,或抗干扰能力差1.3.2 闭环控制定义:凡是系统输出信号对控制作用有直接影响的系统,都叫做闭环控制系统。

常用术语:反馈控制系统闭合闭环控制系统◆反馈控制原理:被控变量作为反馈信号,与希望值比较得到偏差输入;根据输入偏差大小,调整控制信号;控制信号通过执行器的操作消除偏差,实现控制目标。

反馈:输出量经测量后的信号回送到输入端。

反馈连接方式有负反馈和正反馈。

负反馈:反馈信号的极性与输入信号相反,使被控对象的输出趋向希望值。

直流电动机转速闭环控制的例子。

闭环控制的特点:➢由负反馈构成闭环,利用偏差信号进行控制;➢抗干扰能力强,精度高;➢存在稳定性问题。

系统元件参数配合不当,容易产生振荡,使系统不能正常工作;➢自动控制理论主要研究闭环系统。

闭环控制系统的典型方框图如图所示。

一、开环与闭环控制系统的比较二、复合控制方法常见的方式有以下两种:1.附加给定输入补偿2. 附加扰动输入补偿§1-4 自动控制系统的分类基本组成1.4.1 按给定信号的特征划分1. 恒值控制系统:➢系统任务:c(t)=r(t) r(t)常数➢分析设计重点:研究干扰对被控对象的影响,克服扰动液位控制系统,直流电动机调速系统等等。

2. 随动控制系统:➢系统任务:c(t)=r(t) r(t)随机变化➢分析设计重点:系统跟踪的快速性,准确性跟踪卫星的雷达天线系统3. 程序控制系统:➢系统任务:c(t)=r(t) r(t)按预先规定时间函数变化➢分析设计重点:输出按一定的规律变化机械加工中的程序控制机床等等。

1.4.2 按系统的数学描述划分1.线性系统当系统各元件输入输出特性是线性特性,系统的状态和性能可以用线性微分(或差分)方程来描述时,则称这种系统为线性系统。

2.非线性系统系统中只要存在一个非线性特性的元件,系统就由非线性方程来描述,这种系统称为非线性系统。

1.4.3 按信号传递的连续性划分1.连续系统连续系统的特点是系统中各元件的输入信号和输出信号都是时间的连续函数。

这类系统的运动状态是用微分方程来描述的。

连续系统中各元件传输的信息在工程上称为模拟量,其输入输出一般用r(t)和c(t)表示。

2.离散系统控制系统中只要有一处的信号是脉冲序列或数码时,该系统即为离散系统。

这种系统的状态和性能一般用差分方程来描述。

1.4.4 按系统的输入与输出信号的数量划分1.单变量系统(SISO)2.多变量系统(MIMO)1.4.5 自动控制系统的基本组成在形形色色的自动控制系统中,反馈控制是最基本的控制方式之一。

一个典型的反馈控制系统总是由控制对象和各种结构不同的职能元件组成的。

除控制对象外,其他各部分可统称为控制装置。

每一部分各司其职,共同完成控制任务。

下面给出这些职能元件的种类和各自的职能。

给定元件:其职能是给出与期望的输出相对应的系统输入量,是一类产生系统控制指令的装置。

测量元件:其职能是检测被控量,如果测出的物理量属于非电量,大多情况下要把它转换成电量,以便利用电的手段加以处理。

比较元件:其职能是把测量元件检测到的实际输出值与给定元件给出的输入值进行比较,求出它们之间的偏差。

放大元件:其职能是将过于微弱的偏差信号加以放大,以足够的功率来推动执行机构或被控对象。

执行元件:其职能是直接推动被控对象,使其被控量发生变化。

校正元件:为改善或提高系统的性能,在系统基本结构基础上附加参数可灵活调整的元件。

工程上称为调节器。

常用串联或反馈的方式连接在系统中。

§ 1.5 对控制系统的要求和分析设计1.5.1 对系统的要求各类控制系统为达到理想的控制目的,必须具备以下两个方面的性能(基本要求) :1.使系统的输出快速准确地按输入信号要求的期望输出值变化。

2.使系统的输出尽量不受任何扰动的影响。

对自控系统性能的要求一般可归纳为三大性能指标:(1) 稳定性:要求系统绝对稳定且有一定的稳定裕量。

(2) 瞬态质量:要求系统瞬态响应过程具有一定的快速性和变化的平稳性。

(3)稳态误差:要求系统最终的响应准确度,限制在工程允许的范围之内,是系统控制精度的恒量。

1.5.2 控制系统的分析和设计1.系统分析系统给定,在规定的工作条件下,对它进行分析研究,其中包括稳态性能和动态性能分析,看是否满足要求,以及分析某个参数变化时对上述性能指标的影响,决定如何合理地选取等。

2.系统的设计系统设计的目的,是要寻找一个能够实现所要求性能的自动控制系统。

因此,在系统应完成的任务和应具备的性能已知的条件下,根据被控对象的特点,构造出适合的控制器是设计的主要任务。

应进行的步骤如下:(1)熟悉对系统性能的要求。

(2)根据要求的性能指标综合确定系统的数学模型。

(3)若控制对象是已知的,根据确定的系统数学模型和已知部分的数学模型,求得控制器的数模和控制规律。

(4)按综合确定的数模进行系统分析,验证它在各种信号作用下是否满足要求。

若不满足,及时修正。

(5)样机设计制造和试验,验证设计结果。

§1-6 自动控制理论的发展概况三个时期:➢早期的自动控制工作➢经典控制理论➢现代控制理论作业:1.2 1.3学习指导与小结➢通过示例介绍了控制系统的基本概念1.反馈控制原理2.控制系统的基本组成3.控制系统的基本类型➢给出控制系统的基本要求1.稳2.准3.快第二章控制系统的数学模型主要内容:➢数学模型的概念、建模原则➢线性系统的传递函数➢系统的结构图➢信号流图及梅逊公式§2-1 引言什么是数学模型?所谓的数学模型,是描述系统内部各物理量(或变量)之间关系的数学表达式。

2.1.1 数学模型的特点1.相似性2.简化性和准确性3.动态模型4.静态模型➢静态模型和动态模型一、静态模型1.不含时间变量t的代数方程2.平衡状态下各变量间对应关系3.变化量不随时间而变化二、动态模型1.表达式是含时间变量t的微分方程2.描述了系统的非平衡过程3.变量随时间而变化4.静态模型包含在静态模型中2.1.2 数学模型的类型1.微分方程2.传递函数3.状态空间表达式2.1.3 数学模型的建模原则数学模型的建立方法:1. 分析法(微分方程和代数方程)2.实验法数学模型的建模原则:1.建模之前,要全面了解系统的自然特征和运动机理,明确研究目的和准确性要求,选择合适的分析方法。

2.按照所选分析法,确定相应的数学模型的形式。

3.根据允许的误差范围,进行准确性考虑然后建立尽量简化的、合理的数学模型。

§2.2 系统微分方程的建立2.2.1 列写微分方程式的一般步骤1.分析系统运动的因果关系,确定系统的输入量、输出量及内部中间变量,搞清各变量之间的关系。

2.做出合乎实际的假设,以便忽略一些次要因素,使问题简化。

3.根据支配系统动态特性的基本定律,列出各部分的原始方程式。

4.列写各中间变量与其他变量的因果式。

5.联立上述方程,消去中间变量。

6.将方程式化成标准形。

2.2.2 机械系统举例例2-1 弹簧-质量-阻尼器串联系统。

试列出以外力F(t)为输入量,以质量的位移y(t)为输出量的运动方程式。

解:遵照列写微分方程的一般步骤有:1.确定输入量为F (t ),输出量为y (t ),作用于质量m 的力还有弹性阻力Fk (t )和粘滞阻力Ff (t ),均作为中间变量。

2.设系统按线性集中参数考虑,且无外力作用时,系统处于平衡状态。

3.按牛顿第二定律列写原始方程,即4.写中间变量与输出量的关系式5.将以上辅助方程式代入原始方程,消去中间变量,得6.整理方程得标准形令T m 2 = m /k ,T f = f /k ,则方程化为2.2.3 电路系统举例例2-2 电阻-电感-电容串联系统。

相关文档
最新文档