《平方根与立方根》同步练习试卷及答案
初中数学平方根立方根综合练习题12(附答案)
初中数学平方根立方根综合练习题一、单选题1.一个数的立方根是它本身,则这个数是( )A.0B.1,0C.1,-1D.1,-1或02.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是( )A.①②③B.①②④C.②③④D.①③④ 3.下列各式中,正确的是( )A.2(9= 2=- 3=- D.3=±4.下列命题:①过一点有且只有一条直线与已知直线平行;②一个实数的立方根不是正数就是负数;③如果一个数的平方根是这个数本身,那么这个数是1或0;④两条直线被第三条直线所截,同位角相等.其中假命题的个数有( )A.4个B.3个C.2个D.1个5.下列说法:①任何正数的两个平方根的和等于0;②任何实数都有一个立方根;③无限小数都是无理数;④实数和数轴上的点一一对应.其中正确的有( )A.1个B.2个C.3个D.4个( )A.8B.4C.2D.-2二、解答题7.求下列各式中x 的值:(1)22320x -=;(2)3440()6x ++=.8.观察以下各式:①2=3=4=④5=,. 1. 请写出第5个等式;2. 用n(n 为大于1的整数)表示出你所发现的规律.三、计算题9.实数计算:1. ()239627----; 2. ()3238231-++-; 10.计算: 0318(2016)--+-;四、填空题11.-27的立方根是________.12.若x ,y 满足()323|94|0x y ++-=,则xy 的立方根为 .13.用教材中的计算器进行计算,开机后依次按下. 把显示结果输人下侧的程序中,则输出的结果是__________. 14.设实数x,y,z 适合333987x y z ==,9871x y z ++=,则2223(9)(8)(7)x y z ++=4449(9)(8)(7)x y z ++=__________.参考答案1.答案:D解析:立方根是它本身有3个,分别是±1,0.故选D.2.答案:B解析:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.3.答案:D解析:A.原式3=,错误;B.原式22=-=,错误;3399-=-D.原式3=±,正确,故选:D.4.答案:A解析:5.答案:C解析:6.答案:C64=8,即8的立方根等于2,故选C7.答案:(1)22320x -=,2232x =,216x =,4x =±,∴14x =,24x =-;(2)()34640x ++=, ()3464x +-=,44x +=-,8x =-.解析:8.答案:1.6=2.n =解析:9.答案:1.0; 2. 解析:10.答案:0解析:11.答案:-3解析:-27的立方根是-3,故答案为-3.12.答案:32-解析:()323|94|0x y ++-=39230,940,,24x y x y ∴+=-==-=解得 3927248xy ∴=-⨯=- 32xy ∴-的立方根是13.答案:34+解析:14.答案:; 解析:。
八年级数学下册《第十二章平方根和立方根》练习题-附答案(苏科版)
八年级数学下册《第十二章平方根和立方根》练习题-附答案(苏科版)一、选择题1. 下列式子中,属于最简二次根式的是A. √ 7B. √ 9C. √ 20D. √132. 如果a=1√ 3+2,b=√ 3−2那么a与b的关系是.( )A. a>bB. a=bC. a=1bD. a+b=03. 化去根式1√ 3αb3(a>0,b>0)分母中的根号,分子、分母应同时乘以.( )A. √ 3aB. 1√ 3a C. √ 3ab D. 1√ 3ab4. 计算5√15÷(−√ 5)的结果是( )A. −1B. 1C. −√ 5D. 55. 等式√ a2−a =√ a√ 2−a成立的条件是( )A. a≥0B. 0≤a<2C. a≠2D. a2−a≥0 6. 下列变形正确的是( )A. √ (−4)×(−9)=√ (−4)×√ (−9)B. √ 1614=√ 16×√14=4×12=2C. √ 18a2=√ 9a2×√ 2=3√ 2a(a≥0)D. √ 252−242=25−24=17. 下列四个等式中,不成立的是( )A. 2√ 3−1=√ 3+1 B. √ 2(√ 2+√ 3)=2+√ 6 C. (1−√ 2)2=3−2√ 2 D. √ (√ 3−2)2=√ 3−28. 化简√15+16的结果是( )A. √ 1130B. 30√ 330 C. √ 33030D. 30√ 119. 已知:a=2−√ 3b=2+√ 3则a与b的关系是( )A. 相等B. 互为相反数C. 互为倒数D. 平方相等10. 有依次排列的一列式子:1+√ 2√ 2+√ 3√ 3+22+√ 5√ 5+√ 6√ 6+√ 7小红对式子进行计算得:第1个式子:1+√ 2=√ 2−1(1+√ 2)×(√ 2−1)=√ 2−1;第2个式子:√ 2+√ 3=√ 3−√ 2(√ 2+√ 3)×(√ 3−√ 2)=√ 3−√ 2......根据小红的观察和计算,她得到以下几个结论:①第8个式子为1√ 8+3;②对第n 个式子进行计算的结果为√ n +1−√ n ; ③前100个式子的和为√ 101−1;④将第n 个式子记为a n ,令b n =1a n ,且9an 2+17a n b n +9bn2=575则正整数n =15. 小红得到的结论中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题11. 将√ 632化为最简二次根式,其结果是______.12. 化简:1√ 2= ______ .13. 写出一个二次根式,使它与√ 2的积是有理数.这个二次根式是______. 14. 若无理数x 与√ 8的积是一个正整数,则x 的最小值是______. 15. 计算√ 3×√ 12的结果是______.16. 等式√ x√ 1−x =√ x 1−x 成立的条件是______.17. √ 3−2的倒数是___.18. 当a <0时,化简a √ −2a ⋅√ −8a 的结果是 .19. 如图,在▱ABCD 中,BE 平分∠ABC 交AD 于点E.若∠D =30∘,AB =√ 6则△ABE 的面积为 .20. 若[x]表示不超过x 的最大整数,A =1−√341+√34+(1−√34)0,则[A]=__________.三、解答题21. 下列等式中,字母应分别符合什么条件?(1)√ a 2=a (2)√ ab =√ a ⋅√ b (3)√ x(x +1)=√ x ⋅√ x +1(4)√ x 2−6x +9=3−x22. (1)写出一个二次根式,使它与√ 2的积是有理数;(2)写出一个含有二次根式的式子,使它与2+√ 3的积不含有二次根式.23. 先化简再求值 (1−1x)÷x2−2x+1x,其中x =√ 2.24. 已知x =2+√ 3y =2−√ 3.(1)求x 2+y 2−xy 的值;(2)若x 的整数部分是a ,y 的小数部分是b ,求5a 2021+(x −b)2−y 的值.25. 若一个三角形的三边长分别为a 、b 、c ,设p =12(a +b +c),则这个三角形的面积S =√ p(p −a)(p −b)(p −c)(海伦−秦九韶公式).当a =4、b =5、c =6时,S 的值.参考答案1、A2、D3、C4、A5、B6、C7、D8、C9、C 10、D 11、3√ 14212、√ 2213、√ 2(答案不唯一) 14、√ 2415、6 16、0≤x <1 17、−2−√ 3 18、−4a 2 19、32 20、−221、解:(1)∵√ a2=a∴a≥0(2)∵√ ab=√ a⋅√ b∴a≥0b≥0(3)∵√ x(x+1)=√ x⋅√ x+1∴x≥0∴x≥0(4)∵√ x2−6x+9=3−x∴3−x≥0∴x≤3.22、解:(1)∵2√ 2×√ 2=4∴这个二次根式可以为:2√ 2(2)∵(2−√ 3)(2+√ 3)=4−3=1∴这个二次根式可以为:2−√ 3.23、解:原式=x−1x×x(x−1)2=1x−1当x=√ 2时,原式=√ 2−1=√ 2+1.24、解:(1)∵x=2+√ 3=√ 3(2+√ 3)(2−√ 3)=2−√ 3y=2−√ 3=√ 3(2−√ 3)(2+√ 3)=2+√ 3∴x2+y2−xy=(x+y)2−3xy=(2−√ 3+2+√ 3)2−3(2−√ 3)(2+√ 3)=16−3=13(2)∵1<√ 3<2∴0<2−√ 3<13<2+√ 3<4∴a=0b=2+√ 3−3=√ 3−1∴5a2021+(x−b)2−y=5×0+(2−√ 3−√ 3+1)2−(2+√ 3)=(3−2√ 3)2−2−√ 3=9−12√ 3−12−2−√ 3=−5−13√ 3.25、解:由题意,得:a=4b=5c=6∴p=12(a+b+c)=152∴S=√ p(p−a)(p−b)(p−c)=√152×(152−4)×(152−5)×(152−6)=√152×72×52×32=154√ 7.故S的值是154√ 7.。
八年级数学上册11.1平方根与立方根―立方根同步练习(华师大版带答案和解释)
八年级数学上册11.1平方根与立方根―立方根同步练习(华师大版带答案和解释)《11.1 平方根与立方根―立方根》一、选择题 1.若8x3+1=0,则x为() A.�B.± C. D.�2.的平方根与�8的立方根之和为() A.�4 B.0 C.�6或2 D.�4或0 3.如果 =a,那么a是() A.±1 B.1,0 C.±1,0 D.以上都不对二、填空题 4.的立方根是,平方根是. 5.若(x�1)3=125,则x= . 6.立方根等于它本身的数为.三、选择题 7.若�1<m<0,且n= ,则m、n的大小关系是() A.m>n B.m <n C.m=n D.不能确定 8.�27的立方根与的平方根之和为()A.0 B.6 C.0或�6 D.0或6 四、填空题 9.若x4=16,则x= ;若3n=81,则n= . 10.若,则x= ;若,则x . 11.当x 时,有意义;当x 时,有意义. 12.若,则x+y= . 13.计算: + � + = .五、解答题 14.求下列各数的立方根(1)�0.001;(2)3 ;(3)(�4)3. 15.求下列各式中的x的值.(1)x3�216=0;(2)(x+5)3=64;(3)( x+1)3=8. 16.计算题(1)× ×3 (2)× . 17.若与互为相反数,求的值. 18.已知 =1�a2,求a的值.《11.1 平方根与立方根―立方根》参考答案与试题解析一、选择题 1.若8x3+1=0,则x为()A.�B.± C. D.�【考点】立方根.【分析】先求得x3的值,然后依据立方根的性质求解即可.【解答】解:∵8x3+1=0,∴x3=�.∴x=�.故选:A.【点评】本题主要考查的是立方根的性质,求得x3的值是解题的关键. 2.的平方根与�8的立方根之和为() A.�4 B.0 C.�6或2 D.�4或0 【考点】立方根;平方根.【分析】先求的平方根,再求�8的立方根,然后求和.【解答】解:∵ =4,4的平方根为±2,�8的立方根为�2 故它们的和是�4或0.故选D.【点评】本题主要考查了平方根和立方根的定义. 3.如果 =a,那么a是() A.±1 B.1,0 C.±1,0 D.以上都不对【考点】立方根.【分析】利用立方根的定义分析得出答案.【解答】解:∵ =1, =�1, =0,∴ =a,那么a是±1,0.故选:C.【点评】此题主要考查了立方根,正确把握定义是解题关键.二、填空题 4.的立方根是 2 ,平方根是±2 .【考点】立方根;平方根;算术平方根.【分析】先根据算术平方根的定义得到 =8,然后根据平方根和立方根的定义分别求出8的平方根与立方根.【解答】解:∵ =8,∴8的平方根为±2 ,8的立方根为 =2.故答案为:2,±2 .【点评】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作± ,也考查了立方根的定义. 5.若(x�1)3=125,则x= 6 .【考点】立方根.【分析】根据立方根定义得出x�1=5,求出即可.【解答】解:(x�1)3=125=53, x�1=5, x=6,故答案为:6.【点评】本题考查了立方根的定义的应用,能得出方程x�1=5是解此题的关键. 6.立方根等于它本身的数为1,�1,0 .【考点】立方根.【分析】根据立方根的意义得出即可.【解答】解:立方根等于它本身的本身的数为1,�1,0,故答案为:1,�1,0.【点评】本题考查了立方根的应用,主要考查学生的理解能力和计算能力.三、选择题 7.若�1<m<0,且n= ,则m、n的大小关系是() A.m>n B.m<n C.m=n D.不能确定【考点】实数大小比较.【分析】取特殊值,m=�,再比较即可.【解答】解:∵�1<m<0,∴取m=�,∴m=�=�,∵n= =�=�,∴n<m,故选A.【点评】本题考查了实数的大小比较的应用,能选择适当的方法比较两个实数的大小是解此题的关键. 8.�27的立方根与的平方根之和为() A.0 B.6 C.0或�6 D.0或6 【考点】实数的运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:± =�3±3,则�27的立方根与的平方根之和为为0或�6.故选C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.四、填空题 9.若x4=16,则x= ±2;若3n=81,则n= 4 .【考点】有理数的乘方.【专题】计算题.【分析】原式利用乘方的意义计算即可确定出x的值;根据已知等式,利用乘方的意义确定出n的值即可.【解答】解:若x4=16,则x=±2;若3n=81,则n=4.故答案为:±2;4.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键. 10.若,则x= 1或0 ;若,则x ≤0.【考点】立方根;算术平方根.【分析】根据立方根和算术平方根的定义计算即可.【解答】解:∵ ,∴x=1或0,∵ ,∴x≤0,故答案为:1或0;≤0.【点评】本题主要考查立方根和算术平方根的知识点,比较简单. 11.当x ≥ 时,有意义;当x 取任意实数时,有意义.【考点】二次根式有意义的条件;立方根.【专题】常规题型.【分析】根据被开方数大于等于0列式求解即可;根据立方根的被开方数可以是任意实数解答.【解答】解:根据题意得,3x�1≥0,解得x≥ ; 5x+2可以取任意实数,∴x 取任意实数.故答案为:≥ ,取任意实数.【点评】本题考查了二次根式有意义的条件,以及任意实数都有立方根的性质,需熟练掌握. 12.若,则x+y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【专题】计算题.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【解答】解:根据题意得,x+1=0,y�2=0,解得x=�1,y=2,∴x+y=�1+2=1.故答案为:1.【点评】本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 13.计算: + �+ = �.【考点】实数的运算.【专题】计算题;实数.【分析】原式利用平方根及立方根定义计算即可得到结果.【解答】解:原式= × + × �2 +2= �,故答案为:�【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.五、解答题 14.求下列各数的立方根(1)�0.001;(2)3 ;(3)(�4)3.【考点】立方根.【分析】根据立方根的计算方法可以解答本题.【解答】解:(1);(2);(3).【点评】本题考查立方根,解题的关键是明确立方根的计算方法. 15.求下列各式中的x的值.(1)x3�216=0;(2)(x+5)3=64;(3)( x+1)3=8.【考点】立方根.【分析】根据立方根的计算方法和解方程的方法可以解答各个方程.【解答】解:(1)x3�216=0 x3=216 x= x=6;(2)(x+5)3=64 x+5= x+5=4 x=�1;(3)( x+1)3=8 x+1= x+1=2 x=2.【点评】本题考查立方根,解题的关键是明确立方根的计算方法和解方程的方法. 16.计算题(1)× ×3 (2)× .【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根及立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=10×(�2)×3×0.7=�42;(2)原式=60× =240.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 17.若与互为相反数,求的值.【考点】立方根;相反数.【分析】根据相反数得出 + =0,得到x与y 的关系,再代入求出即可.【解答】解:∵ 与互为相反数,∴ + =0,∴1�2x+3y�2=0, 1+2x=3y,∴ = =3.【点评】本题考查了立方根,代数式的值,相反数的应用,能求出x与y的关系是解此题的关键. 18.已知 =1�a2,求a的值.【考点】立方根.【分析】分三种情况:1�a2=�1,1�a2=�0,1�a2=1,进行讨论求解即可.【解答】解:依题意有 1�a2=�1,解得a=± ; 1�a2=0,解得a=±1; 1�a2=1,解得a=0.故a的值是=± ,a=±1,a=0.【点评】此题考查了立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.注意分类思想的应用.。
立方根和平方根试题与答案
1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。
《平方根与立方根》习题精选及参考答案
《平方根与立方根》习题精选及参考答案习题一一1.填表。
其中13 14 16 17 19121 144 225 324 4002.求下列各数的平方根及算术平方根:169,361,,0,0.36,0.0121,,900,19,37。
3.求下列各式的值:4.求下列各式的值:5.求下列各式的值:6.如果一定等于吗?如果是任意一个数,等于什么数?参考答案1.第一行依次填11,12,15,18,20,第二行依次填169,196,256,289,361。
2.平方根依次为:±13,±19,±,±,0,±0.6,±0.11,±,±30,±,±算术平方根依次为:13,19,,,0,0.6,0.11,,30,,3.4,-1.2,1,,,0.144.9,15,42,,0.3,,125,4.155.2,3,,0.4,,35,0.016.时,,如果x是任意一个数,(或时,;时,二1.已知:都是正数,且.求证:的最小值是2.2.一个圆的半径是10cm,是它面积2倍的一个正方形的边长约为多少cm(精确到0.1cm)3.在物理学中我们知道:动能的大小取决于物体的质量与它的速度.关系式是:动能,若某物体的动能是25焦(动能单位),质量m是0.7千克,求它的速度为每秒多少米?(精确到0.01)4.飞出地球,遨游太空,长久以来就是人类的一种理想,可是地球的引力毕竟太大了,飞机飞得再快,也得回到地面,导弹打得再高,也得落向地面,只有当物体的速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度我们叫做第一宇宙速度,计算式子是:千米/秒,其中重力加速度千米/秒2,地球半径千米,试求出第一宇宙速度的值(单位:千米/秒).参考答案1.,∴,∴,∴的最小值是2.2.设正方形的边长为 cm.3.(米/秒).4.7.9千米/秒.三1.填空题(1)的立方根是_____________.(2)的立方根是________________.(3)是___________的立方根.(4)若的立方根是6,则 _______.(5)0的立方根是______.(6)7的立方根是_______.(7) _______.(8) ________.2.填空题(1)的倒数为________.(2)49的算术平方根的立方根是________.(3)若,则(4) ______.(5) ________.(6)的绝对值为_______.(7) _______.(8)的立方根为_______.3.填空题(1)的立方根是_______.(2)是_____的立方根.(3)81的平方根的立方根是_______.(4) _______.(5)的立方根是______.(6)的立方根是________.(7)若,则 _______.(8)已知,则 _______.参考答案:1.(1)(2)(3)(4)216(5)0 (6)(7)(8)32.(1)(2)(3)(4)60(5)(6)117 (7)(8)13.(1)(2)-11(3)(4)15 (5)(6)(7)-4 (8)2四1.填表3 5 6 8 91 8 64 343 10002.求下列各数的立方根:27,-125,1,-1,0.512,-0.000729,640003.求下列各式的值:(1),(2),(3),(4),(5)4.求下列各式的值:5.与有什么相同点与不同点?6.大正方体的体积为1331cm3,小正方体的体积为125cm3,如图那样摞在一起,这个物体的最高点A离地面C的距离是多少cm?7.一个正方体的体积为64cm3,它的边长是多少cm?如果它的边长扩大一倍,它的体积是原正方体体积的多少倍?若正方体的体积改为原正方体体积的一半,它的边长是多少cm?就本题的计算过程,你能得出什么结论?参考答案1.第一行依次填:1,2,4,7,10,第二行依次填:27,125,216,512,729.2.3,-5,1,-1,0.8,-0.09,403.(1)-4 (2)0.6 (3)-9 (4)(5)4.-7,-23,0.17,,,1255.相同点:,不同点:的意义是求的立方,是求的立方根.6..∴ cm,即这个物体的最高点A 离地面C是16cm.7.边长为4cm,边长扩大一倍,体积为512cm3,体积为原来体积的8倍.体积为原体积的一半为32cm3,边长是 cm(或 cm).边长扩大一倍,体积扩大8倍,体积缩小一倍,边长是原边长的倍.习题二1.(a-b)3的立方根为()A.a-b B.b-aC.±(a-b) D.(a-b)3答案:A说明:根据立方根的定义,不难得出只有a−b的立方为(a−b)3,即正确答案为A.2.某自然数的一个平方根是a,则与其相邻的下一个自然数的算术平方根是()A.a+1 B.a2+1C.a+1D.a2+1答案:D说明:由该自然数的一个平方根是a可得该自然数为a2,与其相邻的下一个自然数即a2+1,a2+1的算术平方根为,所以答案为D.3.下列各式正确的是()A.(-7)2=-7 B.-(-7)2=-7C.(-7)2=±7 D.±(-7)2=7答案:B说明:== 7,所以,选项A、C错;−= −=−7,选项B正确;而±= ±=±7,选项D错,答案为B.4.若0<a<1,b=a,则a与b的大小关系是()A.a>b B.a<bC.a=b D.不能确定答案:B说明:因为0<a<1,b=,可知0<b<1,且b2=a,因为0,1之间的数平方后比自身要小,即有b2<b,也即a<b成立,所以答案为B.5.16的平方根和立方根分别是()A.±4,16B.±2,±4C.2,4D.±2,4答案:D说明:= 4,因此的平方根即4的平方根,由平方根的定义知4的平方根应为±2,再由立方根的定义知4的立方根应为,所以正确答案应该是D.6.下列判断不正确的是()A.若m=n,则m = nB.若m=n,则m=nC.若m2=n2,则m=nD.若m3=n3,则m=n答案:C说明:选项A,由=两边同时平方即有m=n成立;选项B,由=两边同时立方即有m=n成立;选项C,若m=1,n=−1,则=成立,但m≠n,所以选项C错;选项D,因为=m,=n,所以=即m=n;因此,答案为C.7.-(-2)3的平方根是__________,立方根是___________.答案:±2;2说明:−(−2)3=−(−8)=8,由平方根的定义知8的平方根为±=±=±2,而8的立方根则是2.8.一个正数x的两个平方根为m+1和m-3,则m =__________,x =___________.答案:1;4提示:一个正数的平方根有两个,它们互为相反数,因此(m+1)+(m−3)=0,故m=1,进而x=4.9.若式子5x+6总有平方根,则x_________.答案:≥−说明:要使式子5x+6总有平方根,则5x+6≥0,解这个不等式可得x≥−.10.若式子x-的平方根只有一个,则x=__________.答案:说明:平方根只有一个的就是0,因此式子x−= 0,即x=.11.某运动场地是一个矩形,长是宽的4倍,面积为1156m2,求运动场地的长和宽.答案:长 68m宽 17m说明:设宽为x,则长为4x,由已知面积为1156m2,得x×4x=1156m2,即x2=289m2,x=± 17m(−17m不合题意,舍去),4x=68m,即运动场地的长为68m,宽为17m.探究活动你能判断出谁年轻吗?如今的时代是知识爆炸的时代,是科技高速发展的时代,中国的航天技术正在飞速发展,宇宙的奥秘正逐步展现在我们面前.有两名宇航员李飞(二十八岁)和刘学(二十五岁).李飞乘着以光速0.98倍的速度飞行的宇宙飞船,作了五年宇宙旅行后回来(这个五年是指地面上的五年).这时谁年轻?年轻几岁?(精确到一年)提示:根据爱因期坦的相对论,当地面上经过1秒时,宇宙飞船内还只经过秒,公式内的c是指光速(30万千米/秒),v是指宇宙飞船速度.参考答案:地面上经过1秒,飞船内经过秒,相当于地面上时钟走的速度的五分之一,所以地面上过了五年,宇宙飞船上才过去一年,因此李飞的岁数这时是29岁,而刘学的岁数是30岁,李飞比刘学年轻一岁.。
八年级上册《11.1 平方根与立方根》同步练习(附答案解析)
八年级上册《11.1 平方根与立方根》同步练习一、选择题(本大题共10小题,共30.0分)1.−18的平方的立方根是()A. 4B. 18C. −14D. 142.下列语句,写成式子正确的是()A. 7是49的算术平方根,即√49=±7B. ±7是49的平方根,即±√49=7C. 7是(−7)2的算术平方根,即√(−7)2=7D. √7是7的算术平方根,即√7=73.若一个正数的算术平方根是a,则比这个数大3的正数的平方根是()A. √a2+3B. −√a2+3C. ±√a2+3D. ±√a+34.若一个数的平方根与它的立方根完全相同,则这个数是()A. 1B. −1C. 0D. ±1,05.面积为10的正方形的边长x满足下面不等式中的()A. 1<x<3B. 3<x<4C. 5<x<10D. 10<x<1006.若a2=25,|b|=3,则a+b=()A. 8B. ±8C. ±2D. ±8或±27.下列各式中,正确的是()A. √(−2)2=−2B. (−√3)2=9C. √−93=−3 D. ±√9=±38.若2m−4与3m−1是同一个数的平方根,则m的值是()A. −3B. −1C. 1D. −3或19.使等式(−√−x)2=x成立的x的值()A. 是正数B. 是负数C. 是0D. 不能确定10.已知√5=a,√14=b,则√0.063=()A. ab10B. 3ab10C. ab100D. 3ab100二、填空题(本大题共4小题,共12.0分)11.一个数的平方等于它本身,这个数是______ ;一个数的平方根等于它本身,这个数是______ ,一个数的算术平方根等于它本身,这个数是______ .12.若x3=x,则x=______;若√x3=x,x=______.14.一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为______.三、计算题(本大题共1小题,共6.0分)15.求符合下列各条件中的x的值①2x2−1=02x3+1=0②18③(x−4)2=4(x+3)3−9=0.④13四、解答题(本大题共3小题,共24.0分)16.已知x的两个平方根分别是2a+3和1−3a,y的立方根是a,求x+y的值.17.利用计算器计算:…,√0.0625,√0.625,√6.25,√62.5,√625,√6250,√62500,….计算后,分析结果,你发现了什么规律?18.已知x是1的平方根,求(x2012−1)(x2012−15)(x2011+1)(x2011+15)+1000x的立方根.答案和解析1.【答案】D【解析】解:∵−18的平方等于164,而14的立方为164,∴−18的平方的立方根是14.故选:D .由于−18的平方等于164,然后根据立方根的定义即可求解.此题主要考查了立方根的定义和平方运算,解题时首先求出−18的平方然后求其立方根. 2.【答案】C【解析】解:A.7是49的算术平方根,即√49=7,此选项错误;B .±7是49的平方根,即±√49=±7,此选项错误;C .7是(−7)2的算术平方根,即√(−7)2=7,此选项正确;D .√7是7的算术平方根,但√7≠7,此选项错误;故选:C .根据平方根和算术平方根的定义逐一判断即可得.本题主要考查算术平方根,解题的关键是掌握算术平方根和平方根的定义.3.【答案】C【解析】【分析】由于一个正数的算术平方根是a ,由此得到这个正数为a 2,比这个正数大3的数是a 2+3,然后根据平方根的定义即可求得其平方根.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【解答】解:∵一个正数的算术平方根是a ,∴这个正数为a 2,4.【答案】C【解析】【分析】本题主要考查了平方根与立方根的区别与联系,熟记一些特殊数据的平方根与立方根是解题的关键.根据“任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根”进行解答即可.【解答】解:根据平方根与立方根的性质,一个数的平方根与它的立方根完全相同,则这个数是0.故选C.5.【答案】B【解析】解:根据题意,得正方形的边长是√10.∵9<10<16,∴3<√10<4.故选:B.根据正方形的面积公式,求得正方形的边长,再进一步根据数的平方进行估算.此题考查了正方形的面积公式和无理数的估算方法,熟悉1−20的整数的平方.6.【答案】D【解析】解:∵a2=25,|b|=3,∴a=5或−5,b=3或−3,∴有四种情况,即a=5,b=3;a=−5,b=3;a=5,b=−3;a=−5,b=−3,则a+b=±8或±2.故选:D.利用平方根的定义及绝对值的代数意义求出a与b的值,即可求出a+b的值.【解析】解:A 、应√(−2)2=2,故此项错误;B 、应(−√3)2=3,故此项错误;C 、应√−93=−√93,故此项错误;D 、±√9=±3,故正确;故选:D .由平方根和立方根的定义即可得到.本题考查了平方根和立方根的定义,熟记定义是解题的关键.8.【答案】D【解析】解:当2m −4=3m −1时,m =−3,当2m −4+3m −1=0时,m =1.故选:D .依据平方根的性质列方程求解即可.本题主要考查的是平方根的性质,明确2m −4与3m −1相等或互为相反数是解题的关键.9.【答案】C【解析】解:由题意得−x ≥0,且x ≥0,解得x =0,故选:C .根据二次根式的性质可化简求解.本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.10.【答案】D【解析】解:√0.063=√63010000=√9×√70100=3√5×√14100 ∵√5=a ,√14=b ,∴原式=3ab 100.把0.063写成分数的形式,化简后再利用积的算术平方根的性质,写成含ab的形式.本题考查了二次根式的化简及积的算术平方根的性质.积的算术平方根的性质:√ab=√a⋅√b(a≥0,b≥0)11.【答案】0或1;0;0或1【解析】解:一个数的平方等于它本身,这个数是0,1;一个数的平方根等于它本身,这个数是0;一个数的算术平方根等于它本身,这个数是0,1.故填0,1;0;0,1.分别根据平方、平方根、算术平方根的概念解答即可.此题主要考查了平方运算、平方根的定义、算术平方根的定义.做此题时可根据各个概念,从0,1中找.12.【答案】0,±10,±1【解析】解:若x3=x,即一个数的立方等于它本身,则这个数显然是0,±1;3=x,即一个数的立方根等于它本身,根据立方根与立方互为逆运算,若√x则这个数是0,±1.故填0,±1;0,±1.如果一个数x的立方等于a,那么x是a的立方根,所以根据立方根的定义即可求解.此题主要考查了立方根的定义和性质,要求学生能够根据立方和立方根的意义正确找到立方等于它本身和立方根等于它本身的数.找的时候,主要结合0,1,−1进行分析.13.【答案】1或3【解析】解:∵(±4)2=16,∴x=4或x=−4,∴5−x=5−4=1或5−x=5−(−4)=9,∵12=1,32=9,∴(5−x)的算术平方根是1或3.故答案为:1或3.先根据平方根的定义求出x的值,从而得到(5−x)的值,然后根据算术平方根的定义进本题考查了平方根的定义以及算术平方根的定义,先求出(5−x)的值是解题的关键,也是本题容易出错的地方.14.【答案】4,5,6,7,8【解析】解:∵4的算术平方根是2,9的算术平方根是9,∴负数条件的实数是大于4且小于9,∴它的整数位上可能取到的数值为4,5,6,7,8,故答案为:4,5,6,7,8.先根据已知求出这个实数的范围,再求出即可.本题考查了平方根,实数的大小比较的应用,关键是确定实数的范围.15.【答案】解:①方程整理得:x2=1,4;开方得:x=±12②方程整理得:x3=−8,开立方得:x=−2;③开方得:x−4=2或x−4=−2,解得:x=6或x=2;④方程整理得:(x+3)3=27,开立方得:x+3=3,解得:x=0.【解析】各项方程利用平方根及立方根定义计算即可求出x的值.此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.16.【答案】解:∵x的两个平方根分别是2a+3和1−3a,∴2a+3+1−3a=0,a=4,∴x=(2×4+3)2=121,∵y的立方根是a,∴y=43=64,∴x+y=121+64=185.【解析】根据一个正数有两个平方根,它们互为相反数得出方程,求出a,即可求出x、y,代入求出即可.本题考查了平方根,立方根的应用,注意:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.17.【答案】解:用计算器计算所得结果如下:…,0.25,0.7906,2.5,7.906,25,79.06,250,….分析计算结果可以发现:被开方数的小数点每向右(左)移动两位,算术平方根的小数点相应地向右(左)移动一位.【解析】利用计算器进行计算即可得解,然后根据小数点的移动写出变化规律.本题考查了算术平方根,主要考查了利用计算器进行数的开方,仔细观察小数点的移动位数的变化是解题的关键.18.【答案】解:因为x是1的平方根,所以x=±1.设M=(x2012−1)(x2012−15)(x2011+1)(x2011+15)+1000x,当x=1时,M=(1−1)(1−15)(1+1)(1+15)+1000,=0+1000,=1000,=103,故M的立方根是10;当x=−1时,M=(1−1)(1−15)(−1+1)(−1+15)−1000,=0−1000,=−1000,=−103,故M的立方根是:−10;所以(x2012−1)(x2012−15)(x2011+1)(x2011+15)+1000x的立方根是10或−10.【解析】直接利用平方根的定义结合立方根的定义分别分析得出答案.此题主要考查了立方根、平方根,正确掌握相关定义是解题关键.。
平方根立方根练习题及答案
平方根立方根练习题及答案1. 计算下列各数的平方根:- √9- √16- √252. 计算下列各数的立方根:- ∛8- ∛27- ∛643. 判断下列说法是否正确,并给出理由:- √144 = 12- ∛-8 = -24. 计算下列表达式的值:- √(2^2)- ∛(3^3)5. 解下列方程:- √x = 4- ∛y = 56. 一个数的平方根是2,求这个数。
7. 一个数的立方根是3,求这个数。
8. 一个数的平方根是它本身,求这个数。
9. 一个数的立方根是它本身,求这个数。
10. 计算下列表达式的值:- √(√81)- ∛(∛125)答案1. √9 = 3√16 = 4√25 = 52. ∛8 = 2∛27 = 3∛64 = 43. √144 = 12 是错误的,因为√144 = 12 的平方根是√12,而不是 12。
∛-8 = -2 是错误的,因为负数没有实数立方根。
4. √(2^2) = √4 = 2∛(3^3) = ∛27 = 35. √x = 4 时,x = 4^2 = 16∛y = 5 时,y = 5^3 = 1256. 一个数的平方根是2,这个数是 2^2 = 4。
7. 一个数的立方根是3,这个数是 3^3 = 27。
8. 一个数的平方根是它本身,这个数是0或1。
9. 一个数的立方根是它本身,这个数是0,1,或-1。
10. √(√81) = √9 = 3∛(∛125) = ∛ 5 = 5请注意,这些练习题和答案仅供学习和练习之用,实际应用中可能需要更复杂的计算和理解。
沪科版数学七年级下册 6.1 平方根、立方根同步练习(word版含答案)
平方根、立方根【基础巩固】1.64的平方根是( ). A .±8 B .±4C .±2D .2.9的算术平方根是( ).A .±3B .3C .-3D 3.下列语句正确的是( ). A .一个数的平方根一定有两个B .一个非负数的非负平方根一定是它的算术平方根C .一个正数的平方根一定是它的算术平方根D .一个非零数的负的平方根是它的算术平方根4.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ).A .x +1B .x 2+1C 1 D5.如果某数的一个平方根是-6,那么这个数为__________. 6.用计算器计算:,,,…,请你猜测999999+1999n n n ⨯个个个的结果为__________.【能力提升】7.若2m -4与3m -1是同一个数的平方根,则m 为( ). A .-3 B .1 C .-3或1 D .-181πx -的值是( ). A .11π- B .11π+C .11π- D .无法确定9.一个正方体的体积变为原来的8倍,它的棱长变为原来的__________倍;体积变为原来的27倍,它的棱长变为原来的__________倍;体积变为原来的 1 000倍,它的棱长变为原来的__________倍;体积变为原来的n 倍,它的棱长变为原来的__________倍.10.若|a -2|0,则a 2-b =__________. 11.求下列各式的值:;;12.已知一个正数的平方根是3x -2和5x -14,请你求出这个正数.13.一个长方体容器长20 cm ,宽15 cm ,在这个容器内放一立方体铁块,盛满水取出铁块后,水面下降了5 cm ,求这个立方体铁块的棱长.(精确到0.01 cm)参考答案1.答案:A2.答案:B 解析:∵32=9,∴9的算术平方根是3. 3.答案:B4.答案:D 解析:这个自然数是x 2,于是它后面的一个数是x 2+1,则x 2+1的算术平方根是.5.答案:36 解析:因为(-6)2=36,所以这个数为36.6.答案:10n解析:由计算器易算出:,=100=102,1 000=103999999+1999n n n ⨯个个个=10n .7. 答案:C 解析:本题分为两种情况:(1)可能这两个平方根相等,即2m -4=3m -1,解得m =-3;(2)可能两个平方根互为相反数,即(2m -4)+(3m -1)=0,解得m =1.故选C.8.答案:A 解析:0≥0,所以x =π,所以原式=π11=1ππ--.9.答案:2 3 10解析:设原来的正方体的体积是1,则其棱长为1,变化后的正方体的体积为8,所以棱长为原来的2倍,同样的方法可得体积变为27倍,1 000倍,n 倍时,它们的棱长变为原来的3倍,1010.答案:1 解析:由|a -2|0,得a -2=0,b -3=0,解得a =2,b =3.因此a 2-b =1.11.答案:解:=12+13=25.455=343⨯.=5÷0.2=25.171244-+=-1. 12. 答案:解:根据平方根的性质可知,正数的两个平方根互为相反数,于是(3x -2)+(5x -14)=0,解得x =2, 即这个正数的两个平方根为4和-4. 故这个正数为16.13. 答案:解:设立方体的棱长为x cm ,根据题意,可得x 3=20×15×5,即x 3=1 500,所以x .利用计算器,可算得x ≈11.45(cm). 故这个立方体铁块的棱长约为11.45cm.。
华师大版八年级数学上册《11.1平方根与立方根》同步测试题带答案
华师大版八年级数学上册《11.1 平方根与立方根》同步测试题带答案一、选择题1.下列说法不正确的是( )A .0.09的平方根是±0.3B .√19=13C .1的立方根是±1D .0的立方根是02.下列计算正确的是( )A .√9=±3B .(−1)0=0C .√2+√3=√5D .√83=2 3.下列算式正确的是( )A .√643=8B .√4=±2C .√(−3)2=−3D .±√169225=±13154.下列等式正确的是( )A .± √(−2)2=2B .√(−2)2=−2C .√−83=−2D .√0.013=0.1 5.下列各式中,正确的是( )A .√16=±4B .±√16=4C .√−273=−3D .√(−4)2=−4 6.下面有四种说法,其中正确的是( )A .-64的立方根是4B .127的立方根是13C .49的算术平方根是±7D .√9的平方根是±37.下列计算正确的是( )A .√25=±5B .√−643=4C .±√4=2D .(√−83)2=4 8.下列说法正确的是( )A .8的立方根是2B .√4=±2C .4的平方根是2D .√(−2)2=−29.4的平方根是x ,-64的立方根是y ,则x+y 的值为( )A .-6B .-6或-10C .-2或-6D .2或-210.估计68的立方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间二、填空题11.计算:(1)−√0.25= ;(2)±√64= ;(3)√279= ;(4)√−83= ;(5)√(−3)33= ;(6)√(−2)2= .12.16 的算术平方根是 , 9 的平方根是 ,−27 的立方根是 . 13.-8的立方根是 ; √16 的平方根是 . 14.√273= ,√9的算术平方根是 .15.−27的立方根为 .三、综合题16.若64的立方根是m ,m 的平方根是n .(1)求m 的值;(2)求√m +n 2的值.17.已知4是3a﹣2的算术平方根,2﹣15a﹣b的立方根为﹣5.(1)求a和b的值;(2)求2b﹣a﹣4的平方根.18.已知:(2x−1)2=9,(y−1)3=27.(1)若x,y分别为点P的横、纵坐标,求点P(x,y)的坐标;(2)求3x+y的算术平方根.19.已知:x的平方根是a+3与2a−15,且√2b−1=3.(1)求x的值;(2)求a+b−1的立方根.20.已知4a+1的平方根是±3,b﹣1的算术平方根为2.(1)求a与b的值;(2)求2a+b﹣1的立方根.参考答案1.答案:C2.答案:D3.答案:D4.答案:C5.答案:C6.答案:B7.答案:D8.答案:A9.答案:C10.答案:C11.答案:(1)-0.5(2)±8(3)53(4)-2(5)-3(6)212.答案:4;±3;-313.答案:-2;±214.答案:3;√315.答案:-316.答案:(1)解:∵64的立方根是m3=4;∴m=√64(2)解:∵m的平方根是n∴n2=4∴√m+n2=√4+4=2√2;17.答案:(1)解:∵4是3a﹣2的算术平方根,∴3a﹣2=16,∴a=6,∵2﹣15a﹣b的立方根为﹣5,∴2﹣15a﹣b=﹣125,∴2﹣15×6﹣b=﹣125,∴b=37(2)解:2b﹣a﹣4=2×37﹣6﹣4=64,64的平方根为±8,∴2b﹣a﹣4的平方根为±818.答案:(1)解:(2x−1)2=92x−1=±32x−1=3或2x−1=−3∴x1=2,x2=−1(y−1)3=27y−1=3y=4∴P(2,4)或(−1,4);(2)解:当x=2,y=4时3x+y=3×2+4=10,10的算术平方根是√10当x =−1,y =4时3x +y =3×(−1)+4=1,1的算术平方根是1.19.答案:(1)解:∵x 的平方根是a +3与2a −15∴(a +3)+(2a −15)=0解得:a =4∴x =(a +3)2=(4+3)2=49∴x 的值为49;(2)解:∵√2b −1=3∴b =5∴√a +b −13=√4+5−13=2∴a +b −1的立方根为2. 20.答案:(1)解:∵4a+1的平方根是±3 ∴4a+1=9解得a =2;∵b﹣1的算术平方根为2∴b﹣1=4解得b =5.(2)解:∵a=2,b =5∴2a+b﹣1=2×2+5﹣1=8∴2a+b﹣1的立方根是: √83 =2.。
(人教版)七年级数学下册第六章第1节《平方根、立方根》同步练习(含答案)
课题: 6.1 平方根讲课种类:新授 执笔人: 改正人: 审查人学习目标:1.掌握平方根的观点,明确平方根和算术平方根之间的联系和差别;2.能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系;3.培育学生的研究能力和概括问题的能力 .学习要点:平方根的观点和求数的平方根.学习难点:平方根和算术平方根的联系与差别 .教课过程:一 、复习引入:1. 什么叫算术平方根?2. 求以下各数的算术平方根: ( 1) 400;(2)1;(3)49 ; (4)0.0001(5)064二、新授:问题: 假如一个数的平方等于 9,这个数是多少? 又如: x24,则 x 等于多少呢?25填表 :x 21163649925x1.平方根的观点:假如一个数的平方等于 a ,那么这个数就叫做 a 的____________. 即:假如 x 2a ,那么 x 叫做 a 的平方根.记作:± a , 读作“正、负根号 a ” .2. 开平方的观点 :求一个数 a 的平方根的运算,叫做 _____________.比如: 3 的平方等于 9, 9 的平方根是 3,因此平方与开平方互为逆运算.例 2:求以下各数的平方根 : (1) 100( 2)9(3) 0.25(4)0 16思虑:正数的平方根有什么特色?0 的平方根是多少?负数有平方根吗?概括:正数有 ____ 个平方根,它们 ____________________; 0的平方根是 _________;负数.引入符号:正数 a 的算术平方根可用 a 表示;正数a的负的平方根可用- a 表示,正数a 的平方根能够用 a 表示.例 3:求以下各式的值 :121( 4) 562,(5)56(1)144,(2)-0.81,(3),(6)(6)2.2196三、讲堂练习:课本第 75 页练习 1、2、31.下边说法正确的选项是()A 、0 的平方根是 0; ()B、 1 的平方根是 1; ()C 、﹣1的平方根是﹣;)D、(﹣1)2平方根是﹣ 1.( )1 (2.求以下各数的平方根:(1)0.49 (2)49(3)81 (4)0 (5)-10036四、讲堂检测:1. 算术平方根等于它自己的数是__________________. 2.以下各数没有平方根的是()A、64B、0C、(﹣2)3D、(﹣3)43.(-3) 2 的平方根是( )A、3B、-3C、±3D、±94.以下各数有平方根吗?假如有,求出它的平方根;假如没有,说明原因.⑴256⑵ 0⑶ (-4)2⑷1⑸ -641005. 求以下各式的值 . (1) 1.44 =________.(2)-81 =________.(3)±9=________. 100-(7)2=_______.± 52 =______,a2 =________.★6. x+2 和 3x-14 是同一个数的平方根,则x 等于 ()A.-2B.3或 4C.8D.36.2《立方根》同步练习知识点:立方根:一般地,假如一个数的立方等于a ,那么这个数是 a 的立方根立方根性质:正数的立方根是正数0 的立方根是 0负数的立方根是负数3- a = — 3 a同步练习:【模拟试题】(共 60 分钟 ,满分 100 分)一、认认真真选 (每题 4 分 ,共 40 分 )1.以下说法不正确的选项是()A.-1 的立方根是 -1B.-1 的平方是 1C.-1 的平方根是 -1D.1 的平方根是± 12.以下说法中正确的选项是( ) A.-4 没有立方根B.1 的立方根是± 1113C.36的立方根是6D.-5 的立方根是 53 2 10 43 (27)33.在以下各式中: 27=3, 30.001 =0.1, 3 0.01=0.1,-=-27,此中正确的个数是 ()A.1B.2C.3D.4 ﹡4.若 m<0,则 m 的立方根是()A. 3 mB.- 3 mC.± 3 mD.3m﹡5.假如 36x是 x -6 的三次算术根,那么 x 的值为()A.0B. 3C.5D.66.已知 x 是 5 的算术平方根,则 x2-13 的立方根是()A.5-13B.-5-13C.2D.-28 1 26 17.在无理数 5 , 6 ,7,8中,此中在2 与2之间的有()A.1 个B.2 个C.3 个D.4 个﹡8.一个正方体的体积为 28360 立方厘米,正方体的棱长预计为( )A.22 厘米B.27 厘米C.30.5 厘米D.40 厘米﹡9.已知 23.64.858 , 2.361.536 ,则 0.00236 的值等于 ()A .485.8B .15360C .0.01536D . 0.0485811 xx3x 的值是 (﹡﹡ 10.若8 +8存心义,则)1 11A.0B.2C.8D.16二、仔认真细填 (每题 4 分 ,共 32 分 )111.- 8的立方根是 , 125 的立方根是 。
平方根和立方根(习题及答案)
平方根和立方根(习题)1. 下列说法错误的是( )A1=B1=- C .2的平方根是D .-81的平方根是9± 2. 下列说法正确的是( ) A .-0.064的立方根是0.4B .-9的平方根是3±C .16D .0.01的立方根是0.000 001 3. 下列说法正确的是( ) A .7是497±B .7是(-7)27=C .7±是49的平方根,即7=D .7±是497=±4. 若22(3)x =-,则x =_________.5.=_______=_______=_________________;=_______=______;2=_______.6. 若一个数的平方根是8±,则这个数的立方根是_________.7. 若某个数的平方根是a +2与3a -6,则a 的值为________.8. 已知一个正数的平方根是a +1与-2a +1,求这个正数.9._______;210-的算术平方根是_________;的平方根是_____________;_______的立方根是________.10.3=,则5a +2的立方根是________.11.,则a =_________.12. 若一个正数的算术平方根是m ,则比这个正数大2的数的算术平方根是_________.13. 若2m +2的平方根是±2,n +1的平方根是±3,则m +2n 的立方根是________.复习巩固14. 一个正方体木块的体积为1 000 cm 3,现要把它锯成8块同样大小的正方体小木块,小木块的棱长是________.15. 若一个正方形的面积变为原来的4倍,则它的边长变为原来的______倍;若面积变为原来的9倍,则它的边长变为原来的______倍;若面积变为原来的100倍,则它的边长变为原来的______倍;若面积变为原来的n 倍,则它的边长变为原来的______倍.1. 平方根与算术平方根的比较2. 对于任意数a a 吗?2一定等于a 吗?①当a ≥0;当a <0,a .(“一定等于”或“不一定等于”)②对于2,a 作为被开方数,所以a ______0,因为平方和开平方互为_________,所以2_______a .(“一定等于”或“不一定等于”)思考小结1.D 2.C 3.B 4. ±3 5. 0.3;0.3;34;54;4;-6;196 6. 47. 18. 这个正数为99. ±3;110;±32;3 10. 311. 412.13.14. 5 cm15. 2,3,101.2. ①a ,a -,不一定等于 ②≥,逆运算,一定等于复习巩固思考小结。
初中数学平方根立方根实数运算练习题(附答案)
初中数学平方根立方根实数运算练习题一、单选题1.若一个数的平方根与它的立方根完全相同,这个数是( )A.1B.1-C.0D.1,0±2.有下列说法:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1或0.其中错误的是( )A.①②③B.①②④C.②③④D.①③④ 3.若a 是2(4)-的平方根,b 的一个平方根是2,则a b +的立方根为( ).A.0B.2C.0或2D.0或2-4.4a =-成立,那么a 的取值范围是( )A.4a ≤B.4a ≤-C.4a ≥D.—切实数 5.对于实数a,b,下列判断正确的是( )A.若|a|=|b|,则a=bB.若a 2>b 2,则a>bC.b =,则a=bD.=则a=b二、解答题6.已知51a -的算术平方根是3,31a b +-的立方根为2.(1)求a 与b 的值;(2)求24a b +的平方根.7.求下列各式中x 的值:(1)22320x -=;(2)3440()6x ++=.8.已知第一个正方体纸盒的棱长是6厘米,第二个正方体纸盒的体积比第一个正方体纸盒的体积大127立方厘米,试求第二个正方体纸盒的棱长.9.已知2x -的平方根是2±,532y +的立方根是2-.1.求33x y +的平方根.2.计算: 2--的值. 三、计算题10.计算:1123-⎛⎫-+ ⎪⎝⎭11.计算: 01(2016)--;四、填空题12.827-的立方根为______. 13.若一个数的立方根是4,则这个数的平方根是______.14.已知21x +的平方根是5±,则54x +的立方根是 .参考答案1.答案:C解析:任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0的平方根是0,负数没有平方根,所以这个数是0,故选C.2.答案:B解析:正数的立方根是正数,负数的立方根是负数,0的立方根是0.立方根等于它本身的数有0,1和−1.所以①②④都是错误的,③正确.故选:B.3.答案:C解析:4.答案:D解析:5.答案:D解析:6.答案:(1)由题意,得2513a -=,3312a b +-=,解得2a =,3b =.(2)∵24224316a b +=⨯+⨯=,∴24a b +的平方根4±.解析:7.答案:(1)22320x -=,2232x =,216x =,4x =±,∴14x =,24x =-;(2)()34640x ++=, ()3464x +-=,44x +=-,8x =-.解析:8.答案:第二个正方体纸盒的棱长是7厘米.解析:9.答案:1.无平方根; 2. 132-解析:10.答案:1解析:11.答案:0解析:12.答案:23-解析:a 827-的立方根是23-. 故答案为23-. 13.答案:8±解析:14.答案:4解析:根据题意,得()2215x +=±,解得12x =.所以54512464x +=⨯+=.因为64的立方根是4,所以54x +的立方根是4。
七年级数学平方根和立方根同步练习含答案
6.1 平方根立方根一、基础训练1.9的算术平方根是()A.-3 B.3 C.±3 D.812.下列计算不正确的是()A±2 B=C=0.4 D3.下列说法中不正确的是()A.9的算术平方根是3 B 2C.27的立方根是±3 D.立方根等于-1的实数是-14的平方根是()A.±8 B.±4 C.±2 D5.-18的平方的立方根是()A.4 B.18C.-14D.146_______;9的立方根是_______.7______________(保留4个有效数字) 8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)234二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1 B.x2+1 C11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.1 C.-3或1 D.-112.已知x,y(y-3)2=0,则xy的值是()A.4 B.-4 C.94D.-9413.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.14.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,•小铁球的半径是多少厘米?(球的体积公式为V=43πR3)三、综合训练15.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0;(2)4(3x+1)2-1=0;(3)274x3-2=0;(4)12(x+3)3=4.参考答案1.B2.A .3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±23 7.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x+4=0且y-3=0.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.14.解:设小铁球的半径是rcm ,则有43πr 3×8=43π×123,r=6, ∴小铁球的半径是6cm .点拨:根据溶化前后的体积相等.15.解:(1)(2x-1)2=169,2x-1=±13,2x=1±13,∴x=7或x=-6.(2)4(3x+1)2=1,(3x+1)2=14, 3x+1=±12,3x=-1±12, x=-12或x=-16. (3)274x 3=2,x 3=2×427, x 3=827,x=23. (4)(x+3)3=8,x+3=2,x=-1.。
勾股定理平方根立方根算术平方根练习题(附答案)
勾股定理平方根立方根算术平方根练习题一、单选题1.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A. 25B. 7C. 5和7D. 25或72.如图,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π取3)是( )A. 10cmB. 12cmC. 14cmD. 无法确定3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.B. 1C. 6,7,8D. 2,3,44.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D '处.若3AB =,4AD =,则ED 的长为( )A. 32B. 3C. 1D. 435.将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度cm h ,则h 的取值范围是( )A. 17cm h ≤B. 8cm h ≥C. 7cm 16cm h ≤≤D. 15cm 16cm h ≤≤ 6.如图,架在消防车上的云梯AB 长为10 m ,90,2ADB AD BD ∠=︒=,云梯底部离地面的距离BC 为2 m ,则云梯的顶端离地面的距离AE 为( )A . 2)mB . 2)mC .2)mD . 7m7.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是( )A. 1:2B. 1:4C. 1:5D. 1:108.如图,已知长方体的长为6 cm ,宽为5 cm ,高为3 cm ,那么虫子想沿表面从A 爬到B 的最短路程是( )A.14 cmB.10 cm D. 6 cm9.下列说法正确的是( ) A. 一个三角形的三边长分别为:,,a b c ,且222a b c -=,则这个三角形是直角三角形B. 三边长度分别为 的三角形是直角三角形,且C. 三边长度分别是12,35,36的三角形是直角三角形D. 在一个直角三角形中,有两边的长度分别是3和5,则另一边的长度一定是410.如图①所示,有一个由传感器A 控制的灯,要装在门上方离地高4.5 m 的墙上,任何东西只要移至该灯5 m 及5 m 以内时,灯就会自动发光.请问一个身高1.5 m 的学生要走到离墙多远的地方灯刚好发光?( )A. 4米B. 3米C. 5米D. 7米11.如图,由四个全等的直角三角形拼成的图形,设,CE a HG b ==,则斜边BD 的长是( )A. 222a b - B. 222a b + C. a b + D. a b -12.如图,Rt△ABC 中,∠C =90°,若AB =15cm,则正方形ADEC 和正方形BCFG 的面积和为()A. 2150cmB. 2200cmC. 2225cmD.无法计算13.65 )A.5和6之间B.6和7之间C.7和8之间D.8和9之间14.下列等式正确的是( )222= 333 444= 55515.若一个数的平方根与它的立方根完全相同,这个数是( )A.1B.1-C.0D.1,0±16.下列说法正确的是( )A.115-是无理数B.若23a =,则a 是3的平方根,且a 是无理数C.93D.无限小数都是无理数17.2(9)的平方根是x ,64的立方根是y ,则x y +的值为( )A.3B.7C.3或7D.1或718.在实数1,0.518,,0.6732,233π---中,无理数的个数是( )A. 1B. 2C. 3D. 419.()233x x --成立,则x 满足的条件是( )A.3x >B.3x <C.3x ≥D.3x ≤二、解答题20.如图,在正方形网格中,小正方形的边长为1,A ,B ,C 为格点(1)判断ABC 的形状,并说明理由.(2)求BC 边上的高.21.如图,在ABC △中,30cm AB =,35cm BC =,60B ∠=︒,有一动点M 自A 向B 以1cm/s 的速度运动,动点N 自B 向C 以2cm/s 的速度运动若点M N ,分别从AB ,同时出发.(1)经过多少秒,BMN △为等边三角形?(2)经过多少秒,BMN △为直角三角形?22.如图,四边形ABCD 是舞蹈训练场地,要在场地上铺上草坪网,经过测量得知:90B ∠=︒,24m AB =,7m BC =,15m CD =,20m AD =.(1)判断D ∠是不是直角,并说明理由;(2)求四边形ABCD 需要铺的草坪网的面积.23.问题:如图①,在Rt ABC △中,AB AC D =,为BC 边上一点(不与点B C ,重合),将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC ,则线段BC DC EC ,,之间满足的等量关系式为 . 探索:如图②,在Rt ABC △与Rt ADE △中,AB AC =,AD AE =,将ADE △绕点A 旋转,使点D 落在BC 边上,试探索线段AD BD CD ,,之间满足的等量关系,并证明你的结论.应用:如图③,在四边形ABCD 中,45ABC ACB ADC ∠=∠=∠=︒.若9BD =,3CD =,求AD 的长.24.看图解答下面问题1.如图1,在水塔O 的东北方向32m 处有一抽水站A,在水塔的东南方向24m 处有一建筑工地B,在AB 间建一条直水管,求水管AB 的长;2.如图2,在△ABC 中,D 是BC 边上的点,已知AB=13,AD=12,AC=15,BD=5,求DC 的长三、计算题25.已知21a -的算术平方根是3,34a b ++的立方根是2,求4a b +的平方根.26.1.()244x -= 2.()313903x +-= 27.计算:201833π427(1)---.28.计算:3333110.125 6.251827---. 四、填空题29.小红做了棱长为5cm 的一个正方体盒子,小明说:“我做的盒子的体积比你的大3218cm . ”则小明的盒子的棱长为__________cm .30.一个正数x 的平方根是23a -与5a -,则x =________.31.如图,数轴上点A 表示的数为a ,化简:244a a a +-+= 。
平方根立方根练习题及答案
平方根立方根练习题及答案平方根立方根练习题及答案【篇一:平方根立方根练习题】一、填空题1.如果x?9,那么x=________;如果x?9,那么x?________2.如果x的一个平方根是7.12,那么另一个平方根是________. 3.?的相反数是, 3?1的相反数是;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7的平方根是_______的算术平方根是_________,10?2的算术平方根是;8.若一个数的平方根是?8,则这个数的立方根是;9.当m______时,?m有意义;当m______时,m?3有意义;10.若一个正数的平方根是2a?1和?a?2,则a?____,这个正数是;11.已知2a?1?(b?3)2?0,则2ab? ; 312.a?1?2的最小值是________,此时a的取值是________.13.2x?1的算术平方根是2,则x=________.二、选择题14.下列说法错误的是()a(?1)2?1b3?13??1 c、2的平方根是?2d、?81的平方根是?9215.(?3)的值是(). 2a.?3 b.3 c.?9 d.916.设x、y为实数,且y?4??x?x?5,则x?y的值是()a、1b、9c、4d、517.下列各数没有平方根的是().a.-﹙-2﹚ b.(?3)3 c.(?1)2 d.11.118.计算25?8的结果是().a.3b.7c.-3d.-719.若a=?32,b=-∣-2∣,c=?(?2)3,则a、b、c的大小关系是().a.a>b>cb.c>a>bc.b>a>cd.c>b>a20.如果3x?5有意义,则x可以取的最小整数为().a.0b.1 c.2 d.321.一个等腰三角形的两边长分别为52和2,则这个三角形的周长是()a、2?2b、52?4c、2?2或52?43d、无法确定三、解方程22.x?25?023. (2x?1)3??8 24.4(x+1)=8 22四、计算25.1.25的算术平方根是;平方根是 .2.3的平方根是,它的平方根的和是 .3.49?14426.4144949 27.?31 ?1625的平方根是;的算术平方根是 . 644. -27的立方根是,的立方根是-4.5.21?, ??,4?62?6.318? , ?3? ,?3?0.008?827;绝对值是 .8.若x2?64,则x=.9.若无理数a满足:1a4,请写出两个你熟悉的无理数:,? .10.一个数的算术平方根是8,则这个数的立方根是 .11.一个正数的平方根是3a+1和7+a,则a =.12.化简(1)2?5 =; (2)3??=.13.满足?3?x?6的所有整数的和.14..15.比较大小:(2)-6; (3)? ?3(4)1?.16a和b之间,a?b,那么a=___ ,b= .17.已知坐标平面内一点a(-2,3),将点a,,得到a′,则a′的坐标为.二、选择题20.下列各式中,无意义的是( )a.21.下列说法错误的是( ) ..a.无理数没有平方根; b.一个正数有两个平方根;c.0的平方根是0;d.互为相反数的两个数的立方根也互为相反数.22.下列命题中,正确的个数有( )①1的算术平方根是1;②(-1)2的算术平方根是-1;③一个数的算术平方根等于它本身,这个数只能是零;④-4没有算术平方根.a.1个b.2个c.3个d.4个23. 若a为实数,下列式子中一定是负数的是( )a.?ab.??a?1?c. ?ad.??a?1 21; 6112b.(?2) c.?44 d.?2 22?24.a,则下列结论正确的是()a. 4.5?a?5.0b. 5.0?a?5.5c. 5.5?a?6.0d. 6.0?a?6.525. 下列各式估算正确的是( )a30 b250 c5.2d4.126. 面积为10的正方形的边长为x,那么x的范围是( )a.1?x?3 b.3?x?4 c.5?x?10d.10?x?10027.下列等式不一定成立的是( )a?a c.a?a d.(a)3?a28. 实数a,b在数轴上对应点的位置如图所示,则必有()a.a?b?0 b.a?b?0 c.ab?00 d.23a?0 b29. 如图所示,以数轴的单位长线段为边作一个正方形,以数轴的原点为圆心、正方形对角线长为半径画弧,交数轴正半轴于点a,则点a表示的数是() a. 11 2 b. 1.4 c. 3 d. 230. 在?,2,732.121121112中,无理数的个数是()a.1b.2c.3d.431. 如图,数轴上表示1a、点b.若点b关于点a的对称点为点c,则点c所表示的数为()a1 b.1.2 d.2三、解答题32. 求的算术平方根、平方根、立方根.33. 求下列各式的值(?3)235. 将下列各数按从小到大的顺序重新排成一列,并用“”连接:22,,?2,0,36. 已知m,n为实数,且m?0,求m?n的值.37. 已知2?x??y?0,且x?y?y?x,求x?y的值.38. 求下列各式中的x.(1)x2?25(2)(x?1)2?9(3)x3??64(4)(2x?1)2?216?0.1.6【篇二:平方根立方根练习题】一、填空题1、 121的平方根是____,算术平方根_____.3、(-2)的平方根是_____,算术平方根是____.4、 0的算术平方根是___,立方根是____.5、-是____的平方根. 26、64的平方根的立方根是_____.2x?9x?9,那么7、如果,那么x=________;如果x?________9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.10、若一个实数的算术平方根等于它的立方根,则这个数是________;11、的平方根是_______,4的算术平方根是_________,10?2的算术平方根是;12、若一个数的平方根是?8,则这个数的立方根是;13、当m______时,3?m有意义;当m______时,m?3有意义;14、若一个正数的平方根是2a这个正数是; ?1和?a?2,则a?____,2ab?2a?1?(b?3)?015、已知,则;3216、a?1?2的最小值是________,此时a的取值是________.17、2x?1的算术平方根是2,则x=________.二、选择题1、 169的平方根是()2、0.49的算术平方根是()a,0.49 b,-0.7 c,0.7 d,0.73、81的平方根是()4、下列等式正确的是()15、-8的立方根是()111a,-16、当x=-8时,则x2的值是()7、下列语句,写成式子正确的是()a,3是9的算术平方根,即9??3c,2是2的算术平方根,即2=2d,-8的立方根是-2,即?8=-28、下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()a, 0个b,1个c,2个 d,3个10、下列说法错误的是()a、(?1)2?1b、?13??1c、2的平方根是?2d、?81的平方根是?901、2(?3)11、的值是().a.?3 b.3 c.?9 d.912、如果3x?5有意义,则x可以取的最小整数为().a.0b.1 c.2 d.313、下列各数没有平方根的是().32(?1)(?3)a.-﹙-2﹚ b. c. d.11.125?的结果是(). 14、计算a.3b.7c.-3d.-73?(?2)15、若a=?3,b=-∣-2∣,c=,则a、b、c 2的大小关系是().a.a>b>cb.c>a>bc.b>a>cd.c>b>a16、设x、()a、1b、9c、4d、5三、解方程1、x2y为实数,且y?4??x?x?5,则x?y的值是?25?02、(2x?1)??8233、4(x+1)=8四、计算491441、? 2、4149 3、?316?4 14494、求下列各数的平方根和算术平方根:(1)121;(2)(-3)2;(3)1(4)?36;(5)625.5、求下列各数的立方根:(1)-127;(2)0.064;(3)169(4) 64;(5)512-1.116;-78; 31【篇三:平方根;立方根经典练习题(非常好)】p> 2.已知x?3?3,则7x?73.若|3x-y-1|和2x?y?4互为相反数,求x+4y的算术平方根。
华师大版初中数学八年级上册《11.1 平方根与立方根》同步练习卷(含答案解析
华师大新版八年级上学期《11.1 平方根与立方根》同步练习卷一.选择题(共15小题)1.9的平方根是()A.3B.C.±3D.2.9的平方根是()A.3B.﹣3C.±3D.±63.4的平方根是()A.2B.﹣2C.±2D.±4.16的算术平方根是()A.±2B.4C.﹣2D.165.计算的结果是()A.﹣2B.2C.﹣4D.46.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是()A.123B.189C.169D.2487.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.18.若=0,则xy的值为()A.1B.﹣1C.2D.﹣29.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个10.下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±211.若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为()A.0B.2C.0或2D.0或﹣2 12.+=0,则x的值是()A.﹣3B.﹣1C.D.无选项13.用计算器求结果为(保留四个有效数字)()A.12.17B.±1.868C.1.868D.﹣1.868 14.借助计算器可求得=555,…,仔细观察上面几道题的计算结果,试猜想=()A.B.C.D.15.在计算器上按键显示的结果是()A.3B.﹣3C.﹣1D.1二.填空题(共10小题)16.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为.17.已知一个正数的两个平方根分别为2m﹣3和8+3m,则(﹣m)2018的值为.18.下列说法正确的是(只需填写编号)①的算术平方根是5②25的算术平方根是±5③的平方根是5④25的平方根是±519.已知=x,=3,则x﹣y=.20.已知+|x+y﹣2|=0,则x+y=.21.一个数的平方根是2x、x﹣12,则这个数的立方根是.22.若x的立方根是﹣,则x=.23.36的平方根是;的算术平方根是;﹣8的立方根是.24.估算:≈.(精确到0.1)25.用计算器计算:≈.(结果保留三个有效数字)三.解答题(共8小题)26.已知一个正数的两个不同平方根是a+6与2a﹣9.(1)求a的值;(2)求关于x的方程ax2﹣16=0的解.27.已知一个正数x的平方根是3a﹣1与a﹣7,求a和x的值.28.一个圆柱的体积为64立方米,高为8米,求这个圆柱的底面半径和侧面积?29.正方形的边长为acm,它的面积与长为96cm、宽为12cm的长方形的面积相等,求a的值.30.求满足下列等式中的x的值:(1)(x+1)2﹣4=0;(2)(x+1)3=27.31.如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.32.用计算器计算:+4×(精确到0.001)33.计算:(1)π﹣2(精确到0.01);(2)﹣+(精确到0.01).华师大新版八年级上学期《11.1 平方根与立方根》同步练习卷参考答案与试题解析一.选择题(共15小题)1.9的平方根是()A.3B.C.±3D.【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3.故选:C.【点评】本题主要考查的是平方根的定义,熟练掌握平方根的定义是解题的关键.2.9的平方根是()A.3B.﹣3C.±3D.±6【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3;故选:C.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.3.4的平方根是()A.2B.﹣2C.±2D.±【分析】根据平方根的定义求解即可.【解答】解:4的平方根是±2.故选:C.【点评】本题考查了平方根的定义,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.4.16的算术平方根是()A.±2B.4C.﹣2D.16【分析】16的算术平方根就是平方是16的非负数,据此即可确定.【解答】解:16的算术平方根是4.故选:B.【点评】此题主要考查了算术平方根的定义,理解定义是关键.5.计算的结果是()A.﹣2B.2C.﹣4D.4【分析】根据算术平方根的含义和求法,求出计算的结果是多少即可.【解答】解:=2.故选:B.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.6.爸爸为颖颖买了一个密码箱,并告诉其密码(密码为自然数)是1、2、4、6、8、9六个数中的三个数的算术平方根,则这个密码箱的密码可能是()A.123B.189C.169D.248【分析】根据算术平方根的定义确定出这三个数,然后求解即可.【解答】解:∵密码是1、2、4、6、8、9六个数中的三个数的算术平方根,∴这三个数为1、4、9,∴它们的算术平方根分别为1、2、3,∴这个密码箱的密码可能是123.故选:A.【点评】本题考查了算术平方根的定义,熟记概念并判断出这三个数是解题的关键.7.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.1【分析】根据2a+1≥0,求出当式子的值取最小值时,a的取值为多少即可.【解答】解:∵2a+1≥0,∴当式子的值取最小值时,2a+1=0,∴a的取值为﹣.故选:B.【点评】此题主要考查了算术平方根的非负性质的应用,要熟练掌握.8.若=0,则xy的值为()A.1B.﹣1C.2D.﹣2【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则xy=2.故选:C.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平方根与立方根的定义即可求出答案.【解答】解:(1)﹣3是的平方根,(1)正确;(2)7是(﹣7)2的算术平方根,(2)正确;(3)27的立方根是3,(3)错误;(4)1的平方根是±1,(4)正确;(5)0的算术平方根是0,(5)错误;故选:C.【点评】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根,本题属于基础题型.10.下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±2【分析】依据算术平方根的性质、立方根的性质求解即可.【解答】解:==4,故A错误;=,3==,故B错误;﹣=﹣,故C正确;=2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的概念,熟练掌握相关概念是解题的关键.11.若a是(﹣4)2的平方根,b的一个平方根是2,则a+b的立方根为()A.0B.2C.0或2D.0或﹣2【分析】根据立方根与平方根的概念即可求出答案.【解答】解:∵(﹣4)2=16,∴a=±4,∵b的一个平方根是2,∴b=4,当a=4时,∴a+b=8,∴8的立方根是2,当a=﹣4时,∴a+b=0,∴0的立方根是0,故选:C.【点评】本题考查立方根与平方根的概念,解题的关键是熟练运用平方根与立方根的概念,本题属于基础题型.12.+=0,则x的值是()A.﹣3B.﹣1C.D.无选项【分析】根据题意,对原方程变形为=﹣,即可得到有2x﹣1=﹣5x ﹣8,解方程即可得出x的值.【解答】解:+=0,即=﹣,故有2x﹣1=﹣5x﹣8解之得x=﹣1,故选:B.【点评】本题主要考查的是对立方根在解方程中的应用,要求学生能够熟练运用.13.用计算器求结果为(保留四个有效数字)()A.12.17B.±1.868C.1.868D.﹣1.868【分析】此题首先熟悉开平方的按键顺序,然后即可利用计算器求平方根,并保留四个有效数字.【解答】解:利用计算器开方求=1.868.故选:C.【点评】此题主要考查了利用计算器求算术平方根,注意有效数字的定义:在一个近似数中,从左边第一个不是0的数字起,到精确到末位数止,所有的数字,都叫这个近似数字的有效数字.14.借助计算器可求得=555,…,仔细观察上面几道题的计算结果,试猜想=()A.B.C.D.【分析】当根式内的两个平方和的底数为1位数时,结果为5,当根式内的两个平方和的底数为2位数时,结果为55,当根式内的两个平方和的底数为3位数时,结果为555,当根式内的两个平方和的底数为2016位数时,结果为2016个5.【解答】解:∵=5,=55=555,…,∴=.故选:D.【点评】此题主要考查了利用计算器进行数的开方,解题时先求出较简单的数,然后找出规律,推理出较大数的结果.15.在计算器上按键显示的结果是()A.3B.﹣3C.﹣1D.1【分析】首先应该熟悉按键顺序,然后即可熟练应用计算器解决问题.【解答】解:在计算器上依次按键转化为算式为﹣7=;计算可得结果为﹣3.故选:B.【点评】本题主要考查了利用计算器计算结果,要求同学们能熟练应用计算器,熟悉计算器的各个按键的功能.二.填空题(共10小题)16.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为81.【分析】根据一个正数的平方根互为相反数,即可得到一个关于x的方程,即可求得x,进而求得所求的正数.【解答】解:根据题意得:(﹣m﹣3)+(2m﹣3)=0,解得:m=6,则这个数是:(﹣3﹣6)2=81.故答案是:81.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.17.已知一个正数的两个平方根分别为2m﹣3和8+3m,则(﹣m)2018的值为1.【分析】根据题意得出方程2m﹣3+8+3m=0,求出m,最后,再代入计算即可.【解答】解:∵一个正数的两个平方根分别为2m﹣3和8+3m,∴2m﹣3+8+3m=0,解得:m=﹣1,∴(﹣m)2018=12018=1.故答案为:1.【点评】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.18.下列说法正确的是④(只需填写编号)①的算术平方根是5②25的算术平方根是±5③的平方根是5④25的平方根是±5【分析】直接利用算术平方根以及平方根的定义分别判断得出答案.【解答】解:①=5的算术平方根是,故此选项错误;②25的算术平方根是5,故此选项错误;③=5的平方根是±,故此选项错误;,④25的平方根是±5,正确.故答案为:④.【点评】此题主要考查了算术平方根以及平方根,正确把握相关定义是解题关键.19.已知=x,=3,则x﹣y=6.【分析】根据算术平方根的概念分别求出x、y,计算即可.【解答】解:=7,∴x=7,=3,=1,y=1,则x﹣y=7﹣1=6,故答案为:6.【点评】本题考查的是算术平方根的概念,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.20.已知+|x+y﹣2|=0,则x+y=2.【分析】先根据非负数的性质求出x、y的值,再代入可得答案.【解答】解:∵+|x+y﹣2|=0,∴x﹣1=0且x+y﹣2=0,解得:x=1、y=1,则x+y=2,故答案为:2.【点评】本题主要考查算术平方根,解题的关键是掌握算术平方根和绝对值的非负性.21.一个数的平方根是2x、x﹣12,则这个数的立方根是4.【分析】根据一个正数的平方根有2个,且互为相反数求出x的值,确定出这个数,进而求出立方根即可.【解答】解:根据题意得:2x+x﹣12=0,解得:x=4,则这个数为64,立方根是4,故答案为:4【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.22.若x的立方根是﹣,则x=﹣.【分析】根据立方根的定义得出x=(﹣)3,求出即可.【解答】解:∵x的立方根是﹣,∴x=(﹣)3=﹣,故答案为:﹣.【点评】本题考查了立方根的应用,主要考查学生的计算能力.23.36的平方根是+6,﹣6;的算术平方根是2;﹣8的立方根是﹣2.【分析】利用立方根,平方根,以及算术平方根定义计算即可求出值.【解答】解:36的平方根是+6,﹣6;的算术平方根是2;﹣8的立方根是﹣2,故答案为:+6,﹣6;2;﹣2【点评】此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.24.估算:≈ 5.1.(精确到0.1)【分析】首先熟悉计算器的求算术平方根的键,然后即可利用计算器求出结果,根据有效数字的概念用四舍五入法取近似数即可.【解答】解:≈5.1.故答案为:5.1.【点评】本题主要考查了无理数的估算,关键是把估算的数保留到0.1是本题的关键.25.用计算器计算:≈﹣2.56.(结果保留三个有效数字)【分析】首先利用计算器进行计算,然后再四舍五入即可.【解答】解:原式=﹣3.142≈﹣2.56.故答案为:﹣2.56.【点评】本题主要考查的是计算器﹣数的开方、近似数字和有效数字,利用计算器求得算式的值是解题的关键.三.解答题(共8小题)26.已知一个正数的两个不同平方根是a+6与2a﹣9.(1)求a的值;(2)求关于x的方程ax2﹣16=0的解.【分析】(1)、(2)根据一个正数有两个平方根,这两个平方根互为相反数解答.【解答】解:(1)由题意得,a+6+2a﹣9=0,解得,a=1;(2)x2﹣16=0x2=16x=±4.【点评】本题考查的是平方根的概念,掌握一个正数有两个平方根,这两个平方根互为相反数是解题的关键,27.已知一个正数x的平方根是3a﹣1与a﹣7,求a和x的值.【分析】根据平方根的性质可得3a﹣1+a﹣7=0,解出a的值,进而可得3a﹣1的值,从而可得x的值.【解答】解:由题意得:3a﹣1+a﹣7=0,解得:a=2,则3a﹣1=5,x=52=25,答:a的值为2,x的值为25.【点评】此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.28.一个圆柱的体积为64立方米,高为8米,求这个圆柱的底面半径和侧面积?【分析】因为圆柱的体积为64立方米,即πr2h=64,已知高为8米,可求得圆柱的底面半径,根据侧面积公式为S=2πrh,即可求得侧面积.【解答】解:V=πr2h=64立方米∵h=8米∴r2===(米)∴r=(米)S=2πrh=2×π××8=32(平方米)∴圆柱的底面半径为米,侧面积32平方米.【点评】本题主要考查了圆柱的体积和侧面积公式,熟练掌握公式是解题的关键.29.正方形的边长为acm,它的面积与长为96cm、宽为12cm的长方形的面积相等,求a的值.【分析】根据题意列出等式a2=96×12,利用平方根的定义求解可得.【解答】解:根据题意,得:a2=96×12,解得:a=±24,∵a为正数,∴a=24.【点评】本题主要考查算术平方根,解题的关键是掌握平方根和算术平方根的定义.30.求满足下列等式中的x的值:(1)(x+1)2﹣4=0;(2)(x+1)3=27.【分析】(1)根据平方根的定义,求出x的值即可;(2)根据立方根的定义求出x的值即可;【解答】解:(1)∵(x+1)2=4,∴x+1=±2,∴x=1或﹣3;(2)∵(x+1)3=27,∴x+1=3,∴x=2.【点评】本题考查平方根、立方根的定义,解题的关键是熟练掌握平方根、立方根的性质,属于中考常考题型.31.如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.【分析】根据一个正数的两个平方根互为相反数,可得出关于a的方程,解出即可.【解答】解:由题意知a+1+2a﹣22=0,解得:a=7,则a+1=8,∴这个正数为64,∴这个正数的立方根为4.【点评】本题主要考查了平方根的定义和性质,注意掌握一个正数的两个平方根互为相反数.32.用计算器计算:+4×(精确到0.001)【分析】首先用计算器分别求出、的值各是多少;然后计算乘法和加法,求出算式精确到0.001的近似值是多少即可.【解答】解:+4×≈1.8171+4×1.4142=1.8171+5.6568=7.4739≈7.474【点评】此题主要考查了计算器﹣数的开方问题,以及四舍五入法求近似值问题的应用,要熟练掌握,解答此题的关键是分别求出、的值各是多少.33.计算:(1)π﹣2(精确到0.01);(2)﹣+(精确到0.01).【分析】(1)先求得的近似值,然后再进行计算,最后求近似值即可;(2)先求得与的近似值,然后再进行计算,最后求近似值即可.【解答】解:(1)π﹣2≈3.141﹣2×1.732=﹣0.323≈﹣0.32;(2)原式≈﹣2.236+0.666=﹣1.57.【点评】本题主要考查的是计算的使用,会使用计算求一个算术平方根是解题的关键.。
人教版七年级数学下册《平方根和立方根》同步练习含答案
第4讲 算术平方根、平方根、立方根Ⅰ、算术平方根如果一个正数x 的平方等于a ,那个这个正数x 叫做a 的算术平方根,记作_________;0的算术平方根是________Ⅱ、平方根如果一个数的平方等于a ,那个这个数叫做a 的平方根或者二次方根,记作_________;求一个数的________的运算,叫做开平方。
公式补充:①a )a (2= ②|a |a 2=一.练习:(预习自主完成)1. 81的算术平方根是( ) A .9± B .9 C .-9 D .32) A. 49- B. 23 C. 49 D. 23- 3.下列说法不正确的是( )A 、9的算术平方根是3B 、0的算术平方根是0C 、负数没有算术平方根D 、 因为2x a =,所以x 叫做a 的算术平方根4. 如果5.1=y ,那么y 的值是( ) A .2.25 B .22.5 C .2.55 D .25.55. 计算()22-的结果是( ) A .-2 B .2 C .4 D .-46. 下列各式中正确的是( )A .525±=B .()662-=-C .()222-=D .()332=-7. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 的算术平方根是a ;④(π-4)的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有( )A. 2个B. 3个C. 4个D. 5个228. 已知5x 2=,则x 为( )A. 5B. -5C. ±5D. 以上都不对9.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .a+1 B .a2+1 C .a +1 D .1a 2+二、填空题:1. 一个数的算术平方根是25,这个数是______; 算术平方根等于它本身的数有______;81的算术平方根是__________。
2. 144=_____4925=________ 0025.0=_______()=2196________()=-28________3. 当______m 时,m -3有意义; 4.已知0)3b (1a 22=+++,则=32ab ________。
沪科版七下数学第一次月考试卷及答案(内容:第6、7章)
《平方根立方根》课时同步练习一、选择题1.4的算术平方根是( ) A .2B .–2C .±2D .±√22.面积为4的正方形的边长是( )A .4的平方根B .4的算术平方根C .4开平方的结果D .4的立方根 3.9的平方根是( ) A .±3 B .3C .±4.5D .4.54.已知一个正数的两个平方根分别为3a −5和7−a ,则这个正数的立方根是( ) A .4B .3C .2D .15.下列式子:①√93=3;②√(−3)33=3;③(−√5)2=25;④√(−4)2=4,其中正确的有( ) A .4个 B .3个 C .2个 D .1个 6.正方形的面积为6,则正方形的边长为( ) A .√2B .√6C .2D .47.下列各数中,没有平方根的是( ) A .65B .(−2)2C .−22D .128.下列各式中,正确的是( ) A .√16=±4B .±√16=4C .√−273=−3D .√(−4)2=−49.下列各组数中互为相反数的是( ) A .-2与√(−2)2 B .-2与√−83 C .2与(−2)2D .|–√2|与√210.已知x ,y 为实数,且√x −3+(y +2)2=0,则y x 的立方根是( ) A .3√6 B .-8C .-2D .±2二、填空题11.11的平方根是__________.12.一个数的立方根是4,则这个数的算术平方根是_________.13.已知√a +2+|b −3|=0,则a +b =____________. 14.若实数m ,n 满足(m +1)2+√n −5=0,则√m +n =__.15.若一个有理数的平方根与立方根是相等的,则这个有理数一定是_______ 16.已知一个正数的两个不同的平方根是3x -2和4-x ,则这个数是________三、解答题17.求满足下列各式的未知数x .(1)4x 2−25=0; (2)(x −3)3=64.18.已知一个数的平方根是±(2a −1),算术平方根是a +4,且a >12,求这个数.19.已知一个正数的两个平方根分别为a 和3a ﹣8 (1)求a 的值,并求这个正数; (2)求1﹣7a 2的立方根.20.计算:(1)√−273+√(−3)2-√−13(2)√−273−√0−√14+√0.1253+√1−63643.21.(1)求式子(x −2)3–1= –28中x 的值.(2)已知有理数a 满足|2019–a|+√a −2020=a ,求a–20192的值.22.已知2x–1的算术平方根是3,12y +3的立方根是–1,求代数式2x +y 的平方根.23.已知,x ﹣1的平方根是±2,2x +y +5的立方根是3,求x 2+y 2的算术平方根.参考答案一、选择题1.A 2.B 3.A 4.A 5.D6.B 7.C 8.C 9.A 10.C二、填空题11.±√11 12.813.114.215.0 16.25三、解答题17.(1)x=±52;(2)x=7.18.当a+4=+(2a−1)时,则a+4=2a−1,a=5>12,符合.则此时(a+4)2=92=81,当a+4=−(2a−1)时,a+4=−2a+1,a=−1<12,不符合. 19.(1)根据题意,得:a+3a﹣8=0,解得:a=2,所以这个正数为4;(2)当a=2时,1﹣7a2=−27,则1﹣7a2的立方根为﹣3.20.(1)原式=−3+3+1=1;(2)原式=−3−0−12+0.5+14=−11421.(1)∵(x−2)3–1= –28∴(x−2)3= –27∴x−2=−3∴x=−3+2=−1;(2)∵|2019−a|+√a−2020=a①∴a−2020≥0,即a≥2020∴2019−a<0∴①式可变形为a−2019+√a−2020=a ∴√a−2020=2019∴a−2020=20192∴a−20192=2020.22.∵2x–1的算术平方根为3,∴2x–1=9,解得:x=5,y+3的立方根是–1,∵12y+3=−1,∴12解得:y=–8,∴2x+y=2×5–8=2,∴2x+y的平方根是±√2.23.∵x﹣1的平方根是±2,∴x﹣1=4,∴x=5,∵2x+y+5的立方根是3,∴2x+y+5=27,把x的值代入解得:y=12,∴x2+y2=52+122=169,∴x2+y2的算术平方根为√169=13.。
《平方根与立方根》习题精选及参考答案
《平方根与立方根》习题精选及参考答案习题一一1.填表。
其中13 14 16 17 19121 144 225 324 4002.求下列各数的平方根及算术平方根:169,361,,0,0.36,0.0121,,900,19,37。
3.求下列各式的值:4.求下列各式的值:5.求下列各式的值:6.如果一定等于吗?如果是任意一个数,等于什么数?参考答案1.第一行依次填11,12,15,18,20,第二行依次填169,196,256,289,361。
2.平方根依次为:±13,±19,±,±,0,±0.6,±0.11,±,±30,±,±算术平方根依次为:13,19,,,0,0.6,0.11,,30,,3.4,-1.2,1,,,0.144.9,15,42,,0.3,,125,4.155.2,3,,0.4,,35,0.016.时,,如果x是任意一个数,(或时,;时,二1.已知:都是正数,且.求证:的最小值是2.2.一个圆的半径是10cm,是它面积2倍的一个正方形的边长约为多少cm(精确到0.1cm)3.在物理学中我们知道:动能的大小取决于物体的质量与它的速度.关系式是:动能,若某物体的动能是25焦(动能单位),质量m是0.7千克,求它的速度为每秒多少米?(精确到0.01)4.飞出地球,遨游太空,长久以来就是人类的一种理想,可是地球的引力毕竟太大了,飞机飞得再快,也得回到地面,导弹打得再高,也得落向地面,只有当物体的速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度我们叫做第一宇宙速度,计算式子是:千米/秒,其中重力加速度千米/秒2,地球半径千米,试求出第一宇宙速度的值(单位:千米/秒).参考答案1.,∴,∴,∴的最小值是2.2.设正方形的边长为 cm.3.(米/秒).4.7.9千米/秒.三1.填空题(1)的立方根是_____________.(2)的立方根是________________.(3)是___________的立方根.(4)若的立方根是6,则 _______.(5)0的立方根是______.(6)7的立方根是_______.(7) _______.(8) ________.2.填空题(1)的倒数为________.(2)49的算术平方根的立方根是________.(3)若,则(4) ______.(5) ________.(6)的绝对值为_______.(7) _______.(8)的立方根为_______.3.填空题(1)的立方根是_______.(2)是_____的立方根.(3)81的平方根的立方根是_______.(4) _______.(5)的立方根是______.(6)的立方根是________.(7)若,则 _______.(8)已知,则 _______.参考答案:1.(1)(2)(3)(4)216(5)0 (6)(7)(8)32.(1)(2)(3)(4)60(5)(6)117 (7)(8)13.(1)(2)-11(3)(4)15 (5)(6)(7)-4 (8)2四1.填表3 5 6 8 91 8 64 343 10002.求下列各数的立方根:27,-125,1,-1,0.512,-0.000729,640003.求下列各式的值:(1),(2),(3),(4),(5)4.求下列各式的值:5.与有什么相同点与不同点?6.大正方体的体积为1331cm3,小正方体的体积为125cm3,如图那样摞在一起,这个物体的最高点A离地面C的距离是多少cm?7.一个正方体的体积为64cm3,它的边长是多少cm?如果它的边长扩大一倍,它的体积是原正方体体积的多少倍?若正方体的体积改为原正方体体积的一半,它的边长是多少cm?就本题的计算过程,你能得出什么结论?参考答案1.第一行依次填:1,2,4,7,10,第二行依次填:27,125,216,512,729.2.3,-5,1,-1,0.8,-0.09,403.(1)-4 (2)0.6 (3)-9 (4)(5)4.-7,-23,0.17,,,1255.相同点:,不同点:的意义是求的立方,是求的立方根.6..∴ cm,即这个物体的最高点A 离地面C是16cm.7.边长为4cm,边长扩大一倍,体积为512cm3,体积为原来体积的8倍.体积为原体积的一半为32cm3,边长是 cm(或 cm).边长扩大一倍,体积扩大8倍,体积缩小一倍,边长是原边长的倍.习题二1.(a-b)3的立方根为()A.a-b B.b-aC.±(a-b) D.(a-b)3答案:A说明:根据立方根的定义,不难得出只有a−b的立方为(a−b)3,即正确答案为A.2.某自然数的一个平方根是a,则与其相邻的下一个自然数的算术平方根是()A.a+1 B.a2+1C.a+1D.a2+1答案:D说明:由该自然数的一个平方根是a可得该自然数为a2,与其相邻的下一个自然数即a2+1,a2+1的算术平方根为,所以答案为D.3.下列各式正确的是()A.(-7)2=-7 B.-(-7)2=-7C.(-7)2=±7 D.±(-7)2=7答案:B说明:== 7,所以,选项A、C错;−= −=−7,选项B正确;而±= ±=±7,选项D错,答案为B.4.若0<a<1,b=a,则a与b的大小关系是()A.a>b B.a<bC.a=b D.不能确定答案:B说明:因为0<a<1,b=,可知0<b<1,且b2=a,因为0,1之间的数平方后比自身要小,即有b2<b,也即a<b成立,所以答案为B.5.16的平方根和立方根分别是()A.±4,16B.±2,±4C.2,4D.±2,4答案:D说明:= 4,因此的平方根即4的平方根,由平方根的定义知4的平方根应为±2,再由立方根的定义知4的立方根应为,所以正确答案应该是D.6.下列判断不正确的是()A.若m=n,则m = nB.若m=n,则m=nC.若m2=n2,则m=nD.若m3=n3,则m=n答案:C说明:选项A,由=两边同时平方即有m=n成立;选项B,由=两边同时立方即有m=n成立;选项C,若m=1,n=−1,则=成立,但m≠n,所以选项C错;选项D,因为=m,=n,所以=即m=n;因此,答案为C.7.-(-2)3的平方根是__________,立方根是___________.答案:±2;2说明:−(−2)3=−(−8)=8,由平方根的定义知8的平方根为±=±=±2,而8的立方根则是2.8.一个正数x的两个平方根为m+1和m-3,则m =__________,x =___________.答案:1;4提示:一个正数的平方根有两个,它们互为相反数,因此(m+1)+(m−3)=0,故m=1,进而x=4.9.若式子5x+6总有平方根,则x_________.答案:≥−说明:要使式子5x+6总有平方根,则5x+6≥0,解这个不等式可得x≥−.10.若式子x-的平方根只有一个,则x=__________.答案:说明:平方根只有一个的就是0,因此式子x−= 0,即x=.11.某运动场地是一个矩形,长是宽的4倍,面积为1156m2,求运动场地的长和宽.答案:长 68m宽 17m说明:设宽为x,则长为4x,由已知面积为1156m2,得x×4x=1156m2,即x2=289m2,x=± 17m(−17m不合题意,舍去),4x=68m,即运动场地的长为68m,宽为17m.探究活动你能判断出谁年轻吗?如今的时代是知识爆炸的时代,是科技高速发展的时代,中国的航天技术正在飞速发展,宇宙的奥秘正逐步展现在我们面前.有两名宇航员李飞(二十八岁)和刘学(二十五岁).李飞乘着以光速0.98倍的速度飞行的宇宙飞船,作了五年宇宙旅行后回来(这个五年是指地面上的五年).这时谁年轻?年轻几岁?(精确到一年)提示:根据爱因期坦的相对论,当地面上经过1秒时,宇宙飞船内还只经过秒,公式内的c是指光速(30万千米/秒),v是指宇宙飞船速度.参考答案:地面上经过1秒,飞船内经过秒,相当于地面上时钟走的速度的五分之一,所以地面上过了五年,宇宙飞船上才过去一年,因此李飞的岁数这时是29岁,而刘学的岁数是30岁,李飞比刘学年轻一岁.。
平方根与立方根(人教版)(含答案)
答案:C
解题思路:
3.1415926和0.2是有限小数, 是分数, 0.7, 3,
因此它们都是有理数; 为无理数, 且 为无理数.
故选C.
试题难度:三颗星知识点:无理数的概念
16.下列说法正确的是( )
A.一个数的平方根有两个B.有理数与数轴上的点一一对应
C.两个无理数的和不一定是无理数D.绝对值最小的实数不存在
3.平方根等于它本身的数是______,立方根等于它本身的数是______.空格上依次填写正确的是( )
A.±1和0,1和0 B.1和0,±1和0
C.0,±1和0 D.0,±1
答案:
解题思路:
1的平方根是±1,0的平方根是0,所以平方根等于它本身的只有0;
1的立方根是1,0的立方根是0,-1的立方根是-1,
A.8 B.-8
C.8或-8 D.4或-4
答案:C
解题思路:
4的平方根为2或-2,因此这个数为2或-2,2的立方为8,-2的立方为-8.
故选C.
试题难度:三颗星知识点:平方根
10.-27的立方根与 的平方根之和为( )
A.0 B.6
C.0或-6 D.0或6
答案:C
解题思路:
-27的立方根是-3, ,9的平方根为±3,-3与±3的和为0或-6,
A. B.
C. D.
答案:D
解题思路:
因为 , , ,…,
可以发现一个数如果扩大100倍,那么它的算术平方根扩大10倍,
由于20是0.2的100倍,所以 .
故选D.
试题难度:三颗星知识点:平方根
13.若 ,则( )
A.a>1 B.a<1
C.a≧1 D.a≦1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平方根与立方根》同步练习试卷及答案
一、基础训练
1.(05年南京市中考)9的算术平方根是()
A.-3 B.3 C.±3 D.81
2.下列计算不正确的是()
A±2 B.=
C=0.4 D.
3.下列说法中不正确的是()
A.9的算术平方根是3 B 2
C.27的立方根是±3 D.立方根等于-1的实数是-1
4.的平方根是()
A.±8 B.±4 C.±2 D
5.-1
8
的平方的立方根是()
A.4 B.1
8
C.-
1
4
D.
1
4
6._______;9的立方根是_______.
7_______≈_______(保留4个有效数字) 8.求下列各数的平方根.
(1)100;(2)0;(3)
9
25
;(4)1;(5)1
15
49
;(6)0.09.
9.计算:
(1)234
二、能力训练
10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()
A.x+1 B.x2+1 C
11.若2m-4与3m-1是同一个数的平方根,则m的值是()
A.-3 B.1 C.-3或1 D.-1
12.已知x,y(y-3)2=0,则xy的值是()
A.4 B.-4 C.9
4
D.-
9
4
13.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.14.将半径为12cm的铁球熔化,重新铸造出8个半径相同的小铁球,不计损耗,•小
铁球的半径是多少厘米?(球的体积公式为V=4
3
πR3)
三、综合训练
15.利用平方根、立方根来解下列方程.
(1)(2x-1)2-169=0;(2)4(3x+1)2-1=0;
(3)27
4
x3-2=0;(4)
1
2
(x+3)3=4.
答案:
1.B
2.A 点拨:.
3.C
4.C 点拨:,故4的平方根为±2.
5.D 点拨:(-
18)2=164,故164的立方根为14.
6.±2
3 7.6.403,12.61
8.(1)±10 (2)0 (3)±
35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)1
4
(4)±0.5 10.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,
则x 2+1. 12.B 点拨:3x+4=0且y-3=0.
13.10,12,14 点拨:23<这个数<42,即8<这个数<16.
14.解:设小铁球的半径是rcm ,
则有4
3πr 3×8=43π×123,r=6,
∴小铁球的半径是6cm .
点拨:根据溶化前后的体积相等.
15.解:(1)(2x-1)2=169,2x-1=±13, 2x=1±13,∴x=7或x=-6.
(2)4(3x+1)2=1,(3x+1)2=
14, 3x+1=±
12,3x=-1±12, x=-
12或x=-16. (3)274x 3=2,x 3=2×4
27, x 3=8
27,x=
23.(4)(x+3)3=8,x+3=2,x=-1.。