人教版七年级数学下册平方根(基础)知识讲解

合集下载

人教版七年级下册数学《平方根》实数教学说课复习课件(第3课时)

人教版七年级下册数学《平方根》实数教学说课复习课件(第3课时)
人教版 数学 七年级 下册
6.1 平方根
第3课时
课件
导入新知
1.什么叫做算术平方根?
如果一个正数x的平方等于a,那么这个正数x叫做a的
算术平方根.
2.判断下列各数有没有算术平方根,如果有,请求出它
们的算术平方根.
36
100; 1;
;
121
0; -0.0025; (-3)2 ; -25.
导入新知
3. 填空:
例如:
4的平方根表示为 :
4,
4 2
5的平方根表示为 :
5,
25
25
25
5





的平方根表示为
36
36
36
6
0的平方根表示为: 0
规定

0 0. 0 0
0的平方根为0.
探究新知
考 点 1
利用平方根的表示求平方根
分别求下列各数的平方根:
(1)36 ;
25
(2)
典例精析
例2 下列说法正确的是( A
)
A.因为62=36,所以6是36的算术平方根
B.因为(-6)2=36,所以-6是36的算术平方根
C.因为(±6)2=36,所以6和-6都是36的算术平方根
D.以上说法都不对
例3 16的算术平方根是
4
例4 下列说法正确的是

①4是25的算术平方根.
② 0.01是0.1的算术平方根.
边长是多少分米?
实际上就是要求出一个数,使
它的平方等于9,即:
(
)
2
9
9平方分米
显然,括号里应是±3,但-3不符

人教版七年级数学下册6.1.1算术平方根

人教版七年级数学下册6.1.1算术平方根

(2)
49 81
解:(1) 4 2 (3) (11) 2
112 11
(4) 6 2 6
例3 求下列各数的算术平方根: ⑴ 32 ⑵ 43 ⑶ (10) 2 ⑷
1 10 6
自我检测
自我检测
1、下列各式有意义吗?
± ( 3) (1) 144 (2) 0.81
121 (4) 196
9
16
4
36
6
4 25
2 5
3
(2)你能指出它们的共同特点吗? 都是已知一个正数的 平方,求这个正数.
2.总结概念 一般地,如果一个正数的平方等于 a , 2 即 x a,那么这个正数 x 叫做 a 的算术
平方根. a 的算术平方根记为 a ,读作
“根号 a ”,a 叫做被开方数.
即 0 =0. 即: x a(x ), 规定: 0的算术平方根是 00 , 2 x a ( x 0) 也就是说,若 ,则 x a x叫做a的算术平方根, 例如,由于 52 25 ,5是25的算术平方根, 记作: x a 25 5 即 .
(7)
2、求下列各式的值
13 169 10 ____
100
3 (3) _____;
2
课堂练习 例2:求下列各数的算术平 方根,
1 (1) 81(2)( 25 ) (3) 2 4 解(1)因为 81 9, 9的算术平方根是 3,
2
所以 81 的算术平方根是 3。
(2) (25) 25
①根据算术平方根的定义解题,明确平方与开平方 互为逆运算; ②求带分数的算术平方根,需要先把带分数化成假 分数,然后根据定义去求解; ③0的算术平方根是0。

人教版七年级数学下册教学课件《平方根》(第1课时)

人教版七年级数学下册教学课件《平方根》(第1课时)

求下列各式的值:
(1)
1

(2)
9 25

(3) 42 ;
(4) 0

解:(1) 1 1 ;
(2)
9 25
3 5

(3) 42 4 ;
(4) 0 0 .
探究新知 知识点 2 算术平方根的双重非负性
6.1 平方根
1. 负数有算术平方根吗? 2. a 是什么数? 3. a 中的a可以取任何数吗?
探究新知
6.1 平方根
一般地,如果一个正数 x 的平方等于a,即x2=a,那么这
个正数x叫做a的算术平方根. a的算术平方根记为 a ,读作
“ 根号 a” .
规定:0的算术平方根是0,即 0 0 .
探究新知
6.1 平方根
怎么用符号来表示一个数的算术平方根? 平方根号
x2 a 互为 x a (x≥0) 逆运算
6.1 平方根
求下列各数的算术平方根:
(1)100 ;
(2)49 ; 64
(3)0.0001.
解:(1)因为 102=100 , 所以100的算术平方根是10 . 即 100=10 .
探究新知
6.1 平方根
(2) 49 ; 64
解:(2)因为 (7)2 49 , 8 64
所以 49 的算术平方根是 7 .
3
66
x
3
y
4z
7 3
3
7 6
4
35 6
175 6
.
课堂小结
算术平方根的概念
6.1 平方根
算术平 方根
算术平方根的双重非负性
算术平方根的应用
课后作业
作业 内容

人教版七年级数学下册第六章6.1平方根(教案)

人教版七年级数学下册第六章6.1平方根(教案)
3.求平方根的方法:掌握求解平方根的两种方法——直接开平方和迭代法。
4.应用平方根解决实际问题:运用所学的平方根知识解决一些简单的实际问题。
二、核心素养目标
1.培养学生的逻辑推理能力:通过平方根的定义和性质的探究,让学生理解数学知识之间的内在联系,提高逻辑推理能力。
2.提升解决问题的能力:通过求平方根的方法学习和实际问题的应用,培养学生运用数学知识解决实际问题的能力。
举例:在解释负数没有平方根时,可以借助数轴,说明实数范围内无法找到一个数的平方等于负数;在讲解迭代法时,以√2为例,展示迭代法的步骤,让学生通过实际操作感受方法的可行性;在解决实际问题中,如计算正方形的对角线长度,指导学生先将问题转化为求边长的平方根,进而求解。
四、教学流程
(一)导入新课(用时5分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是指一个数乘以自身等于另一个数的运算。它是解决许多实际问题的关键,如在几何中求解边长、面积等。
2.案例分析:接下来,我们来看一个具体的案例。通过求解一个正方形的边长,展示平方根在实际中过程中,我会特别强调平方根的定义和求法这两个重点。对于难点部分,如负数没有平方根、迭代法的应用,我会通过举例和比较来帮助大家理解。
课堂上,我尝试通过实际案例引入平方根的应用,让学生们感受到数学知识在生活中的重要性。这种做法激发了学生的兴趣,他们积极参与讨论和实验操作,这让我感到很欣慰。但同时我也注意到,在小组讨论中,个别学生参与度不高,可能是因为他们对问题不够了解或者缺乏自信。我需要在以后的课堂中更加关注这些学生,鼓励他们大胆表达自己的想法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平方根相关的实际问题,如求解不同形状的面积。

人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc

人教版数学七年级下册第六章实数基础知识点讲解+典型例题讲解.doc

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】知识点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥a 是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20a aa =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.62500250=62525= 6.25 2.5=0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×, 提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根. (2116表示 的算术平方根,116= . (3181的算术平方根为 . (43x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________. 【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根.【答案】解:∵+(3x+y ﹣1)2=0, ∴,解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x 值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a3a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33a a =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是( ) A .如果一个数的立方根是这个数本身,那么这个数一定是0 B .一个数的立方根不是正数就是负数 C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0 【思路点拨】根据立方根的定义判断即可. 【答案】D ;【解析】A .如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B .一个数的立方根不是正数就是负数,错误,还有0;C .负数有立方根,故错误;D .正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义. 举一反三:【变式】下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1D .332727-=-【答案】D.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4)23327(3)1-+--- (5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-- (2)3321145⨯+ (3)331864⋅-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1-+---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可. 【答案与解析】 解:(x ﹣2)3=﹣125, 可得:x ﹣2=﹣5, 解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3. 类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗) 333a b +.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数(基础)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 . 【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数: 332222,,,9,8,9,0,,12,55,0.1010010001 (7)3π-【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有3222,9,8,0,,73--无理数有32,,9,12,55,0.1010010001π-……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如55,39,2,12-.举一反三: 【变式】(2015春•聊城校级月考)在下列语句中: ①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A .②③B .②③④C .①②④D .②④ 【答案】C ;解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;③数的大小,和它是有理数还是无理数无关,故本选项是错误的; ④无限循环小数是有理数,故本选项正确.类型二、实数大小的比较2、比较520.5的大小. 【答案与解析】解:作商,得5250.5=51>,即5210.5>50.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1ab<”分别得到结论“a b >,a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.举一反三:【变式】比较大小___ 3.14π-- 7___54__2323___32 32 9___0- 3___10-- |43|___(7)--- 【答案】<; >; <; <; <; >; <.3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac >bcB .|a ﹣b|=a ﹣bC .﹣a <﹣b <cD .﹣a ﹣c >﹣b ﹣c【答案】D ;【解析】解:∵由图可知,a <b <0<c , ∴A 、ac <bc ,故A 选项错误; B 、∵a <b , ∴a ﹣b <0,∴|a ﹣b|=b ﹣a ,故B 选项错误; C 、∵a <b <0,∴﹣a >﹣b ,故C 选项错误; D 、∵﹣a >﹣b ,c >0,∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确. 故选:D .【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.类型三、实数的运算4、化简:(1)|2 1.4|- (2)|7|74||-- (3)|12|+|23|+|32|--- 【答案与解析】 解:|2 1.4|-2 1.4=-|7|74||-- =|74+7|- =274-|12|+|23|+|32|---2132231=-+-+-=.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.5、若2|2|3(4)0a b c ---=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3; 【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a a ,非负数的和为0,只能每个非负数分别为0 . 举一反三:【变式】已知2(16)|3|30x y z ++++-=,求xyz 的值.【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.∴xyz =(16)(3)312-⨯-⨯=.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数全章复习与巩固(基础)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。

七年级数学人教版下册平方根第一课时

七年级数学人教版下册平方根第一课时

新知讲解
平方根的数学符号表示 一个非负数a的平方根的表示方法:
a的正的平方根表示 a (算术平方根)
a的负的平方根表示 a
记作 a
跟踪练习
说一说: 下列各数分别表示什么意义?
7
表示7的正的平方根(即算术平方根)
7 表示7的负的平方根
7 表示7的平方根
新知应用
新知演练
解:两边开平方,得 x-4=±2 所以x-4=2或x-4=-2 所以x=6或x=2
想一想:3和-3 有什么特征?
新知讲解
zxxkw
填表:
x2
64 49
1 0.36 0 -1
x ±8 ±7
±1 ±0.6 0 没有
平方根的概念
如果有一个数x,使得x2=a,那么x叫做 a的平方根或二次方根.
新知讲解
已知一个数,求它的平方的运算,叫做平方运算.
平方
③-49的平方根是-7;
+1 方法总结:若两个数是一个数的平方根,则这两个数相等或者互为相反数.
方法总结:一个正数有两个平方根,它们互为相反数.
新知引入
9
9
0.64
0.64
思考:反过来,如果已知一个数的平方,怎样求这个数?
新知讲解
平方根的概念及性质
问题: 如 果 一 个 数 的 平 方 等 于 9 , 这 个 数 是 多 少 ?
由于 (±3)2=9, 所以这个数是3或-3.
3和-3互为相反数, 会不会是巧合呢?
9
新知讲解
反之,已知一个数的平方,求这个数的运算是什么?
?运算
+1
-1
1
+2
-2
4
+3

6.1平方根(课时1)课件(新人教版七年级数学下)

6.1平方根(课时1)课件(新人教版七年级数学下)
6.1平方根(第一课时)
【学习目标】
1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算 术平方根的非负性 2.了解开方与乘方的互逆性,会用平方运算求某些非负数的算术平方根.
【重点难点】
重点:算术平方根的概念. 难点:根据算术平方根的概念正确求出非负数的算术平方根.
创设情景
学校要举行美术作品比赛,小鸥很高兴,她想裁出一块面积为 25dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布 的边长应取多少? (1)你能算出画布的边长等于多少吗?(2)说说你是怎样算出 来的? (3)如果面积改成下列表格中的数据,你能算出来吗?
【当堂达标】
1. 判断: (1)5是25的算术平方根( ); (2)-6是 36 的算术平方根( ); (3)0的算术平方根是0( ); (4)0.01是0.1的算术平方根( ); (5)-5是-25的算术平方根( ).
后按照算术平方根的记法写出对应的值.例如 25 表示25的算术平
方根.
【尝试应用】
例1 求下列各数的算术平方根:
49 (1)100; (2) ; 64
(3))0.0001
【当堂达标】
1.本节课你独立思考了那些知识?参与讨论了哪些知 识?还有那些疑惑?
2.本节课你最成功的地方是什么?说给你小组成员听听.
正方形的面积 边长 1 9 16 36
2
【课中探究】
数学活动一:阅读 P40,回答下列问题 问题1 你能叙述算术平方根的概念吗? 一般地, 。 强调:书写时根号一定要把被开方数盖住。 问题2 为什么规定:0的算术平方根是0? 问题3 a 表示什么意思?它的值是怎样的数? 归纳: a 表示a的算术平方根, a ≥0,a≥0。

七年级数学下册教学课件《算术平方根》

七年级数学下册教学课件《算术平方根》
(2) 9 3; (3) 22 2. 25 5
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平

100 10

大 到
49 7 64 8
大 到


0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.

初中数学人教版七年级下册《平方根》PPT课件

初中数学人教版七年级下册《平方根》PPT课件

知识拓展
三、一个正数x的平方根是2a-3与5-a
求 2x a 的平方根
解:依题意:2a-3+5-a=0, a=-2,
x=(2a-3)2=49. 2x a =10 2x a 的平方根为 10
知识拓展
四、计算
2 3 64 1 3
五、已知 5x y 9 互为相反数
则x+y= 答案3
3x y 1
知识拓展
开平方与平方
指数
根号 开

平 方 运
x2 底a

x 互为
逆运算
a方




a的平方根 被开方数
知识拓展
平方根的概念
平方根
平方根的性质
开平方及相关运算
4 家庭作业
家庭作业 请完成课后相关练习。
人教版七年级数学下册
课程结束
授课老师:XXX
到目前为止,表示非负数的式子有:a≥0, |a|≥0, a2 ≥0, a ≥0,
算术平方根
例3 计算:
(1) 49 2 7 1 ; (2) 4 9 +3-4=1
算术平方根
例4.用大小完全相同的240块正方形地板砖,铺一间面积 为60 m2的会议室的地面,每块地板砖的边长是多少? 解:设每块地板砖的边长为x m.由题意得
算术平方根的双重非负性
非负数 a 0
a的算术平方根 a
非负数 a 0
算术平方根具有双重非负性
算术平方根
下列各式中哪些有意义?哪些无意义?为什么?
5, 3, 3, 32
解: 3 无意义,因为被开方数不是非负数.
被开方数为非负数.
算术平方根
例2 若|m-1| + n 3 =0,求m+n的值. 解: 因为|m-1| ≥0, n 3 ≥0,又|m-1| + n 3 =0,

算术平方根(教学课件)七年级数学下册(人教版)

算术平方根(教学课件)七年级数学下册(人教版)

64 8
(3) 因为0.012=0.0001,所以0.0001的算术平方根出:被开方数越大,
对应的算术平方根也越大.
求下列各数的算术平方根:
(1) 0.0025
(2) 81
(3) 32
解:(1) 因为0.052=0.0025,所以0.0025的算术平方根是0.05,即 0.0025
D.±2
5. 16的算术平方根是( C )
A.4
B.±4
6.设 441=a,则下列结论正确的是( D )
A.a=441
B.a=4412
C.a=-21
D.a=21
7.若一个数的算术平方根是 5,则这个数是_______.
5
8.(-1.44)2的算术平方根为_______.
1.44
0或1
9.算术平方根等于它本身的数是_________.
∴ − 4 ≥ 0, + 3 ≥ 0
∴ − 4 = 0, + 3 = 0,
∴ = 4, = −3,
把 = 4, = −3代入,( + )2019 = [4 + (−3)]2019 = 12019 = 1,
∴( + )2019 的算术平方根是1.
例4.高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高
1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)
2.会求非负数的算术平方根,掌握算术平方根的非负性.(重点、难点)
中国空间站
同学们,你们知道宇宙飞船离开地球进入轨道正
常运行的速度在什么范围吗?
学校要举行美术作品比赛,小鸥想裁出一块面积为25dm2的正方形画布,画
上自己的得意之作参加比赛,这块正方形画布的边长应取多少?

人教版七年级数学下册第六章《平方根--算术平方根》公开课课件

人教版七年级数学下册第六章《平方根--算术平方根》公开课课件
§6.1 平方根
身边小事
为了趣味接力比赛,要在运动 场上圈出一个面积为100平 方米的正方形场地,这个正方
形场地的边长为多少? 10米
因为 10 2=100
§6.1 平方根
身边小事
学校要举行美术作品比赛,小欧很 高兴,他想裁出一块面积为25dm2 的正 方形画布,画上自己的得意之作参比 赛,这块正方形画布的边长应取多少?
• 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/202021/7/202021/7/207/20/2021
• 16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/202021/7/20July 20, 2021
5 dm
因为 5 2=25
§6.1 平方根 (第一课时) 算术平方根
正方形 的面积
边长
1
9
学 科网
1
3
16 36
0.25
4
6 0.5
已知一个正数的平方, 求这个正数的问题.
概念引入
象5 2=25, 那么5叫做25的算术平方根;
10 =2100, 那么10叫做100的算术平方根;
x a x a 一般地,如果一个正数 的平方等于 , 即 =2 = , x a 那么这个正数 叫做 的 算术平方根.
≥0 ≥0
算术平方根的非负双重性.
试一试
2.你知道下列式子表示什么意思吗? 你能求出它们 的值吗?
25 =5
1 4
=
1 2
0.81 =0.9
0 =0
试一试

人教版七年级数学下册课件第六章第一节平方根

人教版七年级数学下册课件第六章第一节平方根
±4
(2)求 16的平方根.
±2
变式练习
9.(1)如果x2=10,那么x叫做 10
即x= ± 10;
1
(2)求 2 的平方根.
4
±
3
2
的 平方根
,
5.【例2】(人教7下P46)求下列各式的值:
(1) 36;

(2)- 0.81;
-0.9
6
(3)±
7
±
3
49
9
2
; (4) (-3) .
3
10.求下列各数的平方根:
即 ≥0,a≥0;
③0的平方根与算术平方根均为0
3.填空:
(1)9的算术平方根是 3 ; (2)9的平方根是 ±3
7
7
49
49
±
(3) 的算术平方根是 4 ; (4) 的平方根是 4 ;
16
16
(5) 1= 1
(7)±
1
1
±

81
(6)- 0.25= -0.5 ;
;
9
.
;
精典范例
4.【例1】(1)求16的平方根;
(1)900;
±30
(3)0.001 6;
±0.04
1
(2)2 ;
4
3
±
2
1
(4)
6
10
±
.
1
103
6.【例 3】(北师 8 上 P29)求满足下列各式的未知数 x:
2
25
(1)x = ;
81
x=±
5
9
2
(2)x =6.
x=± 6
11.(人教7下P48)求下列各式中x的值:

人教版七年级数学下册6-1平方根

人教版七年级数学下册6-1平方根

一、选择题
B组
1)一个正数的平方根是 a,那么比这个数大 1 的数的平方根是( ).
A. a2 1
B. a 1
C. a2 1
D. a2 1
2) 如果 1.72 1.311,x 0.1311,则 x 等于( ).
A. 0.0172
B. 0.172
C. 1.72
3)若 m 2 2 ,则 m 22 的平方根是(
ABC 的周长.
第四部分:方法规律
算术平方根:负数没有算术平方根,被开方数一定非负数; 一个正数的算术平方根是一个正数; 0 的算术平方根是 0.
平方根:负数没有平方根,被开方数一定非负数; 一个正数的平方根有两个,它们是互为相反数; 0 的平方数是 0.
第3页共6页
第五部分:巩固练习
一、选择题 (1)下列各数中,没有平方根的是(
1+ x
答:(1)
;(2)
;(3)
;(4)
;(5)

例 5、若 x 1 ( y 2)2 z 3 0 ,求 x y z 的值
【变式练习】
已知 a 4 b 3 (c 5)2 0 ,且 a , b , c 其中之二为等腰三角形 ABC 的两条边,求该三角形
).
D. 0.00172
A. 16
B. 16
C. 4
D. 2
4)下列说法中,正确的有( )
①1 的平方根是 1;②-1 的平方根是-1;③0 的平方根是 0;④1 是 1 的平方根;⑤只有正数才有平方根
A. 1 个
B. 2 个
C. 3 个
D. 4 个
5)若 x 1 x y 0 ,则 x2012 y2013 的值为(

人教版七年级下册数学知识点归纳:第六章实数

人教版七年级下册数学知识点归纳:第六章实数

人教版七年级下册数学知识点归纳第六章 实数6.1 平方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果; 一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小 (5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

人教版数学七年级下册:6.1.2平方根(16张)ppt

人教版数学七年级下册:6.1.2平方根(16张)ppt

(2)个数不同:
一个正数有两个平方根,而一个正数的
算术平方根只有一个.
(3)表示方法不同:
.
正数a的算术平方根表示为 a ,
而正数a的平方根表示为 a
人教版数学七年级下册:6.1.2平方根 (16张) ppt
人教版数学七年级下册:6.1.2平方根 (16张) ppt
概念区分
a -a
a
x2 = a

9. 文章写于抗日战争艰难时期,“灯” 除有像 中的普 遍意外 ,也应 有时代 意义, 文章不 仅启迪 人们思 考人生 问题, 也给缺 少抗战 信心的 人鼓气 。

10. 经过时间淘洗的经典之作,是不同 时期的 重要作 家倾其 心力与 才力创 作出来 的时代 精品

11. 经过不同时期淘洗的经典之作是重 要的时 代精品 ,不同 时期的 作家倾 尽了心 力与才 力
∵32=9 ∴这个数是3; 又∵(-3)2=9 ∴这个数也可以是-3.
因此,如果一个数的平方是9,那么这个数是3或者-3.
定义
一般的,如果一个数x的平方等于a,即x2=a,那么 这个数x叫做a的平方根或二次方根.
a的平方根表示为
a 读作:正,负根号a
求一个数a的平
人教版数学七年级下册:6.1.2平方根 (16张) ppt
跟踪练习 1、 2 的意义__2_的_算__术__平_方__根______.
2、 2 的意义___2的__平__方_根_______.
a 3、若 ( a 0 ),a 的算术平方根用式子
表示为, a
负平方根用式子为 a。
a 4、一个负数的平方等于 ,用式子表示
49 (1)100; (2) 8 1 ;(3)0.25;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学下册
平方根(基础)
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根.
2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.
【要点梳理】
【高清课堂:389316 平方根,知识要点】
知识点一、平方根和算术平方根的概念
1.算术平方根的定义
如果一个正数x的平方等于a,即2x a
=,那么这个正数x叫做a的算术平方根(规定
0的算术平方根还是0);a
a的算术平方根”,a叫做被
开方数.
要点诠释:
a
0,a≥0.
2.平方根的定义
如果2x a
=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与
开平方互为逆运算.a (a≥0)
的平方根的符号表达为0)
a≥
是a的算术
平方根.
知识点二、平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2
)结果不同:
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.
(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.
知识点三、平方根的性质
||00
a a
a a
a a
>


===

⎪-<

()
2
a a
=≥
知识点四、平方根小数点位数移动规律
被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者
向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.
【典型例题】
类型一、平方根和算术平方根的概念
1、下列说法错误的是( )
A.5是25的算术平方根
B.l 是l 的一个平方根
C.()24-的平方根是-4
D.0的平方根与算术平方根都是0 【答案】C ;
【解析】利用平方根和算术平方根的定义判定得出正确选项.
A.因为25=5,所以本说法正确;
B.因为±1=±1,所以l 是l 的一个平方根说法正确;
C.因为±()24-=±16=±4,所以本说法错误;
D.因为0±=0,0=0,所以本说法正确;
【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:
【变式】判断下列各题正误,并将错误改正:
(1)9-没有平方根.( )
(2)164=±.( )
(3)21()10-的平方根是110
±.( ) (4)25--
是425的算术平方根.( ) 【答案】√ ;×; √; ×,
提示:(2)164=;(4)25是425
的算术平方根. 2、 填空:
(1)4-是 的负平方根.
(2116
表示 的算术平方根,116= . (3181的算术平方根为 .
(4)若3x =,则x = ,若23x =,则x = .
【思路点拨】(3)181就是181
的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164
(3)13 (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化. 举一反三:
【变式1】下列说法中正确的有( ):
①3是9的平方根. ② 9的平方根是3.
③4是8的正的平方根.④ 8-是64的负的平方根.
A .1个
B .2个
C .3个
D .4个
【答案】B ;
提示:①④是正确的.
【变式2】求下列各式的值:
(1)325 (2)8136+
(3)0.040.25- (4)40.36121
⋅ 【答案】(1)15;(2)15;(3)-0.3;(4)655
3、使代数式1x +有意义的x 的取值范围是______________.
【答案】x ≥1-;
【解析】x +1≥0,解得x ≥1-.
【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:
【变式】(2015春•中江县期中)若
+(3x+y ﹣1)2=0,求5x+y 2的平方根. 【答案】解:∵+(3x+y ﹣1)2=0,

, 解得,,
∴5x+y 2=5×1+(﹣2)2=9,
∴5x+y 2的平方根为±=±3.
类型二、利用平方根解方程
4、(2015春•鄂州校级期中)求下列各式中的x值
(1)169x2=144
(2)(x﹣2)2﹣36=0.
【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.
【答案与解析】
解:(1)169x2=144,
两边同时除以169,得
144
2
x=
169
开平方,得
x=
(2)(x﹣2)2﹣36=0,
移项,得(x﹣2)2=36
开平方,得x﹣2=±6,
解得:x=8或x=﹣4.
【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.
类型三、平方根的应用
5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求
长和宽各是多少米?
【答案与解析】
解:设宽为x,长为3x,
由题意得,x·3x=1323
32x=1323
x=±
21
x=-21(舍去)
答:长为63米,宽为21米.
【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。

相关文档
最新文档