七年级上册数学概念复习人教版

合集下载

第一章+有理数+第8课+有理数相关概念复习课件2024-2025学年人教版数学七年级上册

第一章+有理数+第8课+有理数相关概念复习课件2024-2025学年人教版数学七年级上册

6
(4)+(+6)=__________;
12
(5)|-12|=_________;
(6)-|-12|=_________.
-12
9. 填空:
6和-6
(1)到原点的距离等于6的数有2个,分别是__________;
-7或7
(2)若|x|=7,则x=__________;
4或-4
(3)一个数的绝对值是4,则这个数是__________;
正方向
(2)数轴的三要素:①__________;②____________;③
原点
单位长度
____________.
注意:数轴的三要素缺一不可.
原点将数轴(原点除外)分成两部分,其中正方向一侧
的部分叫作数轴的正半轴,另一侧的部分叫作数轴的
负半轴。
知识点 4 相反数
符号
(1)相反数:只有________不同的两个数叫做互为相反数.
+0.04
-0.03
( 表示
圆形零件的直径,单位:mm),抽查了5个零件,超过
规定的记作正数,不足的记作负数,数据如下表(单位:
mm).
(1)哪些产品是符合要求的?
(2)在符合要求的产品中哪个质量最好?请用绝对值的
知识加以说明.
解:(1)1号,3号,4号产品是符合要求的;
(2)因为|+0.018|<|-0.021|<|+0.031|,
(4)若|a-4|+|b-3|=0,则a=_______,b=_______.
4
3
10. 比较大小,用“>”或“<”填空:


(1)15________0;
(2)-12________5;

人教版七年级上册数学知识点

人教版七年级上册数学知识点

人教版七年级上册数学知识点人教版七年级上册数学知识点概述一、数与代数1. 有理数- 有理数的概念:整数和分数统称为有理数。

- 有理数的分类:正整数、负整数、正分数、负分数、零。

- 有理数的运算:加法、减法、乘法、除法、乘方。

- 有理数的比较:大小比较,绝对值。

2. 整式的加减- 单项式的概念:数字与字母的乘积。

- 多项式的概念:几个单项式的和。

- 同类项的概念:所含字母相同,且相同字母的指数也相同的项。

- 整式的加减运算:合并同类项。

3. 一元一次方程- 方程的概念:含有未知数的等式。

- 一元一次方程的解法:移项、合并同类项、系数化为1。

- 方程的应用:解决实际问题。

二、几何1. 图形初步- 点、线、面、体的概念。

- 直线、射线、线段的性质。

- 角的概念:邻角、对顶角、同位角、内错角。

2. 平行线- 平行线的概念:在同一平面内,永不相交的两条直线。

- 平行线的性质:平行公理及其推论。

- 平行线的判定:同位角相等、内错角相等、同旁内角互补。

3. 角的度量- 角的表示方法:用大写字母或数字表示。

- 角的度量单位:度、分、秒。

- 角的计算:和差、倍数关系。

三、统计与概率1. 统计- 统计的概念:收集、处理、分析数据的过程。

- 频数与频率:频数是数据出现的次数,频率是频数与总数的比值。

- 统计图表:条形图、折线图、饼图。

2. 概率- 概率的概念:事件发生的可能性。

- 概率的计算:等可能事件的概率。

四、应用题1. 列方程解应用题- 理解题意,找出等量关系。

- 列出方程,求解。

2. 利用图形解决实际问题- 利用图形的性质分析问题。

- 运用几何知识解决问题。

以上是人教版七年级上册数学的主要知识点概述。

在学习过程中,学生应重点掌握每个知识点的定义、性质、计算方法以及实际应用,以便能够灵活运用所学知识解决相关问题。

教师和家长应引导学生通过练习题和实际应用题来巩固和深化理解。

七年级上册人教版数学概念总结

七年级上册人教版数学概念总结

第一章有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数Û 0和正整数;a>0 Û a是正数;a<0 Û a是负数;a≥0 Û a是正数或0 Û a是非负数;a≤ 0 Û a是负数或0 Û a是非正数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;(3) ;;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, .5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.第二章整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

人教版七年级上册数学的主要知识点

人教版七年级上册数学的主要知识点

人教版七年级上册数学的主要知识点包括以下几个方面:一、有理数1. 正数、负数的概念及运算法则。

2. 整数的概念及性质,包括正整数、零、负整数。

3. 分数的概念及性质,包括分数的大小比较、分数的加减乘除运算。

4. 有理数的概念及运算法则,包括加法、减法、乘法、除法及混合运算。

二、整式1. 整式的概念及分类,如单项式、多项式等。

2. 整式的运算法则,包括合并同类项、去括号等。

3. 整式的乘法,包括单项式乘以单项式、单项式乘以多项式等。

三、一元一次方程1. 一元一次方程的概念及标准形式。

2. 一元一次方程的解法,包括去分母、去括号、移项、合并同类项等步骤。

3. 实际问题中的一元一次方程,如行程问题、工程问题等。

四、几何初步1. 点、线、面的概念及性质。

2. 角的概念及性质,包括角的度量、补角、余角等。

3. 相交线与平行线的概念及性质,如对顶角、邻补角等。

4. 简单的几何图形及其性质,如三角形、四边形等。

五、生活中的数据1. 统计图表的识别与制作,如条形统计图、折线统计图等。

2. 概率的概念及计算方法。

以上就是人教版七年级上册数学的主要知识点,希望能够帮助到您。

六、一元一次不等式1. 一元一次不等式的概念及标准形式。

2. 一元一次不等式的解法,包括与一元一次方程相似的步骤,但需要注意不等式的性质和运算规则。

七、图形与变换1. 轴对称图形的概念及性质,如正方形、等腰三角形等。

2. 平移、旋转和翻折等图形变换的概念及性质。

八、概率初步1. 概率的基本概念,包括随机事件、概率的统计定义等。

2. 简单的概率计算方法,如列举法、树状图法等。

九、数学思考与解决问题1. 数学思考的方法,如归纳法、类比法等。

2. 解决实际问题的步骤,包括理解问题、分析问题、建立数学模型、求解问题等。

十、其他知识点1. 数的规律与找规律问题。

2. 数学在生活中的应用,如购物计算、时间计算等。

以上就是人教版七年级上册数学的知识点,涵盖了有理数、整式、一元一次方程与不等式、几何初步与图形变换、概率初步以及数学思考与解决问题等多个方面。

人教版七年级上册数学知识点大全

人教版七年级上册数学知识点大全

人教版七年级上册数学知识点大全
一、数的概念和整数运算
- 数的概念:数的分类、数的表达方式、数的读法和写法- 整数的加法、减法、乘法和除法
- 整数的绝对值和相反数
- 整数的比较和排序
二、分数与小数
- 分数的概念和基本性质
- 分数的加法、减法、乘法和除法
- 分数和整数的换算
- 小数的概念和读法
- 小数和分数的关系
三、图形与运动
- 点、线、线段和射线的概念
- 角的概念和表示方法
- 平行线和垂直线的判定
- 面的概念和分类
- 三角形和四边形的特性
- 运动的基本概念和描述方法
四、图形的变换
- 翻折、旋转和平移的概念和性质
- 图形的对称和轴对称
五、数据的收集和整理
- 数据的收集和整理方式
- 数据的图表表示:条形图、折线图和饼图- 数据的分析和解读
六、算式与方程
- 代数式和算式的概念
- 算式的加减法原则
- 一元一次方程的概念和解法
七、数与量
- 长度、质量和时间的单位换算
- 面积和体积的概念和计算
八、函数
- 函数的概念和性质
- 函数的图像和特性
以上是人教版七年级上册数学的知识点大全,总结了数的概念和运算、分数与小数、图形与运动、图形的变换、数据的收集和整理、算式与方程、数与量以及函数等内容。

希望对你的学习有所帮助!。

人教版七年级上册数学知识点总复习

人教版七年级上册数学知识点总复习

七年级数学(上册)第一章《有理数》复习知识点1:正数和负数.有理数1.下列四个数中,与其它三个数性质不同的一个数是( )2;+29.15;-3000;0.000001A.2B.+29.15C.-3000D.0.0000012.如果+3吨表示运入仓库的大米数,那么运出5吨大米表示为( )A.-5吨B.+5吨C.-3吨D.+3吨3.在一次数学测验中,七(2)班平均分为85分,把高于平均分的部分记着正,某小组美美.多多.甜甜.乐乐四位同学的成绩记为:+7,-4,-11,+3,这四位同学成绩最好的是( )A.美美B.多多C.甜甜D.乐乐知识点2:数轴.相反数1.-15的相反数是( )2.下列个组数互为相反数的是( )A.2与-3B.21与-2 C.2021与-2021 D.-0.25与-0.253.一个数的绝对值是3,则这个数是4.若一个数的绝对值的相反数是-7,则这个数是5.数轴上的原点和原点左边的点表示的数是( )A.负数B.正数C.非正数D.非负数6.图中数轴上的点M 表示()A.2.5B.-1.5C.-2.5D.1.5知识点3:绝对值1.若2m+5的绝对值与−3的绝对值相等,则m=2.若|a|=1,|b|=4,且ab<0,则a+b 的值为3.化简|π−4|+|3−π|=4.实数a ,b 在数轴上的位置如图所示,则|a+b|+|a −b|等于 .5.已知数a ,b ,c 在数轴上的位置如图所示,化简|a+b|−|c −b|的结果是 .6.如果有理数a ,b ,c 在数轴上的位置如图则∣a+b ∣+∣a −c ∣−b+c=7.已知|2−b|与|a+b −5|互为相反数,则 的值是8.|m ﹣n+2|+|m ﹣3|=0,则=m+n = .9.若a.b.c 都是有理数,且|a −1|+|b+2|+|c −4|=0,则a+|b|+c =10.已知a 与−b 互为相反数,c 与−d 互为倒数,|m|=3,则 −cd+m= . 11.若a,b 互为相反数,c,d 互为倒数,|x|=1,则 +x+cd 的值为知识点4:有理数的大小比较1.用“>”或“<”填空: (1)-99_____-100;(2)0.2_____-0.3(3)-5_____-4;(4)-π_____-3.14知识点5:有理数的加减乘除.乘方1.计算:(1)−20+(−14)−(−18)−1; (2)321+(−21)−(−21)+232;(3)(−17)÷(−85)÷(−0.25) (4)(−81)÷94×47÷(−9)2.计算:(1)−14−(1−0.5)×31×[2−(−3)2] (2)(−1)2018+16÷(−2)3×|−3|(3)4+(−2)2×2−(−36)÷4 (4)−72+2×(−3)2+(−6)÷(−31)2a b m b a -xb a +知识点6:科学计数法1.截止2021年全国疫情人数约达127000人,这个数用科学记数法表示为( )A.1.27×105B.12.7×105C.1.270×104D.0.127×1062.为了加强农村教育,某年中央下拨农村义务教育经费666亿元,666亿元用科学记数法表示正确的是( )A.6.66×109元B.66.6×1010元C.6.66×1011元D.6.66×1010元3.把199000000用科学记数法写成1.99×10n-3的形式,n 的值是 。

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结人教版七年级上册数学知识点整式的加减一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

2、用数值代替代数式里的字母,按照代数式里的运算关系计算得出的结果,叫做代数式的值。

二、整式1、单项式:(1)由数和字母的乘积组成的代数式叫做单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式(1)几个单项式的和,叫做多项式。

(2)每个单项式叫做多项式的项。

(3)不含字母的项叫做常数项。

3、升幂排列与降幂排列(1)把多项式按x的指数从大到小的顺序排列,叫做降幂排列。

(2)把多项式按x的指数从小到大的顺序排列,叫做升幂排列。

三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

(2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

(3)合并同类项步骤:a.准确的找出同类项。

b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

c.写出合并后的结果。

(4)在掌握合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。

c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

说明:合并同类项的关键是正确判断同类项。

3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

人教版2024-2025学年七年级数学上册章末复习(课件)

人教版2024-2025学年七年级数学上册章末复习(课件)
+|–3| < |–(+5)| (4)–(+ ) = – ,–|– | =–
–(+ ) < –|– |
5. 下表是某公司某年四个季度的盈利情况, 把它们按从高到低的顺序排列.
时间 第一季度 第二季度 第三季度 第四季度
盈利/万元 -6.8
-10.7
31.5
27.8
31.5> 27.8 > -6.8 > -10.7
在任意一个数前面添上“-”号,新的数就表示 原数的相反数.
绝对值:一般地,数轴上表示数 a 的点与原点 的距离叫作数 a 的绝对值,记作 | a |.
一个正数的绝对值是它本身;一个负数的绝对 值是它的相反数;0 的绝对Leabharlann 是 0.4. 有理数的大小比较
利用数轴比较:数轴上两个点表示的数,左边 的数小于右边的数. 利用正负性比较:正数大于 0,0 大于负数, 正数大于负数. 利用绝对值比较:两个负数,绝对值大的反而小.
4. 比较下列各组数的大小: (1)+(–3) 和 –(–4); (2)– (–2) 和 –|+2|;
解:(1)+(–3) = –3,–(–4) = 4 +(–3) < –(–4)
(2)–(–2) = 2,–|+2| = –2; –(–2) > –|+2|
(3)+|–3| 和 |–(+5)|; (4)–(+ ) 和 –|– |. (3)+|–3| = 3, |–(+5)| = 5;
拓广探索 10.(1)-1 与 0 之间有负数吗?0 与 1 之间呢? 如果有,请举例;如果没有,请说明理由.
-1 与 0 之间有负数,如 -0.5,-0.2.

人教版七年级上册数学知识点(3篇)

人教版七年级上册数学知识点(3篇)

人教版七年级上册数学知识点(3篇)人教版七年级上册数学知识点1第四章:几何图形初步一几何图形几何学:数学中以空间形式为研究对象的分支叫做几何学。

从实物中抽象出的各种图形统称为几何图形。

几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。

1、几何图形的投影问题每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。

实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。

2、立体图形的展开问题将立体图形的表面适当剪开,一、点、线、面、体1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;(2)体是由面组成、面与面相交成线、线与线相交成点;二、线段、射线、直线1、线段、射线、直线的定义(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。

线段可以量出长度。

(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。

射线无法量出长度。

(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。

直线无法量出长度。

概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;例1、下列说法正确的是()A、5㎝长的直线比3㎝长的直线要长2㎝;B、线段向两个方向无限延伸就形成了直线;C、直线和射线都是不可度量的,所以它们都无法表示;D、直线AB、射线AB 和线段AB表示的都是同一几何图形;2、线段、射线、直线的表示方法(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

人教版七年级数学上册总复习知识点汇总

人教版七年级数学上册总复习知识点汇总

七年级数学上册知识点第一章有理数1.1 正数及负数①正数:大于0的数叫正数。

〔根据需要,有时在正数前面也加上“+〞〕②负数:在以前学过的0以外的数前面加上负号“—〞的数叫负数。

及正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a 表示0时,-a仍是0。

〔如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断〕②正数有时也可以在前面加“+〞,有时“+〞省略不写。

所以省略“+〞的正数的符号是正号。

2.具有相反意义的量假设正数表示某种意义的量,那么负数可以表示具有及该正数相反意义的量,比方:零上8℃表示为:+8℃;零下8℃表示为:-8℃⑴0表示“没有〞,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界限,0既不是正数,也不是负数。

如:〔3〕 0表示一个确切的量。

如:0℃以及有些题目中的基准,比方以海平面为基准,那么0米就表示海平面。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;上下;增长减少等1.2 有理数有理数1.有理数的概念⑴正整数、0、负整数统称为整数〔0和正整数统称为自然数〕⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数整数0 正有理数正分数有理数有理数0〔0不能无视〕负整数分数负有理数负分数总结:①正整数、0统称为非负整数〔也叫自然数〕②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

人教版七年级上册数学知识点总结归纳

人教版七年级上册数学知识点总结归纳

七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

(3)0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

1.2 有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结

人教版七年级上册数学知识点总结
1.整数相关知识点
整数的概念:整数由正整数、负整数和0组成。

整数的比较:可以使用数轴和大小比较法来比较整数的大小。

整数的加减法:同号相加,异号相减,结果的符号由绝对值大的数决定。

整数的乘除法:同号相乘得正,异号相乘得负;整数除法的商仍然是整数。

2.有理数相关知识点
有理数的概念:有理数是可以表示为两个整数的比值的数。

有理数的表示形式:常见的有理数表示形式有分数和小数。

有理数的加减法:对于相同符号的有理数,直接加减绝对值并保持符号;对于异号有理数,先取绝对值后进行加减,结果的符号由绝对值大的数决定。

3.几何相关知识点
点、线、面的概念:点是没有长度、宽度和高度的;线是由无数个点按一定方向连成的;面是由无数个线组成的。

4.平面图形相关知识点
二维坐标系:由x轴和y轴组成,并规定了原点O和正方向。

点与坐标:每个点在二维坐标系中有唯一的坐标表示。

直线的表示:直线可以通过两个点的坐标表示,也可以通过斜率和截距表示。

5.数据统计与概率知识点
统计图表:包括条形图、折线图、饼图等,用于展示数据分布和比较。

概率:指某件事情发生的可能性,通常用分数或百分数表示。

以上是人教版七年级上册数学的主要知识点总结,希望对同学们的学习有所帮助。

新人教版七年级数学上册重点知识复习资料(全册)

新人教版七年级数学上册重点知识复习资料(全册)

新人教版七年级数学上册重点知识复习资
料(全册)
单元一:整数
- 整数的概念:整数由正整数、0和负整数组成。

- 整数的比较:比较整数大小时,先比较绝对值大小,再根据
正负确定大小关系。

- 整数的加法和减法:同号相加减取结果的绝对值,符号与原
值相同;异号相加减取结果的绝对值,符号与较大数相同。

- 整数的乘法和除法:同号相乘除结果为正,异号相乘除结果
为负。

单元二:分数
- 分数的概念:分数由分子和分母组成,表示真数、假数和零。

- 分数的相等:两个分数相等表示代表同一量的两个数。

- 分数的大小比较:分数大小比较可以通过求公共分母,比较
分子大小进行。

- 分数的加法和减法:分数加减法可以通过通分,然后对分子进行加减。

- 分数的乘法:分数乘法可以直接对分子和分母进行相乘。

- 分数的除法:分数除法可以先求倒数,再进行相乘。

单元三:代数式
- 代数式的概念:含有变量的数学式子称为代数式。

- 代数式的运算:代数式的运算包括加法、减法和乘法。

- 代数式的化简:对代数式进行合并同类项、提取公因式、运用分配律等方法进行化简。

...
(继续写下去,覆盖全册)。

人教版数学七年级上册知识点总结

人教版数学七年级上册知识点总结

人教版数学七年级上册知识点总结第一章有理数知识点总结正数: 大于0的数叫做正数。

1.概念负数: 在正数前面加上负号“—”的数叫做负数。

注: 0既不是正数也不是负数, 是正数和负数的分界线, 是整数, 一、正数和负数自然数, 有理数。

(不是带“—”号的数都是负数, 而是在正数前加“—”的数。

)2.意义: 在同一个问题上, 用正数和负数表示具有相反意义的量。

有理数: 整数和分数统称有理数。

1.概念整数: 正整数、0、负整数统称为整数。

分数: 正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注: 正数和零统称为非负数, 负数和零统称为非正数, 正整数和零统称为非负整数, 负整数和零统称为非正整数。

2.分类: 两种二、有理数⑴按正、负性质分类: ⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数3.数集内容了解1.概念: 规定了原点、正方向、单位长度的直线叫做数轴。

三要素: 原点、正方向、单位长度2.对应关系: 数轴上的点和有理数是一一对应的。

三、数轴比较大小: 在数轴上, 右边的数总比左边的数大。

3.应用求两点之间的距离: 两点在原点的同侧作减法, 在原点的两侧作加法。

(注意不带“+”“—”号)代数: 只有符号不同的两个数叫做相反数。

1.概念(0的相反数是0)几何: 在数轴上, 离原点的距离相等的两个点所表示的数叫做相反数。

2.性质: 若a与b互为相反数, 则a+b=0, 即a=-b;反之,若a+b=0, 则a与b互为相反数。

四、相反数两个符号: 符号相同是正数, 符号不同是负数。

3.多重符号的化简多个符号: 三个或三个以上的符号的化简, 看负号的个数, 当“—”号的个数是偶数个时, 结果取正号当“—”号的个数是奇数个时, 结果取负号1.概念: 乘积为1的两个数互为倒数。

(倒数是它本身的数是±1;0没有倒数)五、倒数2.性质若a与b互为倒数, 则a·b=1;反之, 若a·b=1, 则a与b互为倒数。

人教版七年级数学上册重要知识点笔记归纳

人教版七年级数学上册重要知识点笔记归纳

人教版七年级数学上册重要知识点笔记归纳1. 整数- 整数的概念:包括正整数、负整数、零等。

- 整数的大小比较:绝对值越大的整数,其值越小。

- 整数的加法:同号相加,异号相减,结果的符号取决于绝对值更大的整数。

- 整数的减法:转化为加法计算,正整数减去负整数等于正整数加上该负整数的绝对值。

2. 分数- 分数的概念:分数由分子和分母组成,表示部分与整体的关系。

- 分数的大小比较:分母相同的情况下,分子越大,分数越大。

- 分数的加法:通分后,分子相加,分母保持不变。

- 分数的减法:通分后,分子相减,分母保持不变。

- 分数的乘法:分子相乘,分母相乘。

- 分数的除法:将除法转化为乘法,分数除以一个数等于分子乘以这个数的倒数。

3. 小数- 小数的定义:小数是带有小数点及其后面数字的数。

- 小数的读法和写法:读小数时,先读整数部分,然后读小数点后面的数字,按位读读到末尾。

写小数时,先写整数部分,然后写小数点,最后写小数部分的数字。

4. 比例- 比例的定义:比例是两个相等的比的陈述。

- 比例的特点:比例的值不随各个同一比例的数的绝对大小而改变。

- 比例的性质:比例中的四个数(比例数)相乘等于常数k。

- 比例的计算:已知三个比例数中的任意两个数,可以求出第三个数。

5. 百分数- 百分数的概念:百分数是百分之一的分数,以百分号表示。

- 百分数的相互转化:将百分数转化为小数时,直接将百分号去掉,并除以100;将小数转化为百分数时,乘以100并加上百分号。

6. 代数式和方程式- 代数式的概念:用字母表示数的式子。

- 方程式的概念:含有一个或多个未知数的等式。

- 解方程式的方法:运用加减法、乘除法、移项等方法逐步化简方程式,找出未知数的值。

7. 几何图形- 平面几何图形:包括点、线、面等基本图形。

- 三角形:根据边长和角度分类,如等边三角形、等腰三角形等。

- 长方形和正方形:分别是四边形中的特殊情况。

- 圆和圆的相关量:圆心、半径、直径等。

人教版七年级数学上册各章节知识点考点汇总

人教版七年级数学上册各章节知识点考点汇总

人教版七年级数学上册知识点考点汇总人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a -b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b -a)n , 当n 为正偶数时: (-a)n =a n 或 (a -b)n =(b -a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版|七年级数学上册必考的定义、定理、公式、方法都全了

人教版|七年级数学上册必考的定义、定理、公式、方法都全了

》人教版|七年级数学上册必考的定义、定理、公式、方法都全了第一章有理数正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)¥②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

《2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

【有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

,有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;…两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册概念第一章正数:像3、2、1.8…这样大于0的数叫做正数负数:像-3、-2、-1.8这样在正数前面加上负号“-”的数叫做负数注意:数0既不是正数,又不是负数归纳:在同一个问题中,分别用正数与负数表示的量具有相反的意义有理数有理数的概念:整数和分数统称为有理数有理数的分类按整数、分数的关系分类:按正数、负数与0的关系分类:数轴概念:规定了原点、正方向和单位长度的直线叫做数轴数轴的定义包含三层含义:(1)数轴是一条直线,可以向两端无限延伸;(2)数轴有三要素——原点、正方向、单位长度,三者缺一不可;(3)原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的(通常取向右、上为正方向)。

相反数概念:像2和-2,5和-5这样,只有符号不同的两个数互为相反数,一般的,a的相反数是-a。

几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数。

代数定义:只有符号不同的两个数(除了符号不同以外完全相同),我们说其中一个是另一个的相反数,0的相反数是0。

注意:相反数是数,不是量;相反数是成对出现的。

绝对值几何定义:一个数a的绝对值就是数轴上表示数a 的点与原点的距离,数a的绝对值记作代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

即规定:(1)正数大于0,0大于负数,正数大于负数(2)两个负数,绝对值大的反而小有理数的加减乘除法则加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.运算律:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)减法法则:减去一个数,等于加这个数的相反数,即有:.乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.注意:有理数中仍有:乘积是1的两个数互为倒数;任何数乘1都得原数;任何数乘-1都得他的相反数归纳:几个不是0的数相乘,负因数的个数是偶数个时,积是正数;负因数的个数是奇数个时,积是负数除法法则:(1)除以一个不等于0的数,等于乘这个数的倒数,即.(2)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.有理数的加减乘除混合运算:没有括号,则按照“先乘除,后加减”的顺序进行;如果有括号,则先算括号里面的数.有理数的乘方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂即有:.在中,叫做底数, n叫做指数.有理数混合运算的运算顺序:1.先乘方,再乘除,最后加减2.同级运算,从左到右进行3.如有括号,先做括号里的,按小括号、中括号、大括号依次进行科学计数法把一个大于10的数表示成的形式(其中,是正整数),此种记法叫做科学记数法.有效数字从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字.如:0.000 27有两个有效数字:2,7.注意:万=,亿=10第二章整式的加减单项式由数字或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.多项式几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.多项式的降幂与升幂排列把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应带着它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.整式:单项式和多项式统称为整式.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.合并同类项把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.去括号法则括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.添括号法则添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.整式的加减运算法则几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.第三章一元一次方程概念:含有未知数的等式叫做方程.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.解方程:求方程的解的过程叫做解方程.等式的性质与去括号法则等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.常用公式1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:图形的初步认识几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.直线,射线与线段的区别与联系基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点的距离.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC,或AC=a+b;AD=AB-BD。

(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有要点诠释:线段中点的等价表述:如上图,点M在线段上,且有,则点M为线段AB的中点.。

相关文档
最新文档