一次函数实际应用题-含答案-

合集下载

一次函数应用题含答案

一次函数应用题含答案

一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有()A.1个B.2个C.3个D.4个四、分类讨论思想4.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?一、两个一次函数图象结合的问题5.A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5 km?二、分段函数问题6.暑假期间,小刚一家乘车去离家380 km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5 h后离目的地有多远?一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎪⎨⎪⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎪⎨⎪⎧m =2,n =3.5. 答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤14),3.5x -21(x >14). (3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎪⎨⎪⎧20k +b =160,40k +b =288,解得⎩⎪⎨⎪⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎪⎨⎪⎧8x (0≤x ≤20),6.4x +32(x >20). (2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎪⎨⎪⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元).3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎪⎨⎪⎧2000m +n =2000,4000m +n =3400,解得⎩⎪⎨⎪⎧m =0.7,n =600,所以y 乙=⎩⎪⎨⎪⎧x (0<x <2000),0.7x +600(x ≥2000). (2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20. (2)设甲出发x h 两人恰好相距5 km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3 h 或1.5 h 两人恰好相距5 km.6.解:(1)从小刚家到该景区乘车一共用了4 h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎪⎨⎪⎧k +b =80,3k +b =320,解得⎩⎪⎨⎪⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km.7.①②④8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.。

(完整版)一次函数与不等式应用题(含答案)-

(完整版)一次函数与不等式应用题(含答案)-

一次函数与不等式应用题【例题经典】例1 (2006年武汉市)某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1 吨乙产品所需该矿石和煤原料的吨数如下表.甲乙矿石(吨)104煤(吨)48煤的价格为400元/吨,生产1吨甲产品除原料费用外,还需其他费用400元, 甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元, 乙产品每吨售价5500元,现将该矿石原料全部用完,设生产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的关系式;(2)写出y 与x 的函数表达式(不要求写自变量的范围);(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大? 最大利润是多少?【点评】主要考查的是一次函数与不等式的实际应用.例2 (2006年黄冈市)我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿花市场销售单价y (元) 与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、 种植技术有关外,某种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.(1)直接写出图(1)中表示的市场销售单价y (元)与上市时间t (天)(t>0) 的函数关系式;(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(t>0) 的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500克.)【点评】主要考查同学们从两个图像中获取信息的能力.【考点精练】1.(2006年广安市)某电信公司开设了甲、乙两种市内移动通信业务. 甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x 分钟,甲、 乙两种的费用分别为y 1和y 2元.(1)试分别写出y 1、y 2与x 之间的函数关系式; (2)在同一坐标系中画出y 1,y 2的图像;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?2.为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的. 若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费为y 元,则y (元)和x (小时)之间的函数图像如图所示.(1)根据图像,请你写出小强每月的基本生活费为多少元; 父母是如何奖励小强家务劳动的?(2)写出当0≤x≤20时,相对应的y 与x 之间的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?3.(2006年泸州市)“五一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩,该小汽车离家的距离S (千米)与时间t (时)的关系可以用下图的折线表示,根据图像提供的有关信息,解答下列问题: (1)小刚全家在旅游景点游玩了多少小时?(2)求出返程途中S (千米)与时间t (时)的函数关系式,并求出自变量t 的取值范围.4.随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购A 、B 两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店) 销售.预计每种水果的盈利情况如下表:A 种水果/箱B 种水果/箱甲店 11元 17元乙店 9元 13元有两种配货方案(整箱配货):方案一:甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱.方案二: 按照甲、 乙两店盈利相同配货, 其中A 种水果甲店______ 箱, 乙店______箱,B 种水果甲店_______,乙店_______箱.(1)如果按照方案一配货,请你计算出经销商盈利多少元; (2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比哪种方案盈利较多?(3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出经销商盈利最大的配货方案,并求出最大盈利为多少?5.(2006年芜湖市)某种内燃动力机车在青藏铁路试验运行前, 测得该种机械效率η和海拔高度h(0≤h≤6.5,单位km)的函数关系式如图所示.(1)请你根据图象写出机车的机械效率η和海拔高度h(km)的函数关系;(2)求在海拔3km的高度运行时,该机车的机械效率为多少?6.(2006年遂宁市)有一种笔记本原售价为每本8元,甲市场用如下办法促销, 每次购买1~8本打九折,9~16本打八五折,17~25本打八折,超过25本打七五折.乙商场用如下办法促销:购买本数(本)1~56~1011~15超过15每本价格(元)7.607.20 6.40 6.00(1)请仿照乙商场的促销列表,列出甲商场促销笔记本的购买本数与每本价格的对照表.(2)某学校有A、B两个班都需要买这种笔记本,A班需要8本,B班需要15本, 问他们到哪家商场购买花钱较少?(3)设某班需要购买这种笔记本本数为x且9≤x≤40,总花费为y元, 从最省钱的角度出发,写出y与x的函数关系式.7.某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计, 且不发生泼洒,锅炉内的余水量y (升)与接水时间x (分)的函数图象如图. 请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论; (2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.8.(2006年泉州市)为实现泉州市森林城市建设的目标, 在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗.某树苗公司提供如下信息:信息一:可供选择的树苗有杨树,丁香树,柳树三种,并且要求购买杨树, 丁香树的数量相等.信息二:如下表:树 苗每株树亩批发价格(元)两年后每株树苗对空气的净化指数杨 树 3 0.4丁香树 2 0.1柳 树 P 0.2设购买杨树,柳树分别为x 株,y 株.(1)写出y 与x 之间的函数关系式(不要求写出自变量的取值范围);(2)当每株柳树的批发价P 等于3元时,要使这400 株树苗两年后对该住宅小区的空气净化指数不低于90,应怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元;(3)当每株柳树批发价格P (元)与购买数量y (株)之间存在关系.P=3-0.005y 时, 求购买树苗的总费用W (元)与购买杨树数量x (株)之间的函数关系式( 不要求写出自变量的取值范围).答案:例题经典例1:解:(1)m=300104x-(2)生产1吨甲产品获利:4600-10 ×200-4×400-400=600;生产1吨乙产品获利:5500-4×200-8×400-500=1000,∴y与x 的函数表示式为:y=600x+1000×300104x-=-1900x+75000;(3)∵4x+8×300104x-≤200,∴30≥x≥25,∴当生产甲产品25吨时,公司获得的总利润最大,y最大=-1900×25+75000=27500(元).例2:解:(1)依题意,可建立的函数关系式为:y=2160(0120), 380(120150),220(150180). 5t ttt t⎧-+<<⎪⎪≤<⎨⎪⎪+≤≤⎩(2)由题目已知条件可设z=a(t-110)2+20,∵图像过点(60,853),∴853=a(60-110)2+20,∴a=1300,∴z=1300(t-110)2+20(t>0).(3)设纯收益单价为W元,则W=销售单价-成本单价.故W=22221160(100)20(0120), 3300180(110)20(120150),3002120(110)20(150180). 5300t t tt tt t t⎧-+---<<⎪⎪⎪---≤<⎨⎪⎪+---≤≤⎪⎩化简得W=2221(10)100(0120),3001(110)60(120150), 3001(170)56(150180).300t tt tt t⎧--+<<⎪⎪⎪--+≤<⎨⎪⎪--+≤≤⎪⎩,①当W=-1300(t-10)2+100(0<t<120)时,有t=10时,W最大,最大值为100;②当W=-1300(t-110)2+60(120≤t<150)时, 由图象知, 有t=120时,W最大,最大值为5923;③当W=-1300(t-170)2+56(150≤t≤180)时,有t=170时,W最大,最大值为56.综上所述,在t=10时,纯收益单价有最大值,最大值为100元.考点精练:1.分析:在解决问题(3)时,因一个月通话时间没有确定, 而两种通信业务的费用都与通话时间有关,因此需要进行讨论,可观察图象得出结论,也可按①y1>y2,②y1=y2,③y1<y2进行求解.解:(1)y1=15+0.3x(x≥0),y2=0.6x(x≥0)(2)如图(3) 由图知:当一个月通话时间为50分钟时,两种业务一样优惠;当一个月通话时间少于50分钟时,乙种业务更优惠;当一个月通话时间大于50分钟时,甲种业务更优惠.2.(1)小强每月生活费为150元,当家务劳动时间每月不超过20小时/月时,每小时有2.5元的报酬,即y=2.5x+150(0≤x≤20),当家务劳动时间超过20小时/月时,超过部分每小时4元报酬,即y=4x+120(x≥20)(2)y=2.5x+150(0≤x≤20)(3)250>200, ∴y=4x+120,250=4x+120,x=32.5,即小强4月份做家务32.5小时.3.(1)游玩了4 个小时(2)S=-60t+1020(14≤t≤17)4.(1)按照方案一配货,经销商盈利:5×11+5×9+ 5×17+5×13=250(元)(2)只要求填写一种情况:第一种情况:2,8,6,4;第二种情况:5,5,4,6;第三种情况:8,2,2,8.按第一种情况盈利:(2×11+17×6)×2=248(元);按第二种情况盈利:(5×11+4×17)×2=246(元);按第三种情况盈利:(8×11+2×17)×2=244(元);方案一比方案二盈利多(3)设甲店配A种水果x箱,则甲店配B 种水果(10-x )箱,乙店配A 种水果(10-x )箱,乙店配B 种水果10-(10-x )=x 箱,∵9×(10- x) +13x≥100,∴x≥212.经销商盈利y=11x+17×(10-x )+9×(10-x )+13x=-2x+260.当x= 3时,y 值最大.方案:甲店配A 种水果3箱,B 种水果7箱.乙店配A 种水果7箱,B 种水果3箱时盈利最大,最大盈利为-2×3+260=254(元)5.解:(1)由图象可知,η与h 的函数关系为一次函数,设η=kh+b(k≠0),∵一次函数图象过(0,40%),(5,20%)两点,∴40%,20%5.b k b =⎧⎨=+⎩解得:k=-0.04,b=0.4,∴η=-0.04h+0.4(0≤h≤6.5)(2)当h=3km 时,代入η=-0.04h+0.4,解得η=0.28.∴当机车运行在海拔高度为3km 的时候,其机车的运行效率为28%. 6.(1) 甲购买本数(本)1-89-1617-25超过25本每本价格(元)7.2 6.8 6.4 6(2)A 两商场一样 B 到乙商场花钱较少(3)甲商场:y= 6.8(916),7.2(916),6.4(1725),: 6.4(1115),6(2540).6(1640).x x x x x x y x x x x x x ≤≤≤≤⎧⎧⎪⎪≤≤=≤≤⎨⎨⎪⎪<≤≤≤⎩⎩乙乙乙7.解:(1) 锅炉内原有水96升,接水2分钟后,锅炉内的余水量为80升,接水4分钟,锅炉内的余水量为72升;2分钟前的水流量为每分钟8升等.(2)当0≤x≤2时, 设函数解析式为y=k 1x+b 1,把x=0,y=96和x=2,y=80代入得:1111196,8,280,96.b k k b b ==-⎧⎧⎨⎨+==⎩⎩乙乙,∴y=-8x+96(0≤x≤2),当x>2时,设函数解析式为y=k 2x+b 2,把x=2,y=80和x=4,y=72代入得:222222802,4,724,88.k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩乙乙,∴y=-4x+88(x>2).∵前15位同学接完水时余水量为96-15×2=66(升),∴66=-4x+88,x=5.5.答:前15 位同学接完水需5.5分钟.(3)①若小敏他们是一开始接水的,则接水时间为8×2÷8=2(分),即8位同学接完水,只需要2分钟,与接水时间恰好3分钟不符.②若小敏他们是在若干位同学接完水后开始接水的,设8位同学从t分钟开始接水,挡0<t≤2时,则8(2-t)+4[3-(2-t)]=8×2,16-8t+4+4t=16,∴t=1(分),∴(2-t)+[3-(2-t)]=3(分),符合.当t>2时,则8×2÷4=4(W发),即8位同学接完水,需7分钟,与接水时间恰好3分钟不符.所以小敏说法是可能的.即从1分钟开始8位同学连续接完水恰好用了3分钟8.( 1)y=400-2x(2)当购买200株杨树,200株丁香树,不购买柳树苗时,能使购买费用最低,最低总费用为1000元(3)W=3x+2x+p·y,即W=-0.02x2+7x+400.。

河南数学中考题型汇总一次函数的实际应用题型练习含答案

河南数学中考题型汇总一次函数的实际应用题型练习含答案

河南数学中考题型汇总一次函数的实际应用题型练习含答案类型 1 方案选取型问题角度1 图象类1.甲、乙两家樱桃采摘园的樱桃品质相同,售价也相同.“五一”假期期间,两家采摘园推出如下优惠方案:甲园:每名游客进园需购买20元的门票,采摘的樱桃六折优惠;乙园:游客进园不需购买门票,采摘的樱桃不超过6 kg时,按原价销售,超过6 kg 时,超过的部分五折优惠.设当游客的采摘量是x kg时,在甲园所需总费用为y1元,在乙园所需总费用为y2元,如图所示是y1,y2与x之间的函数关系图象.(1)优惠前,甲、乙两家采摘园的樱桃的售价是元/kg.(2)求y1,y2关于x的函数解析式.(3)若某游客计划采摘m kg樱桃,则选择哪个采摘园更省钱?角度2 文字类2.某家具厂生产一种餐桌和椅子,每张餐桌的售价为400元,每把椅子的售价为80元,为促进销售,该家具厂制定了如下两种优惠方案:方案一:买一张餐桌送一把椅子;方案二:餐桌和椅子均打九折销售.某饭店准备在该家具厂购买餐桌50张,购买椅子x(x>50)把.设按方案一购买需要花费y1元,按方案二购买需要花费y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)当x取何值时,两种方案所需费用相同?(3)当x=100时,选择方案比较合算;请你设计出一种更省钱的购买方式,并通过计算说明理由.类型 2 方案设计型问题角度1 费用问题3.[2022福建]在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰, 问可购买绿萝和吊兰分别多少盆.(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.角度2 利润问题4.[2022江苏苏州]某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:进货批次甲种水果质量/千克乙种水果质量/千克总费用/元第一次6040 1 520第二次3050 1 360(1)求甲、乙两种水果的进价.(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3 360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大..利润不低于800元,求正整数m的最大值.类型 3 图象型问题角度1 行程问题5.[2022浙江湖州]某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/时,轿车行驶的速度是60千米/时.(1)轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式.(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.角度2 其他问题6.[2022商丘二模]近年来随着科技的发展,药物制剂正朝着三效(高效、速效、长效)及三小(毒性小、副作用小、剂量小)的方向发展.缓释片是通过一些特殊的技术和手段,使药物在体内持续释放,从而使药物在体内能长时间的维持有效血药浓度,使药物作用更稳定持久.某医药研究所研制了一种具有缓释功能的新药,在试验药效时发现:成人按规定剂量服用后,检测到从第0.5小时起开始起效,第2小时起每毫升血液中含药量达到最高12微克,并维持这一最高值至第4小时结束,接着开始衰退,每毫升血液中含药量y(微克)与时间x(小时)的函数关系如图,并发现衰退时y与x成反比例函数关系.(1)填空:①当0.5≤x≤2时,y与x之间的函数关系式为;②当x>4时,y与x之间的函数关系式为.(2)如果每毫升血液中含药量不低于4微克时有效,求一次服药后的有效时间是多少小时.7.现有甲、乙两个底面积不同的圆柱形水槽,如图(1).将甲槽中的水匀速注入乙槽,甲、乙水槽中水的深度y甲(cm),y乙(cm)与注水时间x(min)之间的函数关系图象如图(2)所示(图象不完整).(1)乙槽的底面积是甲槽底面积的倍.(2)求y甲与x之间的函数关系式.(3)小文说:“注水3 min时,甲槽中的水比乙槽中的水深5 cm.”睿睿说:“注水4 min时,两个水槽中的水深度相等.”他们的说法对吗?请说明理由.图(1)图(2)类型 4 物资调运问题8.[2022山东济宁]某运输公司安排甲、乙两种货车24辆恰好一次性将328 t的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如下表:货车类型载重量/(t/辆)运往A地的成本/(元/辆)运往B地的成本/(元/辆)甲种16 1 200900乙种12 1 000750(1)求甲、乙两种货车分别用了多少辆.(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160 t,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A 地的甲种货车为t辆.①写出w与t之间的函数解析式.②当t为何值时,w最小?最小值是多少?答案:1.(1)10解法提示:由题图可知,当x=6时,y2=60,故优惠前,甲、乙两家采摘园的樱桃的售价是60÷6=10(元/kg).(2)由题意得,y1=20+10×0.6x=6x+20.当x≤6时,y2=10x,当x>6时,y2=10×6+(x-6)×10×0.5=5x+30,故y2={10x,5x+30.(3)当x ≤6时,令6x+20=10x ,解得x=5; 当x>6时,令6x+20=5x+30,解得x=10.结合图象分析可知,当m<5或m>10时,选择乙园更省钱; 当5<m<10时,选择甲园更省钱;当m=5或m=10时,选择甲园和选择乙园所需总费用相同. 2.(1)根据题意,得y 1=50×400+(x-50)×80=80x+16 000,y 2=50×400×0.9+80x ×0.9=72x+18 000. (2)令y 1=y 2,则80x+16 000=72x+18 000, 解得x=250.答:当x=250时,两种方案所需费用相同. (3)一先按方案一购买50张餐桌和50把椅子,再按方案二购买50把椅子. 理由:所设计的购买方式需要花费50×400+50×80×0.9=23 600(元), 只选择方案一需要花费24 000元. 23 600<24 000,故先按方案一购买50张餐桌和50把椅子,再按方案二购买50把椅子更省钱. 3.(1)设购买绿萝x 盆,吊兰y 盆. 根据题意,得{x +y =46,9x +6y =390,解得{x =38,y =8. 因为38>2×8,所以答案符合题意. 答:可购买绿萝38盆,吊兰8盆.(2)设购买绿萝m 盆,吊兰(46-m )盆,购买两种绿植的总费用为W 元, 则W=9m+6(46-m )=3m+276.根据题意,得m ≥2(46-m ),解得m ≥923. 因为3>0,所以W 随m 的增大而增大.又m 为整数,所以m 取最小值31时,W 的值最小. 当m=31时,W=3×31+276=369.答:购买两种绿植总费用的最小值为369元.4. (1)设甲种水果的进价为每千克a 元,乙种水果的进价为每千克b 元.根据题意,得{60a +40b =1520,30a +50b =1360,解得{a =12,b =20.答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元. (2)设水果店第三次购进x 千克甲种水果,则购进(200-x )千克乙种水果. 根据题意,得12x+20(200-x )≤3 360, 解得x ≥80.设获得的利润为w 元.根据题意,得w=(17-12)×(x-m )+(30-20)×(200-x-3m )=-5x-35m+2 000.∵-5<0,∴w 随x 的增大而减小,∴当x=80时,w 的最大值为-35m+1 600. 根据题意,得-35m+1 600≥800, 解得m ≤1607, ∴正整数m 的最大值为22.5.(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为(x+1)小时. 根据题意,得60x=40(x+1),解得x=2, 则60x=60×2=120.答:轿车出发2小时后追上大巴,此时两车与学校相距120千米. (2)∵轿车追上大巴时,大巴行驶了3小时, ∴点B 的坐标是(3,120).由题意,得点A 的坐标为(1,0).设AB 所在直线的解析式为s=kt+b ,则{3k +b =120,k +b =0,解得{k =60,b =−60,∴AB 所在直线的解析式为s=60t-60. (3)由题意,得40(a+1.5)=60×1.5,解得a=34,∴a 的值为34. 6.(1)①y=8x-4 ②y=48x解法提示:①当0.5≤x ≤2时,设y=kx+b ,将(0.5,0),(2,12)分别代入,得{0.5k +b =0,2k +b =12,解得{k =8,b =−4.故当0.5≤x ≤2时,y 与x 之间的函数关系式为y=8x-4.②当x>4时,设y=m x, 把(4,12)代入,得12=m 4,解得m=48. 故当x>4时,y 与x 之间的函数关系式为y=48x . (2)把y=4代入y=8x-4,得4=8x-4, 解得x=1.把y=4代入y=48x,得x=12.故一次服药后的有效时间为12-1=11(小时). 7. (1)2解法提示:由题图(2)可知,甲槽中水面下降的速度为20÷(6-2)=5(cm/min ), 乙槽中水面上升的速度为5÷2=2.5(cm/min ). 设甲槽的底面积为m ,乙槽的底面积为n ,则5m=2.5n , 故n=2m ,即乙槽的底面积是甲槽底面积的2倍. (2)设y 甲=kx+b ,将A (2,20),B (6,0)分别代入,得{2k +b =20,6k +b =0,解得{k =−5,b =30,故y 甲=-5x+30.(3)小文的说法不对,睿睿的说法对. 理由:设y 乙=cx , 将C (2,5)代入,可得c=52, 故y 乙=52x. 当x=3时,y 甲=-5×3+30=15, y 乙=52×3=7.5. 15-7.5=7.5≠5,故小文的说法不对. 令y 甲=y 乙,即-5x+30=52x ,解得x=4, 故睿睿的说法对.8.(1)设甲种货车用了x 辆,则乙种货车用了(24-x )辆, 根据题意,得16x+12(24-x )=328, 解得x=10,则24-x=14.答:甲种货车用了10辆,乙种货车用了14辆.(2)①由题意,得w=1 200t+1 000(12-t )+900(10-t )+750×[14-(12-t )]=50t+22 500.②∵16t+12(12-t )≥160,t ≥0,12-t ≥0,10-t ≥0,14-(12-t )≥0,∴4≤t ≤10. ∵50>0,∴w 随着t 的增大而增大,∴当t=4时,w 最小,最小值为50×4+22 500=22 700.。

一次函数应用题精编(附答案)

一次函数应用题精编(附答案)

一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x 之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?小时)5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升;(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自20XX年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?。

一次函数应用题答案

一次函数应用题答案

一次函数应用题答案1.(2010浙江湖州)【答案】(1)线段AB 所在直线的函数解析式为:y =kx +b ,将(1.5,70)、(2,0)代入得: 1.57020k b k b +=⎧⎨+=⎩,解得:140280k b =-⎧⎨=⎩,所以线段AB 所在直线的函数解析式为:y =-140x +280,当x =0时,y =280,所以甲乙两地之间的距离280千米.(2)设快车的速度为m 千米/时,慢车的速度为n 千米/时,由题意得:222802240m n m n +=⎧⎨-=⎩,解得:8060m n =⎧⎨=⎩,所以快车的速度为80千米/时, 所以2807802t ==. (3)如图所示.2.(1)由图象知,400423320a a +-⨯=,所以40a =;(2)设BC 的解析式为y kx b =+,则把(40,320)和(104,0)代入,得403201040k b k b +=⎧⎨+=⎩,解得5520k b =-⎧⎨=⎩,因此5520y x =-+,当60x =时,220y =,即售票到第60分钟时,售票厅排队等候购票的旅客有220人;(3)设同时开放m 个窗口,则由题知330400430m ⨯+⨯≥,解得529m ≥,因为m 为整数,所以6m =,即至少需要同时开放6个售票窗口。

3. 解:(1)120,2a =;(2)由点(3,90)求得,230y x =.当x >0.5时,由点(0.5,0),(2,90)求得,16030y x =-.当12y y =时,603030x x -=,解得,1x =.此时1230y y ==.所以点P 的坐标为(1,30)该点坐标的意义为:两船出发1 h 后,甲船追上乙船,此时两船离B 港的距离为30 km .求点P 的坐标的另一种方法: 由图可得,甲的速度为30600.5=(km/h ),乙的速度为90303=(km/h ). 则甲追上乙所用的时间为3016030=-(h ).此时乙船行驶的路程为30130⨯=(km ). 所以点P 的坐标为(1,30).(3)①当x ≤0.5时,由点(0,30),(0.5,0)求得,16030y x =-+.依题意,(6030)30x x -++≤10. 解得,x ≥23.不合题意. ②当0.5<x ≤1时,依题意,30(6030)x x --≤10.解得,x ≥23.所以23≤x ≤1. ③当x >1时,依题意,(6030)30x x --≤10.解得,x ≤43.所以1<x ≤43. 综上所述,当23≤x ≤43时,甲、乙两船可以相互望见.4.(2010四川内江)【答案】解:⑴设应安排x 天进行精加工,y 天进行粗加工, 1分根据题意得: ⎩⎨⎧x +y =12,5x +15y =140.············································································ 3分 解得⎩⎨⎧x =4,y =8.答:应安排4天进行精加工,8天进行粗加工. ······················································ 4分 ⑵①精加工m 吨,则粗加工(140-m )吨,根据题意得:W =2000m +1000(140-m )=1000m +140000 . ·················································································· 6分 ②∵要求在不超过10天的时间内将所有蔬菜加工完,∴m 5+140-m 15≤10 解得 m ≤5. ···························································· 8分 ∴0<m ≤5.又∵在一次函数W =1000m +140000中,k =1000>0,∴W 随m 的增大而增大,∴当m =5时,W max =1000×5+140000=145000. ········································· 9分 ∴精加工天数为5÷5=1,粗加工天数为(140-5)÷15=9.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元. 10分.5.(2010辽宁大连) 【答案】6.(2010广东茂名)【答案】解:(1)3,31.(2)设y 与t 的函数关系式是)0(≠+=k b kt y ,根据题意,得:⎩⎨⎧+==,314,50b k b 解得:⎩⎨⎧=-=.50,12b k 因此,加油前油箱剩油量y 与行驶时间t 的函数关系式是:5012+-=t y .(3)由图可知汽车每小时用油123)1450(=÷-(升),所以汽车要准备油361270210=⨯÷(升),因为45升>36升,所以油箱中的油够用.7.(2010 广东汕头)【答案】解:(1)设甲车租x 辆,则乙车租(10-x )辆,根据题意,得⎩⎨⎧≥-+≥-+170)10(2016340)10(3040x x x x解之得5.74≤≤x∵x 是整数∴x =4、5、6、7∴所有可行的租车方案共有四种:①甲车4辆、乙车6辆;②甲车5辆、乙车5辆;③甲车6辆、乙车4辆;④甲车7辆、乙车3辆.(2)设租车的总费用为y 元,则y =2000x +1800(10-x ),即y =200x +18000∵k =200>0,∴y 随x 的增大而增大∵x =4、5、6、7∴x =4时,y 有最小值为18800元,即租用甲车4辆、乙车6辆,费用最省.8(2010辽宁本溪)【答案】。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案一、选择题(每题2分,共10分)1. 一次函数y=kx+b的斜率k表示什么?A. 函数的截距B. 函数的增长速度C. 函数的对称轴D. 函数的顶点2. 下列哪个选项不是一次函数?A. y = 3x + 5B. y = x^2 + 1C. y = -2x - 3D. y = 53. 一次函数y=kx+b中,当k>0时,函数的图像在坐标平面内如何变化?A. 从左下角向右上角延伸B. 从左上角向右下角延伸C. 从右上角向左下角延伸D. 从左上角向右上角延伸4. 已知一次函数y=2x-4,当x=3时,y的值是多少?A. 2B. -2C. 0D. 55. 如果一次函数y=kx+b的图像经过点(1,1)和(2,4),那么k和b的值分别是多少?A. k=3, b=-2B. k=2, b=-1C. k=1, b=2D. k=4, b=-3二、填空题(每题2分,共10分)6. 一次函数y=kx+b的图像是一条______。

7. 当k<0时,一次函数y=kx+b的图像会经过第______象限。

8. 一次函数y=kx+b中,如果b>0,则函数的图像与y轴的交点在y轴的______半轴。

9. 已知一次函数y=kx+b的图像经过点(-1,5),且与x轴相交于点(3,0),则k=______。

10. 一次函数y=kx+b的图像与x轴相交于点(x,0),则x=______。

三、解答题(每题5分,共20分)11. 已知一次函数y=kx+b的图像经过点(2,-3)和(-1,6),请求出k和b的值。

12. 一次函数y=kx+b的图像与x轴相交于点(a,0),与y轴相交于点(0,b),若a=4,b=-1,请写出该一次函数的解析式。

13. 已知一次函数y=kx+b的图像经过点(0,5)和(1,10),求出该一次函数的解析式,并判断其增减性。

14. 一次函数y=kx+b的图像与反比例函数y=1/x的图像在第一象限相交于点(2,m),求m的值。

中考数学总复习训练 一次函数的实际应用含解析

中考数学总复习训练  一次函数的实际应用含解析

一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。

(完整版)一次函数应用题(含答案).doc

(完整版)一次函数应用题(含答案).doc

一次函数应用题初一()班姓名:学号:.1、一次时装表演会预算中票价定位每张100 元,容纳观众人数不超过2000 人,毛利润 y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000 人时,表演会组织者需向保险公司交纳定额平安保险费5000 元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过 1000 人时,毛利润 y(百元)关于观众人数 x(百人)的函数解析式和成本费用 s(百元)关于观众人数 x(百人)的函数解析式;⑵若要使这次表演会获得36000 元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000 人时,表演会的毛利润=门票收入—成本费用;当观众人数超过 1000 人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:通过电流强度(单位: A) 1 1.7 1.9 2.1 2.4 氧化铁回收率( %)75 79 88 87 78 如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁的回收率.(1) 将试验所得数据在如图所示的直角坐标系中用点表示;(注:该图中坐标轴的交点代表点( 1,70))(2) 用线段将题( 1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y 关于通过电流 x 的函数关系,试写出该函数在 1.7 y(% )≤x≤2.4时的表达式;(3)利用( 2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到 0.1 A) . 858075O ( 1, 70)(2,70)x(A )3、如图( 1),在矩形中, = 10 cm , = 8 cm. 点 P 从 A 点出发,沿 → → →ABCDABBCA B C D路线运动,到 D 停止;点 Q 从 D 出发,沿 D →C → B → A 路线运动,到 A 停止 . 若点 P 、点 Q 同时 出发,点 P 的速度为每秒 1 cm ,点 Q 的速度为每秒 2 cm , a 秒时,点 P 、点 Q 同时改变 .. .. 速度,点 P 的速度变为每秒 b cm ,点 Q 的速度变为每秒 d cm. 图( 2)是点 P 出发 x 秒后△APD 的面积2)与 x (秒)的函数关系图象;图(3)是点 Q 出发 x 秒后△ AQD 的面积..S1 ( cm..2S 2 ( cm )与 x (秒)的函数关系图象 .22DQ →C40 S 1(cm )40 S 2(cm )24A P→ B Oa 8 c x (秒) O22x (秒)( 1)( 2)( 3)( 1)参照图( 2),求 a 、 b 及图( 2)中 c 的值; ( 2)求 d 的值;( 3)设点 P 离开点 A 的路程为 y 1( cm ),点 Q 到点 A 还需要走的路程为 y 2 ( cm ),请分别写出改变速度后 y 1 、 y 2 与出发后的运动时间 x (秒)的函数关系式,并求出 P 、 Q 相遇时 x 的值;( 4)当点 Q 出发 _________秒时,点 、点 Q 在运动路线上相距的路程为25cm.P4、教室里放有一台饮水机,饮水机上有两个放水管。

八年级数学:一次函数(应用题)练习(含解析)

八年级数学:一次函数(应用题)练习(含解析)
A.8000,13200B.9000,10000
C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.

一次函数应用题(北师版)(含答案)

一次函数应用题(北师版)(含答案)

学生做题前请先回答以下问题问题1:表示变量之间的关系通常有三种方法,它们是__________、__________、__________.问题2:看图的方法:__________、__________、__________.看轴:明确____________________;看点:明确__________、__________、__________表示的具体意义,还原实际情景,提取每个点对应的数据;看线:观察每条段线的_______________,分析数据的变化情况.问题3:一次函数应用题处理流程:①借助函数图象理解题意:通过看______________,把函数图象描绘的变化过程和文字对照起来;②建立一次函数模型解决问题:根据___________确定一次函数表达式,把所求数据转化为________,然后借助一次函数表达式进行求解;③结合实际意义进行验证.一次函数应用题(北师版)一、单选题(共6道,每道16分)1.2016年的夏天,某地旱情严重.该地10号、15号的人日均用水量的变化情况如图所示.若该地10号、15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应该从( )号开始送水.A.23B.24C.25D.26答案:B解题思路:试题难度:三颗星知识点:一次函数应用题2.受国际金融危机影响,市自来水公司号召全市市民节约用水,决定采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图所示.若该用户本月用水21吨,则应交水费( )A.52.5元B.45元C.42元D.37.8元答案:C解题思路:试题难度:三颗星知识点:一次函数应用题3.甲、乙两地相距50千米.星期天上午8:00小聪同学在父亲的陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y (千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发( )小时时,行进中的两车相距8千米.A. B.或C. D.或答案:D解题思路:试题难度:三颗星知识点:一次函数应用题4.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,时间x的取值范围是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:一次函数应用题5.某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图所示,有以下结论:①锅炉内的水全部放完,需要18分钟;②当放水时间为7分钟时,锅炉内的余水量为60升;③前23个学生接水结束需要8分钟.其中正确的是( )A.①B.②③答案:C解题思路:试题难度:三颗星知识点:一次函数应用题6.甲从P地前往Q地,乙从Q地前往P地.如图表示甲、乙两人距Q地的距离s(千米)与甲出发时间t(小时)之间的函数图象.根据图象,下列说法正确的是( )①甲的速度是每小时80千米;②乙的速度是每小时50千米;③乙比甲晚出发1小时;④甲比乙少用2.25小时到达目的地;⑤.A.①②③④⑤B.①③④⑤答案:C解题思路:试题难度:三颗星知识点:一次函数应用题。

一次函数应用题及答案

一次函数应用题及答案

一次函数应用题及答案一次函数应用题及答案 1有一群猴子,分一堆桃子,第一只猴子分了4个桃子和剩下桃子的1/10,第二只猴子分了8个桃子和这时剩下桃子的1/10,第三只猴子分了12个桃子和这时剩下桃子的1/10........依次类推。

最后发现这堆桃子正好分完,且每只猴子分得的桃子同样多。

那么这群猴子有多少只?方法一:方程解法:设总的桃子个数是10a+4个,那么第一只猴子分得a+4个桃子剩下9a,假设9a=10b+8个,那么第二只猴子分得b+8个桃子。

所以a+4=b+8,即b=a-4个。

那么就有9a=10(a-4)+8。

解得a=32。

所以桃子有32×10+4=324个。

每只猴子分得32+4=36个,所以猴子有324÷36=9只。

方法二:第一只猴子分得的那1/10比第二只猴子的那1/10多8-4=4个第一只猴子分得的那1/10对应的单位1比第二只猴子分得的1/10对应的单位1多4÷1/10=40个。

那么第一只猴子分得的那1/10是40-8=32个。

所以桃子总数是32×10+4=324个。

每只猴子吃32+4=36个,那么有324÷36=9只猴子。

一次函数应用题及答案 21、题目:某市出租车收费标准为:起步价10元,3千米后每千米的价格为2.4元,小明乘坐出租车走了x千米(x>3),则小明应付车费____元.小明乘坐出租车走了x千米(x>3),则前3千米的费用为10元,超过3千米的费用为:2.4(x3)元,则小明应付车费为:10+2.4(x3)=2.4x+2.8(元).故答案为:2.4x+2.8.2、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费40.3元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:40.3÷0.62=65(千瓦时)答:小明家用电65千瓦时.3、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费40.3元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:40.3÷0.62=65(千瓦时)答:小明家用电65千瓦时.4、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费46.5元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:46.5÷0.62=75(千瓦时)答:小明家用电75千瓦时.5、题目:某市居民用电的价格为每千瓦时0.52元.小明家上个月付电费44.2元,小明家用电多少千瓦时?小明家用电的千瓦数为:44.2÷0.52=85(千瓦时)答:小明家用电85千瓦时.。

一次函数应用题答案

一次函数应用题答案

一次函数应用题答案一、解答题1.【答案】(1)10 30(2)解:当0≤x<2时,y=15x,当x≥2时,y=30+10×3(x-2)=30x-30,当y=30x-30=300时,x=11,∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=.(3)解:甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(30x-30)=70时,解得:x=3;当30x-30-(10x+100)=70时,解得:x=10;当300-(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.【解析】(1)甲登山上升的速度是:(300-100)÷20=10(米/分钟);b=15÷1×2=30.故答案为:10;30.(2)分0≤x<2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系.(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者作差等于70得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=70,得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.2.【答案】(1)解:设生产一件甲种产品需x分,生产一件乙种产品需y分,由题意得:,即解这个方程组得:x=20,y=30,即生产一件甲产品需要20分,生产一件乙产品需要30分.(2)解:设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,则生产甲种产品件,生产乙种产品件,所以W总额=6×+10×=-x+4000,∵≥45,∴x≥900,由一次函数的增减性,当,x=900时,W取得最大值,此时W=-×900+4000=3970(元),此时甲有:=45(件),乙有:=370(件),所以小王该月最多能得3970元,此时生产甲种产品45件,上产乙种产品370件.【解析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,根据表中数据得出方程组,求出方程组的解即可;(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,则生产甲种产品件,生产乙种产品件,根据题意得出W总额=6×+10×,即可求出答案.3.【答案】(1)解:设这前五个月小明家网店销售这种规格的红枣x袋.由题意:(60-40)x+×(54-38)=42000解得x=1500.答:这前五个月小明家网店销售这种规格的红枣1500袋.(2)解:由题意:y=20x+×16=12x+16000,∵600≤x≤2000,当x=600时,y有最小值,最小值为23200元.答:这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【解析】(1)设这前五个月小明家网店销售这种规格的红枣x袋.根据总利润=42000,构建方程即可;(2)构建一次函数,利用一次函数的性质即可解决问题.4.【答案】(1)60(2)解:当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=-90,则y乙=90x-90.(3)220【解析】(1)根据图象得:360÷6=60(km/h);(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)∵乙与A地相距240 km,且乙的速度为360÷(5-1)=90(km/h),∴乙用的时间是240÷90=(h),则甲与A地相距(km).5.【答案】(1)解:设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=-96x+192(0≤x≤2).(2)解:12+3-(7+6.6)=15-13.6=1.4(小时))112÷1.4=80(千米/时),(192-112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.【解析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.6.【答案】(1)解:从小刚家到该景区乘车一共用了4h时间.(2)解:设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴ ,解得.∴y=120x-40(1≤x≤3).(3)解:当x=2.5时,y=120×2.5-40=260,380-260=120(km).故小刚一家出发2.5小时时离目的地120km远.【解析】(1)观察图形即可得出结论;(2)设AB段图象的函数表达式为y=kx+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2.5代入AB段图象的函数表达式,求出对应的y值,进一步即可求解.7.【答案】(1)解:每分钟向储存罐内注入的水泥量为15÷3=5立方米.(2)解:设y=kx+b(k≠0),把(3,15),(5.5,25)代入,得,解得.∴当3≤x≤5.5时,y与x之间的函数关系式为y=4x+3.(3)1 11【解析】(1)体积变化量除以时间变化量求出注入速度;(2)根据题目数据利用待定系数法求解;(3)由(1)可知,每分钟向储存罐内注入的水泥量为5立方米,3分钟到5.5分钟这段时间注入5×2.5=12.5立方米,储存罐实际增加10立方米,则这段时间输出12.5-10=2.5立方米,所以储存罐每分钟向运输车输出的水泥量是2.5÷2.5=1立方米;关闭输出口时还输出8-2.5=5.5立方米,用时5.5÷1=5.5分钟,则从打开输入口到关闭输出口共用的时间为5.5+5.5=11分钟.故答案为:1;11.8.【答案】(1)解:由题意可得:y=120x+200(100-x)=-80x+20000,,解得:24≤x≤86.(2)解:∵y=-80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=-80×86+20000=13120(元).【解析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.9.【答案】(1)解:依题意得:=,整理得:900(m-30)=750m,解得:m=180,经检验m=180是原方程的解并符合题意,∴m=180.(2)解:设购进甲种服装y件,购进乙中服装(200-y)件,依题意得:26800≥(320-180)y+(280-150)(200-y)≥26700,解得:80≥y≥70.答:该专卖店有11种进货方案.(3)解:设总利润为w,则w=(140-a)y+130(200-y)=(10-a)y+26000(70≤y≤80),①当0<a<10时,10-a>0,w随着y的增大而增大,∴当y=80时,w有最大值,即此时应购进甲种服装80件,购进乙种服装120件;②当a=10时,w=26000,(2)中所有方案获利都一样;③当10<a<20时,10-a<0,w随着y的增大而减小,∴当y=70时,w有最大值,即此时应购进甲种服装70件,购进乙种服装130件.【解析】(1)用总价除以单价表示出购进服装的数量,根据两种服装的数量相等列出方程求解即可;(2)设购进甲种服装y件,表示出乙种服装(200-y)件,然后根据总利润列出一元一次不等式,求出不等式组的解集后,再根据服装的件数是正整数解答;(3)设总利润为w,根据总利润等于两种服装的利润之和列式整理,然后根据一次函数的增减性分情况讨论求解即可.10.【答案】(1)解:由图可知,A、B两城相距300千米.(2)解:设甲对应的函数解析式为:y=kx,300=5k,解得,k=60,即甲对应的函数解析式为:y=60x;设乙对应的函数解析式为y=mx+n,,解得,,即乙对应的函数解析式为y=100x-100.(3)解:解,解得,2.5-1=1.5,即乙车出发后1.5小时追上甲车.(4)解:由题意可得,当乙出发前甲、乙两车相距50千米,则50=60x,得x=;当乙出发后到乙到达终点的过程中,则60x-(100x-100)=±50,解得,x=1.25或x=3.75;当乙到达终点后甲、乙两车相距50千米,则300-50=60x,得x=.即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.【解析】(1)根据函数图象可以解答本题;(2)根据图象中的信息分别求出甲乙两车对应的函数解析式;(3)根据(2)甲、乙两车对应的函数解析式,然后令它们相等即可解答本题;(4)根据(2)中的函数解析式,分为乙出发前,行驶中,到达后,三种情况相距50千米,从而可以解答本题.11.【答案】(1)解:设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.依题意可知:W=x·(500-150-4×40)+x·(270-150)+(5x+20-x·4)·(70-40)=245x+600,∵k=245>0,∴W关于x的函数单调递增,∴当x=30时,W取最大值,最大值为7950.答:购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(2)解:涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m套.依题意得:(500-160-4×50)m+(30-m)×(270-160)+(170-4m)×(70-50)=7950-2250,即6700-50m=5700,解得:m=20.答:本次成套的销售量为20套.【解析】(1)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元,根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(2)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.12.【答案】(1)设小明家共有x人.∴方案一:有一人买全票,其余各人按5折优惠,则Y1=30+15(x-1)=15x+15;方案二:全部按全票的6折优惠,则∴Y2=30×0.6x=18x;(2)当两家旅游景点收费相等时,15x+15=18x,求得x=5;当方案一更优惠时:15x+15<18x,得出:x>5;当方案二更优惠时:x<5.故当x=5时,两种方案一样;当x>5时,方案一更优惠;当x<5时,方案二更优惠.【解析】(1)可以设小明家共有x人,分别表示出方案一、方案二小明一家人的门票费Y1、Y2与他们去的人数x之间的函数关系式;(2)利用不等式分别比较两种方案收费,分情况讨论,选择哪种方案更优惠.13.【答案】解:(Ⅰ)从图上可知行驶6千米的路程后甲超过了乙.(Ⅱ)设函数式为:s=kt,过(3,6)点,∴k=2,∴s=2t(t≥0).(Ⅲ)从图上可知,甲的速度为:6÷3=2km/h,一个小时内乙的速度为:3÷1=3km/h,一个小时后乙的速度为:(6-3)÷(3-1)=1.5km/h.所以第一个小时前甲的行驶速度小于乙的行驶速度;一个小时后甲的行驶速度大于乙的行驶速度.【解析】(Ⅰ)从图上可知行驶6千米的路程后甲超过了乙.(Ⅱ)从图上可看出甲是正比例函数,设出函数式,根据上面的点可求出.(Ⅲ)根据图象求不同阶段的速度,比较大小即可.14.【答案】(1)设A型衬衣进x件,B型衬衣进(80-x)件,则:4288≤50x+56(80-x)≤4300,解得:30≤x≤32.∵x为整数,∴x为30,31,32,∴有3种进货方案:A型30件,B型50件;A型31件,B型49件;A型32件,B型48件.(2)设该商场获得利润为w元,w=(60-50)x+(68-56)(80-x)=-2x+960,∵k=-2<0,∴w随x增大而减小.∴当x=30时w最大=900,即A型30件,B型50件时获得利润最大,最大利润为900元.【解析】(1)本题的不等式关系为:购买A型衬衣的价钱+购买B型衬衣的价钱应该在4288-4300元之间,据此列出不等式组,得出自变量的取值范围,判断出符合条件的进货方案;(2)可根据利润=A衬衣的利润+B衬衣的利润,列出函数式,根据函数的性质和(1)得出的自变量的取值范围,判断出利润最大的方案.15.【答案】(1)先填表(2)∵在一次函数y=-3x+3920中,k=-3<0∴y随x的增大而减小∵0≤x≤70∴当x=70时,y有最小值∴当甲仓库往A、B两工地各运70吨和30吨水泥,乙仓库往A、B两工地各运0吨和80吨水泥时,总运费最省.最省总运费为y=-3×70+3920=3710元.【解析】(1)由甲库运往A地水泥x吨,根据题意首先求得甲库运往B地水泥(100-x)吨,乙库运往A地水泥(70-x)吨,乙库运往B地水泥(10+x)吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最省的总运费.16.【答案】(1)当0≤x≤3,y1=120-40x;当3<x≤4,y1=0;当4<x≤6,y1=60(x-4)=60x-240;y1与x的图象如图1(2)当0≤x≤3,y2=40x;当3<x≤4,y2=120;当4<x≤6,y1=120+60(x-4)=60x-120;y2与x的图象如图2,【解析】根据y与x的函数图象得到汽车从甲地出法行驶3小时到达乙地,行驶了120千米,则其速度为40千米/时,休息一小时后从乙地返回甲地,用了2个小时,则其速度为60千米/时.(1)分段讨论:当0≤x≤3,汽车距乙地距离等于甲乙之间的距离减去汽车行驶的路程,即y1=120-40x;当3<x≤4,汽车在乙休息,则y1=0;当4<x≤6,汽车从乙出发,则汽车距乙地距离等于此时汽车行驶的路程,则y1=60(x-4)=60x-240;然后根据解析式画图;(2)分段讨论:当0≤x≤3,汽车的路程为其行驶的路程,则y2=40x;当3<x≤4,汽车行驶的路程没变,则y2=120;当4<x≤6,汽车行驶的路程等于甲乙间的距离加上汽车后来行驶的路程,即y1=120+60(x-4)=60x-120;然后根据解析式画图.17.【答案】(1)按“分期付款”方式需支出198元/月×28月=5544(元).∵5544>5346,∴选择“一次付清”的方式付款合算;(2)由题意解得:y=0.5x+198(0≤x≤400),y=398(x>400);(3)0.5元/小时×160小时+198元/月×5个月=1070(元).【解析】(1)从x值的取值范围,来求是否“一次付清”的方式付款合算;(2)由题意按照图标中的情况而得到函数式;(3)由(2)中得到的函数式,代入数值而解得.18.【答案】解:(1)从图象中可知:从B到S城的路程是350千米-150千米=200千米,乙用了2小时,即乙车行驶的速度是200÷2=100(千米/时),从A到S的路程是150千米,甲走了2小时,即甲车行驶的速度是150÷2=75(千米/时),答:甲、乙两车的行驶速度分别是75千米/时、100千米/时;(2)∵150千米÷100千米/时=1.5小时,∴乙车出发后到达A地的时间是2.4+1.5=3.9(小时)答:乙车出发3.9小时后到达A地;(3)设两车出发后x小时第二次相遇,则75(x-2)=100(x-2.4),x=3.6,即两车出发后3.6小时第二次相遇.【解析】(1)从图象中可知:从B到S城的路程是(350-150)千米,乙用了2小时,根据速度公式求出乙车行驶的速度即可;甲从A到S的路程是150千米,甲走了2小时,根据速度公式求出甲车行驶的速度即可;(2)求出乙车走后150千米用的时间,再与2.4小时相加即可;(3)设两车出发后x小时第二次相遇,得出方程75(x-2)=100(x-2.4),求出方程的解即可.19.【答案】(1)设有x名学生,依题意得:需付甲公司的费用是:y甲=3×240+70%×240x=168x+720,需付乙公司的费用是:y =80%(3+x)×240=192x+576;乙(2)当168x+720=192x+576,解得:x=6,当168x+720>192x+576,解得:x<6,当168x+720<192x+576,解得:x>6,答:当学生有6名,则两家公司所需费用一样;当学生人数大于6名,则甲公司更优惠;当学生人数小于6名,则乙公司更优惠.【解析】(1)根据设学生数为x,利用甲乙两公司优惠方案得出函数关系即可;(2)利用(1)中所求函数关系式,再利用不等式求出x的取值范围即可.20.【答案】(1)∵8x+10y+11(10-x-y)=100,∴y与x之间的函数关系式为y=-3x+10.∵y≥1,解得x≤3.∵x≥1,10-x-y≥1,且x是正整数,∴自变量x的取值范围是x=1或x=2或x=3.(2)W=8x×0.22+10y×0.21+11(10-x-y)×0.2=-0.14x+21.因为W随x的增大而减小,所以x取1时,可获得最大利润,此时W=20.86(万元).获得最大运输利润的方案为:用1辆车装甲种苹果,用7辆车装乙种苹果,2辆车装丙种苹果.【解析】(1)根据“甲、乙、丙三种苹果共100吨”列二元一次方程,变形后得出y与x之间的关系式为y=-3x+10.根据实际意义即y≥1,x≥1,得到x的取值范围是x=1或x=2或x=3;(2)写出利润与x之间的函数关系:W=-0.14x+21,根据W随x的增大而减小,所以x取1时,可获得最大利润20.86万元.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.。

一次函数实际应用题_含答案

一次函数实际应用题_含答案

一次函数实际应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)1、解:⑴由图象可知:当0≤x≤10时,设y关于x的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x≤20时,设y关于x的函数解析式为y=mx+b,∵(10,350),(20,850)在y=mx+b上,∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100∴y= 50x-100 (0≤x≤10)50x-150 (10<x≤20)令y=360 当0≤x≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。

要使这次表演会获得36000元的毛利润.要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。

2甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。

一次函数应用题(习题及答案)

一次函数应用题(习题及答案)

一次函数应用题(习题及答案)一次函数应用题(习题及答案)题一:某手机品牌每月销售量与售价之间存在一次函数关系,已知售价为3000元时销售量为4000台,售价为5000元时销售量为3000台,请问每增加一台售价,销售量减少多少台?解析:这是一个典型的一次函数应用题。

首先,我们可以设定售价为x元,销售量为y台。

根据题目已知条件,可以列出两个点的坐标:(3000, 4000)和(5000, 3000)。

根据一次函数的一般式y = kx + b,可以得到方程组:4000 = 3000k + b -------(1)3000 = 5000k + b -------(2)通过解方程组,可以求解出k和b的值,从而确定函数关系。

首先,我们用(1)式减去(2)式,消去b的项,得到:1000 = -2000k解得k = -1/2。

将k的值代入(1)式或(2)式,可解得b = 7000/2 = 3500。

因此,该函数的函数关系为:y = -1/2x + 3500。

根据函数关系,我们可以计算每增加一台售价,销售量减少的台数。

由于每增加一台售价,x的变化量为1,代入函数关系,得到y的变化量为-1/2。

因此,每增加一台售价,销售量减少的台数为1/2台。

答案:每增加一台售价,销售量减少0.5台。

题二:一家电商公司将某商品的售价从每件100元提高到120元后,销售量下降了25%。

求原来的每件商品的销售量。

解析:这同样是一个一次函数的应用题。

我们可以设定原售价为x 元,销售量为y件。

根据题目已知条件,可以得到两个点的坐标:(100, y)和(120, 0.75y)(销售量下降25%相当于销售量的0.75倍)。

根据一次函数的一般式y = kx + b,可以得到方程组:y = 100k + b -------(1)0.75y = 120k + b -------(2)通过解方程组,我们可以求解出k和b的值,从而确定函数关系。

将(1)式代入(2)式,得到:0.75(100k + b) = 120k + b化简可得:75k + 0.75b = 120k + b整理得:0.25b = 45k解得:k = 0.25b/45将k的值代入(1)式,解得b = 11y/12因此,该函数的函数关系为:y = (0.25b/45)x + (11y/12)由于题目求解的是原来的每件商品的销售量,即求解y的值。

北师大版八年级(上)数学《一次函数》应用题练习(含答案)

北师大版八年级(上)数学《一次函数》应用题练习(含答案)

第四章 一次函数1.某商场购进一批内衣,经试验发现,若每件按20元销售时,每月能卖360件;若每件按25元销售时,每月能卖210件,假定每月销售数y (件)是销售单价x (元)的一次函数,求y 与x 之间的函数关系式.2.已知甲、乙两人分别从相距18km 的A 、B 两地同时相向而行,甲以4千米/时的平均速度步行,乙以每小时比甲快1千米的平均速度步行,相遇为止.(1)求甲、乙两人相距的距离为y (km )和所用时间x (小时)的函数关系式;(2)求出函数图像与x 轴、y 轴的交点坐标,画出函数图像,并求出自变量的取值范围;(3)求当甲、乙两人相距6千米时,所需用的时间.3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为1y 和2y 元.(1)写出1y 、2y 与x 之间的函数关系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,则应选择哪种通讯方式较合算?4.某城市按以下规定收取每月煤气费:用煤气不超过603m ,按0.8元/3m 收费;如果超过603m ,超过部分按1.2元/3m 收费.(1)设煤气用量为)60(m 3 x x ,应交煤气资为y 元,写出y 关于x 的函数解析式,并画出函数的图像;(2)已知某用户一月份的煤气费平均每立方米0.88元,那么一月份该用户应交煤气费共多少元?5.如图,公路上有A、B、C三个车站,一辆汽车在上午8时从离A站10km 的P地出发向C站匀速前进,15分钟后,离A站20km.(1)设出发x小时后,(2)当汽车行驶到离A站150km 汽车离A站y km,写出y与x之间的函数关系式;的B站时,接到通知要在中午12时前赶到离B站30千米的C站,汽车若按原速能否按时到达?若能,是在几点几分到达;若不能,车速最少应提高多少?6.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y(人)与年份x(年)的函数关系式;(2)利用所求函数关系式,预测该地区从哪一年起入学儿童的人数不超过1000人?年份(x)2000 2001 2002 …入学儿童人数(y)2520 2330 2140 …7.《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表累进计算:全月应纳税所得额税率不超过500元的部分5%超过500元至2000元的部分10%超过2000元至5000元的部分15%……(纳税款=应纳税所得额×对应的税率)按此规定解答下列问题:(1)设某甲的月工资、薪金所得为x 元(28001300<<x ),需缴交的所得税款为y 元,试写出y 与x 的函数关系式;(2)若某乙一月份应缴交所得税款95元,那么他一月份的工资、薪金是多少元?8.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求出总投资额1y (万元)和总利润比2y (万元)关于新家电的总产量x (台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用(1)中2y 与x 的函数关系式,分析该公司的盈亏情况. (注:总投资=前期投资+后期其他投资,总利润=总产值-总投资)9.通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成.以前我市通过“黄冈热线”上“因特网”的费用为电话费0.18元/3分钟,上网费为7.2元/小时,后根据信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”的费用调整为电话费0.2元/3分钟,上网费为每月不超过60小时,按4元/小时计算;超过60小时部分,按8元/小时计算.(1)根据调整后的规定,将每月上“因特网”的费用y (元)表示为上网时间x (小时)的函数;(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出,“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情况.10.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元,做一套N型号的时装需用A种布料1.1m,B 种布料0.4m,可获利润50元,若设生产N型号的时装套数为N,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)该服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?参考答案1..96030+-=x y2.(1)189+-=x y (2)(2,0),(0,18),20≤<x (3)34小时 3.(1).6.04.05021x y x y =+=, (2)每月内通话250分钟,两种移动通讯费用相同. (3)200元话费用“全球通”可通话375分钟,“神州行”可通话31333分钟,选择“全球通”合算. 4.(1).242.1)60(2.1608.0-=-+⨯=x y x y , (2)x x 88.0242.1=-,75=x ,667588.0=⨯=y (元)5.(1)汽车速度为40千米/时,.1040+=x y (2)汽车若按原速度不能按时到达,若要汽车按时到达C 站,车速最少应提高到每小时60km .6.(1)直线b kx y +=过(2000,2500),(2001,2330)两点,∴ ⎩⎨⎧=+=+,23302001,25202000b k b k 解得⎩⎨⎧=-=.382520,190b k ∴.382520190+-=x y (2)设x 年时,入学人数为1000人,1000382520190=+-x ,2008=x ,即从2008年起入学儿童人数不超过1000人.7.(1)∵ 28001300<<x ,∴ 2000800500<-<x ,∴ %.5500%10)500800(⨯+⨯--=x y(2)∵ %5%1020095%5500+⨯<<⨯,∴ 2000,251.0)1300(95=+⨯-=x x ,某乙一月份工资、薪金是2000元.8.(1).2002.0)2003.0(5.02003.021-=+-=+=x x x y x y ,(2)当总产量是900台时,该公司会亏损,亏损20万元.(3)产量小于1000台时,该公司亏损,产量是1000台时,该公司不亏损也不盈利,产量大于1000台时,该公司会盈利.9.(1)⎩⎨⎧>-≤≤=).60(,2404.12),600(,4.8x x x x y (2)资费调整前,上网70小时所需费用为75670)2.76.3(=⨯+元.资费调整后,若上网60小时,则所需费用为504604.8=⨯(元). ∵ 504756>,∴ 晓刚现在上网时间超过60小时.由7562404.12≤-x ,解得32.80≤x . ∴ 晓刚现在每月至多可上网约80.32小时.(3)设调整前所需费用为1y (元);调整后所需费用2y (元),则x y 8.101=.当600≤≤x 时,x x x y 4.88.104.82>=,,故21y y >. 当60>x 时,2404.122-=x y ,当21y y =时,150,2404.128.10=-=x x x ;当21y y >时,150,2404.128.10<->x x x ;当21y y <时,150,2404.128.10>-<x x x .综上可得:当150<x 时,调整后所需费用少;当150=x 时,调整前后所需费用相同;当150>x 时,调整前所需费用少.10.(1)x x y 50)80(45+-=.由⎩⎨⎧≤+-≤+-.524.0)80(9.0,701.1)80(6.0x x x x 解得4440≤≤x . ∴ 自变量的取值范围为40,41,42,43,44.(2)当44=x 时,有最大值,最大值为3820元.。

一次函数的应用 练习题(带答案

一次函数的应用 练习题(带答案

一次函数的应用 题集一、一次函数与实际应用(1)(2)(3)1.某周六上午小明从家出发,乘车小时到郊外某基地参加社会实践活动.在基地活动小时后,因家里有急事,他立即按原路以千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为小时,小明离家的路程(千米)与(小时)之间的函数图象如图所示.(小时)(千米)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时.求线段所表示的函数关系式,不用写出自变量的取值范围.问小明能否在中午前回到家?若能,请说明理由;若不能,请算出中午时他离家的路程.【答案】(1)(2)(3) ;.不能在前回家,此时离家的距离为千米.【解析】(1)观察图象可知:小明去基地乘车小时后离基地的距离为千米,(2)(3)因此小明去基地乘车的平均速度是千米/小时;在返回时小明以千米/时的平均速度步行,行驶千米后遇到爸爸,∵两个人同时走,小明走了小时,即爸爸也走了小时,∴他爸爸在小时内行驶了千米,故爸爸开车的平均速度应是千米/小时.设线段所表示的函数关系式为,易得,,∴,解得,∴.小明从家出发到回家一共需要时间:(小时),从经过小时已经过了,∴不能在前回家,此时离家的距离:(千米).【标注】【知识点】函数图象与实际问题(1)(2)12(3)2.,两地相距千米,甲车从地出发匀速行驶到地,乙车从地出发匀速行驶到地.乙车行驶小时后,甲车出发,两车相向而行.设行驶时间为小时(),甲、乙两车离地的距离分别为,千米,,与之间的函数关系图象如图所示,根据图象解答下列问题:小时千米图小时千米图求,与的函数关系式.乙车出发几小时后,两车相遇?相遇时,两车离地多少千米?设行驶过程中,甲、乙两车之间的距离为千米,在图的直角坐标系中,已经画出了与之间的部分函数图象.图中点的坐标为,则.求与的函数关系式,并在图中补全整个过程中与之间的函数图象.【答案】(1)(2)12(3),.乙车出发小时后两车相遇,两车相遇时,两车相距地千米.当时,,当时,.画图见解析.【解析】(1)(2)12(3)设,,由图象可知,时,,时,,∴,,∴.由图象可知,,,时,,∴,,∴.故与的关系式分别为:,.两车相遇时,甲乙两车距地距离相等,∴,∴,∴.将代入中得.故乙车出发小时后两车相遇,两车相遇时,两车相距地千米.由图可知,乙车速度为(千米/小时).过程中甲车在地,乙车在行驶.时,甲乙两车相距千米.时,甲乙两车相距(千米).∴.由图可知,甲车速度为(千米/小时).由()可知甲乙两车在时相遇.∴当时,,当时,.,故整个过程中与函数图象如下图所示:小时千米【标注】【知识点】一元一次方程的行程问题-相遇问题(1)(2)(3)3.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向港,最终到达港.设甲、乙两船行驶后,与港的距离分别为、,、与的函数关系如图所示.甲乙填空:、两港口间的距离为 , .求图中点的坐标.若两船的距离不超过时能够相互望见,求甲、乙两船可以相互望见时的取值范围.【答案】(1)(2)(3); .或.【解析】(1)、两港口间距离,又由于甲船行驶速度不变,(2)(3)故,则.故答案为:;.由点求得,.当时,由点,求得,.当时,,解得,.此时.所以点的坐标为.根据题意知甲、乙两船的速度分别为小时、小时,①当时,根据题意可知甲船开始出发到达港这段时间,甲乙两船的距离从逐渐缩小,两船行驶时,乙船在甲船的前方:处,所以这段时间内,两船不能相互望见;②当时,乙船在甲船的前方(直至追上).依题意,,解得,即时,甲、乙两船可以相互望见;③当时,甲船在乙船的前方依题意,,解得,即时,甲、乙两船可以相互望见;④当时,甲船已经到达港,而乙船继续行驶向甲船靠近,依题意,,解得,即,甲、乙两船可以相互望见.综上所述,当或时,甲、乙两船可以相互望见.【标注】【知识点】一次函数的依据图象解决实际问题4.某地为了鼓励市民节约用水,采取阶梯分段收费标准,共分三个梯段,吨为基本段,吨为极限段,超过吨为较高收费段,且规定每月用水超过吨时,超过的部分每吨元,居民每月应交水费(元)是用水量(吨)的函数,其图象如图所示:(1)(2)(3)吨元求出基本段每吨水费,若某用户该月用水吨,问应交水费多少元?写出与的函数解析式.若某月一用户交水量元,则该用户用水多少吨?【答案】(1)(2)(3)元..吨.【解析】(1)(2)∵用水吨交水费元,∴基本段每吨水费元,∴若某用户该月用水吨,应交水费元.分三种情况:①当时,易得;②当时,设,∵,在直线上,∴,解得,∴;③当时,设,∵,在直线上,∴,解得,∴.综上所述,与的函数解析式为.(3)若某月一用户交水量元,设该用户用水吨.∵用水吨交水费元,用水吨交水费元,而,∴.由题意,得,解得.答:若某月一用户交水量元,则该用户用水吨.【标注】【能力】运算能力【知识点】一元一次方程的梯度计价问题【知识点】有理数乘除法与实际问题【知识点】一次函数与实际问题【思想】函数思想【思想】方程思想(1)(2)(3)5.某市按阶梯电价进行收费,阶梯电价收费标准为:若每月用电量为度及以下,收费标准为元/度,若每月用电量超过度,收费标准由两部分组成:①度按元/度收费,②超出度的部分按元/度收费.如果月用电量用(度)来表示,实付金额用(元)来表示,请分别写出这两种情况实付金额与月用电量之间的函数关系式.若小芳和小华家一个月的实际用电量分别为度和度,则实付金额分别为多少元?按照阶梯电价方案的规定,一居民家某月电费为元,请你计算这个家庭本月的实际用电量.【答案】(1)(2)(3).实付金额分别为元、元.这个家庭本月的实际用电量是度.【解析】(1)根据度时,按元/度收费,(2)(3)则当时,;根据超出度的部分按元/度收费得:当时,;故函数关系式为:.小芳家用电量是 度,则实付金额是:(元);小华家用电量是 度,则实付金额是:(元).答:实付金额分别为元、元.设这个家庭本月的实际用电量度,根据题意得:解得:,答:这个家庭本月的实际用电量是度.【标注】【知识点】一次函数与实际问题(1)(2)(3)6.在某次抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要台,乙地需要台;、两省获知情况后慷慨相助,分别捐赠该型号挖掘机台和台并将其全部调往灾区.如果从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元;从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从省调往甲地台挖掘机,、两省将捐赠的挖掘机全部调往灾区共耗资万元.省捐赠台省捐赠台甲灾区需台乙灾区需台请直接写出与之间的函数关系式及自变量的取值范围.若要使总耗资不超过万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资多少万元?【答案】(1)(2)(3)( ).两种.方案二可使总耗资最少为万元.【解析】(1)(2)(3) 省省台数(台)耗资(万元)台数(台)耗资(万元)甲区乙区或由上表可知化简得,又∵,,,∴自变量的取值范围为.,得,∵为整数且,∴,.∴调运方案有两种,如下列:方案一:甲乙方案二:甲乙由可知随的增大而减小,∴当时,,∴()问中的方案二可使总耗资最少为万元.【标注】【知识点】一次函数与实际问题(1)7.育才中学需要购置某种仪器,方案:到商家购买,每件元;方案:学校自己制作,每件元,另外需付制作工具的租用费元.设购置仪器件,方案与方案的费用(单位:元)分别为,.分别写出,的函数表达式.(2)(3)当购置仪器多少件时,两种方案的费用相同?若方案便宜,则仪器件数范围是多少?【答案】(1)(2)(3),.件..【解析】(1)(2)(3)(,且为整数),(,且为整数).依题意,得,即,解得,∴当购置的仪器为件时,两种方案的费用相同.∵,∴,解得.∴当需要的仪器件数为整数且时,选择方案便宜.【标注】【知识点】一次函数与实际问题【知识点】不等式组的方案选择问题二、一次函数与三角形面积(1)(2)8.已知一次函数的图象与轴交于点,且与正比例函数的图象相交于点,求:求点的坐标.求出这两个函数的图象与轴围成的的面积.【答案】(1)(2)..【解析】(1)(2)由题意知,,解得,,∴点的坐标为.令,则,∴,∴.【标注】【知识点】一次函数与面积(1)(2)9.如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与交于点.分别求出点,点的坐标.求四边形的面积.【答案】(1)(2),..【解析】(1)∵直线上所有点的坐标都是二元一次方程的解,∴当时,,(2)∴点的坐标为:,∵直线上所有点的坐标都是二元一次方程的解,∴时,,∴点的坐标为:.作轴于,,解得,∴点的坐标为,则四边形的面积四边形的面积的面积.【标注】【知识点】一次函数与面积10.在平面直角坐标系中,为坐标原点,已知及在第一象限的动点,且.则当时,点的坐标为 .【答案】【解析】∵,∴.∴∵∴.得:.∴,∴时,点坐标为.【标注】【知识点】一次函数与面积(1)(2)(3)(4)11.如图,直线的解析表达式为:,且与轴交于点,直线经过点、,直线,交于点.求点的坐标.求直线的解析表达式.求的面积.在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.【答案】(1)(2)(3)(4).直线的解析表达式为...【解析】(1)(2)(3)由,令,得,∴,∴.设直线的解析表达式为,,由图象知:、,、,代入表达式,∴,∴,∴直线的解析表达式为.由,(4)∴,∴,∵,∴.与底边都是,面积相等所以高相等,高就是点到直线的距离,即纵坐标的绝对值,则到距离,∴纵坐标的绝对值,点不是点,∴点纵坐标是,∵,,∴,∴,∴.【标注】【知识点】公式法求面积12.如图直线与轴、轴分别交于、两点,以线段为边在第一象限内作等腰直角,且,如果在第二象限内有一点,且的面积与的面积相等,求的值.【答案】【解析】∵直线与轴、轴分别交于、两点,∴,,,∴,又∵,∴,解得.【标注】【知识点】一次函数与面积,,三、一次函数与线段最值(1)(2)13.如图,一次函数的图象与、轴分别交于点、.求该函数的解析式.为坐标原点,设、的中点分别为、,为上一动点,求的最小值,并求取得最小值时点的坐标.【答案】(1)(2),点坐标为.【解析】(1)(2)将、代入得,.∴解析式为:.设点关于点的对称点为,连接、,则.∴,即、、共线时,的最小值是.连接,在中,;易得点坐标为.【标注】【知识点】一次函数与轴对称最值问题14.直角坐标系中,有两个点,,在轴上找一个点,在轴上找一点,使四边形的周长最短,此时点的坐标为.【答案】【解析】如图设所在直线的表达式为.由于、在直线上,有解得∴所在直线表达式为,它与轴交于.【标注】【知识点】四边形周长最小15.在平面直角坐标系中,点,点,在轴上存在一个点,直线上存在点,使得四边形的周长最小,求满足条件的、两点的坐标.xy OABCD【答案】,.【解析】将点、分别关于轴,对称到、,直线与轴,的交点即为、点,求得直线的解析式为,得:,.故答案为:,.【标注】【知识点】一次函数与轴对称最值问题(1)(2)16.如图,在直角坐标系中,,,点是轴正半轴上的一个动点.当点到,两点的距离相等时,求点的坐标.当点到,两点的距离之和最小时,求点的坐标,并求出此时的值.【答案】(1)(2)..【解析】(1)如图作的中垂线与轴交于,过作轴于,∵,∴,,∵,∴,设,则,又∵,,,,(2)∴,即,,得,∴.如图,作关于轴对称点,连接交于,则即为所求,∵,∴且,设所在直线解析式为()代入,得,∴,∴直线,∴当,,∴,.【标注】【知识点】一次函数与轴对称最值问题17.如图,直线的函数表达式为,且与轴交于点,直线经过点且与交于点,已知点的横坐标是.(1)(2)求点和点的坐标.在轴上求点的坐标,使得最小.【答案】(1)(2),..【解析】(1)(2)对于直线,令,得到,∴,∵点的横坐标为,∴.作点关于轴的对称点,连接交轴于,此时的值最小,设最小的解析式为,则有,解得,∴直线的解析式为,∴.A. B.C.D.18.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( ).【答案】C 【解析】∵在中,,,∴,,∵,点为的中点,∴,,∴,,作关于直线的对称点,连接交于,则此时,四边形周长最小,,∵直线的解析式为,设直线的解析式为,∴,解得:,∴直线的解析式为,解得,∴.故选.19.如图,已知点坐标为,点坐标为,在直线上有一点,满足轴,连接,,当线段位于何位置时,线段最短?求出的最小值,并求出点坐标.【答案】最小值是;点坐标为【解析】'坐标为,解析式为:,点坐标为,点坐标为,.【标注】【知识点】一次函数与轴对称最值问题,20.如图,平面直角坐标系中,已知点的坐标为,点的坐标为时,在轴上另取两点,,且.线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标.【答案】.【解析】如图,过点作轴的平行线,并且在这条平行线上截取线段,使,作点关轴的对称点,连接,交轴于点,在轴上截取线段,则此时四边形的周长最小.∵,∴,∵,∴,设直线的解析式为,则,解得.∴直线的解析式为,当时,,解得.故线段平移至如图所示位置时,四边形的周长最小,此时点的坐标为,∴点的坐标为.【标注】【知识点】一次函数与轴对称最值问题(1)(2)(3)21.如图,一次函数的图象与轴和轴分别交于点和,再将沿直线对折,使点与点重合、直线与轴交于点,与交于点.点的坐标为 ,点的坐标为 .在直线上是否存在点使得的面积为?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.求的长度.【答案】(1)(2)(3) ;存在,或..【解析】(1)已知函数为,∴令,则,(2)(3)令,则,∴,.∵,,∴以为底,则的高为,即点到的距离为,又∵点在,∴,∴或,∴或.在折叠后,,所以.因为,设,,则.在中,,由勾股定理知,即,去括号得,整理得,解得.故.【标注】【知识点】一次函数与直角三角形结合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数实际应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)1、解:⑴由图象可知:当0≤x≤10时,设y关于x的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x≤20时,设y关于x的函数解析式为y=mx+b,∵(10,350),(20,850)在y=mx+b上,∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100∴y= 50x-100 (0≤x≤10)50x-150 (10<x≤20)令y=360 当0≤x≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。

要使这次表演会获得36000元的毛利润.要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。

2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。

由题意得:6=2 k 1,6=3 k 2,解得:k 1=3,k 2=2 ∴s 甲=3t ,s 乙=2t ⑵当甲到达山顶时,s 甲=12(千米),∴12=3t 解得:t=4∴s 乙=2t=8(千米) ⑶由图象可知:甲到达山顶宾并休息1小时后点D 的坐标为(5,12) 由题意得:点B 的纵坐标为12-23=221,代入s 乙=2t ,解得:t=421∴点B (421,221)。

设过B 、D 两点的直线解析式为s=kx+b ,由题意得 421t+b=221 解得: k=-65t+b=12 b=42 ∴直线BD 的解析式为s=-6t+42 ∴当乙到达山顶时,s 乙=12,得t=6,把t=6代入s=-6t+42得s=6(千米)3、教室里放有一台饮水机,饮水机上有两个放水管。

课间同学们到饮水机前用茶杯接水。

假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。

两个放水管同时打开时,它们的流量相同。

放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。

饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:O 21281718y(升)x(分钟)⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水? 3、解:⑴设存水量y 与放水时间x 的函数解析式为y=kx+b,把(2,17)、(12,8)代入y=kx+b,得 17=2k+b 解得 k=-109 b =5948=12k+b∴y=-109x+594 (2≤x ≤9188) ⑵由图象可得每个同学接水量为0.25升,则前22个同学需接水0.25×22=5.5(升),存水量y=18-5.5=12.5(升)∴12.5=-109x+594解得 x=7 ∴前22个同学接水共需要7分钟。

⑶当x=10时,存水量y=-109×10+594=549,用去水18-549=8.2(升)8.2÷0.25=32.8 ∴课间10分钟内最多有32个同学能及时接完水。

4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题: ⑴乙队开挖到30m 时,用了 h . 开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?4、解:⑴2,10;⑵设甲队在06x ≤≤的时段内y 与x 之间的函数关系式为1y k x =,由图可知,函数图象过点(660),,1660k ∴=,解得110k =,10y x ∴=.设乙队在26x ≤≤的时段内y 与x 之间的函数关系式为2y k x b =+,由图可知,函数图象过点(230)(650),,,,22230650k b k b +=⎧∴⎨+=⎩,.解得2520.k b =⎧⎨=⎩,520y x ∴=+.⑶由题意,得10520x x =+,解得4x =(h ).∴当x 为4h 时,甲、乙两队所挖的河渠长度相等.5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:乙6050 ()m y 甲 ()h x62O图1图象与信息30 49cm30cm36cm3个球有水溢出(第23题)图2请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出? 5、解:(1)2. (2)设y kx b =+,把()030,,()336,代入得:30336b k b =⎧⎨+=⎩,.解得230k b =⎧⎨=⎩,.即230y x =+.(3)由23049x +>,得9.5x >,即至少放入10个小球时有水溢出.6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨(1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?6、解:设西施舌的投放量为x 吨,则对虾的投放量为(50-x )吨,根据题意,得:94(50)360,310(50)290.x x x x +-≤⎧⎨+-≤⎩ 解之,得:32,30.x x ≤⎧⎨≥⎩ ∴30≤x ≤32;(2)y =30x +20(50-x )=10x +1000.∵30≤x ≤32,100>0,∴1300≤x ≤1320,∴ y 的最大值是1320, 因此当x =32时,y 有最大值,且最大值是1320千元.7、 元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的图2(1)把上表中x y ,的各组对应值作为点的坐标,在如图3的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?7、解:(1)在所给的坐标系中准确描点,如图.由图象猜想到y 与x 之间满足一次函数关系.设经过(119),,(236),两点的直线为y kx b =+,则可得19236.k b k b +=⎧⎨+=⎩,解得17k =,2b =.即172y x =+. 当3x =时,173253y =⨯+=;当4x =时,174270y =⨯+=.即点(353)(470),,,都在一次函数172y x =+的图象上.所以彩纸链的长度y (cm )与纸环数x (个)之间满足一次函数关系172y x =+. (2)10m 1000cm =,根据题意,得1721000x +≥. 解得125817x ≥. 答:每根彩纸链至少要用59个纸环.8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。

(1)试写出总费用y (元)与销售套数x (套)之间的函数关系式。

(2)如果每套定价700元,软件公司至少要售出多少套软件才能确保不亏本。

8、解(1)y =50000+200x 。

(2)设软件公司至少要售出x 套软件才能保证不亏本,则有 700x ≥50000+200x 。

解得x ≥100。

答:软件公司至少要售出100套软件才能确保不亏本。

9、如图,l 1表示神风摩托厂一天的销售收入与摩托车销售量之间的关系;l 2表示摩托厂一天的销售成本与销售量之间的关系。

(1)写出销售收入与销售量之间的函数关系式; (2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时,销售收入等于销售成本; (4)一天的销售量超过多少辆时,工厂才能获利?图39、解(1)y =x 。

(2)设y =kx +b ,∵直线过(0,2)、(4,4)两点,∴y =kx +2,又4=4k +2,∴k =12,∴y =12x +2。

(3)由图象知,当x =4时,销售收入等于销售成本。

(4)由图象知,当x >4时,工厂才能获利。

相关文档
最新文档