大功率装置用多路输出高压隔离新型开关电源设计

合集下载

多路输出开关电源设计

多路输出开关电源设计

多路输出开关电源设计安森美半导体公司的NCP1252是一款电流模式PWM控制器,它使用内部固定的定时器,可以不依赖于辅助电压来检测输出过载。

文章介绍了基于NCP1252芯片的多路输出开关电源设计,分析了开关电源的工作原理,给出了设计步骤。

该开关电源可提供软起动、短路保护、过流保护等功能,并将该电源成功用于某型雷达收发机,验证了分析、设计的有效性。

标签:NCP1252芯片;多路输出;开关电源Abstract:The ON Semiconductor’s NCP1252 is a current-mode PWM controller that uses internally fixed timers to detect output overload without relying on auxiliary voltages. This paper introduces the design of multi-output switching power supply based on NCP1252 chip,analyzes the working principle of switch power supply,and gives the design steps. The switching power supply can provide soft start,short circuit protection,over-current protection and so on. The power supply has been successfully used in a certain type of radar transceiver,which verifies the effectiveness of the analysis and design.Keywords:NCP1252 chip;multiplex output;switching power supply引言电源如同人的心脏,为各种电子设备提供电能,性能优劣直接影响到整个电子系统的稳定性。

一种多路输出的高效率开关电源设计

一种多路输出的高效率开关电源设计

( C h i n a E l e c t r o n i c s T e c h n o l o g y G r o u p C o r p o r a t i o n N o . 2 4 R e s e a r c h I n s t i t u t e , C h o n g q i n g 4 0 0 0 6 0 , C h i n a )
摘 要 :伴 随着 电子 系统 功 能 多 元化 、 结构 小型 化 的 发展 趋 势 ,要 求 开 关 电源在 满足 体 积 的 条件下 ,能够 实现 多路 输 出以满 足 系统 使 用要 求 。针 对 该 分析 ,文章介 绍 了一 种 基 于T I 公 司的
T P S 4 0 0 5 5 P WP控 制 器及L MZ 1 4 2 0 3 电源模 块开 发 的多路 非 隔 离DC / DC变换 器的工作原理 及设 计方
A Hi g h - - e ic f i e nc y S wi t c h- - Mo d e Po we r Su pp l y De s i g n f o r M ul i- t - c ha nn e l Out pu t
LI We n h a o , DU Pe i d e , YI N Hu a
法 ,重 点阐述 了该型 变换 器在研 制过程 中的技 术难点及其解决 办法。最后 采 用该方案设 计 了一 个实
验 电路 。仿真和实验 电路 测试 结果表 明,分析设计满足要 求。
关键词 :同步整流 ;B u c k ;正 负电源输 出;多路 中图分类号 :T N 4 0 2 文献标识码 :A 文章编号 :1 6 8 1 — 1 0 7 0( 2 0 1 3 )1 1 - 0 0 2 4 - 0 4

大功率装置用多路输出高压隔离新型开关电源设计方案

大功率装置用多路输出高压隔离新型开关电源设计方案

大功率装置用多路输出高压隔离新型开关电源设计夏凌辉,吕征宇,费万民(浙江大学电力电子国家重点实验室,浙江杭州310027)摘要:基于专利技术[1],通过设计高频交流电流源和一种特殊的输岀变压器,研制了一种用于短路故障限流器中晶闸管驱动的多输岀开关电源。

给岀了主电路拓扑结构,叙述了输岀变压器的结构及特点,分析了系统的工作原理,进行了校验电源有效性的仿真,开发了一台样机并成功应用在限流器实验装置中。

关键词:多路输岀;高压隔离;驱动电源;短路故障限流器1引言随着高压大功率电力电子装置的不断发展,串接在一起的驱动电源之间,往往需要承受极高的工作电压。

近来,多级隔离技术越来越多地被用在电路的驱动系统中,以满足高电压隔离的需要;但这同时也使得开关管的驱动电路越来越复杂。

如图1所示是一个使用在三相接地系统中的固态短路限流器。

它是由晶闸管三相整流器和一个限流电感组成的。

限流器主要被用在15kV的电力系统中。

考虑到电源电压的波动,晶闸管阻断电压限制和均压系数等因素,图1中所示限流器中的每个晶闸管阀在实际中必须要用8 个6kV等级的晶闸管串联组成。

这样在限流器中的晶闸管总数达到了64个,则至少需要有61路高压隔离驱动电源用到这些晶闸管的门极驱动中。

所以,开发一个新型的电源用作限流器中晶闸管的门极驱动电源是一项非常重要的任务。

图1 三相接地系统固态短路限流器主电路拓扑Dusan M. Raonic [2]提出了一种晶闸管自我供能的门极驱动方式,它把一个缓冲电容作为能量存贮单元,解决了几乎每个功率开关管都存在的对隔离电源的需求。

但是,这种方式只能被用于工作在功率变换器直流侧的晶闸管和GTO的门极驱动中。

Chang Liuchen [3]研制了一种驱动板电源用于三相逆变器中大功率IGBT的驱动,它通过一个多绕组的变压器,实现了4路相互隔离的输岀。

这种电源的缺点是随着输出路数和隔离电压的增加会导致变压器的结构很复杂,体积极庞大。

多路输出开关电源的设计及应用原则

多路输出开关电源的设计及应用原则

多路输出开关电源的设计及应用原则引言对现代电子系统,即便是最简单的由单片机和单一I/O接口电路所组成的电子系统来讲,其电源电压一般也要由+5V,±15V或±12V等多路组成,而对较复杂的电子系统来讲,实际用到的电源电压就更多了.目前主要由下述诸多电压组合而成:+,+5V,±15V,±12V,-5V,±9V,+18V,+24 V、+27V、±60V、+135V、+300V、-200V、+600V、+1800V、+300 0V、+5000V包括一个系统中需求多个上述相同电压供电电源等.不同的电子系统,不仅对上述各种电压组合有严格的要求,而且对这些电源电压的诸多电特性也有较严格的要求,如电压精度,电压的负载能力输出电流,电压的纹波和噪声,起动延迟,上升时间,恢复时间,电压过冲,断电延迟时间,跨步负载响应,跨步线性响应,交叉调整率,交叉干扰等.2多路输出电源对于电源应用者来讲,一般都希望其所选择的电源产品为“傻瓜型”的,即所选择的电源电压只要负载不超过电源最大值,无论系统的各路负载特性如何变化,而各路电源电压依然精确无误.仅就这一点来讲,目前绝大多数的多路输出电源是不尽人意的.为了更进一步说明多路输出电源的特性,首先从图1所示多路输出开关电源框图讲起.从图1可以看到,真正形成闭环控制的只有主电路Vp,其它Vaux1、Vaux 2等辅电路都处在失控之中.从控制理论可知,只有Vp无论输入、输出如何变动包括电压变动,负载变动等,在闭环的反馈控制作用下都能保证相当高的精度一般优于%,也就是说Vp在很大程度上只取决于基准电压和采样比例.对Vaux1、Vaux2而言,其精度主要依赖以下几个方面:1T1主变器的匝比,这里主要取决于Np1:Np2或Np1:Np32辅助电路的负载情况.3主电路的负载情况.注:如果以上3点设定后,输入电压的变动对辅电路的影响已经很有限了. 在以上3点中,作为一个具体的开关电源变换器,主变压器匝比已经设定,所以影响辅助电路输出电压精度最大的因素为主电路和辅电路的负载情况.在开关电源产品中,有专门的技术指标说明和规范电源的这一特性,即就是交叉负载调整率.为了更好地讲述这一问题,先将交叉负载调整率的测量和计算方法讲述如下.电源变换器多路输出交叉负载调整率测量与计算步骤1测试仪表及设备连接如图2所示.2调节被测电源变换器的输入电压为标称值,合上开关S1、S2…Sn,调节被测电源变换器各路输出电流为额定值,测量第j路的输出电压Uj,用同样的方法测量其它各路输出电压.3调节第j路以外的各路输出负载电流为最小值,测量第j路的输出电压ULj.4按式1计算第j路的交叉负载调整率SIL.式中:ΔUj为当其它各路负载电流为最小值时,Uj与该路输出电压ULj 之差的绝对值;Uj为各路输出电流为额定值时,第j路的输出电压.根据上面的测试及计算方法可以将交叉负载调整率理解为:所有其它输出电路负载跨步变100%-0%时对该路输出电压精度影响的百分比. 多路输出开关电源由图1原理所构成的实际开关电源,主控电路仅反馈主输出电压,其它辅助电路完全放开.此时假设主、辅电路的功率比为1:1.从实际测量得主电路交叉负载调整率优于%,而辅电路的交叉负载调整率大于50%.无论开关电源设计者还是应用者对大于50%的交叉负载调整率都将是不能接受的.如何降低辅电路交叉负载调整率,最直接的想法就是给辅助电路加一个线性稳压调节器包括三端稳压器,低压差三端稳压器如图3所示.从图3可知,由于引入了线性稳压调节器V,所以在辅路上附加了一部分功率损耗,功率损耗为P=而要使辅电路的交叉负载调整率小,就必须有意识地增大线性调整器的电压差,即就是要有意识增大,其带来的缺点就是增加了电源的功率损耗,降低了电源的效率.以图1及图3原理为基础设计和应用电源时,应注意的原则为:1主电路实际使用的电流最小应为最大满输出电流的30%;2主电路电压精度应优于%;3辅电路功率最好小于主电路功率的50%;4辅电路交叉负载调整率不大于10%.改进型多路输出开关电源在很多应用场合中,要求2路输出的功率基本相当,比如±12V/0.5A,±1 5V/1A.我们通过多年的实践,设计了如图4所示的电路,能较好地达到提高交叉负载调整率的目的.图4电路设计思想的核心有以下2点.1将正负2路输出滤波电感L1、L2绕制在同一磁芯上,采用双线并绕的方法,从而保证L1、L2电感量完全相同.并注意实际接入线路时的相位差模方法关系,这种滤波电感的连接方法使2路输出电流的变化量相互感应,在一定程度上较大地改善了2路输出的交叉负载调整率.2从图4可以看到,采样比较器Rs1、Rs2不像图1那样接到主电路Vp上,而是直接跨接到正负电源的输出端上,并且逻辑“地”不是电源的输出地,而是以负电压输出端作为采样比较和基准电压的逻辑“地”电位.这样采样误差将同时反映出正、负2路输出的电压精度变化,对正、负2路同样都存在有反馈作用,能在很大程度上改进2路输出的交叉负载调整率.以±15V/1A电源为例,采用图4的电路设计,实测得的2路交叉负载调整率优于2%.以图4原理为基础设计和应用电源时,应注意的原则为:12路最好为对称输出功率对称,电压对称,无明显的主、辅电路之分,比如我们常用到的±12V,±15V等都属于此类;22路输出电压精度要求都不是太高,1%左右;32路输出交叉调整率要求相对较高,2%左右.下面介绍一种通用性极强的3路电源设计方案,如图5所示.从图5可以看到,主+5V输出与辅路±Vout可以是±15V或±12V输出电路不但反馈相互独立,而且其PWM脉宽调制器,功率变换和变压器都是相互独立的.可以将此3路电源看成是由相互独立的1个+5V电源和1个±Vout电源共同组合而成.为了进一步减少二者之间的相互干扰和降低各自输出电压纹波的峰-峰值,应当进一步减小各独立电源的输入反射纹波一般纹波峰-峰值应小于50mV,纹波有效值应小于10mV和采用同步工作方式.高频磁放大器稳压器在多路输出电源中,输出电路经常采用高频磁放大稳压器,它以低成本、高效率、高稳压精度和高可靠性,而在多路输出的稳压电源中得到了广泛应用.磁放大器能使开关电源得到精确的控制,从而提高了其稳定性.磁放大器磁芯可以用坡莫合金,铁氧体或非晶,纳米晶又称超微晶材料制作.非晶、纳米晶软磁材料因具有高磁导率,高矩形比和理想的高温稳定性,将其应用于磁放大器中,能提供无与伦比的输出调节精确性,并能取得更高的工作效率,因而倍受青睐.非晶、纳米晶磁芯除上述特点外还具备以下优点:1饱和磁导率低;2矫顽力低;3复原电流小;4磁芯损耗少;磁放大输出稳压器没有采用晶闸管或半导体功率开关管等调压器件,而是在整流管输出端串联了一个可饱和扼流圈如图6所示,所以它的损耗小.由图6可知,磁放大稳压器的关键是可控饱和电感Lsr和复位电路.可控饱和电感是由具有矩形BH回线的磁芯及其上的绕组组成,该绕组兼起工作绕组和控制绕组的作用.复位RESET是指磁通到达饱和后的去磁过程,使磁通或磁密回到起始的工作点,称为磁通复位.由于磁放大稳压器所用的磁芯材料的特点良好的矩形BH回线及高的磁导率,使得磁芯未饱和时的可控饱和电感对输入脉冲呈现高阻抗,相当于开路,磁芯饱和时可控饱和电感的阻抗接近于0,相当于短路.目前开关电源工作频率已提到几百kHz以上,磁放大器在开关电源中的广泛应用对软磁材料提出了更高的要求.在如此高的频率下,坡莫合金由于电阻率太低约60μΩcm导致涡流损耗太大,造成温升高,效率降低,采用超薄带和极薄带虽能有所改善,但成本将大幅度上升;铁氧体具有很高的电阻率大于105μΩcm,但其Bs过低,居里点也太低.由于工作环境恶劣,对材料的应力敏感性、热稳定性等都有严格要求,上述材料是很难满足要求的.非晶合金的出现大大丰富了软磁材料.其中的钴基非晶合金具有中等的饱和磁感应强度,超微合金具有较高的饱和磁感应强度,它们都具有极低的饱和磁致伸缩系数和磁晶各向异性.钴基非晶和超微晶在保持高方形比的同时可以具有很低的高频损耗,用于高频磁放大器中,可大大提高电源效率,大幅度减小重量、体积,是理想的高频磁放大器铁芯材料.3高频磁放大输出稳压器典型应用电路图7所示的多路输出电源,其主路为闭环反馈PWM控制方式,辅路为磁放大式稳压电源.由于辅路磁放大输入电压波形受控于变压器主、辅绕组比,以及主路的工作状态主路输出电压的高低和主路负载的高低等,所以辅路的交叉负载调整率仍然不能够达到理想的状态.图8所示是一种完全利用磁放大器稳压技术设计的多路输出稳压电源.此电源前级为双变压器自激功率变换电路,后级多路输出均为磁放大器稳压电路.并且各路之间无关,前后级之间无反馈,无脉宽调制器PWM.此电路的优点如下:1电路结构简单,使用元器件数量少,除了两只功率管以外,其它元器件均是永久性或半永久性的,可靠性极高,制作也很方便;2电路中没有隔离反馈放大器,因此调整极其容易,而且一旦调整好后就无须维护,前级变换功率取决于后级总输出功率;3各路的输出特性相互独立,独自调整稳压,无主、辅路之分,所以,各输出电路的负载调整率的交叉负载调整率都非常理想,小于05%;4磁放大器在功率开通瞬间,处于“开路”状态,功率管在此刻的导通电流趋近于零,因而,损耗减到了最低限度,这有利于变换器的高频化和高效率;5由于前级功率变换器为不调宽的纯正方波,以及后级接了磁放大器,这样可以大幅度地降低输出纹波的峰-峰值,普通PWM型电源的输出纹波大约为输出电压标称值的1%左右,而采取带磁放大器的整流电路,纹波的峰-峰值可比较容易地降低到%左右.上述磁放大型稳压电源的综合电特性都是其它PWM隔离负反馈多路电源所无法比似的.尤其对多路电源实际应用来讲,可以对电源内部特性和电子系统的负载特性不予考虑,拿来就能使用,用上就无问题.但是,现代磁放大型稳压电源还存在如下一些问题,有待解决.1电路形式需进一步完善尤其是电源前级功率变换电路,应加入过、欠压保护,过流、短路保护,电源使能端.2进一步提高工作频率,以便减小体积.3进一步提高效率,减小磁损.4结语综合上述,对多路电源应用者而言,可以根据电子系统用电情况,更切实际地提出所用电源的特性参数.对多路电源设计者而言,可以更多更系统地了解现今多路电源设计方法,减少新产品的开发周期,做到事半功倍.。

大功率装置用多路输出高压隔离新型开关电源设计

大功率装置用多路输出高压隔离新型开关电源设计

大功率装置用多路输出高压隔离新型开关电源设计摘要:基于专利技术[1],通过设计高频交流电流源和一种特殊的输出变压器,研制了一种用于短路故障限流器中晶闸管驱动的多输出开关电源。

给出了主电路拓扑结构,叙述了输出变压器的结构及特点,分析了系统的工作原理,进行了校验电源有效性的仿真,开发了一台样机并成功应用在限流器实验装置中。

关键词:多路输出;高压隔离;驱动电源;短路故障限流器1 引言随着高压大功率电力电子装置的不断发展,串接在一起的驱动电源之间,往往需要承受极高的工作电压。

近来,多级隔离技术越来越多地被用在电路的驱动系统中,以满足高电压隔离的需要;但这同时也使得开关管的驱动电路越来越复杂。

如图1所示是一个使用在三相接地系统中的固态短路限流器。

它是由晶闸管三相整流器和一个限流电感组成的。

限流器主要被用在15kV的电力系统中。

考虑到电源电压的波动,晶闸管阻断电压限制和均压系数等因素,图1中所示限流器中的每个晶闸管阀在实际中必须要用8个6kV 等级的晶闸管串联组成。

这样在限流器中的晶闸管总数达到了64个,则至少需要有61路高压隔离驱动电源用到这些晶闸管的门极驱动中。

所以,开发一个新型的电源用作限流器中晶闸管的门极驱动电源是一项非常重要的任务。

图1 三相接地系统固态短路限流器主电路拓扑Dusan M. Raonic[2]提出了一种晶闸管自我供能的门极驱动方式,它把一个缓冲电容作为能量存贮单元,解决了几乎每个功率开关管都存在的对隔离电源的需求。

但是,这种方式只能被用于工作在功率变换器直流侧的晶闸管和GTO的门极驱动中。

Chang Liuchen[3]研制了一种驱动板电源用于三相逆变器中大功率IGBT的驱动,它通过一个多绕组的变压器,实现了4路相互隔离的输出。

这种电源的缺点是随着输出路数和隔离电压的增加会导致变压器的结构很复杂,体积极庞大。

Heinemann Lothar et al[4]提出了一种具有超高压隔离性能的电源用作IGBT的门极驱动,它使用了一种特殊结构的变压器,于是只能有一路输出。

新型多路直流输出高压隔离电源的研究

新型多路直流输出高压隔离电源的研究

新型多路直流输出高压隔离电源的研究摘要:首先,介绍了基于高频链交流电流母线分布式电源系统的原理,这种系统除具有一般分布式电源系统的优点之外,还具有很好的负载扩展特性、较高的电气隔离特性等优点;然后,基于该原理设计了一种能够提供脉冲宽度不变,幅值可调的高频交流电流母线电源;分析了这种电源的工作过程。

实验样机成功地应用在10kV固态短路限流器中。

关键词:分布式电源;高压隔离;固态短路限流器引言电力电子装置处理高电压大容量等级的技术方案主要有以下几种: 1)采用高容量等级的开关器件或者器件的串并联; 2)采用级联的多电平变换器技术。

无论采用哪种技术,串接在一个桥臂或级联的H桥臂之间的功率管的驱动电源之间都承受了极高的电压。

为了保证装置的可靠性,必须确保各路驱动电源之间有良好的高压隔离特性。

另外,由于处理高压等级的时候,所使用的开关管一般比较多,因此,独立隔离驱动直流电源的数目比较大。

常规的多路直流输出技术都是基于直流母线分布式电源系统[1],其中的DC/DC变换器数目多、体积大,而且,当各DC/DC变换器的开关频率不同的时候,还会发生拍频干扰,从而使得输出电压出现各频率纹波。

常规的高压隔离技术必须要设计出耐高压的隔离变压器,高压隔离的要求给工艺和结构上都带来很大困难,而且成本也随之增加。

文献[2]通过一个多绕组的变压器,实现了用在三相逆变器4路相互隔离的IGBT驱动电源。

本文所设计的新型多路输出高压隔离电源是基于专利技术[3],其主要思想就是高频链交流电流分布式电源系统的思想。

其一次侧为提供满脉冲宽度、电流幅值可调的高频交流方波电流母线,使其穿过普通环形变压器,其二次侧实现能量传输和高压隔离。

1 拓扑结构这种基于高频链交流电流母线分布式电源系统的框图如图1所示。

和直流分布式电源系统[2]一样,它相对于集中式的电源系统而言,主要有以下几个优点:1)负载与电网之间、负载与负载之间有较好的电气隔离性能,隔离可以很容易地做到上万伏等级; 2)扩展特性好,负载的路数可以任意地增减; 3)输出相同路数隔离的直流电源时,可靠性高、体积小、重量轻,成本也要低很多。

一种用于高压电力电子开关的新型多路输出隔离供电系统

一种用于高压电力电子开关的新型多路输出隔离供电系统

一种用于高压电力电子开关的新型多路输出隔离供电系统辛征;王秀和;孙树敏;王辉;程艳;李洪杰【摘要】为了改善目前电力电子开关在高电压等级下隔离变压器数量过多、传统多路供电系统过于庞大的问题,提出了一种新型的多路输出隔离供电系统.采用变压器松耦合技术,为该多路隔离供电系统设计了一种新型电路拓扑结构,推导了其参数计算公式,对关键参数进行了选值与优化,并在需要20路输出供电的串联IGBT电力电子开关电路中进行了实验验证.实验结果表明:在满载情况下,供电电路的输出电压稳定在18V,可以为20路电力电子开关稳定供电;系统在缩小体积和空间的基础上实现了高电压隔离,隔离直流电压高达30 kV,并且此系统能够拓展至更多电力电子开关串联应用中.实验证明了该供电系统的实用性和设计方法的可行性.【期刊名称】《西安交通大学学报》【年(卷),期】2016(050)012【总页数】7页(P99-105)【关键词】电力电子开关;多路输出;高压隔离;松耦合【作者】辛征;王秀和;孙树敏;王辉;程艳;李洪杰【作者单位】山东大学电气工程学院,250061,济南;山东大学电气工程学院,250061,济南;山东电力科学研究院,250002,济南;山东大学电气工程学院,250061,济南;山东电力科学研究院,250002,济南;西安交通大学电气工程学院,710049,西安【正文语种】中文【中图分类】TN405;TN43近年来,随着电力电子技术的不断发展,半导体电力电子开关越来越广泛地应用于工业生产和实践中[1-5],包括脉冲功率技术、重复性高压脉冲发生器、核工业、静态无功补偿器、绝缘状态检测等多个领域[6-12]。

相比较于传统的气隙开关,常见的半导体开关如MOSFET、IGBT等具有易于直接控制、放电重复率高、使用寿命长等优点。

然而,单个的半导体开关耐受电压较低,只能达到几百到数千伏,这远远不能满足行业需求,因此需要将半导体开关器件串联使用以提高其耐受电压等级,这就使得每个成品的电力电子开关将由几十甚至上百个开关器件串联而成。

新型多路输出开关电源的设计与研究

新型多路输出开关电源的设计与研究

新型多路输出开关电源的设计与研究一、摘要本文介绍了一种新型多路输出开关电源的设计与研究。

随着科技的发展和电子技术的不断创新,对电源的需求也在不断提高,而多路输出开关电源具有高效率、体积小、重量轻等优点,因此具有更广泛的应用前景。

本文设计了一种采用PWM控制的方式,通过对功率MOSFET进行精确的PWM控制来实现多路输出电压稳定的效果,同时提高了系统的整体效率。

在本研究过程中,我们对电路的结构进行了优化,降低了设计的复杂性,并通过实际测试验证了该设计方案的正确性和可行性。

本文章详细阐述了多路输出开关电源的设计思路,工作原理及其在实际应用中的优势。

1.1背景和引言随着科技的飞速发展,电子设备已经渗透到我们生活的各个方面。

这些设备越来越依赖可靠的电源进行供电。

在这种背景下,开关电源作为高效、节能的电源解决方案备受青睐。

传统的开关电源在输出电流、效率、体积和重量等方面仍存在局限性,难以满足现代电子设备对电源的高要求。

我们将设计一款具有多路输出的新型开关电源,以满足市场的需求,并提高电源解决方案的性能。

1.2目的和目标为了达到这些目标,我们采用了创新的电路设计和优化的控制策略。

在电路结构方面,我们采用了高度集成化的设计方案,通过选用高性能的电力电子器件,减小了电源的体积和重量。

采用了高效的电路拓扑和优化布线,降低了电源的内阻和电磁干扰,提高了电源的效率。

在控制策略上,我们采用了智能化的控制方法,根据实际负载的实时变化,自动调整电源的输出电压和电流,以实现对输出电压的精确控制。

我们还采用了多重保护机制,包括过流、过压、短路和温度保护等,确保电源在恶劣环境下的稳定运行和使用寿命。

本文所设计的新型多路输出开关电源具有高效率、小体积、轻重量和高功率密度等优点,可广泛应用于各种电子设备领域。

通过实现多路独立输出和智能化控制,我们将为用户提供更加优质、可靠的电源解决方案。

1.3文章组织本文介绍了一种新型的多路输出开关电源设计。

基于DM0265的多路输出开关电源设计

基于DM0265的多路输出开关电源设计

轻; ③稳压范围广 ; ④性能灵活, 驱动能力强 ; ⑤可靠性
0 引 言
随着变 频调 速技 术 的发 展 , 频 器 在交 流 电机调 变
谷 利 飞 , 敏 明 , 海鹏 顾 潘
( 江理工 大学 机械 与 自动控制 学 院 , 浙 浙江 杭州 30 1 ) 108
摘要: 开关电源设计是变频器硬件设计 的核心 内容之一 , 其性能 的好坏 直接影响变频调 速系统 的整体工作 性能。针对变频器 内部
电路 多 种 电压 等 级 供 电的 需 要 , 计 了一 种 基 于 F i h d公 司 的 D 0 6 片 的反 激 式 多路 输 出 隔 离 型 开 关 电源 。介 绍 了 该 电 源 设 a ci r l M 2 5芯
GU L — i i e ,GU Mi — n f n mig,P AN lp n Ha — e g
( aut o Meh ncl n ier ga dA tm t ot l hj n c T c nvrt , a gh u3 0 1 ,C ia F c l f c aia E g ei n uo a cC nr ,Z ei gS i ehU i sy H nzo 10 8 hn ) y n n i o a — ei
第2 7卷 第 9期
21 0 0年 9月




V0. 7 No 9 12 . Se 2 0 p. 01
J u n l fMe h nc l& E e tia gn e n o r a c a ia o l cr l c En ie r g i
基 于 D 2 5的 多 路 输 出开 关 电 源 设 计 M0 6
文章 编 号 : 0 ~ 5 1 2 1 )9— 10— 4 I 1 4 5 (0 0 0 00 0 O

多路输出开关电源的设计及应用原则

多路输出开关电源的设计及应用原则

多路输出开关电源的设计及应用原则多路输出开关电源是一种电力电子设备,它可以从交流电源中提供多个不同电压和电流的直流电输出。

在设计和应用多路输出开关电源时,有几个重要的原则需要考虑。

1. 选定合适的开关电源拓扑结构:多路输出开关电源可以采用多种拓扑结构,例如非隔离型Buck、Boost、Buck-Boost和隔离型Flyback、Forward等。

选择合适的拓扑结构需要考虑输出电压、输出功率和成本等因素。

2. 合理设计输出电压和电流的等级:多路输出开关电源通常需要提供不同电压和电流级别的输出。

在设计时,应根据实际需求合理确定输出电压和电流的等级,并确保满足负载的功率需求。

3. 增加输出电压和电流的调节功能:多路输出开关电源应具备电压和电流的调节功能,以满足不同负载的需求。

可以通过采用可调电压稳压器(例如LM317)或数字控制芯片(例如TL494)来实现。

4. 合理设计电源滤波电路:多路输出开关电源需要具备良好的电源滤波电路,以降低输入和输出端的电磁干扰。

可以采用电容、电感和磁珠等元件来设计滤波电路,并确保滤波效果良好。

5. 保证输出电压和电流的稳定性:输出电压和电流的稳定性是多路输出开关电源设计中的重要指标。

可以采用反馈控制回路和稳压芯片等来保证输出电压和电流的稳定性。

多路输出开关电源的应用范围广泛,常见应用包括:1. 电子设备:多路输出开关电源可以为电子设备提供不同电压和电流的直流电源,例如计算机、通信设备、工业自动化设备等。

2. 医疗设备:多路输出开关电源可以为医疗设备提供稳定、可靠的电源,例如医用仪器、电子监护设备等。

3. 光电设备:多路输出开关电源可以为光电设备提供适合的电压和电流,例如LED照明、激光器、光纤通信设备等。

4. 电源适配器:多路输出开关电源可以用作电源适配器,为各种便携电子设备充电,例如手机、平板电脑、笔记本电脑等。

需要注意的是,在使用多路输出开关电源时,应确保正确安装和连接,避免电气安全问题。

最新600V输入多路输出高频开关电源设计

最新600V输入多路输出高频开关电源设计

600V输入多路输出高频开关电源设计600V输入多路输出高频开关电源设计文:管晓磊来源:九洲电气发表时间:2009-06-16 08:36:51浏览量:593摘要:本文介绍了600V输入多路输出高频开关电源设计方案,主电路采用双管反激功率变换电路,控制电路采用电流型PWM控制技术关键词:双管反激变换器电流型PWM控制射极跟随互补双极驱动光耦隔离反馈1 引言随着现代工业的不断发展,对电源装置的性能、效率、重量等提出了更高的要求,常规的线性电源已经不能满足要求,开关电源采用高频脉宽调制控制技术, 具有性能好、效率高、体积小、重量轻、噪音低、稳压范围广等特点,本文介绍了一个应用在工业大功率电源中,作为辅助电源的大范围输入多路输出的高频开关电源。

2 主电路主电路的选择:主电路采用双管反激功率主电路,首先根据设计要求有多路输出,所以选择反激方式,反激的一个优点就是能够较简单的从一个电源得到多个输出,其次输入电压较高为600V,如果采用单管的方式,在MOSFET关断的瞬间会承受3-4倍输入电压VIN,这样对MOSFET的电压要求高,随之造价就比较昂贵!采用双管就能避免这个问题,图1中二极管D19 D31起钳位的作用,把过剩的能量反馈回电源中,并在MOSFET关断的瞬间把电压钳位在VIN里,这样对元器件的要求较低,实现起来比较容易!工作中通过控制芯片产生PWM,驱动电路以PWM方式激励MOSFET,开关管以同步的方式开通关断,从而将输入电压VIN变换成高频方波交流电压。

变压器的设计是整个电路的关键之一。

在设计变压器时,原边电感量不能太大,并且磁心中要增加气隙,否则会出现电流上升率小、导通时间短、电流上升值不大,导致电路没有能力传递所需功率。

同时,在设计变压器时必须认真考虑变压器的磁饱和瞬时效应。

在瞬变负载情况下,当输入电压较高而负载电流较小时,如果负载电流突然增加,则控制电路会立即加宽输出脉冲宽度来提供补充功率。

多路输出高压隔离型开关设计共8页

多路输出高压隔离型开关设计共8页

多路输出高压隔离型开关设计1 引言随着高压大功率电力电子装置的不断发展,串接在一起的驱动电源之间,往往需要承受极高的工作电压。

近来,多级隔离技术越来越多地被用在电路的驱动系统中,以满足高电压隔离的需要;但这同时也使得开关管的驱动电路越来越复杂。

如图1所示是一个使用在三相接地系统中的固态短路限流器。

它是由晶闸管三相整流器和一个限流电感组成的。

限流器主要被用在15kV的电力系统中。

考虑到电源电压的波动,晶闸管阻断电压限制和均压系数等因素,图1中所示限流器中的每个晶闸管阀在实际中必须要用8个6kV等级的晶闸管串联组成。

这样在限流器中的晶闸管总数达到了64个,则至少需要有61路高压隔离驱动电源用到这些晶闸管的门极驱动中。

所以,开发一个新型的电源用作限流器中晶闸管的门极驱动电源是一项非常重要的任务。

http://cdtarena图1 三相接地系统固态短路限流器主电路拓扑Dusan M. Raonic[2]提出了一种晶闸管自我供能的门极驱动方式,它把一个缓冲电容作为能量存贮单元,解决了几乎每个功率开关管都存在的对隔离电源的需求。

但是,这种方式只能被用于工作在功率变换器直流侧的晶闸管和GTO的门极驱动中。

Chang Liuchen[3]研制了一种驱动板电源用于三相逆变器中大功率IGBT的驱动,它通过一个多绕组的变压器,实现了4路相互隔离的输出。

这种电源的缺点是随着输出路数和隔离电压的增加会导致变压器的结构很复杂,体积极庞大。

Heinemann Lothar et al[4]提出了一种具有超高压隔离性能的电源用作IGBT的门极驱动,它使用了一种特殊结构的变压器,于是只能有一路输出。

如果这种电源被用到如图1所示的固态短路故障限流器中,61路驱动电源将会不可避免地导致装置体积庞大,而且安装和配线都会有很大的不便。

基于专利技术[1],研制了一种具有多路输出,高压隔离性能的实用新型开关电源,用于多管驱动。

该开关电源采用了磁环作输出变压器,仅由无需弯曲的电缆穿过1次形成单匝原边,副边就可以输出10W以上的功率,经过简单的整流和稳压形成一路驱动电源。

多路输出开关电源毕业设计

多路输出开关电源毕业设计

目录摘要 (I)Abstract..................................................................................................................................... I I 第一章绪论.. (1)1.1设计的背景及意义 (1)1.2 设计的主要内容和技术指标 (3)1.2.1设计的主要内容 (3)1.2.2技术指标 (3)第二章系统的总体结构及方案设计 (5)2.1方案比较 (5)2.2方案设计 (6)2.3 主电路的结构 (7)2.4开关电源的基本工作原理 (7)2.5高频开关电源的结构 (8)第三章主电路设计 (10)3.1. 滤除干扰电路 (10)3.1.1开关电源电磁干扰的产生机理 (10)3.1.2滤除电磁干扰电路设计 (11)3.1.3.电磁脉冲(EMP)电路的设计 (14)3.1.4.电磁兼容(EMC)的设计 (14)3.2.整流、滤波电路 (15)3.3电路拓扑结构选择 (15)3.3.1反激式电路 (16)3.3.2 单激式变压器开关电源的工作原理 (16)3.3.3 正激式变压器开关电源工作原理 (17)3.3.4 双激式变压器开关电源 (18)3.3.5反激式变压器开关电源工作原理 (18)3.3.6反激式电路拓扑稳压过程 (22)3.4输出整流滤波电路 (22)3.4.1稳压输出 (23)3.4.2三段集成稳压器 (23)3.4.3稳压输出电路 (25)3.5变压器参数的计算 (26)第四章控制电路的设计 (30)4.1 PWM技术简介 (30)4.1.1 PWM控制技术概述 (30)4.1.2 PWM控制的基本原理 (30)4.1.3 PWM控制的基本概念 (32)4.2 电流型PWM控制原理及优点 (33)4.2.1 电流型PWM控制原理 (33)4.2.2电流型PWM控制芯片 (34)4.2.3 UC3842的性能特点 (34)4.2.4 UC3842的引脚排列及内部框图 (35)4.3 反馈电路的设计 (38)4.3.1 反馈绕组设计 (38)4.3.2反馈电路设计 (39)4.4 保护电路 (40)4.4.1 过电流保护原理 (40)4.4.2过压保护原理 (41)4.5 场效应管MOSFET (41)4.5.1功率MOSFET驱动电路 (42)4.5.2 MOS管的缓冲保护电路 (43)4.6系统稳定性 (45)4.6.1系统稳压过程 (45)4.6.2 稳定分析 (46)4.6.3 故障分析 (46)第五章系统仿真 (49)5.1仿真软件介绍 (49)5.2系统仿真 (49)第六章设计总结 (55)参考文献 (57)外文翻译 (58)致谢 (82)附录: (83)摘要本文阐述了一种多路输出的反激式开关电源电路的设计及应用。

基于NCP1014芯片的多路输出开关电源设计

基于NCP1014芯片的多路输出开关电源设计

15江苏电器 (2008 No.12)0 引言随着电力仪器仪表向小型化、低成本的方向发展,其对电源提出了更高的要求。

电源就像是一个心脏,为整个系统提供动力,它的性能和成本直接制约着仪表的性价比。

目前常用的直流稳压电源分线性电源和开关电源两大类,线性电源使用的外围元件少,设计简单,具有纹波小、干扰少等优点,存在的缺点是随着输出功率的增加,工频变压器的体积不断增大,成本也随之增加,另外,还存在效率低、散热难等问题;开关电源由于其内部关键元器件工作在高频开关状态,本身消耗的能量很低,开关电源效率可达65%~85%,比普通线性稳压电源提高近一倍,此外开关电源还有功耗低、体积小、重量轻、稳压范围宽等优点,存在的不足是电路结构复杂,成本较高,但由于开关电源出色的性能,将得到越来越广泛的使用。

文中主要介绍了使用安森美半导体公司生产的NCP1014芯片设计独立两路开关电源,一路供通信使用,一路供控制芯片使用,应用于电力仪表,如多功能表等。

1 NCP101X性能特点及内部结构NCP101X系列构成非隔离式、需要外围元件较少的节能开关电源,与传统的解决方案相比,不仅具有比电容降压式线性稳压电源更高的效率,而且有更大的输出能力。

该开关电源具有可选择的开关频率(65,100,130kHz),抗干扰能力强,待机功耗低,并有频率抖动和动态自供电等功能;保护功能完善,具有短路自动重启、限流、过热、限制负载等保护线路。

主要功能介绍:基于NCP1014芯片的多路输出开关电源设计戚敏敏,戚莹(杭申控股集团有限公司,浙江 杭州 311234)Abstract: Introduction was made to switching power supply design based on NCP1014. The working principle of switching power supply was analyzed, main circuit output voltage ripple diagram given out after the system was debugged. The switching power supply could pro-vide soft start, frequency jitter, short-circuit protection, skip cycle, maximum peak current setting and dynamic self-supply. The test results show that the output power and voltage ripple of switching power supply meet design requirements of the system and it is small in volume, high in transform ef fi ciency and low in cost etc.Key words: NCP1014 chip; multiplex output switching power supply; voltage rippleQI Min-min , QI Ying(Hangshen Holding Group Co.,Ltd, Hangzhou 311234, China )Design of Multiplex Output Switching Power Supply Based on NCP1014摘 要:介绍了基于NCP1014芯片的开关电源设计,分析了开关电源的工作原理,给出了调试处理后的主电路输出电压纹波图。

一款高精度自激式多路输出稳压开关电源的设计

一款高精度自激式多路输出稳压开关电源的设计

一款高精度自激式多路输出稳压开关电源的设计摘要:本文提出了一种高精度的自激式多路输出稳压开关电源,较以往多路输出开关电源,所用元件极少,其中自激控制部分仅用11 个常用元件实现,但是其输出电源精度却很高。

而且只需稍做修改,就可将电路中±9 V 转换为±12 V,±15V,其中主回路稍作修改也可改为3 。

3 V/4 A精确输出。

此电源电路简单,但适用范围广。

 引言 开关电源是一种利用开关功率器件并通过功率变换技术而制成的直流稳压电源。

它具有体积小、重量轻、效率高、对电网电压及频率的变化适应性强的特点。

开关电源又被称为高效节能电源,内部电路工作在高频开关状态,自身消耗的能量很低,一般电源效率可达80 %以上,比普通线性稳压电源提高一倍。

 开关电源的主电路拓扑有很多种,从DC/DC变换输入与输出间有无变压器隔离,开关电源分为有变压器隔离和无变压器隔离,每类又有几种拓扑,即Buck(降压型)、Boost (升压型)、Buck-Boost (升压-降压型)、Cuk(串联式)及Sepic (并联式)等;按激励方式分,有自激式和它激式;按控制种类包括PWF(调频式)、PWM(调宽式)、PAM(调幅式)和RSM(谐振式)4 种;按能量传递方式有连续模式和不连续模式。

用的最多的是调宽式变换器。

调宽式变换器有以下几种:正激式(Forward )、反激式(Feedback )、半桥式(Half Bridge Mode )、全桥式(Full Bridge Mode )及推挽式(Push Draw Mode )等。

若按开关管的开关条件可分为硬开关(Hardswitching)和软开关(Softswitching)两种。

根据对开关电源的各种拓扑和控制方式的技术要求,工程实际的实现难易,电器性能及成本等指标的总结,本文选用有变压器隔离的自激型反激式拓扑来。

大功率开关电源的新型模块式设计

大功率开关电源的新型模块式设计

大功率开关电源的新型模块式设计大功率开关电源是一种能够将输入电能转换成不同电压、电流和频率的电源装置。

它广泛应用于工业控制系统、通信设备、医疗仪器以及家用电器等领域。

目前,传统的大功率开关电源设计存在着体积庞大、效率低下和散热困难等问题。

为了解决这些问题,新型模块式设计应运而生。

新型模块式设计的大功率开关电源可以将电源系统拆分成多个独立的模块,每个模块负责不同的功能,如输入滤波、变压器、整流、逆变和输出滤波等。

这种设计的主要特点是模块化和可配置性,模块之间可以相互独立,通过连接器进行连接。

这样的设计可以大大简化系统的维护和升级,同时还能提高系统的可靠性和安全性。

在新型模块式设计中,每个模块可以根据实际需求进行配置,例如,可以选择不同功率的变压器、不同类型的整流电路以及不同容量的输出电容。

这种可配置性使得设计人员可以根据具体应用场景选择合适的模块,从而提高了设计的灵活性和适应性。

另外,新型模块式设计还可以通过合理布局和散热设计来提高系统的散热效果。

模块可以根据功率大小进行分组,使得热量集中在模块内部,并通过散热器进行散热。

同时,在模块内部可以采用高效的散热元件,如热管和散热风扇等,以提高散热效率。

这种设计可以有效地解决传统大功率开关电源散热困难的问题,并提高系统的工作效率和可靠性。

此外,新型模块式设计还可以采用先进的控制算法和电子元件,以提高系统的性能。

例如,可以采用闭环控制算法来实现电压和电流的精确控制,从而减小输出波动和功率损耗。

同时,可以采用先进的开关元件和高效的电路拓扑结构,以提高系统的转换效率和工作稳定性。

综上所述,新型模块式设计的大功率开关电源具有模块化和可配置性强、散热效果好以及性能优越等特点。

这种设计可以提高系统的灵活性、可靠性和工作效率,满足不同应用场景的需求。

在未来,随着技术的不断进步和应用的推广,新型模块式设计的大功率开关电源将会得到更广泛的应用。

多路输出开关电源的设计及应用

多路输出开关电源的设计及应用

多路输出开关电源的设计及应用开关电源是一种将电能进行转换和调节的电源系统,其主要通过非线性元件(开关管、PWM调制器等)将输入电能快速开关控制,进而获得所需的输出电能。

多路输出开关电源则在此基础上实现了多个输出通道,用以满足不同电路的需求。

多路输出开关电源的设计主要包括如下几个步骤:1. 确定输出电压和电流需求:根据待供电的电路或设备的电压和电流要求,确定每个输出通道的电压和电流参数。

2. 计算输入功率和选择变压器:根据输出电压和电流参数,计算输入功率并选择适当的变压器。

变压器的主要作用是将输入电压转换为合适的中间电压,便于后续的开关和调节控制。

3. 设计开关和调节控制电路:根据每个输出通道的电压和电流要求,设计相应的开关管、PWM调制器等元件的参数和控制电路。

控制电路主要负责对开关管进行开关控制,通过调节开关频率和占空比,实现输出电压和电流的稳定调节。

4. 设计滤波电路和保护电路:设计适当的滤波电路,用以减少开关电源输出的纹波和噪声;设计相应的保护电路,用以保障开关电源和所供电路或设备的安全,如过载保护、短路保护等。

多路输出开关电源的应用非常广泛,常见于工业控制系统、通信设备、计算机设备、医疗设备等领域。

多路输出能够满足不同电压和电流需求的同时,提供稳定的电能供应,保证设备的正常运行。

此外,开关电源具有高效率、小体积、轻量化等优点,可以满足现代电子设备对电源的高要求。

多路输出开关电源是现代电子设备中常用的一种电源系统,它通过将输入电能进行高效率的转换和调节,为多个输出通道提供稳定可靠的电源。

在电子设备设计中应用广泛,特别是在工业、通信、计算机等领域。

多路输出开关电源的设计非常重要,其关键是根据待供电设备的电压和电流需求,设计符合要求的输出通道。

首先,根据电路或设备的电压和电流要求,确定每个输出通道的电压和电流参数。

例如,工业控制系统中可能需要供应多个不同电压的直流电源,而通信设备可能需要同时提供5V和12V的电源。

毕业设计38多路输出开关电源

毕业设计38多路输出开关电源

毕业设计38多路输出开关电源开关电源是一种将交流电转换为直流电的电源装置。

它主要由整流滤波电路和稳压电路组成,利用开关管的开关动作周期性地切断输入电源,通过调整开关管的导通时间比例来控制输出电压的大小。

开关电源具有功率大、效率高、体积小、重量轻、工作稳定等优点,广泛应用于各种电子设备中。

我对您的毕业设计38多路输出开关电源感兴趣,下面我会就该设计进行介绍。

首先,38多路输出开关电源的设计需要确定以下几个基本参数:输入电压、输出电压、输出电流、效率要求和外形尺寸。

根据这些基本参数,我们可以选择适合的开关电源方案。

在设计过程中,可以利用开关电源设计软件进行仿真和优化。

首先,根据输入电压和输出电压的差值确定变压器的绕组比例,然后根据输出电流和效率要求选择合适的开关管、功率管和输出电感。

另外,为了实现38多路输出,可以采用多路输出电路拓扑结构。

常见的多路输出电路拓扑结构有拓扑结构、集中控制结构和分散控制结构。

选择合适的多路输出电路拓扑结构可以提高开关电源的可靠性和稳定性。

在电路的稳压电路部分,可以选择适合的稳压器件和控制器。

常见的稳压器件有线性稳压器和开关稳压器,线性稳压器适用于低功率应用,而开关稳压器适用于高功率应用。

控制器可以选择常见的PWM控制器或者开关控制器。

在PCB布局和元件选型方面,需要考虑到电磁兼容(EMC)和热管理。

合理的PCB布局和元件选型可以降低开关电源在工作过程中的噪声干扰和温度升高。

最后,对38多路输出开关电源进行调试和测试。

在调试过程中,可以通过测量输入电压和输出电压、电流来验证设计的正确性。

测试阶段可以做一些负载测试、温度测试等,以保证开关电源的稳定性和可靠性。

综上所述,设计38多路输出开关电源需要考虑到输入电压、输出电压、输出电流、效率要求和外形尺寸等基本参数,选择合适的开关电源方案和拓扑结构,进行PCB布局和元件选型,并进行调试和测试。

希望对您的毕业设计有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大功率装置用多路输出高压隔离新型开关电源设计摘要:基于专利技术[1],通过设计高频交流电流源和一种特殊的输出变压器,研制了一种用于短路故障限流器中晶闸管驱动的多输出开关电源。

给出了主电路拓扑结构,叙述了输出变压器的结构及特点,分析了系统的工作原理,进行了校验电源有效性的仿真,开发了一台样机并成功应用在限流器实验装置中。

关键词:多路输出;高压隔离;驱动电源;短路故障限流器1 引言随着高压大功率电力电子装置的不断发展,串接在一起的驱动电源之间,往往需要承受极高的工作电压。

近来,多级隔离技术越来越多地被用在电路的驱动系统中,以满足高电压隔离的需要;但这同时也使得开关管的驱动电路越来越复杂。

如图1所示是一个使用在三相接地系统中的固态短路限流器。

它是由晶闸管三相整流器和一个限流电感组成的。

限流器主要被用在15kV的电力系统中。

考虑到电源电压的波动,晶闸管阻断电压限制和均压系数等因素,图1中所示限流器中的每个晶闸管阀在实际中必须要用8个6kV 等级的晶闸管串联组成。

这样在限流器中的晶闸管总数达到了64个,则至少需要有61路高压隔离驱动电源用到这些晶闸管的门极驱动中。

所以,开发一个新型的电源用作限流器中晶闸管的门极驱动电源是一项非常重要的任务。

图1 三相接地系统固态短路限流器主电路拓扑Dusan M. Raonic[2]提出了一种晶闸管自我供能的门极驱动方式,它把一个缓冲电容作为能量存贮单元,解决了几乎每个功率开关管都存在的对隔离电源的需求。

但是,这种方式只能被用于工作在功率变换器直流侧的晶闸管和GTO的门极驱动中。

Chang Liuchen[3]研制了一种驱动板电源用于三相逆变器中大功率IGBT的驱动,它通过一个多绕组的变压器,实现了4路相互隔离的输出。

这种电源的缺点是随着输出路数和隔离电压的增加会导致变压器的结构很复杂,体积极庞大。

Heinemann Lothar et al[4]提出了一种具有超高压隔离性能的电源用作IGBT的门极驱动,它使用了一种特殊结构的变压器,于是只能有一路输出。

如果这种电源被用到如图1所示的固态短路故障限流器中,61路驱动电源将会不可避免地导致装置体积庞大,而且安装和配线都会有很大的不便。

基于专利技术[1],研制了一种具有多路输出,高压隔离性能的实用新型开关电源,用于多管驱动。

该开关电源采用了磁环作输出变压器,仅由无需弯曲的电缆穿过1次形成单匝原边,副边就可以输出10W 以上的功率,经过简单的整流和稳压形成一路驱动电源。

因而驱动电源路数极易增减,既可按装置需要随意安装,又易达到极高的隔离电压(仅取决于电缆的绝缘性)。

应用在要求很多路输出,高隔离电压的大功率装置,如固态短路故障限流器中,此电源已体现了无可比拟的优越性。

2 主电路拓扑新型电源的主电路拓扑如图2所示。

它由5个部分组成。

第一部分是一个由4个二极管组成的单相整流器。

第二部分是半桥拓扑结构,它主要由MOSFETS3及S4和电容C1及C2组成。

这个部分是新型电源中辅助电源的主电路。

图2 新型电源的主电路拓扑第三部分的功能是产生一个幅值恒定的直流电流I1。

由于这里采用的PWM开关控制芯片是专门为移相全桥变换器电路设计的,满足全桥变换器需要的4路48%占空比的PWM驱动信号,通过简单组合可形成两路占空比48%内可调的PWM驱动信号,所以恒流源的主电路采用了一个双Buck的电路拓扑。

这个双Buck 变换器等效于两个普通的单Buck变换器的并联。

MOSFET S1,二极管D1,电感L2组成了一个单Buck变换器;MOSFET S2,二极管D2,电感L3组成了另一个。

这两个单Buck变换器分别由两路互补对称的PWM驱动信号控制。

它们和电感L1,二极管D3一起组成了双Buck变换器。

两个单Buck变换器共同使用电感L1,这样电感L2和L3的体积和重量都可以减小。

二极管D3的功能是箝制恒流输出型双Buck变换器的输出电压,使它不超过整流器的输出电压。

第四部分是一个单相的全桥变换器,它把幅值恒定的直流电流I1变换成高频的交流电流i2。

S5和S8(或S6和S7)由同一个驱动信号控制,实现了同步开通和关断。

S1及S2和S5~S8的控制信号如图3所示。

当S6及S7开通且S5及S8关断时,按照图2所定义的i2的正方向,i2为正值。

而当S6及S7关断且S5及S8开通时,i2为负值。

电流i2的波形是方波。

和电压型的全桥变换器不同的是,为了避免由于单相变换器中的4个MOSFET同时关断引起的过压,S5及S8应该在S6及S7开通以后再关断,反之亦然。

延时时间t d如图3所示。

(a) S1控制信号(b) S2控制信号(c) S5及S8控制信号(d) S6及S7控制信号图3 MOSFET的控制信号第五部分包括T1,T2,……T n是一些特殊结构的变压器和电流i2的电缆线的引线电感L4。

为了减小这个新型电源的体积,功率开关管必须工作在一个很高的频率下。

这里采用了多谐振荡零电压软开关技术减小开关损耗,减小器件的电压电流应力,并获得良好的电磁兼容性。

所有8个功率开关管都工作在软开关模式下。

R3是一个电流检测电阻用作电源的短路保护。

R4是另一个电流检测电阻,用来实现电流I1的闭环控制。

3 控制电路控制电路的主要功能就是产生驱动信号,控制主电路产生一个幅值恒定的高频电流。

为了使电流幅值恒定,采用了如上节所述的双Buck变换器电路。

这个双Buck变换器控制电路的主要部分包括一个电流反馈的PI调节器和一个PWM信号发生器。

单相桥式变换器的控制电路用以产生如图3(c)和图3(d)所示的控制信号。

所有上述的功能只要用一片集成芯片UC3875就可以实现。

UC3875产生的驱动信号使两个对角开关管的开关动作相对于另两个对角开关管的开关动作产生相移,实现了对桥式功率级的控制,能够在很高的频率下允许固定频率PWM调节结合谐振零电压软开关,实现高效率。

4 输出变压器采用磁环做输出变压器,每个输出变压器的原边仅有一匝,即高频交流电流i2流经的一根穿过所有输出变压器磁环的高压绝缘电缆线。

通过输出变压器的增减,驱动电源路数能够很容易地实现增减。

如果电流I1和整流器的输出电压足够高,仅一个电源就能够实现大量的隔离输出。

新型电源每个输出单元都可以很容易地放置,只要把它们安装在相应晶闸管附近,用电缆线穿过所有磁环,用光纤传送DSP输出的驱动信号,既可实现整个装置的电能与信号分开传送,又可满足限流器中晶闸管安装的需要。

因为,这些晶闸管被使用在高压电力电子装置中,每二个晶闸管的驱动电路之间的隔离电压必须足够地高。

如果采用一根高压绝缘电缆线作为输出变压器的原边绕组,这样原边绕组与副边绕组之间的隔离电压至少等于这根高压绝缘电缆线的绝缘电压。

这样,只要使用一根超高压绝缘的电缆线,变压器的原副边的隔离电压就可以达到相当高的等级。

由于原边绕组的匝数仅有一匝,因此,要求导磁体具有很高的导磁率,磁环的磁路长度必须尽可能地短,而磁环的截面积则要求尽可能地大,以获得良好的电磁耦合效果,降低激磁电流。

5 副边电路图2第二部分所示是辅助电源的主电路,它的其它部分如图4(a)所示。

端子J及K与图2中相同的端子相连。

而新型电源隔离输出的副边电路如图4(b)所示。

由二极管D1—D4组成的整流桥,把交流电流变成了直流电流。

由电阻R1—R7,并联稳压器Z1,晶体管S1和MOSFET S2组成的电路把这个直流电流变成一个稳定的电压。

即形成一路驱动电源。

6 仿真波形和实验结果为了确认设计电源的有效性,对图2及图4所示电路进行了仿真。

仿真结果如图5所示。

仿真依据的主要参数如下:L1=1mH,L2=L3=L4=15μH,C4=C5=C6=C7=1μF。

(a) 辅助电源的副边电路(b) 隔离输出的副边电路图4 副边电路图5 I1,i2,i ts1及驱动电源输出电压的仿真波形图6 输出电流i2波形根据原理分析及仿真验证,开发了一台700W的电源样机,已经成功使用在380V限流器实验装置中,实现了长期可靠运行。

用一无感电阻对输出电流i2取样,并把示波器采集的数据用Origin数据分析软件还原,波形如图6所示。

电源样机每个输出变压器的副边绕组都是3匝。

每路驱动电源的负载阻抗都是25Ω。

它的主要特性如下:驱动电源路数为12(可以更大);每路驱动电源输出功率可达20W;各路驱动电源之间的隔离电压为40kV。

7 结语开发了一种新型的用于短路故障限流器中晶闸管驱动的多输出开关电源。

设计电源的输出路数足以用来驱动所有使用在限流器中的晶闸管。

使用超高压绝缘的电缆线作为所有输出变压器单匝的原边绕组,电源输出之间的隔离电压可以达到相当高的等级。

根据限流器中的晶闸管的实际需要,电源输出级的路数和安装位置可以很容易地改变。

相对于用其他方式研制的具有相同输出路数,相同功率,相同隔离电压的电源,该电源具有体积小,重量轻,效率高,可靠性强,价格低等显著优点。

使用在大功率的装置中,新型电源也可以很好地适应那些具有大量功率电子器件的,如多用途的大型电机驱动系统的需要。

作者简介夏凌辉(1978-),男,电力电子硕士研究生,研究方向为电力电子中的开关电源技术及应用。

人教版七年级数学下册平面直角坐标系单元练习( )班 姓名: 学号: 年 月 日一、本课主要知识点:1. 有序实数对、平面直角坐标系、坐标、象限的概念。

2. 点的位置和特殊点的性质:在图1的坐标系中,填上象限名称及各象限中的点坐标性质符号。

3. 在平面直角坐标系中的点M (a ,b ) (1)如果点M 在x 轴上, 则 b__0; (2) 如果点M 在y 轴上, 则 b__0;(3) M (a ,b )到x 轴的距离为_______,到y 轴的距离为________.3. 用坐标表示地理位置:(1)建立坐标系,选择一个____________为原点,确定x 轴、y 轴的___方向;(2)根据具体问题确定______________,在坐标轴上标出__________;(3)在坐标平面内画出这些点,写出各点的_______和各个地点的名称.4. 用坐标表示平移:(1)在平面直角坐标系中,将点(x,y )向右(或左)平移a 个单位长度,可以得到对应点(_______,y )(或(_______,y )); 将点(x,y )向上(或下)平移b 个单位长度,可以得到对应点(x,______)(或(x,________))。

(2)在平面直角坐标系中,如果把点(x,y )的横坐标加(或减去)一个正数a ,相应的新图形就是把原图形向____(或向_____)平移a 个单位长度;如果把点(x,y )纵坐标加(或减去)一个正数b ,相应的新图形就是把原图形向_____(或向______)平移b 个单位长度。

相关文档
最新文档