高频振荡器实验石英晶体振荡器
正弦波振荡器(LC振荡器和晶体振荡器)实验

正弦波振荡器(LC 振荡器和晶体振荡器)实验一、实验目的1.掌握电容三点式LC 振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC 振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;通过实验进一步了解调幅的工作原理。
4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二、实验仪器1.100M 示波器 一台2.高频信号源 一台3.高频电子实验箱 一套三、实验电路原理1.基本原理振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定波形的交变振荡能量的装置。
正弦波振荡器在电子技术领域中有着广泛的应用。
在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去的。
在超外差式的各种接收机中,是由振荡器产生一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。
振荡器的种类很多。
从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。
此实验只讨论反馈式振荡器。
根据振荡器所产生的波形,又可以把振荡器分为正弦波振荡器与非正弦波振荡器。
此实验只介绍正弦波振荡器。
常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。
按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC 振荡器和晶体振荡器等类型。
(1)反馈型正弦波自激振荡器基本工作原理以互感反馈振荡器为例,分析反馈型正弦波自激振荡器的基本原理,其原理电路如图2-1所示。
b V bE cE -1L 2L f V bV '+-图 2-1反馈型正弦波自激振荡器原理电路当开关K 接“1”时,信号源b V 加到晶体管输入端,构成一个调谐放大器电路,集电极回路得到了一个放大了的信号F V 。
当开关K 接“2”时,信号源b V 不加入晶体管,输入晶体管是F V 的一部分b V '。
3、高频实验 思考题

高频实验实验一 小信号调谐放大器90139013R71kR24.7kR18.2kC1470p R320kR 610kTC1R5510ΩR4100ΩC50.01C30.01C40.01R104.7ΩR820KR121KC80.01W110KR111KTC2220pR13510ΩC100.01C60.01R9100ΩC110.01C12470pR141kC70.01Ui+-AC20.01K1BC12VUo+-T1T2小信号调谐放大电路原理图1.如何判断并联谐振回路处于谐振状态? 答:判断方法有两种:1、用高频毫伏表观测Uo ,当Uo 得最大值时,并联谐振回路处于谐振状态;2、用示波器监测Uo ,当波形最大不失真时,并联谐振回路处于谐振状态。
2.引起放大器自激的主要因素有哪些?答:主要因素:负载电阻、振荡回路连接时的接入系数、静态工作点、内反馈大小。
3.小信号谐振放大器的增益A U 与输入信号U i 的大小有无关系?如何提高谐振放放大器的稳定电压增益?答:与Ui 大小无关。
因为A Uo =-p1p2y fe /g= -p1p2y fe /(P 12g oe +(P 22g ie +g),要提高稳定电压增益,应增大P1、P2减小g oe 、 g ie 、g 应增大C 。
4、为什么说提高电压放大倍数A VO 时,通频带BW 会减小?可采取哪些措施提高放大倍数Avo ?实验结果如何? 答:因为TfeU G Y P P A 21=,要提高A V ,则可适当增加接入系数,但因为接入系数过大导致GT 增加,由TG f BW 07.0=可知,GT 增大,BW0.7减小,即带宽BW 减小。
5、在调谐谐振回路时,对放大器的输入信号有何要求?如果输入信号过大会出现什么现象? 答:由TfeU G Y P P A 21=知A V 与输入信号大小无关。
但由于UO 的增大将可能超出小信号放大器的线形动态范围。
引起信号失真,也会通过外部寄生耦合导致放大器工作不稳定。
《高频电子线路》晶体振荡器与压控振荡器实验

《高频电子线路》晶体振荡器与压控振荡器实验一、实验目的1、掌握晶体振荡器与压控振荡器的基本工作原理。
2、比较LC振荡器和晶体振荡器的频率稳定度。
二、实验内容1、熟悉振荡器模块各元件及其作用。
2、分析与比较LC振荡器与晶体振荡器的频率稳定度。
3、改变变容二极管的偏置电压,观察振荡器输出频率的变化。
三、实验仪器1、模块3 1块2、频率计模块1块3、双踪示波器1台4、万用表1块四、基本原理1、晶体振荡器:将开关S2拨为“00”,S1拨为“10”,由N1、C3、C10、C11、晶体CRY1与C4构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。
2、LC压控振荡器(VCO):将S2拨为“10”或“01”,S1拨为“01”,则变容二极管D1、D2并联在电感L1两端。
当调节电位器W2时,D1、D2两端的反向偏压随之改变,从而改变了D1和D2的结电容C j,也就改变了振荡电路的等效电感,使振荡频率发生变化。
3、晶体压控振荡器:开关S2拨为“10”或“01”,S1拨为“10”,就构成了晶体压控振荡器。
图6-1 正弦波振荡器(4.5MHz)五、实验步骤1、(选做)温度对两种振荡器谐振频率的影响。
1)将电路设置为LC振荡器(S1设为“01”),在室温下记下振荡频率。
(频率计接于P1处。
)2)将加热的电烙铁靠近振荡管N1,每隔1分钟记下频率的变化值。
3)开关S1交替设为“01”(LC振荡器)和“10”(晶体振荡器),并将数据记于表6-1。
表6-1 振荡器数据对比记载表2、两种压控振荡器的频率变化范围比较1)将电路设置为LC压控振荡器(S1设为“01”),频率计接于P1,直流电压表接于TP7。
2)将W2调节从低阻值、中阻值、高阻值位置(即从左→中间→右顺时针旋转),分别将变容二极管的反向偏置电压、输出频率记于下表中。
将电路设置为晶体压控振荡器(S1拨为“10”),重复步骤2),将测试结果填于下表。
3)六、实验报告要求1、比较所测数据结果,结合新学理论进行分析。
3_实验三 石英晶体振荡器(1)

实验三石英晶体振荡器
[实验目的]
1.了解晶体振荡器的工作原理及特点;
2.掌握晶体振荡器的设计方法及参数计算方法。
[实验要求]
1.查阅晶体振荡器的有关资料, 阐明为什么用石英晶体作为振荡回路元件就能使振荡器的频率稳定度大大提高;
2.试画并联谐振型晶体振荡器和串联谐振型晶体振荡器的实际电路, 并阐述两者在电路结构及应用方面的区别。
[实验仪器设备及材料]
1.双踪示波器;
2.万用表;
3.高频电路实验装置
[实验方案]
实验电路见图3-1。
1.测振荡器静态工作点, 调图中Rp, 测得IEmin及IEmax;
2.测量当工作点在上述范围时的振荡频率及输出电压;
3.负载不同时对频率的影响, RL分别取110kΩ、10kΩ、1kΩ, 测出电路振荡频率, 填入表10-3-1并与LC振荡器比较。
填入表10-3-1, 并与LC振荡器比较。
R L~f 表10-3-1 实验数据
[实验报告]
1.画出实验电路的交流电路;
2.整理实验数据;
3.比较晶体振荡器与LC振荡器带负载能力的差异, 并分析原因;
4.你如何肯定电路工作在晶体的频率上;
5.根据电路给出的LC参数计算回路中心频率, 阐述本电路的优点。
[思考题]
石英晶体振荡器与LC三点式振荡器输出信号的差异有哪些?
1。
石英晶体振荡电路石英谐振器

6.8 k
C1 120 p 200 (a )
C4为微调电容, 用来改变振荡 频率,不过频 率调节范围是 很小的。
37
石英谐振器
2.串联型晶体振荡电路
电路结构
等效电路
注:晶体相当于短路元件,常串接在正反馈支路中。
29
石英谐振器
二、石英晶体振荡电路
石英晶体在电路中可以起三种作用:
一是充当等效电感,晶体工作在接近于并联谐振频率 fp
的狭窄的感性区域内, 这类振荡器称为并联谐振型石英晶体 振荡器;
二是石英晶体充当短路元件,并将它串接在反馈支路内, 用以控制反馈系数,它工作在石英晶体的串联谐振频率fq上, 称为串联谐振型石英晶体振荡器; 三是充当等效电容,使用较少。
12
石英谐振器
(4)恒温控制式晶体谐振器(OCXO):将晶体和振荡电路置 于恒温槽中,以消除环境温度变化对频率的影响。OCXO频 率精度是10-7~10-8量级,对某些特殊应用甚至达到更高。主 要用于移动通信基地站、国防、导航、频率计数器、频谱和 网络分析仪等设备、仪表中。
13
石英谐振器
目前发展中的还有数字补偿 式晶体振荡器(DCXO)微机补偿
电 感 三点式
电 容 三点式 石英晶 体
10-2~10-4
10-3~10-4 10-5~10-11
差
好 好
几千赫~几十兆 赫
几兆赫~几百兆 赫 几百千赫~一百 兆赫
可在较宽范围内调节频率
只能在小范围内调节频率 (适用于固定频率) 只能在极小范围内微调频 率(适用于固定频率)
易起振,输出振 幅大
高频实验报告

(6)调节调制信号的大小,观察m=100%和m>100%两种调幅波在过零点处的波形情况,比较他们的区别。
3.普通调幅波解调
(1)将示波器CH2接幅度调制模块中调幅波输出端J23(TF.OUT)。根据实验步骤调节红色旋钮VR5将输出信号设置为峰峰值为Vp-p=150mv左右的调幅信号,并调整调制信号大小使调幅度m<30%。
实验报告
课程名称:高频电子线路实验
实验项目:正弦波振荡器、振幅调制与解波
实验仪器:
系别:光电信息与通信工程
专业:通信工程
班级/学号:
学生姓名:
实验日期
成绩
实验一正弦波振荡器
一、实验目的:
1、掌握三端式振荡电路的基本原理,起震条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
CAP可变为C7、C14、C23、C19其中一个。为了满足起振条件的要求F的值不能太大也不能太小,通常取为1/3-1/8。其中Cj为变容二极管2CC1B,根据所加的静态电压对去静态电容,CT3为5-20PF的半可变电容。该高频等效电路未考虑负载电阻。西勒电路是在克拉波电路的基础上在电感两端并联了一个小电容,且满足CAP远大于(CT1+CT17),故其回路等效电容C≈CT1+CT17+Cj。故振荡频率f0=1/2л 。西勒电路在分立元件系统或集成高频电路系统中均获得广泛的应用。
用MC1496集成电路构成的条幅电路如下图所示,图中VR8用调节引出脚1、4之间平衡,R39与R46与电位器VR8组成平衡调节电路,改变VR8可以调节输出载波信号的大小,以使乘法器实现抑制载波的振幅调制或有载的振幅调制,脚1和脚4分别接电阻R43和R49可以较好的抑制载波漏信号和改变温度性能,器件采用双电源供电方式
高频电子电路实验操作步骤及要点

高频电子电路实验操作步骤及要点实验一、高频电子仪表的使用一、数字万用表1.开机后若显示屏左下出现小电池的图标,表示需更换电池后才能使用。
2.开机后若显示屏左上出现“H”图标,表示万用表处于屏幕保持状态,需解锁后使用。
3.利用万用表的直流电压测试功能完成电路静态工作电压的测试;静态工作电流是通过测试相应元件的电压再运用欧姆定律计算得到。
4.利用万用表的“×200”欧姆档完成电路连接导线及仪表连接线的测试,以判断其好坏状态。
5.不要用万用表测试动态指标。
二、高频电子电路实验箱1.能熟练地找到实验所用模块电路。
2.能正确地搭接实验电路。
(1)先将信号源板和电路板共地:将两块板中靠得最近的两个接地点用最短导线连通(建议将信号源板的右下角和电路板的左下角的两个接地点连通),这样实验箱中所有接地点都连通了;地线使用时注意“就近接地”的原则。
(2)用最合适的导线将电路所需直流工作电源从信号源板引入到电路。
(3)电路中元器件的连接及交流信号的引入选用最合适的导线。
(4)仪表连接线应直接接至测试点附近的接线柱上;不要使用导线接连接线。
3.能正确输出实验所需的交流信号。
(1)将显示功能设置为“低频”,同时将高频信号源的“频率粗调”旋钮放在与输出低频信号频率相适应的档位上,此时频率计将正确显示低频信号源输出信号的频率(若使用示波器测试频率,则此步可以不做)。
(2)将显示功能设置为“外测”,同时将高频信号源的“频率粗调”旋钮放在与被测信号频率相适应的档位上,此时频率计将正确显示被测信号的频率(若使用示波器测试频率,则此步可以不做)。
(3)将显示功能设置为“高频”,同时将高频信号源的“频率粗调”旋钮放在与输出高频信号频率相适应的档位上,此时频率计将正确显示高频信号源输出信号的频率(若使用示波器测试频率,则此步可以不做)。
(4)用示波器调测信号时,建议先把“幅度调节”旋钮右旋到底使输出信号幅度最大,此时来进行频率的调节;调节好频率后,再把“幅度调节”旋钮左旋以减小幅度至实验要求的大小(由于幅度减小时波形将会变差,因此调节幅度时可不管示波器上测试频率的变化)。
高频 振荡电路

振荡电路实验121180166 赵琛一.实验目的1. 进一步学习掌握正弦波振荡电路的相关理论。
2. 掌握电容三点式LC振荡电路的基本原理,掌握电路中各元件的功能。
3. 掌握晶体振荡电路的基本原理,熟悉串联型和并联型晶体振荡器电路各自的特点,理解电路中各元件的功能。
4. 掌握静态工作点、正反馈系数、谐振回路的等效Q值对振荡器振荡幅度和频率的影响。
5. 比较LC振荡器和晶体振荡器的频率稳定度,加深对晶体振荡器频率稳定高原因的理解。
二、实验使用仪器1.LC、晶体正弦波振荡电路实验板2.200MH泰克双踪示波器3. FLUKE万用表4. 高频信号源5. 频谱分析仪(安泰信)6. SP312B型高频计数器三、实验基本原理与电路1. LC振荡电路的基本原理LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器的振荡回路由LC元件组成。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接晶体管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHz~1GHz。
普通电容三点式振荡器的振荡频率不仅与谐振回路的LC元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。
当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。
为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图4-1和4-2所示。
串联改进型电容三点式振荡电路——克拉泼电路的振荡频率为:∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 其中0,i C C 分别是晶体管的输入和输出电容。
LC三点式振荡器和石英晶体振荡器

3、反馈深度不同时对振荡器的影响 、
测试条件: 测试条件:CT=100pF, , C、C’分别为下列三组数据: 、 分别为下列
C=C3=100pF,C’=C4=1200pF; , ; C=C5=120pF,C’=C6=680pF; , ; C=C7=680pF,C’=C8=120pF , 调节电位器Rp ,使IEQ(静态值,即断开 1后调 静态值,即断开C 调节电位器 IEQ,调好后再接上 1),分别为 ,0.8,2.0,3.0, 调好后再接上C ),分别为 分别为0.5, , , , 4.0所标各值,用示波器分别测出各个振荡幅度(峰峰 所标各值, 所标各值 用示波器分别测出各个振荡幅度( 值)。
二、实验原理及电路说明
1、实验原理 实验原理
LC三点式振荡器的基本构成是放大器加 振 放大器加LC振 放大器加 荡回路,反馈电压取自振荡回路中某个元件, 荡回路 三点式振荡器的一般组成原则 一般组成原则是: 一般组成原则 凡是与晶体管发射极相连的两个回路元件, 其电抗性质必须相同,而不与晶体管发射极相 连的两个回路元件,其电抗性质应相反。
LC三点式振荡器和石英晶体振荡器 三点式振荡器和石英晶体振荡器 一、实验目的
1. 了解LC三点式振荡电路的基本原理; 2. 掌握振荡回路Q值对频率稳定度的影响; 3. 了解反馈系数不同时,静态工作电流IEQ 对振荡器起振及振幅 起振及振幅的影响。 起振及振幅 4.熟悉石英晶体振荡器的工作原理及特点。 5.了解和掌握串联型晶体振荡电路的构成方 法
4、回路Q值和IEQ对频率稳定度的影响 、
值变化时, (1)Q值变化时,对振荡频率稳定度的影 ) 值变化时 响
测试条件: 测试条件: ,IEQ=2mA,CT=100pF, , , 分别改变R值 使其值分别为1K 、10K 、 分别改变 值,使其值分别为 110K ,记录电路的振荡频率, 注意观察频 记录电路的振荡频率, 率显示后几位数的跳动情况
高频振荡器实验-石英晶体振荡器

实
调整RW1电位器,使IC=2mA
验
调整时采用间接测量法。 :即用直流电压表测量晶体管发射极对
数
地电压,并将测量结果记录于表中。
据
BG1
Re=1K
记
Vb
Ve
Vce
Ic计算值
录
四、实验应会技能
实验内容二: 振荡器的频率与幅度调测
实验准备
SW1“右”(LC振荡) SW2“左”(RL=110K)
SW3“左”(C2=330Pf)
fo 1
2 LC
三、实验应知知识
6与.3考毕串兹联电型路相改进电容三端式振荡器(克拉泼电路)
比,电在路电组感成L如上图串示:
联特一点个是电在容考。毕但兹电路的基础上,
它用有一以电下容特C点3与:原电路中的电感L相 1可串、不。振影功荡响用频反主率馈要改系是变以增加回路总电 数容。和减小管子与回路间的耦合来
三点式
三点电容(考毕兹) 三点电感(哈特莱)
改进三 点式
电容串联改进(克拉泼) 电容并联改进(西勒)
串联型
皮尔斯
并联型
密勒
① 放大网络 三、实验应知知识 以有源器件为主体,起能量转换作用,将直流电源提供的能量,通过振荡系统转
换§成4固反定频馈率型的交正流能弦量波,即振构荡成驱器动的系统电。路构成与工作原理
-
•
Vo
正反馈网络
•
Vf
-
-
-
•
Vf
谐振放大+ 器输出的信号电压经反馈网络产生回授电压uf,作为正回授反馈 到基极。且uf>ui。经放大后再输出,再回授。
振荡器只要满足A*F>1,振荡器则周而复始形成对某单一频率信号放大—回 授,且有uin>ui2>ui1.从而形成振荡过程,实现将直流能量转换成交流信号。
石英晶体振荡器原理说明

台灣大學電機系大學部電子實驗(三) – 石英晶體振盪器原理說明發表於 2006年12月19日Rocky石英晶體振盪器是高精度和高穩定度的振盪器,被廣泛應用於彩電、計算機、遙控器等各類振盪電路中,以及通信系統中用於頻率發生器、為數據處理設備產生時鐘信號和為特定系統提供基準信號。
一、石英晶體振盪器的基本原理1、石英晶體振盪器的結構石英晶體振盪器是利用石英晶體(二氧化矽的結晶體)的壓電效應製成的一種諧振器件,它的基本構成大致是︰從一塊石英晶體上按一定方位角切下薄片(簡稱為晶片,它可以是正方形、矩形或圓形等),在它的兩個對應面上涂敷銀層作為電極,在每個電極上各焊一根引線接到管腳 上,再加上封裝外殼就構成了石英晶體諧振器,簡稱為石英晶體或晶體、晶振。
其產品一般用金屬外殼封裝,也有用玻璃殼、陶瓷或塑膠封裝的。
下圖是一種金屬外殼封裝的石英晶體架構示意圖。
2、壓電效應若在石英晶體的兩個電極上加一電場,晶片就會產生機械變形。
反之,若在晶片的兩側施加機械壓力,則在晶片相應的方向上將產生電場,這種物理現象稱為壓電效應。
如果在晶片的兩極上加交變電壓,晶片就會產生機械振動,同時晶片的機械振動又會產生交變電場。
在一般情況下,晶片機械振動的振幅和交變電場的振幅非常微小,但當外加交變電壓的頻率為某一特定值時,振幅明顯加大,比其他頻率下的振幅大得多,這種現象稱為壓電諧振,它與LC回路的諧振現象十分相似。
它的諧振頻率與晶片的切割方式、幾何形狀、尺寸等有關。
3、符號和等效電路石英晶體諧振器的符號和等效電路如圖2所示。
當晶體不振動時,可把它看成一個平板電容器稱為靜電電容C,它的大小與晶片的幾何尺寸、電極面積有關,一般約幾個PF到幾十PF。
當晶體振盪時,機械振動的慣性可用電感L來等效。
一般L的值為幾十mH 到幾百mH。
晶片的彈性可用電容C來等效,C的值很小,一般只有0.0002~0.1pF。
晶片振動時因摩擦而造成的損耗用R來等效,它的數值約為100Ω。
高频实验报告_石英晶体振荡器实验报告

石英晶体振荡器实验报告学号 200805120109 姓名 刘皓 实验台号实验结果及数据(一) 静态工作点(晶体管偏置)不同对振荡器振荡频率、幅度和波形的影响 1、把单刀开关K2闭合,用示波器和频率计在c 点监测。
调整DW 1,使振荡器振荡;微调C 2,使振荡频率在4MHz 左右。
2、调整DW 1,使BG 1工作电流E Q I 逐点变化,E Q I 可用万用表在A 点通过测量发射极电阻R 4两端的电压得到(R 4=1k Ω)。
振荡器工作情况变化及测量结果如表1所示:表1 静态工作点变化对振荡器的影响(二)2C 取值不同对振荡器振荡频率范围的影响2C 变化对振荡器的影响 测量条件:E Q I = 1.5 m A保持4.433MHz 基本不变(三)负载变化对振荡器的影响1、K 1断开的情况下,将振荡器的振荡频率调整到4MHz 左右,此时频率osc f = 4.433 MHz ,幅度opp V = 2.92 V 。
2、将K 1分别接1—2、1—3、1—4的位置,即接入不同的负载电阻R 5,测得的相应的频率和幅度及计算结果如表3所示。
表3 负载变化对振荡器的影响 测量条件:osc f =4.433 MHz ,幅度opp V =2.92 V由表3知:负载变化对振荡器工作频率的影响是: 几乎没有影响。
负载变化对振荡器输出幅度的影响是: 随着负载阻抗的减小,输出幅度略微减小。
(四)比较负载变化对LC 正弦波振荡器和石英晶体振荡器的不同影响负载变化对LC 正弦波振荡器的影响比较明显。
而对石英晶体振荡器的影响很小。
这主要是由于石英晶体振荡器的稳定性很高。
思考题晶体振荡器的振荡频率比LC 振荡器稳定得多,为什么? 答:因为(1)石英晶体谐振器具有很高的标准性。
(2)石英晶体谐振器与有源器件的接入系数 ,受外界不稳定因素的影响少。
(3)石英晶体谐振器具有非常高的Q 值,维持振荡频率稳定不变的能力极强。
石英晶体多谐振荡器的振荡频率

石英晶体多谐振荡器的振荡频率摘要:1.石英晶体多谐振荡器的基本概念和原理2.石英晶体多谐振荡器的振荡频率决定因素3.石英晶体多谐振荡器的应用领域4.石英晶体多谐振荡器的发展趋势正文:一、石英晶体多谐振荡器的基本概念和原理石英晶体多谐振荡器是一种基于石英晶体谐振原理实现的振荡器。
它主要由石英晶体(晶振)、非门、电容等元件组成,结构相对简单。
石英晶体多谐振荡器主要用于信号发生电路,尤其是方波的产生。
二、石英晶体多谐振荡器的振荡频率决定因素石英晶体多谐振荡器的输出脉冲频率主要取决于石英晶体的固有频率。
石英晶体的固有频率是由其物理性质决定的,因此在设计石英晶体多谐振荡器时,需要根据实际需求选择合适的石英晶体。
三、石英晶体多谐振荡器的应用领域石英晶体多谐振荡器广泛应用于通信、广播、导航等领域。
在通信领域,石英晶体多谐振荡器常用于信号发生器、调制器等设备,以实现信号的传输和接收。
在广播和导航领域,石英晶体多谐振荡器则用于产生稳定的基准频率,确保广播和导航信号的精确传输。
四、石英晶体多谐振荡器的发展趋势随着科技的不断发展,石英晶体多谐振荡器也在不断改进和优化。
未来的发展趋势主要包括以下几个方面:1.向高频化发展:随着通信、广播等领域对信号传输速率和容量的需求不断提高,石英晶体多谐振荡器需要实现更高的振荡频率。
2.向小型化、集成化发展:为了满足电子设备小型化、轻便化的要求,石英晶体多谐振荡器需要实现更小的体积和更高的集成度。
3.向高稳定性、高精度发展:在通信、导航等领域,对信号传输的稳定性和精度要求越来越高。
因此,石英晶体多谐振荡器需要实现更高的稳定性和精度。
石英晶体振荡器

⽯英晶体振荡器⽯英晶体振荡器⽯英晶体振荡器是⼀种⽤于频率稳定和选择频率的电⼦器件,它的主要作⽤是提供频率基准,由于它具有⾼稳定的物理化学性能、极⼩的弹性震动损耗以及频率稳定度⾼的特点,因此被⼴泛⽤于远程通信、卫星通信、移动电话系统、全球定位系统(GPS)、导航、遥控、航空航天、⾼速计算机、精密计测仪器及消费类民⽤电⼦产品中,是⽬前其它类型的振荡器所不能替代的.⼀、⽯英晶体谐振器的结构、振荡原理1、⽯英晶体振荡器的结构⽯英晶体振荡器是利⽤⽯英晶体(⼆氧化硅的结晶体)的压电效应制成的⼀种谐振器件,它的基本构成⼤致是:从⼀块⽯英晶体上按⼀定⽅位⾓切下薄⽚(简称为晶⽚,它可以是正⽅形、矩形或圆形等),在它的两个对应⾯上涂敷银层作为电极,在每个电极上各焊⼀根引线接到管脚上,再加上封装外壳就构成了⽯英晶体谐振器,简称为⽯英晶体或晶体、晶振。
其产品⼀般⽤⾦属外壳封装,也有⽤玻璃壳、陶瓷或塑料封装的。
下图是⼀种⾦属外壳封装的⽯英晶体结构⽰意图。
2、压电效应若在⽯英晶体的两个电极上加⼀电场,晶⽚就会产⽣机械变形。
反之,若在晶⽚的两侧施加机械压⼒,则在晶⽚相应的⽅向上将产⽣电场,这种物理现象称为压电效应。
如果在晶⽚的两极上加交变电压,晶⽚就会产⽣机械振动,同时晶⽚的机械振动⼜会产⽣交变电场。
在⼀般情况下,晶⽚机械振动的振幅和交变电场的振幅⾮常微⼩,但当外加交变电压的频率为某⼀特定值时,振幅明显加⼤,⽐其他频率下的振幅⼤得多,这种现象称为压电谐振,它与LC回路的谐振现象⼗分相似。
它的谐振频率与晶⽚的切割⽅式、⼏何形状、尺⼨等有关。
⼆、⽯英晶体振荡器的等效电路与谐振频率1、等效电路⽯英晶体谐振器的等效电路如下图所⽰。
当晶体不振动时,可把它看成⼀个平板电容器称为静电电容Co,它的⼤⼩与晶⽚的⼏何尺⼨、电极⾯积有关,⼀般约⼏个PF到⼏⼗PF。
当晶体振荡时,机械振动的惯性可⽤电感L1来等效。
⼀般L1的值为⼏⼗mH 到⼏百mH。
采用石英晶体构成多谐振荡器的案例说明

采用石英晶体构成多谐振荡器的案例说明上述多谐振荡器的振荡周期或频率不仅与时间常数RC 有关,而且还取决于门电路的阈值电压U TH 。
由于U TH 本身易受温度、电源电压及干扰的影响,因此频率稳定性较差,不能适应频率稳定性要求较高的电路。
在对频率稳定性要求较高的电路中,通常采用频率稳定性很高的石英晶体振荡器。
石英晶体的选频特性非常好,具有一个极为稳定的串联谐振频率s f 。
而s f 只由石英晶体的结晶方向和外尺寸所决定。
目前,具有各种谐振频率的石英晶体(简称“晶振”)已被制成标准化和系列化的产品出售。
图9.7为常见的石英晶体振荡器电路。
电阻R 的作用是使反相器工作在线性放大区,对于TTL 门电路,其值通常在0.5~2K Ω之间;对于CMOS 门电路,其值通常在5~100M Ω之间。
电容C 用于两个反相器之间的耦合,电容C 的大小选择应使其在频率为s f 时的容抗可以忽略不计。
该电路的振荡频率即为s f ,而与其它参数无关。
石英晶体振荡器的突出优点是具有极高的频率稳定度,且工作频率范围非常宽,从几百赫兹到几百兆赫兹,多用于要求高精度时基的数字系统中。
图9.7 石英晶体多谐振荡器例:秒脉冲信号产生电路的设计。
解:实用的秒脉冲信号产生电路一般均采用图9.7的电路形式。
为了得到1Hz 的秒脉冲信号,一种是在图9.7电路基础上稍作改动,得到如图9.8所示的电路。
图中晶振的谐振频率为4MHz ,故输出电压u o2的频率为4MHz ,该信号经一个4×106分频电路后得到1Hz 的秒脉冲信号u o 。
分频电路可利用集成计数器实现。
u oC G 2G 1 R1 1 R图9.8 秒信号产生电路(1) u o2 C 1 G 2G 1R1 1 R C2 分频电路 1Hz 秒信号 u o。
石英晶体多谐振荡器的振荡频率

石英晶体多谐振荡器的振荡频率1. 引言石英晶体多谐振荡器是一种常见的电子元器件,广泛应用于通信、计算机、电子设备等领域。
其主要功能是产生稳定的振荡信号,用于时钟同步、频率调节等应用。
本文将介绍石英晶体多谐振荡器的原理、结构和振荡频率的相关知识。
2. 石英晶体多谐振荡器的原理石英晶体多谐振荡器的工作原理基于石英晶体的压电效应。
石英晶体是一种具有压电性质的晶体材料,当施加外力或电场时,会产生电荷分布的变化,从而产生电势差。
利用这种压电效应,可以将石英晶体作为振荡器的振荡元件。
石英晶体多谐振荡器通常由石英晶体片、电容和电感组成。
石英晶体片被切割成特定的尺寸和方向,使其在特定频率下具有谐振特性。
电容和电感用于调节振荡电路的频率和稳定性。
3. 石英晶体多谐振荡器的结构石英晶体多谐振荡器的结构相对简单,主要包括石英晶体片、电容和电感等元件。
3.1 石英晶体片石英晶体片是石英晶体多谐振荡器的核心部件。
它通常采用石英晶体材料,通过特殊的切割和加工工艺制成。
石英晶体片的尺寸和方向决定了振荡器的谐振频率,因此选择合适的石英晶体片非常重要。
3.2 电容和电感电容和电感用于调节石英晶体多谐振荡器的频率和稳定性。
电容可通过改变电容值来调节振荡器的频率,而电感则可以提高振荡器的稳定性。
4. 石英晶体多谐振荡器的振荡频率计算石英晶体多谐振荡器的振荡频率可以通过以下公式计算:频率= 1 / (2 * π * √(L * C))其中,L为电感的值,C为电容的值。
这个公式表明,振荡频率与电感和电容的乘积成反比,因此可以通过调节电感和电容的值来改变振荡频率。
5. 石英晶体多谐振荡器的应用石英晶体多谐振荡器具有稳定、精准的特点,因此在许多领域都有广泛的应用。
5.1 时钟同步石英晶体多谐振荡器被广泛应用于电子设备中的时钟电路,用于提供稳定的时钟信号。
时钟同步对于电子设备的正常运行非常重要,石英晶体多谐振荡器的高稳定性和精准性确保了时钟信号的准确性。
实验4 石英晶体振荡器

实验4 石英晶体振荡器—、实验准备1.做本实验时应具备的知识点:●石英晶体振荡器●串联型晶体振荡器●静态工作点、微调电容、负载电阻对晶体振荡器工作的影响2.做本实验时所用到的仪器:●晶体振荡器模块●双踪示波器●频率计●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统。
2.掌握石英晶体振荡器、串联型晶体振荡器的基本工作原理,熟悉其各元件功能。
3.熟悉静态工作点、微调电容、负载电阻对晶体振荡器工作的影响。
4.感受晶体振荡器频率稳定度高的特点,了解晶体振荡器工作频率微调的方法。
三、实验内容1.用万用表进行静态工作点测量。
2.用示波器观察振荡器输出波形,测量振荡电压峰-峰值V p-p,并以频率计测量振荡频率。
3.观察并测量静态工作点、微调电容、负载电阻等因素对晶体振荡器振荡幅度和频率的影响。
五、实验步骤1.实验准备在实验箱主板上插好晶振模块,接通实验箱上电源开关,按下开关4K01,此时电源指示灯点亮。
2.静态工作点测量改变电位器4W01可改变4Q01的基极电压V B,并改变其发射极电压V E。
记下V E的最大、最小值,并计算相应的I Emax、I Emin值(发射极电阻4R04=1KΩ)。
V E max=3.10V V E min=1.83V由Ie=Ve/4R04得,I E max=3.10mV、I E min=1.83mV3.静态工作点变化对振荡器工作的影响⑴实验初始条件:V EQ=2.5V(调4W01达到)。
⑵调节电位器4W01以改变晶体管静态工作点I E,使其分别为表4.1所示各值,且把示波器探头接到4TP02端,观察振荡波形,测量相应的振荡电压峰-峰值V p-p,并以频率计读取相应的频率值,填入表4.1。
表4.14.微调电容4C1变化对振荡器工作的影响⑴实验初始条件:同3⑴。
⑵用改锥(螺丝刀、起子)平缓地调节微调电容4C1。
与此同时,把示波器探头接到4TP02端,观察振荡波形,并以频率计测量其频率,看振荡频率有无变化。
石英实验报告

一、实验目的1. 了解石英晶体振荡器的基本原理和结构;2. 掌握石英晶体振荡器的性能测试方法;3. 分析石英晶体振荡器的频率稳定性和相位噪声等性能指标;4. 评估石英晶体振荡器在实际应用中的适用性。
二、实验原理石英晶体振荡器是一种利用石英晶体的压电特性产生稳定频率信号的电子元件。
当石英晶体受到机械振动时,会在其表面产生电荷,从而在晶体两端形成电场。
反之,当在晶体两端施加电场时,也会使晶体产生机械振动。
这种现象称为压电效应。
石英晶体振荡器的工作原理基于石英晶体的固有频率。
当外界施加的频率与晶体的固有频率相匹配时,晶体将产生共振现象,从而产生稳定的振荡信号。
石英晶体振荡器的频率稳定性和相位噪声等性能指标主要取决于晶体的质量、电路设计以及外部环境等因素。
三、实验仪器与材料1. 石英晶体振荡器;2. 数字频率计;3. 示波器;4. 信号发生器;5. 稳压电源;6. 连接线;7. 实验平台。
四、实验步骤1. 将石英晶体振荡器接入实验平台,连接好信号发生器、数字频率计和示波器;2. 调整信号发生器的输出频率,使其接近石英晶体振荡器的固有频率;3. 观察示波器显示的振荡波形,调整信号发生器的输出频率,使石英晶体振荡器产生共振;4. 记录此时石英晶体振荡器的输出频率;5. 调整信号发生器的输出频率,使石英晶体振荡器产生共振,重复步骤4;6. 比较不同频率下石英晶体振荡器的输出频率,分析其频率稳定性;7. 测量石英晶体振荡器的相位噪声,记录数据;8. 分析实验结果,评估石英晶体振荡器的性能。
五、实验结果与分析1. 频率稳定性实验中,我们记录了石英晶体振荡器在不同频率下的输出频率。
经过多次测量,得到石英晶体振荡器的频率稳定度为±0.01ppm。
这说明石英晶体振荡器具有较好的频率稳定性。
2. 相位噪声实验中,我们测量了石英晶体振荡器的相位噪声。
在10kHz带宽内,相位噪声为-100dBc/Hz。
这说明石英晶体振荡器具有较低的相位噪声,适用于对相位稳定性要求较高的场合。
石英晶体谐振器

பைடு நூலகம்
频率范围很宽,频率稳定度在10-4~10-12范围内,经校准一年内可保持10-9的准确度,高质量的石英晶体振荡器,在经常校准时,频率准确可达10-11.高效能模拟与混合信号IC厂商Silicon Laboratories(芯科实验室有限公司)日前推出业界第一款支持输出频率可编程的振荡器(XO)和压控振荡器(VCXO)。Si570/1系列采用公司专利的DSPLL技术和业界标准的I2C接口,通过对I2C接口的操作,一颗器件就能产生10MHz到1.4GHz的任何输出频率,同时将均方根抖动幅度减少到0.3ps左右。Si570任意频率XO和Si571任意频率VCXO最适合需要弹性频率源的高效能应用,包括下一代网络设备、无线基站,测试与测量装置、高画质电视视频基础设施和高速数据采集装置。 硬件设计人员过去必须用多个固定频率XO、VCXO或压控SAW振荡器(VCSO),才能开发出复杂系统所需的可变频率架构,并让它们以不同频率操作。但这种方法的成本很高,需要复杂的模拟锁相回路(PLL)设计和布局,还会延长新开发产品的上市时间。 Si570/1可编程XO和VCXO的弹性振荡器能产生10MHz到1.4GHz的任何频率,使得一颗器件就能取代多个固定频率振荡器,不仅简化锁相回路的设计与布局,还大幅减少元器件数目、系统成本和电路板面积。另外,由于Si570/1省下多个原本可能成为故障点的固定频率振荡器,所以系统会变得更可靠。 Si570/1能通过业界标准的I2C接口设定操作频率,这使器件的编程设定和重新配置变得更简单。Si570/1还能不限次数重新编程,让系统设计人员将同一套时钟频率架构重复用于不同的最终应用,这能简化设计和加速上市时间。 Si570/1采用业界标准和RoHS兼容的5×7毫米表面贴装封装,并支持所有常见的输出信号格式(LVPECL、LVDS、CMOS和CML)。此系列包含三种不同速度等级的器件,分别是10MHz-1.4GHz、10-810MHz和10-215MHz。Si570任意频率石英振荡器还有±20ppm和±50ppm两种不同的温度稳定性规格可供选择,Si571任意频率压控石英振荡器则包含从±12ppm到±375ppm等多种不同压控范围(Absolute Pull Range)的器件,以便设计人员弹性选择最适合其应用的器件。Si570/1的操作温度范围都是从-40至+85℃。 标称频率:振荡器输出的中心频率或频率的标称值。 可选频率范围:我们所能提供的某种规格的振荡器的可实现的频率输出。 频率温度稳定度:在指定温度范围内振荡器的输出频率相对于25°C时测量值的最大允许频率偏差。 老化:在确定时间内输出频率的相对变化。 输出:振荡器输出的波形及功率。 占空比:反映输出波形的对称性,也就说,在一个周期内,高电平与低电平所占比例之比。 上升时间:方波从低电平转换为高电平的时间。 下降时间:方波从高电平转换为低电平的时间。 谐波:振荡器在相对于输出频率谐振点处的抑制。 非谐波:振荡器在相对于输出频率非谐振点处的抑制。 短期频率稳定度:振荡器在较短时间内输出频率的稳定性,通常为1秒。 相位噪声:用于描述振荡器的短期频率波动,通常定义为载波发生某一频率偏移是在1Hz带宽内的单边带功率密度,单位为dBc/Hz。 电源电压:加在振荡器电源端(Vcc)的能够使振荡器正常工作的电压。 电源电流:流过振荡器电源端(Vcc)的总电流。 工作温度范围:能够保证振荡器输出频率及其它各种特性能满座指标要求的温度范围。 石英晶体振荡器特点 ?? 在振荡频率上,闭合回路的相移为2nπ。 ?? 当开始加电时,电路中唯一的信号是噪声。满足振荡相位条件的频率噪声分量以增 大的幅度在回路中传输,增大的速率由附加分量,即小信号,回路益增和晶体网络 的带宽决定。 ?? 幅度继续增大,直到放大器增益因有源器件(自限幅)的非线性而减小或者由于某 一自动电平控制而被减小。 ?? 在稳定状态下,闭合回路的增益为1。 石英晶体振荡器简介 石英谐振器简称为晶振,它是利用具有压电效应的石英晶体片制成的。这种石英晶体薄片受到外加交变电场的作用时会产生机械振动,当交 变电场的频率与田英晶体的固有频率相同时,振动便变得很强烈,这就是晶体谐振特性的反应。利用这种特性,就可以用石英谐振器取代LC(线 圈和电容)谐振回路、滤波器等。由于石英谐振器具有体积小、重量轻、可靠性高、频率稳定度高等优点,被应用于家用电器和通信设备中。 石英谐振器按引出电极情况来分有双电极型、三电极型和双对电极型几种。图l为双电极型石英谐振器的外形,尽管它们的体积有大有小、固有振荡频率有高有低,但在电路图中均用图1(b)符号表示。三电极型和双对电极型石英谐振器的符号见图。2。 石英谐振器因具有极高的频率稳定性,故主要用在要求频率十分稳定的振荡电路中作谐振元件,如彩电的色副载波振荡器、电子钟表的时基振荡器及游戏机中的时钟脉冲振荡器等,石英晶体成本较高,故在要求不太高的电路中一般采用陶瓷谐振元件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、实验应知知识
§1.振荡器的定义:
所谓振荡器是指:在没有激励信号的情况下,能自动的将
直流电源能量转换为具有一定波形、一定频率和一定幅度的周
期性交流信号输出的电子电路。
2 振
荡
器 作为信号源
的 广泛应用于
各类电子设备 高频加热设备
发射机(载波频率fC) 接收机(本地振荡频率fL)
仪器仪表振荡源
调高C1或频C等2来效改电变路振为荡:频
率时,反馈系数也将改变。 但只要在L两端并上一个可变 电容器,并令C1与C2为固定 电容,则在调整频率时,基 本上不C会2 影响L反馈系C1数。
电容反馈三端电路的振荡频率为
三、实验应知知识
6.2哈电特莱感电反路馈的三优端点:式振荡器(哈特莱电路)
电路组1、成L如1、图L2示之:间有互感,反
LC振荡器
(多谐振荡器)
正弦振荡电路与非 正弦振荡电路的一个 重要区别是:正弦振荡 电路具有选频网络。
晶体振荡器
LC振荡器
LC振荡器的振荡频率比 较高,一般为几百KHZ
以上
晶体振荡器
振荡频率稳定度高, 振荡频率同上。
RC振荡器
振荡频率较低,一般 为几HZ—几百KHZ。
开关电容振荡器
互感耦合LC、差分对管LC
三点式 (又称三端式)振荡器要实现振荡,必须遵循两个原则
c b
原
则
Hale Waihona Puke e一X1X2
X3
与晶体管发射 极相联结的电 抗X1、X2性 质必须相同。
遵循以上两个原则才能 满足: 相位条件
适当选择X1与X2的比值就 能满足:振幅条件
原 则 二
不与晶体管发射 极相联结的另一 电抗X3的性质 必须与其相反。 即与Bc间性质
-
•
Vo
正反馈网络
•
Vf
-
-
-
•
Vf
谐振放大+ 器输出的信号电压经反馈网络产生回授电压uf,作为正回授反馈 到基极。且uf>ui。经放大后再输出,再回授。
振荡器只要满足A*F>1,振荡器则周而复始形成对某单一频率信号放大—回 授,且有uin>ui2>ui1.从而形成振荡过程,实现将直流能量转换成交流信号。
三点式
三点电容(考毕兹) 三点电感(哈特莱)
改进三 点式
电容串联改进(克拉泼) 电容并联改进(西勒)
串联型
皮尔斯
并联型
密勒
① 放大网络 三、实验应知知识 以有源器件为主体,起能量转换作用,将直流电源提供的能量,通过振荡系统转
换§成4固反定频馈率型的交正流能弦量波,即振构荡成驱器动的系统电。路构成与工作原理
i. GP-4实验(振荡与调制电路单元)。 ii.TDS1002 数字存贮示波器。 iii.DT9205N数字万用表。
一、实验目的
振荡器的功能是产生标准的信号源,广泛应用于 各类电子设备中。为此,正弦波振荡器是高频电路中最 基本、最常用的单元电路,也是从事电子技术工作人员 必须要熟练掌握的基本电路。
实验知识准备
1.做本实验时应具备的知识点:
问题
i.三点式LC 振荡器的基本组成特点。 ii.三点电容、三点电感、克拉泼、西勒振荡电路。 iii.静态工作点、反馈系数、等效Q 值对振荡器工作的影响。 iiii.石英晶体的特性与晶体振荡器特点。 iiiii.串联型晶体振荡器电路。
2.做本实验时所用到的仪器:
三、实验应知知识
考毕兹电路的优点:
1§)6电容实反际馈三常端见电路三的点振荡式LC正弦波振荡器的电路分析
波形好。
实2)际电工路的程频中率,稳定常度见较的高,三端式振荡器有四种基本电路
适当加大回路的电容量,就
可6以.1减电小不容稳反定馈因素三对端振式荡 振荡器(考毕兹电路)
fo 1
频率实的际影电响路。组成如图示:
②一、选基频本回含路义:
选择所需的某一频率并满足振荡条件,从而形成单一频率的正弦振荡。
③号反,馈勿凡网须是络外从部输提出供信激号励中信取号出,一能部产分生反持馈续到等输幅入正端弦作波为输输出入,信 将称输为出信反号馈通型过正正反弦馈波引至振放荡大器电路。的输入端,以维持振荡系统的正常振荡。
二、电路构成框图 反馈型振荡器一般由三大部分组成。
直 的当馈要较调流工振32、强、整偏作荡而,振电置 点以且容荡容电后C易 频C的路R的起率改Re大振调b变C小1;节基,e即R方构本b可便2成上。决,不自定只给了偏起压振电时路电路
数字系统时钟信号
用
途
医疗仪器
为此,振荡器是高频电子线路中最基本的单元电路,也是从事 电子技术工作人员必须要熟练掌握的基本电路。
三、实验应知知识
§3 振荡器分类
在实际工程领域,振荡器应用
广泛,其分类方法:
按选频
按振
反馈振荡器 回路元 件性能
荡原
正弦波 理分
按振 振荡器
负阻振荡器
荡信
号波 形分
非正弦波振荡器
2
路3可振电R)以 荡E阻电、做管R容构得的B三1成较输,端R交高出B电2,、直、路可输流R的直入C自工、接电给作R利容E频偏构用作率压成电直路流偏置电
C1 C2 LC1C 2
为L、回C路1的、振C2荡构电成容L。C振它的荡工回路, 作反馈频电率可压做取到自几电十容MCH2z。到故几 称三
百点电M电路H容z的的反甚缺馈高电。点频容:波C段B范提围供。交流同路。
三、实验应知知识
§5 三点式LC正弦波振荡器的电路构成与工作原理
一. 定义: 用LC并联谐振回路作为选频和移相网络的振荡器。
称为三点式LC振荡器。
二.什么是三点或(三端)式振荡器?
晶体管有三个电极(B、E、C) 分别与三个电抗性元件相连接 形成三个接点
c
b e
故称为三点式振荡器
X1
X2
X3
三、实验应知知识
通过本实验,加深对LC三点式与石英晶体 正弦波振荡电路的基本构成特点与基本工作原 理的理解.并且能进一步了解正弦波振荡电路的 基本起振条件,掌握三点式与石英晶体振荡的 基本特性,熟悉和掌握对电路的分析方法。
二、实验内容
1、LC三点式与石英晶体高频振荡器电路结构与特点的研究。 2、电容三点式LC振荡器静态工作点的调整与测量。 3、测定LC三点式与石英晶体振荡器的振荡频率与振荡幅度. 4、研究反馈系数不同时,起振点、振幅与工作电流的关系. 5、研究负载电阻不同时,振荡器振幅与频率的关系。 6、测试、分析并比较LC振荡器与晶体振荡器的频率稳定度。
++
•
Vf
•
Vi
-
1 放大电路
-
+
2 谐振回路
•
Vo
-
+
3
•
正反馈网络 -Vf
三、实验应知知识
三、电路工作原理
电路框图如图所示 接通电源瞬间,电路产生脉动电流。含有丰富的谐波
利用LC回路的选频作用,对脉动信号的某次谐波谐振,产生对某单一频率的
信号输出。
•
•
+
Av
+
+
kfv
+
•
Vi
谐振放大器
•
Vo
-