6种最常用恒流源电路的分析与比较

合集下载

压控恒流源电路设计

压控恒流源电路设计

压控恒流源电路设计
压控恒流源电路是一种常用的电子电路,用于实现对负载的恒定电流控制。

它可以根据负载的电流需求,自动调整输出电压,保持电流不变。

设计压控恒流源电路的关键是利用电压和电流之间的关系来实现控制。

以下是一种常见的压控恒流源电路设计:
1.基本电路结构:
该电路由一个可变电阻和一个电流传感器组成。

可变电阻用于调整电流大小,电流传感器用于检测实际电流值。

2.参考电压电路:
在该电路中,使用一个稳定的参考电压源,例如锗二极管或稳压源,来提供一个固定的参考电压。

3.比较放大器电路:
将负载电流与参考电流进行比较,并通过比较放大器将比较结果放大。

比较放大器可以是运算放大器或比较器。

4.反馈回路:
将比较放大器的输出反馈给可变电阻,以调整电流大小。

反馈回路可以使用反馈电阻网络来实现。

5.电流传感器:
为了测量负载电流,可以使用电阻、霍尔效应传感器或电流互感器等。

整个电路的工作原理是:电流传感器检测负载电流,并将其与参考电流进行比较。

比较放大器输出的误差信号通过反馈回路调整可变电阻的阻值,从而自动调整电流大小,以保持负载电流恒定。

需要注意的是,设计压控恒流源电路时,要考虑负载的额定电流范围和电压范围,选择合适的元器件,确保电路的稳定性和可靠性。

此外,还需要进行合适的保护措施,如过流保护、过压保护等,以确保电路和负载的安全运行。

对恒流源一些分析

对恒流源一些分析

恒流源是电路中广泛使用的一个组件,这里我整理一下比较常见的恒流源的结构和特点。

恒流源分为流出(Current Source)和流入(Current Sink)两种形式。

最简单的恒流源,就是用一只恒流二极管。

实际上,恒流二极管的应用是比较少的,除了因为恒流二极管的恒流特性并不是非常好之外,电流规格比较少,价格比较贵也是重要原因。

最常用的简易恒流源如 图(1) 所示,用两只同型三极管,利用三极管相对稳定的be电压作为基准,电流数值为:I = Vbe/R1。

这种恒流源优点是简单易行,而且电流的数值可以自由控制,也没有使用特殊的元件,有利于降低产品的成本。

缺点是不同型号的管子,其be电压不是一个固定值,即使是相同型号,也有一定的个体差异。

同时不同的工作电流下,这个电压也会有一定的波动。

因此不适合精密的恒流需求。

为了能够精确输出电流,通常使用一个运放作为反馈,同时使用场效应管避免三极管的be电流导致的误差。

典型的运放恒流源如图(2)所示,如果电流不需要特别精确,其中的场效应管也可以用三极管代替。

电流计算公式为:I = Vin/R1这个电路可以认为是恒流源的标准电路,除了足够的精度和可调性之外,使用的元件也都是很普遍的,易于搭建和调试。

只不过其中的Vin还需要用户额外提供。

从以上两个电路可以看出,恒流源有个定式(寒,“定式”好像是围棋术语XD),就是利用一个电压基准,在电阻上形成固定电流。

有了这个定式,恒流源的搭建就可以扩展到所有可以提供这个“电压基准”的器件上。

最简单的电压基准,就是稳压二极管,利用稳压二极管和一只三极管,可以搭建一个更简易的恒流源。

如图(3)所示:电流计算公式为:I = (Vd-Vbe)/R1TL431是另外一个常用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管可以得到更好的精度。

TL431组成流出源的电路,暂时我还没想到:)TL431的其他信息请参考《TL431的内部结构图》和《TL431的几种基本用法》电流计算公式为:I = 2.5/R1事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。

几种镜像恒流源电路分析!

几种镜像恒流源电路分析!
几种镜像恒流源电路分析!
在改进型差动放大器中,用恒流源取代射极电阻RE, 既为差动放大电路设置了合适的静态 工作电流,又大大增强了共模负反馈作用,使电路具有了更强的抑制共模信号的能力,且

不需要很高的电源电压,所以,恒流源和差动放大电路简直是 对绝配!
恒流源既可以为放大电路提供合适的静态电流,也可以作为有源负载取代高阻值的电阻, 从而增大放大电路的电压放大倍数。 这种用法在集成运放电路中有非常广泛的应用,本文 将介绍常见的恒流源电路以及作为有源负载的应用。
广播百科001 — 100期 广播百科101 — 200期 广电术语词旷( 一 ) 广电术语词汇(二)
来源:电子工程专辑
集成运放是 一 个多级放大电路,因而需要多路恒流源电路分别给各级提供合适的静态电 流。 可以利用 一个基准电流去获得多个不同的输出电流,以适应各级的需要。
图 4所示电路是在比例恒流源基础上得到的多路恒流源电路,IR为基准电流,IC1 、 IC2和 IC3为三路输出电流。 由千各管的b-e间电压 UBE数值大致相等,因此可得近似关系
一、 镜像恒流源电路 如圉 1所示为镜像恒流源电路,它由两只特性完全相同的管子VTO和VT1构成,由于VTO管 的c、 b极连接,因此UCEO=UBEO, 即 VTO处于放大状态,集电极电流ICO=�O*IBO。 另 外,管子VTO和VT1的b-e 分别连接,所以它们的基极电流1B0=1B1=1B。 设电流放大系数 �0= 阳=�'则两管集电极电流ICO=IC1=IC=�*IB。 可见,由于电路的这种特殊接法,使 两管集电极IC1和ICO呈镜像关系,故称此电路为镜像恒流源 (IR为基准电流,IC1为输出 电流)。
IEOReO�IE1Re1�1E2Re2�1E3Re3 (2-6)

6种最常用恒流源电路的分析与比较

6种最常用恒流源电路的分析与比较

恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路:类型1:特征:使用运放,高精度输出电流:Iout=Vref/Rs类型2:特征:使用并联稳压器,简单且高精度输出电流:Iout=Vref/Rs检测电压:根据Vref不同(1.25V或2.5V)类型3:特征:使用晶体管,简单,低精度输出电流:Iout=Vbe/Rs检测电压:约0.6V类型4:特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs检测电压:约0.1V~0.6V类型5:特征:使用JEFT,超低噪声输出电流:由JEFT决定检测电压:与JEFT有关其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs=Rs×Iout)相等,如图5所示,图5注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管图6Is=Iout-I G类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管”以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

常用的恒流电路

常用的恒流电路

常用的恒流电路
恒流电路是一种控制电流大小不受负载变化影响的电路。

在实际电路中,常用的恒流电路有电流源电路和晶体管恒流源电路。

一、电流源电路
1. 晶体管基本电流源电路
晶体管基本电流源电路是一种简单的恒流电路,由一个固定电阻和晶体管组成。

其原理是通过晶体管的基极和发射极之间的电压来控制电流。

当输入信号的电压改变时,电流也会相应地改变。

2. 晶体管双向恒流源电路
晶体管双向恒流源电路是一种具有双向输出的恒流电路,其原理是使用两个晶体管和一个电阻网络实现。

当输入信号的电压改变时,输出电流也会相应地改变。

二、晶体管恒流源电路
晶体管恒流源电路是一种高精度、高稳定性的恒流电路,其原理是通
过负反馈控制器将输出电流保持在恒定的值。

该电路通常由一个晶体管、一个稳压电路、一个电阻和一个电容组成。

总之,恒流电路在实际应用中有着广泛的用途,如LED驱动、电机控制、高精度电源等。

通过采用适当的电路设计和元件选择,可以实现高效、稳定的恒流输出,从而为实际应用提供可靠的支持。

LED串并方式及恒压源恒流源的选择分析

LED串并方式及恒压源恒流源的选择分析

LED串并方式及恒压源、恒流源的选择分析第一局部:根底分析篇考虑选用什么样的LED驱动器,以及LED作为负载采用的串并联方式,合理的配合设计,才能保证LED正常工作。

例如,驱动28盏LED时,可以设想的连接方法有六种。

一种是先串联14个LED〔LED串〕然后并联两条这样串联而成的LED串〔14串联×2并联〕。

除此之外,还有7串联×4并联、4串联×7并联、2串联×14并联、28串联×1并联、1串联×28并联等连接方式。

终究哪种连接方法最正确呢?【附:通常情况下,很多的朋友拿到LED电源,不知道怎么样区分恒压源和恒流源。

拿到一个LED电源,查看铭牌,找到输出电压这个关键参数:如果它的电压标称是一个恒定值,那么是恒压源。

如果是一个范围值,那么是恒流源。

例如:有一个电源它的输出电压是12V,我们那么确定这个是恒压源,如果它标称的是30-70V呢,那么这个电源一定是够恒流源。

】1、LED采用全部串联方式要求LED驱动器输出较高的电压〔如图1〕。

当LED的一致性差异较大时,分配在不同的LED两端电压不同,通过每颗LED的电流一样,LED的亮度一致。

图1图2当某一颗LED品质不良短路时,如果采用稳压式驱动〔如常用的阻容降压方式〕,由于驱动器输出电压不变,那么分配在剩余的LED两端电压将升高,驱动器输出电流将增大,导致容易损坏余下的所有LED。

如采用恒流式LED驱动,当某一颗LED品质不良短路时,由于驱动器输出电流保持不变,不影响余下所有LED正常工作。

当某一颗LED品质不良断开后,串联在一起的LED将全部不亮。

解决的方法是在每个LED两端并联一个稳压管,当然稳压管的导通电压需要比LED的导通电压高,否那么LED就不亮了。

2、LED采用全部并联方式要求LED驱动器输出较大的电流,负载电压较低〔如图3〕。

分配在所有LED 两端电压一样,当LED的一致性差异较大时,而通过每颗LED的电流不一致,LED的亮度也不同。

(电源技术)恒流源

(电源技术)恒流源
恒流源电路
概述
恒流源是能够向负载提供恒定电流的电 源 ,因此恒流源的应用范围非常广泛 ,并且 在许多情况下是必不可少的。例如在用通 常的充电器对蓄电池充电时 ,随着蓄电池端 电压的逐渐升高, 充电电流就会相应减少。 为了保证恒流充电 ,必须随时提高充电器的 输出电压,但采用恒流源充电后就可以不必 调整其输出电压 ,从而使劳动强度降低 ,生 产效率得到了提高。恒流源还被广泛用于 测量电路中 ,例如电阻器阻值的测量和分级, 电缆电阻的测量等 ,且电流越稳定,测量就 越准确。
恒流源电路
微电流恒流源电路
为了尽可能降低放大电路的功耗、提高对电源电 压及温度变化的稳定性,在集成电路中常采用微电流 恒流源电路作为放大电路的直流偏置电路。
+UCC
结构特点:
(1)电阻Re引入电流负反馈,使输出电流 R IR
IO
进一步稳定。
IC1
(2)由于UBE2<UBE1,所以IO<IR。
T1
从三极管特性曲线可见,工作区内的IC受 IB影响,而VCE对IC的影响很微。 因此,只要IB值固定,IC亦都可以固定。 输出电流IO即是流经负载的IC。
三极管射极偏压构成恒流源
从左边看起:基极偏压
VE = VB - 0.6 = 1.0V
又因为射极电阻是1K,流经射极电阻的电流是
所以流经负载的电流就就是稳定的1mA
恒流源分为流出(Current Source)和流入(Current Sink)两种形式。
恒流源是输出电流保持不变的电流源,而理想的 恒流源为: a)不因负载(输出电压)变化而改变。 b)不因环境温度变化而改变。 c)内阻为无限大。
理想恒流源
实际恒流源
理想的恒流源,其内阻为无限大,使其电流可以全部流出 外面。实际的恒流源皆有内阻R。

恒流源电路原理

恒流源电路原理

恒流源电路的基本原理恒流源电路是一种能够输出恒定电流的电路,它可以在不同负载情况下保持输出电流不变。

在很多应用中,需要稳定的电流源来驱动负载,例如LED驱动、激光器驱动、传感器等。

恒流源电路通过控制输出端的电压或者通过调节内部元件参数来实现稳定输出。

恒流源的分类恒流源可以分为两类:主动恒流源和被动恒流源。

1.主动恒流源:主动恒流源使用放大器等主动元件来实现稳定的输出电流。

其中最常见的就是使用晶体管作为控制元件,通过调节晶体管的工作状态来维持输出电流不变。

2.被动恒流源:被动恒流源则是利用二极管、二极管连接、MOSFET等被动元件构成的特殊网络来实现稳定输出。

这种类型的恒流源通常比较简单且成本较低,但是精度相对较低。

下面我们以主动恒流源为例进行详细讲解。

主动恒流源原理主要思想是通过对晶体管工作状态的控制,使得输出电流保持不变。

基本电路结构主动恒流源的基本电路结构如下图所示:恒流源电路恒流源电路其中,Q1和Q2是两个晶体管,R1和R2是两个电阻。

Vcc为电源电压。

工作原理主动恒流源的工作原理可以分为两个阶段:建立阶段和稳定阶段。

1.建立阶段:在建立阶段,首先假设Q1处于导通状态。

此时Q1的集电极与基极之间的电压为Vce_sat(饱和区压降),根据欧姆定律可知R1上产生一个与输出电流I相等的电压降。

由于Q2处于截止状态,所以其集电极上没有任何压降。

因此,根据基尔霍夫定律可知,Vcc等于R2上的电压加上Q2的集、基之间的饱和区压降Vbe_sat。

2.稳定阶段:在稳定阶段,通过反馈机制使得输出端口维持恒定的工作状态。

当输入端口发生变化时,比如负载发生变化,会导致输出电流发生变化。

此时,由于电流镜的存在,Q1和Q2之间的电流比例保持不变。

通过调节R1和R2的比例可以实现对输出电流的控制。

常见的主动恒流源电路常见的主动恒流源电路有多种形式,如Wilson镜、Widlar镜和母极驱动镜等。

下面分别介绍这几种常见的主动恒流源电路。

最简单的恒流源电路

最简单的恒流源电路

最简单的恒流源电路一、恒流源电路简介恒流源电路是指能够输出恒定电流的电路,通常用于需要恒定电流供应的应用中。

恒流源电路在许多领域中都有广泛的应用,如LED驱动、电池充电器、电解电镀等。

二、基本的恒流源电路原理恒流源电路的基本原理是通过电流反馈控制的方式来实现恒定电流的输出。

以下是最简单的恒流源电路的原理图:电源正极 ----> 电阻 ----> NPN型晶体管 ----> 地||负载该电路由一个电阻和一个NPN型晶体管组成。

电阻通过电流反馈的方式感知到电流的变化,并将反馈信号送至晶体管的基极。

晶体管根据反馈信号调整自身的导通状态,从而实现恒定电流的输出。

三、恒流源电路的工作原理详解1.电源正极的电压通过电阻产生一个电流,这个电流就是我们想要输出的恒定电流。

2.电流经过电阻后,会产生一个电压降。

这个电压降会被晶体管的基极感知到。

3.当电流增大时,电阻产生的电压降也会增大,晶体管的基极电压也会增大。

4.基极电压的增大会使得晶体管的导通增强,从而使得电流减小,达到恒流源的稳定状态。

5.当电流减小时,电阻产生的电压降减小,基极电压也减小,晶体管的导通减弱,电流增大,同样达到稳定状态。

四、恒流源电路的设计与计算恒流源电路的设计需要根据具体的需求来确定电流的大小和电路元件的参数。

以下是一个简单的设计和计算示例:1. 确定恒定电流的大小根据应用需求确定所需的恒定电流值。

例如,假设我们需要一个恒定电流为1mA的恒流源电路。

2. 计算电阻的阻值根据所需的恒定电流和电源电压,计算电阻的阻值。

根据欧姆定律,电阻的阻值可以通过以下公式计算:R = V / I其中,R为电阻的阻值,V为电源电压,I为所需的恒定电流。

3. 选择合适的电阻阻值根据计算得到的电阻阻值,选择最接近的标准电阻阻值。

4. 选择合适的晶体管根据所需的电流和功率,选择合适的晶体管。

需要考虑晶体管的最大电流和功率容量,以确保电路的正常工作。

运放和三极管组成的恒流源电路

运放和三极管组成的恒流源电路

运放和三极管组成的恒流源电路一、引言恒流源电路是电子电路中常见的一种重要电路,它具有稳定的电流输出特性,能够应用于各种场合。

运放和三极管是恒流源电路中常用的元件,它们相互结合可以构成不同类型的恒流源电路,具有较为灵活的特性。

本文将从运放和三极管的原理、恒流源电路的基本结构和工作原理、以及具体的应用案例等方面进行深入探讨。

二、运放和三极管的原理1.运放的原理运放是一种集成电路,它具有高输入阻抗、低输出阻抗、大增益、宽带宽等特性。

在通常情况下,运放有两个输入端和一个输出端。

运放的工作原理是利用电压负反馈使得输入端的电压等于输出端的电压,从而实现电压的放大、滤波、求和等功能。

运放内部包含多个晶体管、电阻、电容等元件,通过这些元件的组合可以实现各种功能。

2.三极管的原理三极管是一种半导体器件,它主要由P型半导体、N型半导体和P型半导体三层组成。

三极管具有放大作用,一般有三个引脚,分别为发射极、基极和集电极。

当在基极加上一个电压时,三极管就会发生放大作用,将输入信号放大到输出端。

三极管也可以作为电流源使用,通过控制其工作点,可以实现恒流输出。

三、恒流源电路的基本结构和工作原理恒流源电路是利用特定的电路结构和元件特性来实现恒定电流输出的电路。

在运放和三极管组成的恒流源电路中,通常是利用三极管的特性来实现电流源,而运放则用来提供稳定的电压给三极管。

下面以一个简单的电路来作为例子来说明。

恒流源电路的基本结构如下图所示:从图中可以看出,基本的恒流源电路由一个三极管、一个运放和若干个电阻组成。

运放的正输入端与负输入端通过一个电阻连接,正输入端与输出端通过一个电阻连接,三极管的发射极与负输入端相连,而负输入端则通过一个电流源与地相连。

在这样的电路结构下,当运放的输出电压发生变化时,会使得三极管的工作点发生变化,从而控制电流的大小,实现恒流输出。

四、具体的应用案例恒流源电路在实际应用中有着广泛的应用。

其中,一种典型的应用是LED的恒流驱动器。

运放恒流源电路详解

运放恒流源电路详解

运放恒流源电路详解一、引言运放恒流源电路是一种常见的电子电路,用于产生一个稳定的恒定电流源。

它广泛应用于各种电路设计中,例如电流源、电流比较器、电流控制器等。

本文将详细介绍运放恒流源电路的原理、设计和应用。

二、原理运放恒流源电路是利用运放的高开环增益和负反馈原理来实现稳定的恒定电流源。

这种电路通常由一个运放、一个电阻和一个负载组成,如下图所示:+--| R |--+| |Vref --- R1 R2 Vout| |+---+---+|FeedbackResistor•Vref为参考电压,用于确定输出电流的大小。

•R1和R2是电阻,用于确定反馈电压和输出电流之间的关系。

•Feedback Resistor是负载电阻,用于产生稳定的输出电流。

当输入电压Vref变化时,运放将调整输出电压Vout,使得负载电阻两端的电压保持不变。

这样,由恒流源电路输出的电流就能够保持恒定。

三、设计设计运放恒流源电路的关键是合理选择电阻值和参考电压。

以下是一个简单的设计步骤:1. 确定负载电流首先确定所需的输出电流。

根据应用要求和电路需求,确定输出电流的大小。

2. 选择参考电压根据所需的输出电流和参考电压之间的关系,选择合适的参考电压值。

3. 选择电阻选择合适的电阻值,使得负载电流和参考电压之间的关系满足要求。

4. 确定运放类型根据设计要求,选择合适的运放类型。

常用的运放类型有单电源运放和双电源运放,选择时需要考虑电源供电方式和输出要求等因素。

5. 确定运放参数根据所选运放的参数,确定运放的增益、输入电阻和输出电阻等特性。

四、应用运放恒流源电路广泛应用于各种电子电路设计中,下面是一些常见的应用场景:1. 电流源运放恒流源电路可以用作独立的电流源,提供稳定的电流输出。

2. 电流比较器将两个运放恒流源电路连接在一起,可以实现电流比较功能。

3. 电流控制器运放恒流源电路可以用于电流控制,将输出电流限制在一定范围内。

4. 自适应电源将运放恒流源电路与其他电源电路结合使用,可以实现自适应电源功能。

运放中恒流源电路分析方法

运放中恒流源电路分析方法

运放中恒流源电路分析方法运放中的恒流源电路是一种常用的电路结构,常用于对负载电流进行精确的控制。

它由运放和几个电阻组成,能够产生一个稳定的电流输出,不受负载变化的影响。

本文将介绍运放中恒流源电路的基本原理、分析方法以及常见的应用。

恒流源电路的基本原理是利用运放的负反馈特性,通过调节电阻来使输入端电流保持恒定。

在恒流源电路中,负载电流(IL)是通过运放控制的电流(Iref)和电阻(R)共同决定的。

其中,电流参考源(Iref)是通过一个稳压二极管和电阻网络来提供的一个恒定电流源。

在开始分析恒流源电路之前,我们需要了解两个重要的运放参数:1. 输入阻抗(Zin):输入阻抗是运放输入端对外界电路的等效电阻。

在理想情况下,运放的输入阻抗是无穷大。

2.开环增益(A):开环增益是指运放在没有负反馈的情况下输出电压和输入电压的比值。

在理想情况下,开环增益是无穷大。

根据以上两个运放参数,在运放中的恒流源电路中,可以通过将负载电流认为是运放输入端电流(I-),通过调节输入阻抗(Zin)和开环增益(A)来控制输出电流。

下面我们来具体分析恒流源电路的方法:1. 给电阻分析法:我们可以通过给定电阻(RL)来分析恒流源电路的工作原理。

在恒流源电路中,负载电流(IL)是通过运放控制的电流(Iref)和电阻(R)共同决定的。

所以,我们可以通过给定电阻的方式,来计算所需的输出电流。

2. 利用负反馈法:我们可以利用负反馈的特性,通过调节输入阻抗(Zin)和开环增益(A)来控制输出电流。

当输入阻抗(Zin)无穷大时,输入电流为零,此时运放输出电流只取决于电阻(R)。

当开环增益(A)无穷大时,输出电流与输入电流的比例关系为无穷大,即输出电流恒定。

3.稳态分析法:在分析恒流源电路时,我们可以通过稳态分析的方法来计算输出电流。

首先,假设运放工作在稳定状态,即输入端电流等于输出端电流。

然后,利用欧姆定律等基本电路理论来计算输入端电流和输出端电流的关系。

恒压源与恒流源的区别介绍

恒压源与恒流源的区别介绍

恒压源与恒流源的区别介绍
恒压源电路简介
在电路当中常常会用到输出恒定电压的电源,在电子线路中保证电压恒定的部分叫做恒压源,属于电源的一种。

一种恒压源电路,具有输入端、输出端、用于产生具有波电压的恒压的恒压源单元、和用于消除波电压以便在输出端输出没有波电压的恒压的波消除电路单元,所述波消除电路单元包括连接在所述恒压源单元和所述输出端之间的电阻器。

波电压检测电路单元,用于检测所述波电压并根据所检测的波电压输出信号。

常用的恒压源
开关电源
开关电源属于高频,是目前最主流的电源,功率从几瓦到几千瓦。

利用的原理是用脉冲去控制开关管的通断,有规律的反复开关,所以叫开关电源。

不管是反激、正激、半桥、全桥等都是这个原理。

线性电源。

双运放恒流源电路详解

双运放恒流源电路详解

双运放恒流源电路详解1.引言在文章中,1.1 概述部分旨在介绍双运放恒流源电路的背景和基本概念。

本文将详细阐述双运放恒流源电路的原理和应用前景,并对其进行总结。

首先,双运放恒流源电路是一种常见的电子电路设计技术,它通过使用两个运算放大器(运放)来实现一个可以输出稳定电流的电路。

这种电路在许多应用领域中得到了广泛的应用,如电源管理、仪器仪表以及通信系统等。

恒流源电路的基本原理是通过将一个稳定的参考电流与负载电阻相连接,从而实现一个稳定输出电流的源。

双运放恒流源电路的特点是它能够提供高的输出阻抗,从而减小对负载的影响,同时还有较好的稳定性和精度。

在本文的后续部分,我们将深入探讨双运放恒流源电路的基本原理。

首先,我们会详细介绍双运放的基本工作原理,包括其输入输出特性和放大功能。

随后,我们将进一步解释恒流源电路的原理,包括如何实现恒流输出以及如何保持输出的稳定性和精度。

而后,我们将探讨双运放恒流源电路的应用前景。

由于其具有稳定的输出特性和高输出阻抗,双运放恒流源电路在一些关键应用中具有重要的作用。

例如,在电源管理中,恒流源电路可以用于稳定电池充电,保证电池的使用寿命;在仪器仪表中,它可以作为精确且可靠的电流源,用于仪器的校准和运行;在通信系统中,恒流源电路可以提供稳定的电流驱动,保证数据传输的质量等。

最后,我们将总结本文的主要内容和观点。

通过对双运放恒流源电路的详细讲解,我们希望读者能够更好地理解其原理和应用,并在实际工程中灵活运用。

在接下来的章节中,我们将逐一阐述双运放恒流源电路的各个方面,带领读者深入理解这一电路设计技术的内涵。

1.2文章结构文章结构的部分内容可以如下编写:文章结构:本文主要分为引言、正文和结论三个部分。

引言部分包括概述、文章结构和目的三个小节。

在概述中,将介绍双运放恒流源电路的背景和意义。

文章结构部分即为本节所述的内容,将对文章的整体结构进行说明,使读者能够清晰地了解文章的组成部分。

恒流源和典型差动放大电路的特点

恒流源和典型差动放大电路的特点

恒流源和典型差动放大电路是电子领域中常见的两种电路,它们具有各自独特的特点和作用。

在本文中,我将对恒流源和典型差动放大电路的特点进行详细介绍,并分析它们在实际应用中的优势与局限。

一、恒流源的特点恒流源是一种能够提供恒定电流输出的电路,其主要特点如下:1. 稳定性高:恒流源能够在一定范围内保持输出电流的稳定性,不受负载变化的影响。

2. 独立性强:恒流源的输出电流与负载电阻基本无关,能够保持较高的输出稳定性。

3. 用途广泛:恒流源常用于电路中的偏置电流源、电压源、对流线型放大器等,具有广泛的应用领域。

4. 外部干扰抑制能力强:恒流源能够对外部干扰信号具有一定的抑制能力,能够提高电路的抗干扰性能。

二、典型差动放大电路的特点典型差动放大电路是一种常见的放大电路结构,其主要特点如下:1. 差动增益高:典型差动放大电路能够实现较高的差动增益,对输入信号的差分部分进行有效放大。

2. 共模抑制能力强:典型差动放大电路能够有效抑制输入信号的共模部分,提高了信号的抗干扰能力。

3. 线性度好:典型差动放大电路的输出信号与输入信号之间具有较好的线性关系,适用于各种线性信号放大应用。

4. 适用范围广:典型差动放大电路常用于模拟信号处理、传感器信号放大、仪器仪表等领域,适用范围广泛。

三、恒流源与典型差动放大电路的结合恒流源与典型差动放大电路常常结合在一起,共同构成了一种完整的放大电路系统。

它们的结合具有以下特点:1. 抑制共模干扰:由于恒流源的独立性强,能够有效地提供稳定的工作电流,从而可以帮助差动放大电路抑制共模干扰信号。

2. 提高线性度:恒流源能够提供稳定的工作电流,有利于提高差动放大电路的线性度,使得输出信号与输入信号的线性关系更加稳定。

3. 增强抗干扰性:恒流源的外部干扰抑制能力强,能够有效地帮助差动放大电路提高抗干扰性能,使其在复杂环境下仍能正常工作。

恒流源和典型差动放大电路都具有各自独特的特点,它们在实际应用中的结合能够充分发挥各自的优势,提高放大系统的性能和稳定性。

运放恒流源电路

运放恒流源电路

运放恒流源电路
运放恒流源电路是一种常用的电子元件,它可以将输入信号转换成
恒定的电流输出。

这种电路通常由一个运算放大器和几个外部元件组成,具有很高的精度和稳定性。

1. 运放运放是恒流源电路中最重要的
元件之一。

它是一种差分放大器,能够将两个输入信号进行比较,并
产生一个输出信号。

在恒流源电路中,运放起到了控制输出电流大小
的作用。

2. 限制反馈网络为了保证输出电流不会超过某个特定值,在
恒流源电路中需要加入限制反馈网络。

这个网络通常由一个二极管、
一个负载以及若干个固定阻值构成。

3. 参考源参考源也是非常关键的
一个部分。

它提供了基准点,使得整个系统能够工作在正确的范围内。

参考源通常由稳压器或者其他可靠性较高的元件实现。

4. 输出负载输
出负载也必不可少。

它承担着接收并处理从恒流源传来的信号,并将
其转化为所需形式(如光、磁场等)。

因此,在设计时需要根据具体
应用选择合适类型和参数的负载。

5. 控制回路控制回路主要包括对输
入端口进行采样、比较以及调节等操作,以确保整个系统始终处于正
常工作状态下,并且满足预期性能指标要求。

总之,通过上述各项技
术手段相互协同配合,在实际应用中可以有效地实现对输入信号进行
快速响应、高精度测量与控制等功能需求;同时还可以避免出现过渡
振荡、失真变形等问题影响系统稳定性和可靠性表现。

六种常见恒流源电路图与解析

六种常见恒流源电路图与解析

六种常见恒流源电路图与解析
时间:2011-07-24 21:42:44 来源:作者:
对比几种V/I电路,凡是没有三极管之类的单向器件,都可以实现交流恒流,加了三极管之后就只能做单向直流恒流了。

当然可以用功率放大器扩展输出电流。

第四和第五种是建立在正负反馈平衡的基础上的,电阻的误差而失去平衡,会影响恒流输出特性,也就是说,输出电流会随负载变化。

而其他几种电路中电阻的误差只会影响输出电流的值,而不会影响输出特性。

如果输出电流大,或者嫌三极管的集电极电流和发射极电流不相等,可以把三极管换成MOSFET。

在工作中需要用到恒流源电路,应急中找电路图自己搭建了一个,下面是六种常见恒流源电路解析:
这几种电路都可以在负载电阻RL上获得恒流输出;
第一种由于RL浮地,一般很少用;
第二种RL是虚地,也不大使用;
第三种虽然RL浮地,但是RL一端接正电源端,比较常用;
第四种是正反馈平衡式,是由于负载RL接地而受到人们的喜爱;
第五种和第四种原理相同,只是扩大了电流的输出能力,人们在使用中常常把电阻R2取的比负载RL大的多,而省略了跟随器运放;
第六种是本人设计的对地负载的V/I转换电路;
后边两种是恒流源电路。

恒流源电路mos管

恒流源电路mos管

恒流源电路mos管恒流源电路是一种常用的电路结构,用于产生恒定的电流输出。

它通常由MOS管(金属氧化物半导体场效应管)组成,因此也被称为MOS管恒流源电路。

恒流源电路的主要作用是在电路中产生恒定的电流,以提供稳定的电流源。

在很多应用中,恒流源电路被广泛应用,例如模拟电路中的放大器设计、电源管理电路中的电流控制等。

MOS管是一种三端器件,由源极、漏极和栅极组成。

在恒流源电路中,MOS管的漏极和栅极之间串联一个电阻,从而实现了对电流的控制。

当栅极电压一定时,通过控制漏极电压来调节电流的大小。

恒流源电路的工作原理如下:当栅极电压为恒定值时,MOS管的漏极电压决定了电流的大小。

漏极电压与电阻之间的电压差决定了电流的大小,根据欧姆定律,电流的大小与电阻之间的电压差成正比。

因此,通过调节电阻的阻值,可以实现对电流的控制。

在实际应用中,恒流源电路可以基于不同的MOS管类型来实现。

常见的有NMOS(n型MOS)和PMOS(p型MOS)恒流源电路。

它们的区别在于电流的流动方向和电压的极性。

NMOS恒流源电路中,电流从源极流向漏极,电压为正;而PMOS恒流源电路中,电流从漏极流向源极,电压为负。

除了基本的恒流源电路结构,还可以通过增加其他器件来实现更高级的功能。

例如,可以通过添加电流镜电路来实现更高精度的恒流输出。

电流镜电路是一种由多个MOS管组成的电路,用于提高电流的稳定性和精度。

总结起来,恒流源电路是一种常用的电路结构,通过MOS管和电阻的组合来实现恒定的电流输出。

它在模拟电路设计和电源管理等领域有着广泛的应用。

不同类型的恒流源电路可以根据具体应用选择,以实现所需的电流输出。

通过合理设计和优化,恒流源电路可以提供稳定、精确的电流源,为电路设计和应用提供了可靠的基础。

几种简单的恒流源电路

几种简单的恒流源电路

几种简单的恒流源电路恒流电路应用的范围很广,下面介绍几种由常用集成块组成的恒流电路。

1.由7805组成的恒流电路,电路图如下图1所示:电流I=Ig+VOUT/R,Ig的电流相对于Io是不能忽略的,且随Vout,Vin及环境温度的变化而变化,所以这个电路在精度要求有些高的场合不适用。

2.由LM317组成的恒流电路如图2所示,I=Iadj+Vref/R(Vref=1.25),Iadj的输出电流是微安级的所以相对于Io可以忽略不计,由此可见其恒流效果较好。

3.由PQ30RV31组成的恒流电路如图3所示,I=Vref/R(Vref=1.25),他的恒流会更好,另外他是低压差稳压IC。

摘要:本文论述了以凌阳16位单片机为控制核心,实现数控直流电流源功能的方案。

设计采用MOSFET和精密运算放大器构成恒流源的主体,配以高精度采样电阻及12位D/A、A/D转换器,完成了单片机对输出电流的实时检测和实时控制,实现了10mA~2000mA 范围内步进小于2mA恒定电流输出的功能,保证了纹波电流小于0.2mA,具有较高的精度与稳定性。

人机接口采用4×4键盘及LCD 液晶显示器,控制界面直观、简洁,具有良好的人机交互性能。

关键字:数控电流源 SPCE061A 模数转换数模转换采样电阻一、方案论证根据题目要求,下面对整个系统的方案进行论证。

方案一:采用开关电源的恒流源采用开关电源的恒流源电路如图1.1所示。

当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。

BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。

当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。

图 1.1 采用开关电源的恒流源优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

恒流电路有很多场合不仅需要场合输出阻抗为零的恒流源,也需要输入阻抗为无限大的恒流源,以下是几种单极性恒流电路:
类型1:
特征:使用运放,高精度
输出电流:Iout=Vref/Rs
类型2:
特征:使用并联稳压器,简单且高精度
输出电流:Iout=Vref/Rs
检测电压:根据Vref不同(1.25V或2.5V)
类型3:
特征:使用晶体管,简单,低精度
输出电流:Iout=Vbe/Rs
检测电压:约0.6V
类型4:
特征:减少类型3的Vbe的温度变化,低、中等精度,低电压检测输出电流:Iout=Vref/Rs
检测电压:约0.1V~0.6V
类型5:
特征:使用JEFT,超低噪声
输出电流:由JEFT决定
检测电压:与JEFT有关
其中类型1为基本电路,工作时,输入电压Vref与输出电流成比例的检测电压
Vs(Vs=Rs×Iout)相等,如图5所示,
图5
注:Is=IB+Iout=Iout(1+1/h FE)其中1/h FE为误差
若输出级使用晶体管则电流检测时会产生基极电流分量这一误差,当这种情况不允许时,可采用图6所示那样采用FET管
图6
Is=Iout-I G
类型2,这是使用运放与Vref(2.5V)一体化的并联稳压器电路,由于这种电路的Vref高达2.5V,所以电源利用范围较窄
类型3,这是用晶体管代替运放的电路,由于使用晶体管的Vbe(约0.6V)替代Vref的电路,因此,Vbe的温度变化毫无改变地呈现在输出中,从而的不到期望的精度
类型4,这是利用对管补偿Vbe随温度变化的电路,由于检测电压也低于0.1V左右,应此,电源利用范围很宽
类型5,这是利用J-FET的电路,改变R gs可使输出电流达到漏极饱和电流I DSS,由于噪声也很小,因此,在噪声成为问题时使用这种电路也有一定价值,在该电路中不接R GS,则电流值变成I DSS,这样,J-FET接成二极管形式就变成了“恒流二极管”
以上电路都是电流吸收型电路,但除了类型2以外,若改变Vref极性与使用的半导体元件,则可以变成电流吐出型电路。

相关文档
最新文档