同济大学高等数学试卷选编 2

合集下载

同济大学《高等数学》第五版上册答案(详解)

同济大学《高等数学》第五版上册答案(详解)

解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y

y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3

高等数学同济下册期末考试题及答案套

高等数学同济下册期末考试题及答案套

大学高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、z =)0()(log 22>+a y x a 的定义域为D=。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122(。

6、微分方程x y x y dx dy tan +=的通解为。

7、方程04)4(=-y y 的通解为。

8、级数∑∞=+1)1(1n n n 的和为。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是()(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小; (D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ∂∂+∂∂等于() (A )y x +;(B )x ;(C)y ;(D)0。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I等于() (A )4⎰⎰⎰2020103cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰200102sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。

同济大学《高等数学》[上册]的答案解析

同济大学《高等数学》[上册]的答案解析

完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 2-5
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
>>>
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
总习题四
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 3-3
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 3-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
练习 4-3
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 4-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享

同济大学大一公共课高等数学期末试卷及答案2套

同济大学大一公共课高等数学期末试卷及答案2套

(2)该曲线在哪点处的曲率半径为 2 ?
∫⎧
2.设
ϕ
(x)
=
⎪ ⎨

2x et2 d t
x
,
x
⎩ a,
x ≠ 0, 求 a 的值,使得ϕ(x)在 x = 0 处连续,并用导数定义求ϕ ′(0) .
x = 0,
三、
∫ 1.求定积分 I = π x2 1− sin 2 x d x . 0
2.若
f
(x)
2 0

x2 sin x + 2x cos x − 2 sin x
π π
2
= π 2 + 2π − 4 . 2
2.当 x < 0 时, 当 x ≥ 0 时,
∫ F(x) =
x −∞
1 1+ t2
dt
= arctan x +
π 2

∫ ∫ F(x) = 0 1 d t + x
−∞ 1+ t2
0
1 d t = π + [2 arctan t (1+ t) 2
4 + y2 d y −1000g
h(t )
y
4+ y2 d y ,
−1
−1
−1
上式两边对 t 求导,得
∫ d F = 1000g h(t) 4 + y2 d y d h ,
dt
−1
dt
由于 d h = −0.01,因此,当水面下降至平板的中位线(即 x 轴)时,平板一侧所受到的水压力的下 dt
降速率为
t
]
x 0
=
2 arctan
x+π . 2

同济大学高等数学习题课2-数列极限

同济大学高等数学习题课2-数列极限
n
4.若数列{ xn } 与{ yn } 发散,问数列{ xn yn } ,
{
xn
yn
}
,{
xn yn
}
是否一定发散?
答:不一定发散。
例如: (1)n 和 (1)n1 都发散,但 (1)n (1)n1 0, (1)n(1)n1 1

(1)n (1)n1
1
收敛。
二、证明题
1)
.
2
6
n(n1)(n2) h3 6

n2 an
n2 n(n1)(n2) h3
6n (n2 3n2)h3
6 (n 3)h3

6
0
,要使
n2 an
0
(n
6 3)h3

只要n
6 h3
3
,故取
N
6 h3
3

∵ 0 ,
N
6 h3
3

nN
时,有
n2 an
0
6 (n 3)h3


lim
n
n2 an
0
(a
lim
n
xn
a
;反之是否成立。
1.用定义证明: lim xn a ,则对任一正整 数k ,
n
l im xnk a 。
n
证明:∵ lim xn a ,∴0 , NN ,n N 时,
n
恒有 xn a 。
∵当n N 时,必有nk N ,∴也必有xnk a ,
∴ lim xnk a 。
n
2.证明 lim xn a lim x2n1 lim x2n a 。
1.用定义证明: lim xn a ,则对任一正 整 数k , lim xnk a .

高等数学同济(下册)期末考试题与答案5套

高等数学同济(下册)期末考试题与答案5套

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y 的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

练习二高等数学同济大学第六版本

练习二高等数学同济大学第六版本
解圆周的参数方程为xacostyasintt从0变到2所以
(4) 其中L是连接点O(00)到B(11)的①直线段②抛物线yx2③抛物线xy2④立方抛物线yx3
解①



(5) 其中L为沿参数t增加方向的圆柱螺线xacostyasintzt(0t2)

(6) 其中L为圆周x2y2z2a2xyz0且从z轴正向看去圆周为逆时针方向
解(1)
(2)
4.设力的方向沿纵轴负方向其大小等于作用点的横坐标的平方求在该力作用下质点沿抛物线1xy2从点(10)移至点(01)所做的功
解Fx2j
Lx1y2y从0变到1
1.计算下列对坐标的曲线积分
(1) 其中L为曲线y1|1x|(0x2)
解LL1L2其中L1yxx从0变到1L2y2xx从1变到2
(2) 其中L是由坐标轴和直线 所构成的正向(逆时针方向)三角形回路
解LL1L2L3其中L1y0x从0变到2L2 x从2变到0L3x0y从3变到0
(3) 其中L为依逆时针方向绕行的圆周x2y2a2

2.设为曲线xtyt2zt3上相应于t从0变到1的曲线弧把对坐标的曲线积分 化成对弧长的曲线积分
解曲线上任一点的切向量为
(12t3t2)(12x3y)
单位切向量为
3.求在力F4xyi8yj2k作用下质点沿(1)直线y2xz2x由点(000)到点(பைடு நூலகம்66)
(2)圆周x2y24z0由(200)出发依逆时针方向回到(200)所做的功

同济大学《高等数学》第七版上、下册答案(详解),DOC

同济大学《高等数学》第七版上、下册答案(详解),DOC
(4)2 12 (7 z)2 32 52 (2 z)2
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.

同济大学高等数学期末考试题

同济大学高等数学期末考试题

《高数》试卷7(上)一、 选择题(每小题3分)1、函数 2)1ln(++-=x x y 的定义域是( ). A []1,2- B [)1,2- C (]1,2- D ()1,2-2、极限x x e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21- D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y5、下列各微分式正确的是( ).A 、)(2x d xdx =B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d = 6、设 ⎰+=C x dx x f 2cos 2)( ,则 =)(x f ( ).A 、2sin xB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx x x ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).A 、⎰104dx x πB 、⎰10ydy π C 、⎰-10)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e+ 10、微分方程 x e y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=*B 、x e y 73=*C 、x xe y 272=*D 、x e y 272=* 二、 填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分 ⎰eedx x 1ln ; 6、解方程21x y xdx dy -=; 四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、x e x )2(+; 2、94 ; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 6、C x y =-+2212 ;四、 1、38;2、图略。

高等数学下册模拟试题及答案02,第七版,同济大学数学系

高等数学下册模拟试题及答案02,第七版,同济大学数学系

分)求幂级数

n 1
n
!
n
n
的收敛域(端点情形要讨论).
七、(12 分)利用 Gauss(高斯)公式计算曲面积分 x 2 yz dydz y2 zx dzdx z2 xy dxdy ,

y
八、(12 分)设 1 ,试确定函数 u ,使得曲线积分 sin x x dx x dy
sin x
所以得微分方程 x x
x
x
C cos x 解此方程,得通解 x
x
1 cos x C 1 所以,所求函数为 x
x
( , )
y
( ,0)
y
sin x x dx x dy sin x x dx x dy
22
22
1
1
即: x y z 2 0 和 x y z 2 0
2
2
1
|212 15|
2、所求最短距离为 S 的切点到平面 的距离最短。d1
2
3
22 22 1
2
1
| 2 (1) 2 ( ) 1 5 |
d1
2 22 22 1
13x 10y 4z 7 0 13x 10 y 4z 7 0 。故投影直线方程为
2x 3y z 0
四、(12 分)计算
D
1 x2 y2 dxdy
,其中 D 是由圆周 x 2 y2 1及坐标轴所围成的在第一象限内的闭区域.
1 x2 y2
L
x
在 x 0 或在 x 0 的域内与路径无关,并求由点 A 1, 0 到 B , 的上述积分 .

同济大学高等数学上期末试卷(2套)

同济大学高等数学上期末试卷(2套)

《高等数学》上 期末试卷(基础卷)一.填空题(本题满分15分,每小题3分)1.极限π2ln sin lim1sin x xx →=-________.2.设()ln 1arctan x t y t t⎧=+⎨=-⎩,则1d |d t yx ==________.3. 曲线323y x x =+在 x = 1 处对应的切线方程为: .4. 333)e d xx x x -+=⎰(________.5. 常系数齐次线性微分方程6130y y y '''++=的通解是 ________. 二.选择题(本题满分15分,每小题3分)下列每小题给出4个答案, 其中只有一个是正确的,请将正确答案的编号填入括号内。

1.设()1,0sin ,0x x f x x x x-≤⎧⎪=⎨>⎪⎩,则0x =为()f x 的_______.A . 可去间断点 B. 跳跃间断点 C. 无穷间断点 D. 连续点2.设()()()()123f x x x x x =---,则()f x ''在()0,3上恰有_______零点.A. 1个B. 2个C. 3个D. 4个3. 当0x →时,cos x x x -与sin cos x x x -是 无穷小.A.等价B.同阶C.高阶D.低阶 4. 函数()(ln ln f x x a =-是 .A. 偶函数B. 奇函数C. 非奇非偶函数D. 奇偶性取决于a 值5. 微分方程d e d x yy x= 的通解为 .A .e x y C = B. e e xy C = C . x C y ln =; D.ln e x y C x =+.三.计算题(本题满分24 分,共4小题,每小题满分6分)1.求I x =⎰.2.30ln cos d limxx t t x+→⎰.3. 函数)(x y y =由方程e cos x y y =+确定,求d d yx. 4. 求tan sin 2y y x x '+=的通解.四.(本题10分)设平面区域D由曲线y =直线 1x = 及0y =所围成, 求区域D 的面积,以及该区域绕y 轴旋转所成旋转体的体积V .五.(本题10分)求内接于椭圆12222=+by a x 而面积最大的矩形的各边之长..六.(本题10分)设函数()x bx ax x f ++=23在1=x 取得极大值5, (1)求常数a 和b ; (2)求函数()x f 的极小值. 七.(本题10分)求函数2361(3)xy x =++的单调区间,凹凸区间、拐点和渐近线,并画出函数的图形.八.(本题6分)设()f x 二阶可导,且()00f =,()0f x ''>,证明:()f x x在 ()0,+∞上单调增加.《高等数学》上 期末试卷(综合卷)一.填空题(本题满分15分,每小题3分) 1. 极限()cot 0lim 12xx x →+=________.2. 设()f x 可导,并且()()112lim3x f f x x→--=,则()1f '=________.3. 设2e et tx t y t -⎧=-⎨=+⎩,求22d d y x =________. 4.设()23f '=,则函数()22y f x =在1x =处的微分为________. 5.(5π5πln d x x -⎡=⎢⎣⎰________.二.选择题(本题满分15分,每小题3分)下列每小题给出4个答案, 其中只有一个是正确的,请将正确答案的编号填入括号内。

高等数学(同济)下册期末考试题及答案(5套)之欧阳语创编

高等数学(同济)下册期末考试题及答案(5套)之欧阳语创编

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分) 1、 z =)0()(log 22>+a y x a 的定义域为D=。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为,其值为。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为。

7、方程04)4(=-y y 的通解为。

8、级数∑∞=+1)1(1n n n 的和为。

二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( )(A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C )y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(xyxf y x yf u +=其中f具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +;(B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰2213cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ; (C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ200103cos sin dr r d d 。

同济大学数学系《高等数学》(第7版)(下册)配套题库【考研真题精选+章..

同济大学数学系《高等数学》(第7版)(下册)配套题库【考研真题精选+章..

目 录第一部分 考研真题精选第8章 向量代数与空间解析几何第9章 多元函数微分法及其应用第10章 重积分第11章 曲线积分与曲面积分第12章 无穷级数第二部分 章节题库第8章 向量代数与空间解析几何第9章 多元函数微分法及应用第10章 重积分第11章 曲线积分与曲面积分第12章 无穷级数第一部分 考研真题精选第8章 向量代数与空间解析几何填空题(把答案填在题中横线上)点(2,1,0)到平面3x+4y+5z=0的距离d=______。

[数一2006研]【答案】【解析】由点到平面的距离公式第9章 多元函数微分法及其应用一、选择题1设函数f(x,y)在点(0,0)处可微,f(0,0)=0,,且非零向量→d与→n垂直,则( )。

[数一2020研]A.存在B.存在C.存在D.存在A【答案】【解析】∵f(x,y)在(0,0)处可微,f(0,0)=0,∴;即。

∵,∴存在。

∴选A项。

2关于函数给出下列结论①∂f/∂x|(0,0)=1②∂2f/∂x∂y|(0,0)=1③④正确的个数为( )。

[数二2020研]A.4B.3C.2D.1【答案】B【解析】①因,故①正确。

②因,先求f x′(0,y),而当y≠0时,不存在;当y=0时,;综上可知,f x′(0,y)不存在。

故∂2f/∂x∂y|(0,0)不存在,因此②错误。

③当xy≠0时,,当(x,y)沿着y轴趋近于(0,0)点时,;当(x,y)沿着x轴趋近于(0,0)点时,;综上可知,,故③正确。

④当y=0时,;当y≠0时,,故,则,故④正确。

综上,正确个数为3。

故应选B。

3函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量→u=(1,2,2)的方向导数为( )。

[数一2017研]A.12B.6C.4D.2D【答案】计算方向余弦得:cosα=1/3,cosβ=cosγ=2/3。

偏导数f x′=2xy,f y′=x2,f z′=2z。

得∂f/∂u=f x′cosα+f y′cosβ+f z′cosγ=4·(1/3)+1·(2/3)+0·(2/3)=2。

高等数学Ⅱ答案 同济大学第三版

高等数学Ⅱ答案 同济大学第三版
解所求平面的法线向量可设为 n=(0, b, c). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上,
所以向量n =(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n是垂直的, 即 1
b+9c=0, b=−9c , 于是 n=(0, −9c, c)=−c(0, 9, −1). 所求平面的方程为
4. 自点P0(x0, y0, z0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.
解在xOy面、yOz面和zOx面上, 垂足的坐标分别为(x , y , 0)、(0, y , z )和(x , 0, z ).
00
00
0
0
在x轴、y轴和z轴上, 垂足的坐标分别为(x , 0, 0), (0, y , 0)和(0, 0, z ).
3
.
3
(5)y+z=1; 解y+z=1是平行于x轴的平面, 它在y轴、z轴上的截距均为1. (6)x−2z=0; 解x−2z=0是通过y轴的平面. (7)6x+5−z=0.
解 6x+5−z=0 是通过原点的平面. 求平面2x−2y+z+5=0与各坐标面的夹角的余弦. 解此平面的法线向量为n=(2, −2, 1).
0
0
0
5. 过点P (x , y , z )分别作平行于z轴的直线和平行于xOy面的平面, 问在它们上面的点的坐 00 0 0
标各有什么特点? 解在所作的平行于 z 轴的直线上, 点的坐标为(x , y , z); 在所作的平行于 xOy 面的平面上,
00
点的坐标为(x, y, z ). 0
6. 一边长为 a 的立方体放置在 xOy 面上, 其底面的中心在坐标原点, 底面的顶点在 x 轴和 y 轴上, 求它各顶点的坐标.

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

同济大学数学系《高等数学》(第7版)(上册)配套题库【考研真题精选+章节题库】

同济大学数学系《高等数学》(第7版)(上册)配套题库【考研真题精选+章节题库】

目 录第一部分 考研真题精选第1章 函数与极限第2章 导数与微分第3章 微分中值定理与导数的应用第4章 不定积分第5章 定积分第6章 定积分的应用第7章 微分方程第二部分 章节题库第1章 函数与极限第2章 导数与微分第3章 微分中值定理与导数的应用第4章 不定积分第5章 定积分第6章 定积分的应用第7章 微分方程第一部分 考研真题精选第1章 函数与极限一、选择题1若,则f(x)第二类间断点的个数为( )。

[数二、数三2020研] A.1B.2C.3D.4【答案】C【解析】由f(x)表达式知,间断点有x=0,±1,2。

因为存在,故x=0为可去间断点;因,故x=1为第2类间断点;因,故x=-1为第2类间断点;因,故x=2为第2类间断点;综上,共有3个第二类间断点,故应选C项。

2当x→0时,若x-tanx与x k是同阶无穷小,则k=( )。

[数一2019研]A.1B.2C.3D.4【答案】Ctanx在x=0处的泰勒展开式为:tanx=x+(1/3)x3+o(x3),因此当x→0时有x-【解析】tanx~-(1/3)x3,即x-tanx与-(1/3)x3是x→0时的等价无穷小,进一步可得x-tanx与x3是同阶无穷小,所以k=3,故选C。

3已知方程x5-5x+k=0有3个不同的实根,则k的取值范围( )。

[数三2019研] A.(-∞,-4)B.(4,+∞)C.{-4,4}D.(-4,4)【答案】D【解析】方程x5-5x+k=0有3个不同实根等价于曲线y=x5-5x与直线y=-k有3个不同的交点,因此研究曲线y=x5-5x的曲线特点即可。

令f(x)=x5-5x,则f(x)在R上连续,且f′(x)=5x4-5,再令f′(x)=0,得x=±1,通过分析f′(x)在稳定点x=±1左右两侧的符号,可知当x∈(-∞,-1)时,f′(x)>0,f(x)单调递增;当x∈(-1,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档