基本导数公式
常用的基本求导公式
常用的基本求导公式1. 乘法法则(Product Rule):如果y = u(x)v(x),其中u(x)和v(x)是关于x的函数,则y' = u'v + uv'。
2. 商法则(Quotient Rule):如果y = u(x)/v(x),其中u(x)和v(x)是关于x的函数,则y' = (u'v - uv')/v²。
3. 链式法则(Chain Rule):如果y=f(g(x)),其中g(x)是关于x的函数,f(u)是关于u的函数,则y'=f'(g(x))*g'(x)。
4.幂函数法则:如果y=xⁿ,其中n为常数,则y'=n*xⁿ⁻¹。
5.指数函数法则:如果y = aˣ,其中a为常数,x为变量,则y' = ln(a) * aˣ。
6.对数函数法则:如果y = logₐ(x),其中a为常数,x为变量,则y' = (1/ln(a)) * (1/x)。
7.反三角函数法则:(1) 如果y = sin⁻¹(x),则y' = 1/√(1-x²)。
(2) 如果y = cos⁻¹(x),则y' = -1/√(1-x²)。
(3) 如果y = tan⁻¹(x),则y' = 1/(1+x²)。
8.双曲函数法则:(1) 如果y = sinh(x),则y' = cosh(x)。
(2) 如果y = cosh(x),则y' = sinh(x)。
(3) 如果y = tanh(x),则y' = sech²(x)。
9.导数的性质:(1) 常数的导数为0,即d/dx(c) = 0。
(2) 变量的导数为1,即d/dx(x) = 1(3) 导数的线性性质,即d/dx(c₁f(x) + c₂g(x)) = c₁f'(x) +c₂g'(x),其中c₁和c₂为常数,f(x)和g(x)是关于x的函数。
导数公式大全
导数公式大全导数公式是微积分中非常重要的一部分,它可以用来计算函数在其中一点处的斜率。
以下是一些常见的导数公式:1.基本导数公式:- 总幂法则:如果 $f(x) = x^n$,其中 $n$ 是任意实数,则 $f'(x) = nx^{n-1}$- 幂函数常数因子法则:如果 $f(x) = cx^n$,其中 $c$ 是常数,$n$ 是任意实数,则 $f'(x) = cnx^{n-1}$-和差法则:如果$f(x)=u(x)+v(x)$,其中$u(x)$和$v(x)$可导,则$f'(x)=u'(x)+v'(x)$- 积法则:如果 $f(x) = u(x) \cdot v(x)$,其中 $u(x)$ 和$v(x)$ 可导,则 $f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$ - 商法则:如果 $f(x) = \frac{u(x)}{v(x)}$,其中 $u(x)$ 和$v(x)$ 可导,且 $v(x) \neq 0$,则 $f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v(x)^2}$2.指数函数与对数函数的导数:- 指数函数:如果 $f(x) = a^x$,其中 $a$ 是常数且 $a > 0$,则$f'(x) = a^x \ln(a)$-自然指数函数:如果$f(x)=e^x$,则$f'(x)=e^x$- 对数函数:如果 $f(x) = \log_a(x)$,其中 $a$ 是常数且 $a >0$,则 $f'(x) = \frac{1}{x \ln(a)}$- 自然对数函数:如果 $f(x) = \ln(x)$,则 $f'(x) =\frac{1}{x}$3.三角函数的导数:- 正弦函数:如果 $f(x) = \sin(x)$,则 $f'(x) = \cos(x)$- 余弦函数:如果 $f(x) = \cos(x)$,则 $f'(x) = -\sin(x)$- 正切函数:如果 $f(x) = \tan(x)$,则 $f'(x) = \sec^2(x)$- 反正弦函数:如果 $f(x) = \arcsin(x)$,则 $f'(x) =\frac{1}{\sqrt{1-x^2}}$- 反余弦函数:如果 $f(x) = \arccos(x)$,则 $f'(x) = -\frac{1}{\sqrt{1-x^2}}$- 反正切函数:如果 $f(x) = \arctan(x)$,则 $f'(x) =\frac{1}{1+x^2}$4.常用函数的导数:-常数函数:如果$f(x)=c$,其中$c$是常数,则$f'(x)=0$- 反函数:如果 $f(x)$ 的反函数为 $f^{-1}(x)$,则 $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$-绝对值函数:如果$f(x)=,x,$,则$f'(x)$可以分为两段来计算,当$x>0$时,$f'(x)=1$;当$x<0$时,$f'(x)=-1$这里列出的只是一些常见的导数公式,实际上导数还可以通过链式法则、隐函数求导法则以及高阶导数等方法计算。
基本导数公式表
基本导数公式表导数是研究函数变化率的一个重要工具,它描述了一个函数在某一点的斜率或变化率。
在微积分中,我们可以根据函数的定义和基本运算法则推导出一系列的导数公式。
下面是一些基本的导数公式:1. 变量的幂函数:(1)常数函数:f(x) = C,其中C是一个常数,f'(x) = 0;(2)幂函数:f(x) = x^n,其中n是任意实数,f'(x) = n*x^(n-1);(3)指数函数:f(x) = a^x,其中a>0且a≠1,f'(x) = ln(a)*a^x;(4)对数函数:f(x) = log_a(x),其中a>0且a≠1,f'(x) =1/(x*ln(a))。
2. 三角函数:(1)正弦函数:f(x) = sin(x),f'(x) = cos(x);(2)余弦函数:f(x) = cos(x),f'(x) = -sin(x);(3)正切函数:f(x) = tan(x),f'(x) = sec^2(x);(4)余切函数:f(x) = cot(x),f'(x) = -csc^2(x)。
3. 反三角函数:(1)反正弦函数:f(x) = arcsin(x),f'(x) = 1/√(1-x^2);(2)反余弦函数:f(x) = arccos(x),f'(x) = -1/√(1-x^2);(3)反正切函数:f(x) = arctan(x),f'(x) = 1/(1+x^2);(4)反余切函数:f(x) = arccot(x),f'(x) = -1/(1+x^2)。
4. 基本运算法则:(1)和差法则:[f(x) ± g(x)]' = f'(x) ± g'(x);(2)乘积法则:[f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x);(3)商法则:[f(x) / g(x)]' = [f'(x) * g(x) - f(x) * g'(x)] / [g(x)]^2;(4)复合函数法则:[f(g(x))]‘ = f'(g(x)) * g'(x)。
导数公式及导数的运算法则
导数公式及导数的运算法则一、导数公式1.基本导数公式:(1) 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。
(2) 幂函数的导数为其指数与常数的乘积,即d/dx(x^n) = n*x^(n-1),其中n为实数。
(3) 自然对数函数的导数为1/x,即d/dx(ln(x)) = 1/x。
(4) 正弦函数的导数为余弦函数,即d/dx(sin(x)) = cos(x)。
(5) 余弦函数的导数为负的正弦函数,即d/dx(cos(x)) = -sin(x)。
2.基本初等函数的导数公式:(1) 常数乘以函数的导数等于函数的导数乘以这个常数,即d/dx(c*f(x)) = c*f'(x),其中f(x)为可导函数,c为常数。
(2) 函数相加(减)的导数等于函数导数的相加(减),即d/dx(f(x)±g(x)) = f'(x)±g'(x),其中f(x)和g(x)为可导函数。
(3) 乘积法则:两个函数相乘的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。
(4) 商法则:函数的导数等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/[g(x)]^23.复合函数的导数:(1) 基本链式法则:若y=f(u)和u=g(x)都是可导函数,则y=f(g(x))也是可导函数,且它的导数等于f'(u)*g'(x),即dy/dx = dy/du *du/dx = f'(u) * g'(x)。
1.反函数的导数:若函数y=f(x)在区间I上具有连续的导数f'(x),且在区间I上f'(x)≠0,则它的反函数x=g(y)在对应的区间J上也有连续的导数,且g'(y)=1/f'(x)。
一般常用求导公式
一般常用求导公式在数学中,求导是一项非常重要的运算,它用于计算函数在某一点的导数。
为了方便计算,数学家们总结出了一系列常用的求导公式,能够帮助我们更快速地求出函数的导数。
本文将介绍一般常用的求导公式,并给出相应的解释和使用示例。
一、基本导数法则1. 常数函数导数公式若y = C(C为常数),则y' = 0。
解释:常数函数的导数恒为0,因为其图像是一条水平线,斜率为0。
例如:如果y = 5,那么y' = 0。
2. 幂函数导数公式若y = x^n(n为常数),则y' = nx^(n-1)。
解释:幂函数的导数可以通过将指数降低1并作为新的指数乘以原指数,得到幂函数的导数。
例如:如果y = x^3,那么y' = 3x^2。
3. 指数函数导数公式若y = a^x(a>0且a≠1),则y' = a^x * ln(a)。
解释:指数函数的导数等于函数的值乘以底数的自然对数。
例如:如果y = 2^x,那么y' = 2^x * ln(2)。
4. 对数函数导数公式若y = lo gₐ(x)(a>0且a≠1),则y' = 1 / (x * ln(a))。
解释:对数函数的导数等于1除以自变量乘以底数的自然对数。
例如:如果y = log₂(x),那么y' = 1 / (x * ln(2))。
5. 指数对数函数导数公式若y = a^(bx + c)(a>0且a≠1,b和c为常数),则y' = (b * ln(a)) * a^(bx + c)。
解释:指数对数函数的导数等于指数项的系数乘以底数的自然对数,再乘以函数本身。
例如:如果y = 3^(2x + 1),那么y' = (2 * ln(3)) * 3^(2x + 1)。
二、常用三角函数导数公式1. 正弦函数导数公式若y = sin(x),则y' = cos(x)。
2. 余弦函数导数公式若y = cos(x),则y' = -sin(x)。
常用导数求导公式
常用导数求导公式导数是微积分中的一个重要概念,它用于描述函数在其中一点的变化率。
求导是求解导数的过程,常用导数求导公式是求导常用的一些规则和技巧的总结。
下面是一些常用导数求导公式的介绍:一、基本初等函数的导数公式:1.常数函数的导数为0:f(x)=c,其中c为常数,f'(x)=0。
2. 幂函数的导数:f(x) = x^n,其中n为任意实数,f'(x) =nx^(n-1)。
3.指数函数的导数:f(x)=e^x,其中e为自然对数的底数,f'(x)=e^x。
4. 对数函数的导数:f(x) = ln(x),其中ln表示以e为底的对数,f'(x) = 1/x。
5.三角函数的导数:- 正弦函数的导数:f(x) = sin(x),f'(x) = cos(x)。
- 余弦函数的导数:f(x) = cos(x),f'(x) = -sin(x)。
- 正切函数的导数:f(x) = tan(x),f'(x) = sec^2(x)。
- 反正弦函数的导数:f(x) = asin(x),f'(x) = 1/√(1-x^2)。
- 反余弦函数的导数:f(x) = acos(x),f'(x) = -1/√(1-x^2)。
- 反正切函数的导数:f(x) = atan(x),f'(x) = 1/(1+x^2)。
二、基本初等函数的组合求导公式:1.和、差、积的求导:若f(x)和g(x)是可导函数,则有以下运算法则:-(f(x)±g(x))'=f'(x)±g'(x)。
-(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
2.商的求导:若f(x)和g(x)是可导函数,且g(x)≠0,则有以下运算法则:-(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/[g(x)]^2三、复合函数求导:若y=f(g(x))是由两个函数f(x)和g(x)复合而成的函数,则求导的链式法则如下:y'=f'(g(x))*g'(x)。
16个基本导数公式详解
16个基本导数公式详解在微积分中,导数是一个基本的概念。
它描述了函数在给定点的变化率。
了解导数的基本公式对于求解微积分问题是至关重要的。
在本文中,我们将详细讨论16个基本导数公式,每个公式都将包含定义、求导法则和常见的具体例子。
1.常数函数的导数:定义:如果函数$f(x)$是一个常数,则$f'(x)=0$。
求导法则:常数的导数是0。
例如:对于函数$f(x)=5$,它的导数$f'(x)=0$。
2.幂函数的导数:定义:对于函数 $f(x)=x^n$,其中 $n$ 是一个正整数,则$f'(x)=nx^{n-1}$。
求导法则:对于幂函数,使用幂函数的指数作为系数,然后将指数减1例如:对于函数$f(x)=x^2$,它的导数$f'(x)=2x$。
3.指数函数的导数:定义:对于函数 $f(x)=a^x$,其中 $a$ 是一个正常数且 $a \neq 1$,则 $f'(x)=a^x \ln(a)$。
求导法则:对于指数函数,使用指数和常数的乘积,并且乘以自然对数的底数。
例如:对于函数 $f(x)=2^x$,它的导数 $f'(x)=2^x \ln(2)$。
4.对数函数的导数:定义:对于函数 $f(x)=\log_a(x)$,其中 $a$ 是一个正常数且 $a\neq 1$,则 $f'(x)=\frac{1}{x \ln(a)}$。
求导法则:对于对数函数,使用1除以输入的自变量乘以自然对数的底数。
例如:对于函数 $f(x)=\log_2(x)$,它的导数 $f'(x)=\frac{1}{x\ln(2)}$。
5.正弦函数的导数:定义:对于函数 $f(x)=\sin(x)$,则 $f'(x)=\cos(x)$。
求导法则:正弦函数的导数是余弦函数。
例如:对于函数 $f(x)=\sin(2x)$,它的导数 $f'(x)=2\cos(2x)$。
6.余弦函数的导数:定义:对于函数 $f(x)=\cos(x)$,则 $f'(x)=-\sin(x)$。
导数的基本公式
导数的基本公式
导数的基本公式:y=c(c为常数)y'=0、y=x^ny'=nx^(n-1)。
1、导数Derivative也叫导函数值,又名微商。
对于可导的函数f(x),xf'(x)也是一个函数,称作f(x)的导函数(简称导数)。
寻找已知的函数在某点的导数或其导函数的过程称为求导。
实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
2、导数是微积分学中重要的基础概念,是函数的局部性质。
复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到复平面里面,从而引出解析函数的定义。
那么研究解析函数的性质就是关键所在。
最关键的地方就是所谓的Cauchy—Riemann公式,这个是判断一个函数是否是解析函数的关键所在。
3、若某函数在某一点导数存在,则称其在这一点可导。
x0处一阶导数存在并不能推出原函数在x0的充分小领域内连续。
反例是:D(x)*x^2,其中D为dirichlet函数。
容易看出这个函数在0处导数存在,但是在0的任意一个充分小领域内不连续。
高等数学导数公式大全
高等数学导数公式大全一、基本导数公式1. 设常数a为导数常数,则有:(1)导数为零:d(ax)/dx = 0(2)导数为常数:d(ax)/dx = a2. 幂函数导数:(1)常数的幂函数导数:d(x^n)/dx = nx^(n-1),其中n为正整数(2)自然指数函数的导数:d(e^x)/dx = e^x(3)指数函数的导数:d(a^x)/dx = ln(a)*a^x,其中a>0且a≠1(4)对数函数的导数:d(logₐx)/dx = 1/(xlna),其中a>0且a≠1 3. 三角函数导数:(1)正弦函数的导数:d(sin x)/dx = cos x(2)余弦函数的导数:d(cos x)/dx = -sin x(3)正切函数的导数:d(tan x)/dx = sec^2 x(4)余切函数的导数:d(cot x)/dx = -csc^2 x(5)正割函数的导数:d(sec x)/dx = sec x * tan x(6)余割函数的导数:d(csc x)/dx = -csc x * cot x4. 反三角函数导数:(1)反正弦函数的导数:d(arcsin x)/dx = 1/√(1-x²),(-1≤x≤1)(2)反余弦函数的导数:d(arccos x)/dx = -1/√(1-x²),(-1≤x≤1)(3)反正切函数的导数:d(arctan x)/dx = 1/(1+x²)(4)反余切函数的导数:d(arccot x)/dx = -1/(1+x²)(5)反正割函数的导数:d(arcsec x)/dx = 1/(x√(x²-1)),(x>1或x<-1)(6)反余割函数的导数:d(arccsc x)/dx = -1/(x√(x²-1)),(x>1或x<-1)二、导数运算法则1. 基本导数运算法则:(1)和差法则:d(u±v)/dx = du/dx ± dv/dx(2)常数倍法则:d(cu)/dx = c * du/dx,其中c为常数(3)乘积法则:d(uv)/dx = u * dv/dx + v * du/dx(4)商法则:d(u/v)/dx = (v * du/dx - u * dv/dx) / v²,其中v≠02. 复合函数的导数:若y=f(u)和u=g(x)是可导函数,则有:d(f(g(x)))/dx = d(f(u))/du * d(g(x))/dx3. 反函数的导数:若y=f(x)的反函数为x=g(y),则有:d(g(y))/dy = 1 / d(f(x))/dx,其中d(f(x))/dx≠0三、高级导数公式1. 高阶导数:(1)二阶导数:d²y/dx² = d(dy/dx)/dx(2)三阶导数:d³y/dx³ = d(d²y/dx²)/dx = d²(dy/dx)/dx²2. 高阶导数公式:(1)幂函数的n阶导数:d^n(x^m)/dx^n = (m)(m-1)(m-2)...(m-n+1)x^(m-n)(2)指数函数的n阶导数:d^n(e^x)/dx^n = e^x(3)对数函数的n阶导数:d^n(logₐx)/dx^n = (-1)^(n-1)(n-1)!/x^n四、隐函数求导公式设x和y是关于变量t的函数,则有:dy/dx = dy/dt / dx/dt例如,对于方程x^2 + y^2 = R^2,其中R为常数,可得:dy/dx = -x/y以上是高等数学导数公式的大全,涵盖了基本导数公式、导数运算法则、高级导数公式和隐函数求导公式。
导数求导基本公式
导数求导基本公式导数是微积分中的重要概念,用于描述函数的变化率。
求导是求函数的导数的过程。
导数的基本公式是求常见函数的导数所使用的公式,掌握了这些基本公式,能够方便地求解各种函数的导数。
一、常数函数的导数对于常数函数f(x)=C,其中C为常数,它的导数为0,即f'(x)=0。
二、幂函数的导数对于幂函数f(x) = x^n,其中n为实数,它的导数为f'(x) =nx^(n-1)。
三、指数函数的导数对于指数函数f(x) = a^x,其中a为正实数且不等于1,它的导数为f'(x) = a^x·ln(a),其中ln(a)为自然对数。
四、对数函数的导数对于对数函数f(x) = log_a(x),其中a为正实数且不等于1,它的导数为f'(x) = 1/(x·ln(a))。
五、三角函数的导数(1)正弦函数的导数对于正弦函数f(x) = sin(x),它的导数为f'(x) = cos(x)。
(2)余弦函数的导数对于余弦函数f(x) = cos(x),它的导数为f'(x) = -sin(x)。
(3)正切函数的导数对于正切函数f(x) = tan(x),它的导数为f'(x) = sec^2(x)。
(4)余切函数的导数对于余切函数f(x) = cot(x),它的导数为f'(x) = -csc^2(x)。
(5)反正弦函数的导数对于反正弦函数f(x) = arcsin(x),它的导数为f'(x) = 1/√(1-x^2)。
(6)反余弦函数的导数对于反余弦函数f(x) = arccos(x),它的导数为f'(x) = -1/√(1-x^2)。
(7)反正切函数的导数对于反正切函数f(x) = arctan(x),它的导数为f'(x) = 1/(1+x^2)。
六、双曲函数的导数(1)双曲正弦函数的导数对于双曲正弦函数f(x) = sinh(x),它的导数为f'(x) = cosh(x)。
导数公式及其运算法则
导数公式及其运算法则导数是微积分中的重要概念,它描述了函数在特定点处的变化率。
导数的公式及其运算法则包括如下几类:基本导数公式、常数倍法则、和差法则、乘法法则、除法法则、复合函数法则、反函数法则和链式法则。
一、基本导数公式:1.常数函数:对于常数函数f(x)=c,其导数为f'(x)=0。
例如,f(x)=7的导数为f'(x)=0。
2.幂函数:对于幂函数f(x)=x^n,其中n是任意实数,其导数为f'(x)=n*x^(n-1)。
例如,f(x)=x^3的导数为f'(x)=3*x^23. 指数函数:对于指数函数 f(x) = a^x,其中 a 是任意正常数且a≠1,其导数为 f'(x) = ln(a)*a^x。
例如,f(x) = 2^x 的导数为 f'(x) = ln(2)*2^x。
4. 对数函数:对于对数函数 f(x) = log_a(x),其中 a 是任意正常数且a≠1,其导数为 f'(x) = 1/(x*ln(a))。
例如,f(x) = log_2(x)的导数为 f'(x) = 1/(x*ln(2))。
5. 三角函数:对于三角函数 f(x) = sin(x),其导数为 f'(x) =cos(x)。
同样地,cos(x) 的导数为 -sin(x),tan(x) 的导数为sec^2(x),cot(x) 的导数为 -csc^2(x)。
二、常数倍法则:若函数 f(x) 和 g(x) 都是可导函数,c 是常数,则 (cf(x))' =cf'(x)。
三、和差法则:若函数f(x)和g(x)都是可导函数,则(f(x)+g(x))'=f'(x)+g'(x)和(f(x)-g(x))'=f'(x)-g'(x)。
四、乘法法则:若函数f(x)和g(x)都是可导函数,则(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本导数公式-CAL-FENGHAI.-(YICAI)-Company One1
基本导数公式
⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '=
⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅
⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x
'= ⑿()1log
ln x a x a '= ⒀()arcsin x '= ⒁()arccos x '=
微分公式与微分运算法则
⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =
⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x =
⑿()1log
ln x a d dx x a = ⒀()arcsin d x = ⒁()arccos d x = ⒂()21arctan 1d x dx x
=
+ ⒃()21arccot 1d x dx x =-+
微分运算法则 ⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udv d v v -⎛⎫= ⎪⎝⎭
基本积分公式
⑴kdx kx c =+⎰ ⑵11x x dx c μμ
μ+=++⎰ ⑶ln dx x c x =+⎰ ⑷ln x
x
a a dx c a =+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰
⑻
221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x =++⎰
⑾
arcsin x c =+
分部积分法公式
⑴形如n ax x e dx ⎰,令n u x =,ax dv e dx =
形如sin n x xdx ⎰
令n u x =,sin dv xdx = 形如cos n x xdx ⎰
令n u x =,cos dv xdx = ⑵形如arctan n x xdx ⎰
,令arctan u x =,n dv x dx = 形如ln n x xdx ⎰,令ln u x =,n dv x dx = ⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax
u e x x =均可。
第二换元积分法中的三角换元公式
sin x a t =tan x a t =sec x a t =。