基本函数求导公式
求导法则及基本求导公式
求导法则及基本求导公式求导法则是微积分中的重要内容,用于求解函数的导数。
通过求导法则,我们可以将复杂的函数求导问题转化为简单的计算问题。
本文将介绍常见的求导法则及基本求导公式。
1.基本求导公式:(1)常数函数求导公式:如果f(x)=C(C是常数),那么f'(x)=0。
(2)幂函数求导公式:如果f(x) = x^n (n是实数),那么f'(x) = nx^(n-1)。
其中,对于n不等于1的情况,需要注意一点:如果n是一个整数,那么求导过程中,指数函数仍然满足乘法法则,即令n作为常数处理;如果n是一个实数但不是整数,那么求导过程中,必须使用指数函数的导数公式。
(3)指数函数和对数函数求导公式:(a)指数函数求导公式:如果f(x) = a^x (a>0,且不等于1),那么f'(x) = ln(a) * a^x。
(b)自然对数函数求导公式:如果f(x) = ln(x),那么f'(x) = 1/x。
(4)三角函数求导公式:(a)正弦函数求导公式:如果f(x) = sin(x),那么f'(x) =cos(x)。
(b)余弦函数求导公式:如果f(x) = cos(x),那么f'(x) = -sin(x)。
(c)正切函数求导公式:如果f(x) = tan(x),那么f'(x) =sec^2(x)。
2.求导法则:(1)和差法则:如果f(x)=g(x)+h(x),那么f'(x)=g'(x)+h'(x)。
同样地,对于减法来说,如果f(x)=g(x)-h(x),那么f'(x)=g'(x)-h'(x)。
(2)乘法法则:如果f(x)=g(x)*h(x),那么f'(x)=g'(x)*h(x)+g(x)*h'(x)。
(3)除法法则:如果f(x)=g(x)/h(x),那么f'(x)=(g'(x)*h(x)-g(x)*h'(x))/(h(x))^2(4)复合函数求导法则(链式法则):如果f(x)=g(h(x)),那么f'(x)=g'(h(x))*h'(x)。
求导公式大全24个
求导公式大全24个1.常数函数的导数为零:(c)'=0。
2.幂函数的导数:(x^n)'=n*x^(n-1)。
3.反比例函数的导数:(1/x)'=-1/x^2。
4. 指数函数的导数:(a^x)' = a^x*lna,其中lna为以e为底数的对数。
5. 对数函数的导数:(ln x)' = 1/x,其中x>0。
6. 正弦函数的导数:(sin x)' = cos x。
7. 余弦函数的导数:(cos x)' = -sin x。
8. 正切函数的导数:(tan x)' = sec^2 x = 1/cos^2 x。
9. 反正弦函数的导数:(arcsin x)' = 1/√(1-x^2)。
10. 反余弦函数的导数:(arccos x)' = -1/√(1-x^2)。
11. 反正切函数的导数:(arctan x)' = 1/(1+x^2)。
12. 双曲正弦函数的导数:(sinh x)' = cosh x。
13. 双曲余弦函数的导数:(cosh x)' = sinh x。
14. 双曲正切函数的导数:(tanh x)' = sech^2 x = 1/cosh^2 x。
15. 反双曲正弦函数的导数:(arcsinh x)' = 1/√(x^2+1)。
16. 反双曲余弦函数的导数:(arccosh x)' = 1/√(x^2-1)。
17. 反双曲正切函数的导数:(arctanh x)' = 1/(1-x^2)。
18.真分式的导数:(f(x)/g(x))'=(f'(x)g(x)-g'(x)f(x))/g^2(x)。
19.复合函数的导数:(f(g(x)))'=f'(g(x))*g'(x)。
20.积的导数:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
24个基本求导公式
24个基本求导公式1.常数dy/dx = 0当函数为常数时,其斜率为0。
2.变量dy/dx = 1对于x而言,其斜率始终为13.幂函数dy/dx = nx^(n-1)对于幂函数y=x^n而言,其导数是n乘以x的(n-1)次方。
4.指数函数dy/dx = a^x * ln(a)对于指数函数y = a^x而言,其导数等于底数a的x次方乘以常数ln(a)。
5.对数函数dy/dx = 1 / (x * ln(a))对于对数函数y = log_a(x)而言,其导数是1除以x乘以底数a的对数。
6.正弦函数dy/dx = cos(x)对于正弦函数y = sin(x)而言,其导数等于余弦函数cos(x)。
7.余弦函数dy/dx = -sin(x)对于余弦函数y = cos(x)而言,其导数等于负的正弦函数-sin(x)。
8.正切函数dy/dx = sec^2(x)对于正切函数y = tan(x)而言,其导数等于正切函数的平方sec^2(x)。
9.余切函数dy/dx = -csc^2(x)对于余切函数y = cot(x)而言,其导数等于负的余切函数的平方-csc^2(x)。
10.双曲正弦函数dy/dx = cosh(x)对于双曲正弦函数y = sinh(x)而言,其导数等于双曲余弦函数cosh(x)。
11.双曲余弦函数dy/dx = sinh(x)对于双曲余弦函数y = cosh(x)而言,其导数等于双曲正弦函数sinh(x)。
12.双曲正切函数dy/dx = sech^2(x)对于双曲正切函数y = tanh(x)而言,其导数等于双曲正切函数的平方sech^2(x)。
13.双曲余切函数dy/dx = -csch^2(x)对于双曲余切函数y = coth(x)而言,其导数等于负的双曲余切函数的平方-csch^2(x)。
14.反正弦函数dy/dx = 1 / √(1-x^2)对于反正弦函数y = arcsin(x)而言,其导数等于1除以根号(1-x^2)。
基本函数的求导公式
基本函数的求导公式在微积分的学习中,求导是一个重要的概念。
求导可以理解为求函数的变化率,或者说是函数在某一点的斜率。
基本函数是指一些常见的函数,它们的求导公式是我们学习微积分时必须掌握的基础知识。
一、常数函数的求导常数函数是指函数的值恒定不变,不随自变量的改变而改变。
常数函数的求导很简单,因为它的变化率为零。
所以,对于常数函数f(x) = c,其中c是一个常数,其导函数为f'(x) = 0。
二、幂函数的求导幂函数是指形如f(x) = x^n的函数,其中n是一个实数。
幂函数的导函数可以通过幂函数的指数减1,并乘以幂函数的系数得到,即f'(x) = n * x^(n-1)。
例如,对于f(x) = x^3,其导函数为f'(x) = 3 * x^2。
三、指数函数的求导指数函数是指以底数大于0且不等于1的常数为底的函数,形如f(x) = a^x,其中a是一个正常数。
指数函数的导函数可以通过指数函数的底数乘以指数函数的自变量的自然对数得到,即f'(x) = a^x * ln(a)。
例如,对于f(x) = 2^x,其导函数为f'(x) = 2^x *ln(2)。
四、对数函数的求导对数函数是指以某个正实数为底的对数函数,形如f(x) = log_a(x),其中a是一个正实数且不等于1。
对数函数的导函数可以通过自变量的倒数乘以对数函数的底数的自然对数得到,即f'(x) = 1 / (x * ln(a))。
例如,对于f(x) = log_2(x),其导函数为f'(x) = 1 / (x * ln(2))。
五、三角函数的求导三角函数是指正弦函数、余弦函数、正切函数等函数。
不同的三角函数有不同的求导公式,这里我们以正弦函数和余弦函数为例进行说明。
正弦函数的导函数是余弦函数,即f'(x) = cos(x)。
例如,对于f(x) = sin(x),其导函数为f'(x) = cos(x)。
导函数公式八个公式
导函数公式八个公式导函数是微积分中的重要概念之一,它描述了一个函数在各个点上的斜率或变化率。
在实际问题中,导函数的概念有着广泛的应用。
本文将介绍八个常见的导函数公式,并通过生动的例子和详细的解释,展示它们的全面性和指导意义。
1. 常数函数导函数公式:当函数为常数时,导函数始终为零。
例如,函数y=3是一个常数函数,其导函数dy/dx=0。
这意味着无论自变量x取何值,函数的斜率始终为零,即函数是水平的。
2. 幂函数导函数公式:对于幂函数y=x^n,其导函数dy/dx=nx^(n-1)。
例如,函数y=x^2是一个幂函数,其导函数dy/dx=2x。
这表示在函数y=x^2中,任意一点的斜率是2倍的自变量x 值。
3. 指数函数导函数公式:对于指数函数y=a^x(a>0,且a≠1),其导函数dy/dx=a^x * ln(a)。
例如,函数y=2^x是一个指数函数,其导函数dy/dx=2^x * ln(2)。
这意味着在函数y=2^x中,任意一点的斜率与函数值的比例由常数ln(2)决定。
4. 对数函数导函数公式:对于对数函数y=log_a(x)(a>0,且a≠1),其导函数dy/dx=1/(x * ln(a))。
例如,函数y=log_2(x)是一个对数函数,其导函数dy/dx=1/(x * ln(2))。
这表示在函数y=log_2(x)中,任意一点的斜率与函数值的倒数成反比。
5. 三角函数导函数公式:对于常见的三角函数(如sin(x),cos(x), tan(x)等),它们的导函数可以通过基本的微积分规则得到。
例如,导函数d(sin(x))/dx=cos(x),导函数d(cos(x))/dx=-sin(x),导函数d(tan(x))/dx=sec^2(x)。
6. 反三角函数导函数公式:反三角函数的导函数也可以通过基本的微积分规则得到。
例如,导函数d(arcsin(x))/dx=1/sqrt(1-x^2),导函数d(arccos(x))/dx=-1/sqrt(1-x^2),导函数d(arctan(x))/dx=1/(1+x^2)。
常用的基本求导公式
常用的基本求导公式在微积分中,求导是一种求函数导数的运算,它是微积分的基础知识。
常用的基本求导公式是指在求导时所要运用的一些基本规则和公式。
下面是一些常用的基本求导公式:1.常数规则:如果f(x)=c,其中c是一个常数,那么f'(x)=0。
2. 幂规则:如果f(x) = x^n,其中n是实数,那么f'(x) = nx^(n-1)。
这条规则表示,对于任意整数n,常数倍的幂函数都是自己的导数。
3.指数规则:如果f(x)=e^x,那么f'(x)=e^x。
这条规则表示,自然指数函数的导数等于自身。
4. 对数规则:如果f(x) = ln(x),那么f'(x) = 1/x。
这条规则表示,自然对数函数的导数是其自变量的倒数。
5.三角函数的导数规则:(a) 如果f(x) = sin(x),那么f'(x) = cos(x)。
这条规则表示,正弦函数的导数是余弦函数。
(b) 如果f(x) = cos(x),那么f'(x) = -sin(x)。
这条规则表示,余弦函数的导数是负的正弦函数。
(c) 如果f(x) = tan(x),那么f'(x) = sec^2(x)。
这条规则表示,正切函数的导数是它的平方的倒数。
6.反函数的求导规则:如果y=f(x)是可逆的,并且f'(x)≠0,那么f^(-1)'(y)=1/f'(x)。
这条规则表示,如果f(x)的导数不为零,那么其反函数的导数等于原函数导数的倒数。
7.和、差、积的求导规则:(a)f(x)+g(x)的导数等于f'(x)+g'(x)。
(b)f(x)-g(x)的导数等于f'(x)-g'(x)。
(c)f(x)g(x)的导数等于f'(x)g(x)+f(x)g'(x)。
8.商的求导规则:如果f(x)=g(x)/h(x),那么f'(x)=(g'(x)h(x)-g(x)h'(x))/[h(x)]^2、这条规则表示,一个函数的商的导数等于分子导数与分母的导数之差除以分母的平方。
导数公式大全24个
导数公式大全24个导数公式大全24个:1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h].2、f(x)=a的导数,f'(x)=0, a为常数. 即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。
就是当幂函数的指数等于1的时候的导数。
可以根据幂函数的求导公式求得。
3、f(x)=x^n的导数,f'(x)=nx^(n-1), n为正整数. 即系数为1的单项式的导数,以指数为系数,指数减1为指数. 这是幂函数的指数为正整数的求导公式。
4、f(x)=x^a的导数,f'(x)=ax^(a-1), a为实数. 即幂函数的导数,以指数为系数,指数减1为指数.5、f(x)=a^x的导数,f'(x)=a^xlna, a>0且a不等于1. 即指数函数的导数等于原函数与底数的自然对数的积.6、f(x)=e^x的导数,f'(x)=e^x. 即以e为底数的指数函数的导数等于原函数.7、f(x)=log_a x的导数,f'(x)=1/(xlna), a>0且a不等于1. 即对数函数的导数等于1/x与底数的自然对数的倒数的积.8、f(x)=lnx的导数,f'(x)=1/x. 即自然对数函数的导数等于1/x.9、(sinx)'=cosx. 即正弦的导数是余弦.10、(cosx)'=-sinx. 即余弦的导数是正弦的相反数.11、(tanx)'=(secx)^2. 即正切的导数是正割的平方.12、(cotx)'=-(cscx)^2. 即余切的导数是余割平方的相反数.13、(secx)'=secxtanx. 即正割的导数是正割和正切的积.14、(cscx)'=-cscxcotx. 即余割的导数是余割和余切的积的相反数.15、(arcsinx)'=1/根号(1-x^2).16、(arccosx)'=-1/根号(1-x^2).17、(arctanx)'=1/(1+x^2).18、(arccotx)'=-1/(1+x^2).19、(f+g)'=f'+g'. 即和的导数等于导数的和。
基本初等函数导数公式大全
基本初等函数导数公式大全1.常数函数:若f(x)=C,其中C是一个常数,则f'(x)=0。
2.幂函数:若f(x) = x^n,其中n是一个实数,则f'(x) = nx^(n-1)。
3.指数函数:若f(x) = a^x,其中a是一个正实数且a≠1,则f'(x) = a^xlna。
4.对数函数:a) 若f(x) = ln,x,则f'(x) = 1/x。
b) 若f(x) = log_a ,x,则f'(x) = 1/(xln(a))。
5.正弦函数和余弦函数:a) 若f(x) = sin(x),则f'(x) = cos(x)。
b) 若f(x) = cos(x),则f'(x) = -sin(x)。
6.正切函数和余切函数:a) 若f(x) = tan(x),则f'(x) = sec^2(x)。
b) 若f(x) = cot(x),则f'(x) = -csc^2(x)。
7.反三角函数:a) 若f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
b) 若f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
c) 若f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
d) 若f(x) = arccot(x),则f'(x) = -1/(1+x^2)。
8.双曲函数:a) 若f(x) = sinh(x),则f'(x) = cosh(x)。
b) 若f(x) = cosh(x),则f'(x) = sinh(x)。
c) 若f(x) = tanh(x),则f'(x) = sech^2(x)。
d) 若f(x) = coth(x),则f'(x) = -csch^2(x)。
9.反双曲函数:a) 若f(x) = arcsinh(x),则f'(x) = 1/√(x^2+1)。
基础函数求导公式大全
基础函数求导公式大全1. 常数函数的导数公式:对于常数c,它的导数为0。
即d/dx (c) = 0。
2. 幂函数的导数公式:对于幂函数y = x^n,其中n是实数,它的导数为dy/dx = nx^(n-1)。
3. 指数函数的导数公式:对于指数函数y = a^x,其中a是正实数且不等于1,它的导数为dy/dx = (ln a) * a^x。
4. 对数函数的导数公式:对于对数函数y = log_a x,其中a是正实数且不等于1,它的导数为dy/dx = 1 / (x * ln a)。
5.三角函数的导数公式:- 正弦函数的导数公式:dy/dx = cos(x)。
- 余弦函数的导数公式:dy/dx = -sin(x)。
- 正切函数的导数公式:dy/dx = sec^2(x)。
- 余切函数的导数公式:dy/dx = -csc^2(x)。
- 反正弦函数的导数公式:dy/dx = 1 / sqrt(1 - x^2)。
- 反余弦函数的导数公式:dy/dx = -1 / sqrt(1 - x^2)。
- 反正切函数的导数公式:dy/dx = 1 / (1 + x^2)。
- 反余切函数的导数公式:dy/dx = -1 / (1 + x^2)。
6.双曲函数的导数公式:- 双曲正弦函数的导数公式:dy/dx = cosh(x)。
- 双曲余弦函数的导数公式:dy/dx = sinh(x)。
- 双曲正切函数的导数公式:dy/dx = sech^2(x)。
- 双曲余切函数的导数公式:dy/dx = -csch^2(x)。
- 反双曲正弦函数的导数公式:dy/dx = 1 / sqrt(x^2 + 1)。
- 反双曲余弦函数的导数公式:dy/dx = 1 / sqrt(x^2 - 1)。
- 反双曲正切函数的导数公式:dy/dx = 1 / (1 - x^2)。
- 反双曲余切函数的导数公式:dy/dx = 1 / (1 - x^2)。
一般常用求导公式
一般常用求导公式在微积分中,求导是一项重要的运算技巧。
为了便于计算和解决实际问题,人们总结出了一些常用的求导公式。
本文将介绍一般常用的求导公式,并通过例子来展示其具体应用。
一、常数函数求导公式对于常数函数y = C(C为常数),其导数为0。
这是因为常数函数的图像是一条水平直线,斜率为0。
二、幂函数求导公式1. 对于幂函数y = x^n (n为正整数),其导数为y' = nx^(n-1)。
例如,对于y = x^2,其导数为y' = 2x。
2. 对于幂函数y = a^x (a>0且a≠1),其导数为y' = a^x * ln(a)。
例如,对于y = e^x,其导数为y' = e^x。
三、指数函数求导公式对于指数函数y = a^x (a>0且a≠1),其导数为y' = a^x * ln(a)。
这点与幂函数的导数规律相同。
四、对数函数求导公式1. 对于自然对数函数y = ln(x),其导数为y' = 1/x。
例如,对于y = ln(x^2),其导数为y' = 1/(x^2) * 2x = 2/x。
2. 对于一般对数函数y = log_a(x) (a>0且a≠1),其导数为y' =1/(xln(a))。
例如,对于y = log_2(x),其导数为y' = 1/(xln(2))。
五、三角函数求导公式1. 对于正弦函数y = sin(x),其导数为y' = cos(x)。
例如,对于y =sin(2x),其导数为y' = cos(2x)。
2. 对于余弦函数y = cos(x),其导数为y' = -sin(x)。
例如,对于y = cos(2x),其导数为y' = -sin(2x)。
3. 对于正切函数y = tan(x),其导数为y' = sec^2(x)。
例如,对于y = tan(2x),其导数为y' = sec^2(2x)。
常用基本求导公式
常用基本求导公式求导是微积分中的重要概念之一,对于学习微积分的同学们来说,熟悉并掌握常用的基本求导公式是非常必要的。
下面是对常用的基本求导公式进行总结:一、常数的导数:若c是常数,则有 d(c)/dx = 0二、幂函数的导数:若f(x) = x^n,其中n是常数,则有 d(f(x))/dx = nx^(n-1)三、指数函数的导数:若f(x) = a^x,其中a>0且a≠1,则有 d(f(x))/dx = ln(a) * a^x四、对数函数的导数:(1) 若f(x) = ln(x),则有 d(f(x))/dx = 1/x(2) 若f(x) = log_a(x),其中a>0且a≠1,则有 d(f(x))/dx = 1/(x ln(a))五、三角函数的导数:(1) 若f(x) = sin(x),则有 d(f(x))/dx = cos(x)(2) 若f(x) = cos(x),则有 d(f(x))/dx = -sin(x)(3) 若f(x) = tan(x),则有 d(f(x))/dx = sec^2(x)(4) 若f(x) = cot(x),则有 d(f(x))/dx = -csc^2(x)六、反三角函数的导数:(1) 若f(x) = arcsin(x),则有d(f(x))/dx = 1/√(1-x^2)(2) 若f(x) = arccos(x),则有 d(f(x))/dx = -1/√(1-x^2)(3) 若f(x) = arctan(x),则有 d(f(x))/dx = 1/(1+x^2)(4) 若f(x) = arccot(x),则有 d(f(x))/dx = -1/(1+x^2)七、复合函数的导数:若y = f(g(x)),其中y是复合函数,f和g是可导函数,则有dy/dx = d(f(g(x)))/dx = f'(g(x)) * g'(x)八、和、差、积、商的导数:(1)和差的导数:若f(x)和g(x)都是可导函数,则有d(f(x) ± g(x))/dx = f'(x) ± g'(x)(2)积的导数:若f(x)和g(x)都是可导函数,则有d(f(x) * g(x))/dx = f'(x) * g(x) + f(x) * g'(x)(3)商的导数:若f(x)和g(x)都是可导函数,并且g(x)≠0,则有d(f(x) / g(x))/dx = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2九、链式法则:若y = f(u)和u = g(x)都是可导函数,则有 dy/dx =d(f(g(x)))/dx = f'(g(x)) * g'(x)十、反函数的导数:若y = f(x)是可导函数,则有 dx/dy = 1 / (dy/dx)这些是微积分中常用的基本求导公式,熟练掌握它们能够帮助我们快速计算函数的导数,进而应用于解决实际问题。
高中基本函数求导公式
高中基本函数求导公式
基本初等函数求导公式:
1) 对于常数函数,其导数为0.
2) 对于指数函数,其导数为其本身。
3) 对于正弦函数,其导数为余弦函数。
4) 对于余弦函数,其导数为负的正弦函数。
5) 对于幂函数,其导数为该函数的指数乘以该函数的底数的对数。
6) 对于对数函数,其导数为1除以该函数的自变量乘以该函数的底数的对数。
7) 对于自然对数函数,即以e为底的对数函数,其导数为1除以该函数的自变量。
8) 对于函数的和、差、积、商,有相应的求导法则。
复合函数求导法则:
对于复合函数,可以使用链式法则求导。
即,先对外层函数求导,再乘上内层函数的导数。
具体地,设y=f(u),u=g(x),则复合函数y=f(g(x))的导数为y' = f'(u)g'(x)。
求导公式大全
求导公式大全1、原函数:y=c(c为常数)导数: y'=0导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx6、原函数:y=cosx 导数: y'=-sinx7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x导数:y'=logae/x10、原函数:y=lnx导数:y'=1/x求导公式大全整理y=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1 x^2)高中数学导数学习方法1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。
2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。
求导基本公式表
导数是微积分学中的重要概念,它表示一个函数在某一点处的变化率。
导数公式是微积分学中的基本公式之一,用于计算函数的导数。
以下是导数的基本公式表:
1.函数y=kx的导数为y′=k,其中k为常数。
2.函数y=axn的导数为y′=naxn−1,其中a为常数,n为正整数。
3.函数y=loga(x)的导数为y′=x ln a1,其中a为常数且a>0且a=1。
4.函数y=ex的导数为y′=ex。
5.函数y=sin(x)的导数为y′=cos(x)。
6.函数y=cos(x)的导数为y′=−sin(x)。
7.函数y=tan(x)的导数为y′=(sec(x))2。
8.函数y=cot(x)的导数为y′=−(csc(x))2。
9.函数y=sec(x)的导数为y′=tan(x)sec(x)。
10.函数y=csc(x)的导数为y′=−cot(x)csc(x)。
这些公式可以在求解函数的导数时提供帮助。
但是需要注意,对于复杂的函数,可能需要使用更高级的导数公式才能求解其导数。
此外,导数的计算还涉及到一些基本的微积分知识和技巧,例如链式法则、乘法法则、指数函数求导法则等等,需要在学习微积分的过程中逐步掌握。
16个基本导数公式详解
16个基本导数公式详解在微积分中,导数是一个基本的概念。
它描述了函数在给定点的变化率。
了解导数的基本公式对于求解微积分问题是至关重要的。
在本文中,我们将详细讨论16个基本导数公式,每个公式都将包含定义、求导法则和常见的具体例子。
1.常数函数的导数:定义:如果函数$f(x)$是一个常数,则$f'(x)=0$。
求导法则:常数的导数是0。
例如:对于函数$f(x)=5$,它的导数$f'(x)=0$。
2.幂函数的导数:定义:对于函数 $f(x)=x^n$,其中 $n$ 是一个正整数,则$f'(x)=nx^{n-1}$。
求导法则:对于幂函数,使用幂函数的指数作为系数,然后将指数减1例如:对于函数$f(x)=x^2$,它的导数$f'(x)=2x$。
3.指数函数的导数:定义:对于函数 $f(x)=a^x$,其中 $a$ 是一个正常数且 $a \neq 1$,则 $f'(x)=a^x \ln(a)$。
求导法则:对于指数函数,使用指数和常数的乘积,并且乘以自然对数的底数。
例如:对于函数 $f(x)=2^x$,它的导数 $f'(x)=2^x \ln(2)$。
4.对数函数的导数:定义:对于函数 $f(x)=\log_a(x)$,其中 $a$ 是一个正常数且 $a\neq 1$,则 $f'(x)=\frac{1}{x \ln(a)}$。
求导法则:对于对数函数,使用1除以输入的自变量乘以自然对数的底数。
例如:对于函数 $f(x)=\log_2(x)$,它的导数 $f'(x)=\frac{1}{x\ln(2)}$。
5.正弦函数的导数:定义:对于函数 $f(x)=\sin(x)$,则 $f'(x)=\cos(x)$。
求导法则:正弦函数的导数是余弦函数。
例如:对于函数 $f(x)=\sin(2x)$,它的导数 $f'(x)=2\cos(2x)$。
6.余弦函数的导数:定义:对于函数 $f(x)=\cos(x)$,则 $f'(x)=-\sin(x)$。
基本函数求导公式
基本函数求导公式求导是微积分中的重要概念,用于求函数在其中一点的变化率。
在基本函数求导公式中,主要包括常数函数求导、幂函数求导、指数函数求导、对数函数求导、三角函数求导、反三角函数求导等。
1.常数函数求导公式:常数函数的导数为0,即 d/dx (c) = 0,其中c是常数。
2.幂函数求导公式:a^x的导数为ln(a) * a^x,即 d/dx (a^x) = ln(a) * a^x,其中a为常数且a>0,ln(a)为以e为底的对数。
3.指数函数求导公式:指数函数e^x的导数为e^x,即 d/dx (e^x) = e^x。
4.对数函数求导公式:以e为底的对数函数ln(x)的导数为1/x,即 d/dx (ln(x)) = 1/x,其中x>0。
5.三角函数求导公式:sin(x)的导数为cos(x),即 d/dx (sin(x)) = cos(x)。
cos(x)的导数为-sin(x),即 d/dx (cos(x)) = -sin(x)。
tan(x)的导数为sec^2(x),即 d/dx (tan(x)) = sec^2(x)。
cot(x)的导数为-csc^2(x),即 d/dx (cot(x)) = -csc^2(x)。
sec(x)的导数为sec(x)tan(x),即 d/dx (sec(x)) = sec(x)tan(x)。
csc(x)的导数为-csc(x)cot(x),即 d/dx (csc(x)) = -csc(x)cot(x)。
6.反三角函数求导公式:arcsin(x)的导数为1/√(1-x^2),即d/dx (arcsin(x)) = 1/√(1-x^2),其中-1≤x≤1arccos(x)的导数为-1/√(1-x^2),即 d/dx (arccos(x)) = -1/√(1-x^2),其中-1≤x≤1arctan(x)的导数为1/(1+x^2),即 d/dx (arctan(x)) = 1/(1+x^2)。
求导公式大全
求导公式大全求导是微积分中的一个重要概念,它用于求函数的导数,是研究函数变化率的重要工具。
在实际应用中,求导公式的掌握对于解决问题具有重要意义。
下面将介绍一些常见的求导公式,希望能够帮助大家更好地理解和掌握这一知识点。
1. 常数函数的求导公式。
对于常数函数f(x)=c,其中c为常数,则它的导数为f'(x)=0。
这是因为常数函数的图像是一条水平直线,斜率恒为0,因此导数为0。
2. 幂函数的求导公式。
对于幂函数f(x)=x^n,其中n为常数,则它的导数为f'(x)=nx^(n-1)。
这个公式是求导中最基本的公式之一,也是其他函数求导的基础。
3. 指数函数的求导公式。
对于指数函数f(x)=a^x,其中a为常数且a>0且a≠1,则它的导数为f'(x)=a^xln(a)。
这个公式是指数函数求导的基本公式,其中ln(a)表示以e为底的对数。
4. 对数函数的求导公式。
对于对数函数f(x)=log_a(x),其中a为常数且a>0且a≠1,则它的导数为f'(x)=1/(xln(a))。
对数函数的导数公式可以通过指数函数的导数公式推导得出。
5. 三角函数的求导公式。
对于三角函数f(x)=sin(x),f(x)=cos(x),f(x)=tan(x),它们的导数分别为f'(x)=cos(x),f'(x)=-sin(x),f'(x)=sec^2(x)。
这些公式是三角函数求导的基本公式,掌握它们对于求解相关问题非常有帮助。
6. 反三角函数的求导公式。
对于反三角函数f(x)=arcsin(x),f(x)=arccos(x),f(x)=arctan(x),它们的导数分别为f'(x)=1/√(1-x^2),f'(x)=-1/√(1-x^2),f'(x)=1/(1+x^2)。
这些公式是反三角函数求导的基本公式,也是常见的求导公式之一。
7. 复合函数的求导公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本函数求导公式基本初等函数求导公式(1) 0)(='C (2) 1)(-='μμμx x(3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan =' (6)x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -='(9)a a a xx ln )(=' (10) (e )e xx '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x -=' (14)211)(arccos x x --=' (15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(y x f ϕ'=' 或 dy dx dx dy 1=复合函数求导法则隐函数存在定理 1 设函数),(y x F 在点),(00y x P 的某一邻域内具有连续的偏导数,且0),(0=y x F ,,),(00≠y x F y ,则方程),(y x F =0在点),(0y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y=,并有yx F F dx dy-=(2) 公式(2)就是隐函数的求导公式这个定理我们不证。
现仅就公式(2)作如下推导。
将方程(1)所确定的函数)(x f y =代入,得恒等式))(,(≡x f x F ,其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得,0=∂∂+∂∂dxdy y F x F由于yF 连续,且0),(0≠y x F y,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠yF,于是得.yx F F dx dy-=如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得dxdy F F y F F x dx y d y x y x ⎪⎪⎭⎫ ⎝⎛-∂∂+⎪⎪⎭⎫ ⎝⎛-∂∂=22.232222y x yy y x xy y xx y x y x yy y xy y xyz y xx F F F F F F F F F F F F F F F F F F F F +--=⎪⎪⎭⎫⎝⎛-----=例 1 验证方程0122=-+y x在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。
解设=),(y x F 122-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此由定理1可知,方程122=-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。
下面求这函数的一阶和二阶导数 yx F F dx dy-==yx-,==x dxdy ;22dx y d =,1)(332222yy x y y y xx y y y x y -=+-=---='--122-==x dx yd 。
隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函数,那末一个三元方程F (z y x ,,)=0(3)就有可能确定一个二元隐函数。
与定理1一样,我们同样可以由三元函数F(z y x ,,)的性质来断定由方程F (z y x ,,)=0所确定的二元函数z =),(y x 的存在,以及这个函数的性质。
这就是下面的定理。
隐函数存在定理 2 设函数F (z y x ,,)在点),,(000z y x P 的某一邻域内具有连续的偏导数,且0),,(000=z y x F ,0),,(0≠z y x F z,则方程F (z y x ,,)=0在点),,(000z y x 的某一邻域内恒能唯一确定一个单值连续且具有连续偏导数的函数),(y x f z =,它满足条件),(000y x f z =,并有xz ∂∂=zx F F -,yz ∂∂=zy F F -.(4)这个定理我们不证.与定理1类似,仅就公式(4)作如下推导.由于 F (y x ,,f ),(y x )≡0,将上式两端分别对x 和y 求导,应用复合函数求导法则得xF +zF xz∂∂=0,yF +z F yz ∂∂=0。
因为zF 连续,且0),,(0≠z y x F z,所以存在点),,(0z y x 的一个邻域,在这个邻域内zF ≠0,于是得xz∂∂=zx F F -,yz ∂∂=zy F F -。
例2 设04222=-++z z y x,求.22xz∂∂解 设F (z y x ,,) =zz y x4222-++,则xF =2x , zF =42-z .应用公式(4),得xz∂∂=zx -2。
再一次x 对求偏导数,得22x z ∂∂2)2()2(z xz x z -∂∂+-=.)2()2()2(2)2(3222z x z z z x x z -+-=-⎪⎭⎫⎝⎛-+-=二、方程组的情形下面我们将隐函数存在定理作另一方面的推广。
我们不仅增加方程中变量的个数。
而且增加方程的个数,例如,考虑方程组⎩⎨⎧==.0),,,(,0),,,(z u y x G v u y x F(5)这时,在四个变量中,一般只能有两个变量独立变化,因此方程组(5)就有可能确定两个二元函数。
在这种情形下,我们可以由函数F 、G 的性质来断定由方程组(5)所确定的两个二元函数的存在,以及它们的性质。
我们有下面的定理。
隐函数存在定理3 设函数),,,(v u y x F 、),,,(v u y x G 在点),,,(0v u y x P 的某一邻域内具有对各个变量的连续偏导数,又0),,,(0=v u y x F ,0),,,(0=v u y x G ,且偏导数所组成的函数行列式(或称雅可比(Jacobi)式):=J ),(),(v u G F ∂∂=vG u G v F u F ∂∂∂∂∂∂∂∂在点),,,(0v u y x P 不等于零,则方程组0),,,(=v u y x F ,),,,(=v u y x G 在点),,,(0v u y x 的某一邻域内恒能唯一确定一组单值连续且具有连续偏导数的函数),(),,(y x v v y x u u ==,它满足条件),(),,(000000u x v v y x u u==,并有x u∂∂-=),(),(1v x G F J ∂∂-=,vuv u v xv x G G F F G G F Fx v∂∂-=),(),(1x u G F J ∂∂-=,vuv u x ux u G G F F G G F F(6)y u ∂∂-=),(),(1v y G F J ∂∂-=,vvv u v yv y G G F F G G F Fy v ∂∂-=J 1),(),(y u G F ∂∂-=.u y uy u v uvF FG G F F G G这个定理我们不证.例3 设1,0=+=-xv yu yv xu ,求x u ∂∂,y u ∂∂,xv ∂∂和yv ∂∂. 解 此题可直接利用公式(6),但也可依照推导公式(6)的方法来求解。
下面我们利用后一种方法来做。
将所给方程的两边对x 求导并移项,得⎪⎩⎪⎨⎧-=∂∂+∂∂-=∂∂-∂∂.,v x v x xu y u x v y x ux在22≠+=-=y x xyy x J 的条件下,11 .,2222y x xv yu x y y x v y ux x v y x yv xu xy y x x v yu x u +-=---=∂∂++-=----=∂∂将所给方程的两边对y 求导,用同样方法在022≠+=y x J 的条件下可得,22y x yu xv y u +-=∂∂ .22y x yv xu y v ++-=∂∂。