高中数学-空间直角坐标系教案
长沙市一中教案-高二理科数学《4.3.1空间直角坐标系》
4.3.1 空间直角坐标系(1)教材分析:解析几何是用代数方法研究解决几何问题的一门数学学科,空间直角坐标系的建立是为以后的《空间向量及其运算》打基础的.同时,在第二章《空间中点、直线、平面的位置关系》第一节《异面直线》学习时,有些求异面直线所成角的大小,借助于空间向量来解答,要容易得多,所以,本节课为沟通高中各部分内容知识,完善学生的认知结构起到很重要的作用.教学要求:使学生能通过用类比的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法.教学重点:在空间直角坐标系中,确定点的坐标教学难点:通过建立适当的直角坐标系,确定空间点的坐标教学过程:一.提出问题:问题1.在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示? 问题2.在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?如何借助平面直角坐标系表示学生的座位?能用直角坐标系表示教室里灯泡的位置吗?问题3.在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?(板书课题)二、讲授新课:1.空间直角坐标系:如图4.3-1(课本), ,,,,OBCD D A B C -是单位正方体.以O 为原点,分别以射线OA,OC,O 'D 的方向为正方向,以线段OA,OC,O 'D 的长为单位长,建立三条数轴:x 轴,y 轴,z 轴.这时我们说建立了一个空间直角坐标系Oxyz.其中点O叫做坐标原点,x 轴,y 轴,z 轴叫做坐标轴. 通过每两个坐标轴的平面叫做坐标面,分别称为xOy平面、yOz平面、zOx平面.将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z 轴垂直于y 轴,,y 轴和z 轴的长度单位相同,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样三条轴上的单位长度在直观上大体相等.2. 右手直角坐标系:在空间直角坐标系中,让右手大拇指、食指和中指相互垂直时,大拇指指向x 轴正方向,食指指向y 轴正方向,中指指向z 轴正方向,则称这个坐标系为右手坐标系,如无特别说明,以后建立的坐标系都是右手坐标系.3.空间直角坐标系中的点与有序数组之间的关系:1)已知M 为空间一点,过点M 作三个平面分别垂直于x 轴、y 轴和z 轴,它们与x 轴、y 轴和z 轴的交点分别为P 、Q 、R ,这三点在x 轴、y 轴和z 轴上的坐标分别为x ,y ,z .这样空间的一点M 就唯一确定了一个有序数组x ,y ,z .这组数x ,y ,z 就叫做点M 的坐标,并依次称x ,y ,z 为点M 的横坐标、纵坐标和竖坐标.坐标为x ,y ,z 的点M 通常记为M (x ,y ,z ).2)反过来,一个有序数组x ,y ,z ,我们在x 轴上取坐标为x 的点P 在y 轴上取坐标为y 的点Q ,在z 轴上取坐标为z 的点R ,然后通过P 、Q 、R 分别作x 轴,y 轴,z 轴的垂直平面.这三个平面的交点M 即为有序数组x ,y ,z 为坐标的点.数x ,y ,z 就叫做点M 的坐标,并依次称x ,y ,z 为点M 的横坐标、纵坐标和竖坐标.3)坐标为x ,y ,z 的点M 通常记为M (x ,y ,z ).我们通过这样的方法在空间直角坐标系内建立了空间的点M 和有序数组x ,y ,z 之间的一一对应关系4.例题1(课本例1):在长方体,,,,OBCD D A B C -中,,3,4, 2.OA oC OD ===写出,,,,,,D C A B 四点坐标.(建立空间直角坐标系→写出原点坐标→各点坐标)讨论: 若以C 点为原点,以射线BC 、CO 、C 'C 方向分别为ox 、oy 、oz 轴的正半轴,建立空间直角坐标系,那么,各顶点的坐标又是怎样的呢?(得出结论:不同的坐标系的建立方法,所得的同一点的坐标也不同.)问题4。
高中数学人教A版2教案:空间直角坐标系含解析
空间直角坐标系【教学目标】1。
掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力。
2.解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神.【重点难点】教学重点:在空间直角坐标系中确定点的坐标.教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用。
【课时安排】1课时【教学过程】导入新课大家先来思考这样一个问题,天上的飞机的速度非常的快,即使民航飞机速度也非常快,有很多飞机时速都在1 000 km以上,而全世界又这么多,这些飞机在空中风驰电掣,速度是如此的快,岂不是很容易撞机吗?但事实上,飞机的失事率是极低的,比火车,汽车要低得多,原因是,飞机都是沿着国际统一划定的航线飞行,而在划定某条航线时,不仅要指出航线在地面上的经度和纬度,还要指出航线距离地面的高度.为此我们学习空间直角坐标系,教师板书课题:空间直角坐标系。
推进新课新知探究提出问题①在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示?②在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?③在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?④观察图1,体会空间直角坐标系该如何建立.⑤观察图2,建立了空间直角坐标系以后,空间中任意一点M如何用坐标表示呢?讨论结果:①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示.②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy 称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y).③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来.④观察图2,OABC—D′A′B′C′是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以O 为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y轴和z轴,这时我们说建立了一个空间直角坐标系O-xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx 平面.由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长.图1图1表示的空间直角坐标系也可以用右手来确定。
《空间直角坐标系》示范课教学设计【高中数学】
环节一空间直角坐标系【引入新课】思考:在平面向量中,我们通过平面直角坐标系建立了向量的坐标与点的坐标的一一对应关系,从而把平面向量的运算化归为数的运算.类似地,为了把空间向量的运算化归为数的运算,能否利用空间向量基本定理和空间的单位正交基底,建立空间直角坐标系,进而建立空间向量的坐标与空间点的坐标的一一对应呢?【探究新知】为了研究这个问题,我们需要弄清楚:问题1:类比平面直角坐标系,你能猜想如何构建空间直角坐标系吗?追问1:平面直角坐标系包含哪些要素?类比到空间直角坐标系应该有哪些要素?它们需要满足什么条件?答案:追问2:利用单位正交基底概念,我们可以如下这样理解平面直角坐标系. 类比到空间,你能否给出空间直角坐标系的定义呢?答案:空间直角坐标系定义:在空间选定一点O和一个单位正交基底{i, j, }k. 以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴. 这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz平面,zOx平面,它们把空间分成八个部分.追问3:空间直角坐标系如何画呢?答案:先回想平面直角坐标系Oxy 的画法:在平面内画两条与单位正交基底向量i ,j 方向相同的数轴x 轴和y 轴,它们互相垂直、原点重合.与画平面直角坐标系相比,画空间直角坐标系只是多画一个与x 轴、y 轴都垂直的z 轴而已,所以我们不妨借鉴在立体几何中学习的斜二测画法,在画空间直角坐标系Oxyz 时,让x 轴与y 轴所成的角为135︒(或45︒),即135xOy ︒∠=(或45︒),画z 轴与y 轴垂直,即90yOz ︒∠=.在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.问题2: 在平面直角坐标系中,每一个点和向量都可以用一对有序实数(即它的坐标)表示,对空间直角坐标系中的每一个点和向量,是否也有类似的表示呢?追问1:空间中任意一点A 与哪个向量的坐标相同?答案:在平面直角坐标系中,点A 的位置由向量OA 唯一确定,类比到空间直角坐标系中,我们可知点A 的坐标与从原点出发的OA 坐标相同. 由此,确定空间直角坐标系中点的坐标,可以从确定与之对应的,以原点为起点,该点为终点的向量的坐标入手.追问2:在空间直角坐标系中如何定义OA 的坐标呢? 答案:平面直角坐标系内空间直角坐标系内取与x 轴、y 轴方向相同的两个单位向量,i ,j 为基底,由平面向量基本定理,有且只有一对实数x ,y 使得取与x 轴、y 轴、z 轴方向相同的两个单位向量,i ,j ,k 为基底,由空间向量基本定理,存在唯一的有序实数组使得OA x y =+i j k +z ,我们把有序实数组x y =+a i j .我们把有序数对(),x y 叫做a 的坐标,记作(),x y =a .(),,x y z 叫做OA 的坐标,记作(),,OA x y z =.所以,在单位正交基底{i ,j ,}k 下与向量OA 对应的有序实数组(x ,y ,)z ,叫做点A 在空间直角坐标系中的坐标,记做A (x ,y ,)z ,其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.追问3:那么对于给定的向量a 又该如何定义它的坐标呢? 答案:因为空间向量是自由的,我们在空间直角坐标系Oxyz 中可以作OA =a . 由空间向量基本定理,存在唯一的有序实数组(x ,y ,)z ,使x y z =++a i j k ,有序实数组(x ,y ,)z 叫做a 在空间直角坐标系Oxyz 中的坐标,上式可简记为(x =a ,y ,)z这样,在空间直角坐标系中,空间中的点和向量都可以用三个有序实数表示. 问题3: 在空间直角坐标系Oxyz 中,对空间任意一点A ,或任意一个向量OA ,你能借助几何直观确定它们的坐标(),,x y z 吗?答案:过点A 分别作垂直于x 轴、y 轴和z 轴的平面,依次交x 轴、y 轴和z 轴于点B ,C 和D . 可以证明OA 在x 轴、y 轴、z 轴上的投影向量分别为OB ,OC ,OD ,由向量加法的意义可知,OE OB OC +=,OA OE EA OE OD ++==,即OA OB OC OD ++=. 设点B C D ,和在x 轴、y 轴和z 轴上的坐标分别是x ,y 和z ,那么OA x y z =++i j k ,即点A 或者向量OA 的坐标就是(x ,y ,)z .k yzxoi A (x ,y ,z )a思路小结:目前,我们有哪些方法可以用于确定空间中一个点A 或任意一个向量a 的坐标呢?【知识应用】例1 如图,在长方体OABC D A B C ''''-中,3OA =,4OC =,2OD '=,以13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭为单位正交基底,建立如图所示的空间直角坐标系Oxyz . (1)写出D ',C ,A ',B '四点的坐标; (2)写出向量A B '',BB ',A C '',AC '的坐标.追问1:题目条件中的13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭为什么是单位正交基底?答案:由图可知,OA 在x 轴上,且3OA =,所以1=13OA .同理,OC 在y 轴上,OD '在z 轴上,由4OC =,2OD '=知,1=14OC ,1=12OD ',所以13OA ⎧⎨⎩,14OC ,12OD ⎫'⎬⎭是单位正交基底,等同于我们前面用到的{i ,j ,}k .追问2:求空间点的坐标我们有哪些基本解题思路?答案:有两种选择,一种是转化为求与该点对应的,从原点出发,指向该点的空间向量的坐标. 而后依据空间向量基本定理,把空间向量用单位正交基底分解,从而求出坐标;另一种是应用几何直观,找出空间点在x 轴、y 轴、z 轴上的射影,进而得到坐标.思路小结:由几何直观可知,确定空间中一个点的坐标,我们需要先找出该点在各个坐标轴上的射影,再根据空间向量基本定理,得到点的坐标. 所以可以总结步骤如下:(1)过空间点分别作x 轴、y 轴和z 轴的垂面;点A 的坐标给定的向量a 的坐标OA 的坐标应用空间向量基本定理确定坐标根据几何直观确定OA 在各坐标轴上的投影向量,从而求得坐标(2)确定空间点在坐标轴上的射影的坐标; (3)得到空间点的坐标. 解:(1)()()()()0,0,2,0,4,0,3,0,2,3,4,2D C A B '''.(2)()0400,4,0,A B OC ''=++=i j k=()0020,0,2,B B OD ''-=+-=-=i j k()3403,4,0,A C A D D C OA+OC =''''''=+=-=-++-i j k()3423,4,2AC AC CC OA OC CC OA OC OD =''''=+=-++=-++=-++-i j k .问题4:回顾本节课的学习过程,我们是如何得到空间点和空间向量的坐标的? 答案:(1)类比平面直角坐标系,构建了空间直角坐标系.(2)根据空间向量基本定理,在单位正交基底下,得到空间直角坐标系中的每一个点和向量都存在唯一的有序实数组(x ,y ,)z 与之对应,从而引出空间点和空间向量的坐标表示.问题5:如何求空间点或向量的坐标呢?答案:(1)根据空间向量基本定理,将点或向量用单位正交基底{i ,j ,}k 来表示,它们的系数就是点或向量的坐标.(2)由几何直观,过点作垂直于x 轴、y 轴和z 轴的平面,依次确定点对应的向量在各个轴上的投影向量,根据投影向量的坐标得到点或向量的坐标.第二课时 空间向量运算的坐标表示环节一:引入新课本章前半部分的主要内容: 我国著名数学家吴文俊先生曾指出:“数学是研究现实世界中数量关系和空间形式的科学.简单地说,就是研究数和形的科学.”中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”.在前面的学习中,我们已经掌握了空间直角坐标系的概念,进一步通过正交分解的方法将空间向量用唯一的有序实组表示出来,引入坐标后可使向量中形的运算转化成数的运算.今天我们就循着数学家的足迹,大胆类比、猜想,把向量坐标运算从平面拓展到空间,完成一次从二维到三维,从形到数的跨越.环节二:探究新知为了研究这个问题,我们需要弄清楚:问题1: 有了空间向量的坐标表示,你能类比平面向量的坐标运算,得出空间向量运算的坐标表示并给出证明吗?追问1: 平面向量的运算都有哪些?如何对平面向量进行坐标运算? 答案:加法,减法,数乘,数量积.追问2: 你能否类比平面向量运算的坐标表示给出空间向量运算坐标表示的猜想? 答案:设空间向量 123123(,,),(,,),a a a b b b ==a b 猜()112233,,,a b a b a b +=+++a b()112233,,,a b a b a b -=a b ---()123,,,a a a =a 112233.a b a b a b ⋅=++a b追问3:你能否对空间向量运算的坐标表示进行证明呢?答案: 结合空间向量坐标的定义,我们以数量积运算的坐标表示为例进行证明: 第一步:由空间向量基本定理,设{},,i j k 为空间的一个单位正交基底,由向量a 的坐标为123(,,)a a a ,则可将向量a 唯一分解为123a a a =++a i j k , 同理可将向量b 表示为123b b b =++b i j k . 第二步: ()()123123a a a b b b ⋅=++⋅++a b i j k i j k111213212223313233a b a b a b a b a b a b a b a b a b =⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅i i i j i k j i j j j k k i k j k k利用向量数量积的分配律以及======⋅⋅⋅1,⋅⋅⋅0,i i j j k k i j j k k i 得112233.a b a b a b ⋅=++a b其他运算的坐标表示可以类似证明,请同学们课下自主完成.由上述结论可知,空间向量运算的坐标表示与平面向量运算的坐标表示是完全一致的. 类似地,我们还可以得到:一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标.即:设 123123(,,),(,,),A a a a B b b b 则向量()112233,,AB b a b a b a =---.问题2: 在学习平面向量运算的过程中,我们了解到向量可以帮助我们解决平面几何中的特殊位置关系与几何度量等问题,这些重要的性质和结论在空间向量中仍然成立吗?追问1: 如何用平面向量的坐标运算刻画平面向量的平行和垂直? 答案:设 1212(,),(,),a a b b ==a b 当≠0b 时,∥a b 的充要条件是=a b , λ属于全体实数,用坐标表示为1212(,)(,),a a b b = 得到方程组1122,,a b a b =⎧⎨=⎩ 消去λ,得到平面向量平行充要条件的坐标表示:a 1b 2−a 2b 1=0.类比平面向量平行的坐标表示,我们可以得到:设空间向量123123(,,),(,,),a a a b b b ==a b 当≠0b 时,∥a b 的充要条件是=a b , λ 属于全体实数.可以用坐标表示为123123(,,)(,,)a a a b b b =,得到方程组()112233,,.a b a b a b =⎧⎪=∈⎨⎪=⎩R ,这就是空间向量平行的充要条件的坐标表示.追问2: 这个充要条件能否表示为312123a a ab b b ==? 答案: 显然,空间向量平行的充要条件不等价于312123a a ab b b ==,因为≠0b 的含义是b 的坐标分量123,,b b b 至少有一个不为零,而非每一个坐标分量都不为零.例如,当b 与坐标平面Oxy 平行时,30b =此时33a b 无意义.因此只有在b 与三个坐标平面均不平行,即123,,b b b 均不为零时才能有312123a a ab b b ==⇔∥a b .特殊地,当=0b 时,(0,0,0)=b .此时b 与任意向量都平行.追问3: 除了上述对空间向量位置关系的研究,类比平面向量运算的应用,能否总结出空间向量的度量关系,如空间向量长度和夹角的坐标表示?答案: 设 123123(,,),(,,),a a a b b b ==a b222123a a a =⋅=++a a a . 112233222222123123cos ,a b a b a b a a a b b b ++⋅==++++a ba b a b.设1111()P x ,y ,z , 2222()Px ,y ,z ,则()()()2221212212121=PP PP x x +y y +z z ---=追问4:得到上面的猜想后,同学们能利用空间向量运算的坐标表示证明空间两点间的距离公式吗?答案:首先,建立空间直角坐标系Oxyz ,设1P , 2P 是空间中任意两点,则向量()1221212121.PP OP OP x x ,y y ,z z ---=-= 于是121212PP PP PP ⋅=,带入坐标,()()()22212212121PP x x +y y +z z ---=.所以()()()2221212212121=PP PP x x +y y +z z ---=.这就是空间两点间的距离公式.因此,空间向量123(,,)a a a =a 的模可以理解为点123(,,)a a a 到原点的距离,这是空间两点间距离公式的特殊化.环节三:知识应用例1 如图,在空间直角坐标系Oxyz 中,正方体1111ABCD A B C D -的棱长为2,E ,F 分别是1BB , 11D B 的中点.(1)求证1EF DA ⊥;(2)求AE 与1CD 所成角的余弦值.追问1: 两条直线的垂直关系可以用向量刻画吗?答案:要证明1EF DA ⊥,只需证明1EF DA ⊥,在前面的学习中,我们已经得到了两个向量垂直的充要条件为数量积为零,即10.EF DA =通过本节课学习的内容,可以将空间向量垂直的充要条件用坐标形式表达,因此在应用向量法求解本题时,我们需要利用题目中的空间直角坐标系,从而建立立体图形与空间向量的联系.追问2: 向量EF 的坐标怎么求?答案: 因为()2,2,1E , (1,1,2)F ,所以(1,1,2)(2,2,1)(1,1,1).EF =-=--分析:因为空间向量的数量积和夹角有关,此我们经常以空间向量的数量积为工具,解决立体几何中与夹角相关的问题,把空间两条直线所成角问题转化为两条直线对应向量的夹角问题.追问3: 两条直线夹角与两向量夹角有区别吗?答案:这二者是有区别的,它们的取值范围不同.具体来说, 两条直线夹角的范围是0,2π⎡⎤⎢⎥⎣⎦,而向量夹角的范围是[]0,π.当AE 与1CD 所成的角为锐角或直角时,直线AE 与1CD 所成的角和向量的夹角相等. 当AE 与1CD 所成的角为钝角时,直线AE 与1CD 所成的角为向量夹角的补角.解:(1)因为()2,2,1E , (1,1,2)F ,所以(1,1,2)(2,2,1)(1,1,1)EF =-=--. 得到向量EF 的坐标后,同理,又因为点()()12,0,2,0,0,0A D ,所以()12,0,2DA =. 所以()()11,1,12,0,22020.EF DA =--=-++= 所以1EF DA ⊥,即1EF DA ⊥. (2)因为()()()()12,0,0,0,2,0,2,2,1,0,0,2A C E D ,所以()()()2,2,12,0,00,2,1AE =-=,()()()10,0,20,2,00,2,2CD =-=-, 15,=22AE DF =.所以()10022122AE CD =⨯+⨯-+⨯=-.所以111cos ,AE CD AE CD AE CD ===所以, AE 与1CD 所成角为向量AE ,向量1CD 夹角的补角.所以, AE 与1CD 方法提炼:在空间直角坐标系中,先写出相关点、相关向量的坐标,把几何问题代数化,然后再利用向量的坐标运算解决位置关系与几何度量等问题,其中要关注空间两条直线所成角与对应向量夹角的取值范围是不同的.需要注意的是,有些问题往往需要我们观察几何体的结构特征,找寻三条两两垂直的线段,先建立空间直角坐标系,再应用向量运算解决几何问题.问题3:回顾本节课对于空间向量坐标运算的探究过程,你都学到了什么?答案:1. 类比平面向量研究空间向量运算的坐标表示 (1)空间向量运算的坐标表示空间向量加法减法的坐标运算只需将其相应的坐标相加或相减; 空间向量数乘的坐标运算等于用这个实数λ乘原来向量的相应坐标; 空间向量数量积的坐标运算是其对应坐标乘积的和. (2)空间向量运算坐标表示的应用我们得到了空间向量平行和垂直这两种特殊位置关系的坐标表示同时,我们证明了空间向量长度和夹角的公式,这些公式可以帮助我们解决立体几何中的度量问题2.关注空间向量与立体几何知识间的联系空间向量体系的建立需要立体几何的基本知识,反过来,立体几何中的问题可以用向量方法解决. 因此,我们说空间向量与立体几何有着天然的联系.空间向量为我们解决立体几何问题提供了新的工具.一般地,利用空间向量解决立体几何问题,有如下的“三步曲”,步骤一:建立恰当的空间直角坐标系,求出相关点、相关向量的坐标;步骤二:进行空间向量的运算,研究空间图形之间的平行、垂直等位置关系以及距离、夹角等度量问题;步骤三:求出答案后,翻译成相应的几何结论,得到相应立体几何问题的解决.课时检测1. (3,2,5),(1,5,1),--a =b =求: (1)+a b ; (2)6a ; (3)ab .2. (2,1,3),(4,2,),x --a =b =且⊥a b .求x 的值.3. 如图,在棱长为1的正方体1111ABCD A B C D -中,M 为1BC 的中点, 1E ,1F 分别在棱11A B ,11C D 上,111114B E A B =,111114D F C D =. (1)求AM 的长.(2)求1BE 与1DF 所成角的余弦值.答案:1. (1) ()2,7,4+-a b =;(2)()618,12,30-a =;(3)2a b =;2. 因为a ⊥b ,所以a ·b =0,即-8-2+3x =0,解得x =103;3. (1)AM =(2) 1517.。
北师大版高中高一数学必修2《空间直角坐标系》教案及教学反思
北师大版高中高一数学必修2《空间直角坐标系》教案及教学反思教案设计教学目标•能够理解一般空间直角坐标系的概念。
•能够掌握三维直角坐标系的表示方法。
•能够在三维直角坐标系中进行点、向量及直线的表示,并理解它们之间的关系。
•能够应用直角坐标系求解在空间中的几何问题。
教学重点•理解三维直角坐标系的表示方法。
•掌握点、向量及直线在三维直角坐标系中的表示方法。
•应用直角坐标系求解空间中的几何问题。
教学难点•向量与点的坐标化。
•空间直线的表示及其性质。
教学过程第一步:导入为了让学生更好地理解三维空间直角坐标系,我将引导学生回顾二维空间直角坐标系,并鼓励学生回忆二维空间中点、向量、直线和平面的定义及相关性质。
随着学生的回忆,我会巧妙引导学生理解三维空间坐标系。
第二步:讲解在此步骤中,我将详细解释三维空间坐标系的定义和相关概念。
让学生理解三维空间坐标系由三个相互垂直的坐标轴构成,学生应该能够掌握三维空间中点、向量及直线的表示方法,并理解它们之间的关系。
第三步:练习为了让学生更好地掌握三维空间坐标系的相关概念和求解能力,我会打出一些简单的练习题,让学生掌握三维空间中的点、向量及直线的表示方法,并熟悉它们之间的关系。
此处我会通过练习题,加深学生的印象,让学生更快地运用到实际中去。
第四步:课堂交流在此步骤之中,我将要求学生根据自己的认知和实际经验,来分享一些解题思路、技巧和心得。
此时我将提供充足的时间给学生进行交流和讨论。
这样能让学生相互交流,发现共同点和不同之处,锻炼学生的思维能力和语言表达能力。
第五步:总结在这一步骤中,我会对本节课所讲授的知识进行总结,并强调课程重点,确保学生掌握了本节课程所讲的内容。
同时,我会在总结中提到经常出现的错误或盲点,帮助学生加深印象,从而提高学习效果。
教学反思教学收获首先,本节课程所讲授的知识比较抽象,但是由于是空间三维坐标表示,便可以采取类似于平面几何的手段,通过练习题目,让学生更好地掌握相关知识点。
空间直角坐标系说课稿
空间直角坐标系说课稿空间直角坐标系说课稿1今天我说课的内容是空间直角坐标系,下面我分别从教材分析、教学目标的确定、教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析本节内容选自人民教育出版社出版的普通高中课程标准实验教科书《数学》必修二的第四章第3节,属于解析几何领域的知识,它是平面直角坐标系的进一步推广,是学生思维从一维二维空间到三维空间的过渡。
为以后在选修中利用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题的打好基础;而且必修二第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间立体几何的基础,与平面几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想。
本小节内容主要包含空间直角坐标系的建立、空间中点与其坐标的一一对应关系、以及如何由空间中点的位置确定点的坐标或由点的坐标确定点的位置等问题。
在本节课中教学重点是三维空间坐标系的建立过程,以及空间中点与其坐标的一一对应关系的理解;教学难点和关键是理解空间直角坐标系的相关概念,以及空间中点与其坐标的一一对应关系。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,制定如下的教学目标:二、教学目标的确定知识与技能:(1)理解空间直角坐标系的相关概念,空间中点的坐标及其坐标对应的点;(2)理解空间直角坐标系的建立过程以及空间中点与坐标一一对应的关系。
过程与方法:(1)通过空间直角坐标系的建立,体会由一维空间到二维空间再到三维空间的拓展和推广,培养学生利用类比的数学思想方法探索空间直角坐标系;(2)通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。
情感态度与价值观:体会到数学的严谨的思维逻辑以及抽象概括力。
三、教学方法的选择本节内容是高中数学中概念原理的教学,根据布鲁纳的发现学习理论,本节课主要采用了启发式、探究式的教学方法,通过激发学生解决问题的欲望,使学生主动参与教学实践活动。
人教A版高中数学必修二4.3空间直角坐标系学案含教学反思
4.3空间直角坐标系4.3.1&4.3.2 空间直角坐标系 空间两点间的距离公式[新知初探]1.空间直角坐标系(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x 轴、y 轴、z 轴,这样就建立了空间直角坐标系O xyz .(2)相关概念:点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.3.空间一点的坐标空间一点M 的坐标可以用有序实数组(x ,y ,z )来表示,有序实数组(x ,y ,z )叫做点M 在此空间直角坐标系中的坐标,记作M (x ,y ,z ).其中x 叫点M 的横坐标,y 叫点M 的纵坐标,z 叫点M 的竖坐标.[点睛] 空间直角坐标系的画法(1)x 轴与y 轴成135°(或45°),x 轴与z 轴成135°(或45°).(2)y 轴垂直于z 轴,y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.4.空间两点间的距离公式(1)点P (x ,y ,z )到坐标原点O (0,0,0)的距离 |OP |= x 2+y 2+z 2.预习课本P134~137,思考并完成以下问题(2)任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)间的距离 |P 1P 2|=x 1-x 22+y 1-y 22+z 1-z 22.[点睛] (1)空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算.(2)空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,z 1+z 22.[小试身手](2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(a,0,c )的形式( ) (3)空间直角坐标系中,点(1,3,2)关于yOz 平面的对称点为(-1,3,2)( ) 答案:(1)× (2)√ (3)√2.在空间直角坐标系中,点P (3,4,5)与Q (3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称D .以上都不对解析:选A 点P (3,4,5)与Q (3,-4,-5)两点的横坐标相同,而纵、竖坐标互为相反数,所以两点关于x 轴对称.3.空间两点P 1(1,2,3),P 2(3,2,1)之间的距离为________. 解析:|P 1P 2|=-22+02+22=2 2.答案:2 2空间中点的坐标的求法[典例] 在棱长为1的正方体ABCD A 1B 1C 1D 1中,E ,F 分别是D 1D ,BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,试建立适当的坐标系,写出E ,F ,G ,H 的坐标.[解] 建立如图所示的空间直角坐标系.点E 在z 轴上,它的x 坐标、y 坐标均为0,而E 为DD 1的中点,故其坐标为⎝⎛⎭⎪⎫0,0,12.由F 作FM ⊥AD ,FN ⊥DC ,垂足分别为M ,N , 由平面几何知识知FM =12,FN =12,故F 点坐标为⎝ ⎛⎭⎪⎫12,12,0.点G 在y 轴上,其x ,z 坐标均为0,又GD =34,故G 点坐标为⎝ ⎛⎭⎪⎫0,34,0. 由H 作HK ⊥CG 于K ,由于H 为C 1G 的中点. 故HK =12,CK =18,∴DK =78,故H 点坐标为⎝ ⎛⎭⎪⎫0,78,12.(1)建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.(2)对于长方体或正方体,一般取相邻的三条棱所在直线为x ,y ,z 轴建立空间直角坐标系;确定点的坐标时,最常用的方法就是求某些与轴平行的线段的长度,即将坐标转化为与轴平行的线段长度,同时要注意坐标的符号,这也是求空间点坐标的关键.[活学活用]如图,在长方体ABCD A ′B ′C ′D ′中,|AB |=12,|AD |=8,|AA ′|=5.以这个长方体的顶点A 为坐标原点,射线AB ,AD ,AA ′分别为x 轴、y 轴和z 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.解:因为|AB |=12,|AD |=8,|AA ′|=5,点A 为坐标原点,且点B ,D ,A ′分别在x 轴、y 轴和z 轴上,所以它们的坐标分别为A (0,0,0),B (12,0,0),D (0,8,0),A ′(0,0,5).点C ,B ′,D ′分别在xOy 平面、xOz 平面、yOz 平面内,坐标分别为C (12,8,0),B ′(12,0,5),D ′(0,8,5).点C ′在三条坐标轴上的射影分别是B ,D ,A ′,故点C ′的坐标为(12,8,5).空间两点间距离公式及应用[典例] 已知点M (3,2,1),N (1,0,5),求: (1)线段MN 的长度;(2)到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件.[解] (1)根据空间两点间的距离公式得线段MN 的长度|MN |=3-12+2-02+1-52=26,所以线段MN 的长度为2 6.(2)因为点P (x ,y ,z )到M ,N 两点的距离相等,所以有下面等式成立:x -32+y -22+z -12=x -12+y -02+z -52,化简得x +y -2z +3=0,因此,到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件是x +y -2z +3=0.利用空间两点间的距离公式求线段长度问题的一般步骤为:[活学活用]已知直三棱柱ABC A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=4,M 为BC 1的中点,N 为A 1B 1的中点,求|MN |.解:如图,以A 为原点,AB ,AC ,AA 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,则B (4,0,0),C 1(0,4,4),A 1(0,0,4),B 1(4,0,4). 因为M 为BC 1的中点, 所以由中点公式得M ⎝⎛⎭⎪⎫4+02,0+42,0+42,即M (2,2,2),又N 为A 1B 1的中点,所以N (2,0,4).所以由两点间的距离公式得 |MN |=2-22+2-02+2-42=2 2.空间中点的对称[典例] (1)点A (1,2,-1)关于坐标平面xOy 及x 轴的对称点的坐标分别是________. (2)已知点P (2,3,-1)关于坐标平面xOy 的对称点为P 1,点P 1关于坐标平面yOz 的对称点为P 2,点P 2关于z 轴的对称点为P 3,则点P 3的坐标为________.[解析] (1)如图所示,过A作AM⊥xOy交平面于M,并延长到C,使AM=CM,则A与C关于坐标平面xOy对称且C的坐标为(1,2,1).过A作AN⊥x轴于N并延长到点B,使AN=NB,则A与B关于x轴对称且B的坐标为(1,-2,1).∴A(1,2,-1)关于坐标平面xOy对称的点C的坐标为(1,2,1);A(1,2,-1)关于x轴的对称点B的坐标为(1,-2,1).(2)点P(2,3,-1)关于坐标平面xOy的对称点P1的坐标为(2,3,1),点P1关于坐标平面yOz的对称点P2的坐标为(-2,3,1),点P2关于z轴的对称点P3的坐标是(2,-3,1).[答案] (1)(1,2,1),(1,-2,1) (2)(2,-3,1)在空间直角坐标系中,点P(x,y,z)关于坐标轴和坐标平面的对称点的坐标特点如下:(1)关于坐标原点的对称点为P1(-x,-y,-z);(2)关于横轴(x轴)的对称点为P2(x,-y,-z);(3)关于纵轴(y轴)的对称点为P3(-x,y,-z);(4)关于竖轴(z轴)的对称点为P4(-x,-y,z);(5)关于xOy坐标平面的对称点为P5(x,y,-z);(6)关于yOz坐标平面的对称点为P6(-x,y,z);(7)关于zOx坐标平面的对称点为P7(x,-y,z).其中的记忆方法为“关于谁谁不变,其余的相反”.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.[活学活用]在空间直角坐标系中,点M的坐标是(4,7,6),则点M关于y轴对称的点在xOz平面上的射影的坐标为( )A.(4,0,6) B.(-4,7,-6)C.(-4,0,-6) D.(-4,7,0)解析:选C 点M关于y轴对称的点是M′(-4,7,-6),点M′在xOz平面上的射影的坐标为(-4,0,-6).层级一学业水平达标1.点P(a,b,c)到坐标平面xOy的距离是( )A.a2+b2 B.|a|C.|b| D.|c|解析:选D 点P在xOy平面的射影的坐标是P′(a,b,0),所以|PP′|=|c|.2.已知A(1,1,1),B(-3,-3,-3),则线段AB的长为( )A.4 3 B.2 3C.4 2 D.3 2解析:选A |AB|=1+32+1+32+1+32=4 3.3.在空间直角坐标系中,点P(3,1,5)关于平面xOz对称的点的坐标为( )A.(3,-1,5) B.(-3,-1,5)C.(3,-1,-5) D.(-3,1,-5)解析:选A 由于点关于平面xOz对称,故其横坐标、竖坐标不变,纵坐标变为相反数,即对称点坐标是(3,-1,5).4.若点P(-4,-2,3)关于xOy平面及y轴对称的点的坐标分别是(a,b,c),(e,f,d),则c与e的和为( )A.7 B.-7C.-1 D.1解析:选D 由题意,知点P关于xOy平面对称的点的坐标为(-4,-2,-3),点P关于y轴对称的点的坐标为(4,-2,-3),故c=-3,e=4,故c+e=-3+4=1.5.点P(1,2,3)为空间直角坐标系中的点,过点P作平面xOy的垂线,垂足为Q,则点Q的坐标为( )A.(0,0,3) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:选D 由空间点的坐标的定义,知点Q的坐标为(1,2,0).6.空间点M(-1,-2,3)关于x轴的对称点的坐标是________.解析:∵点M(-1,-2,3)关于x轴对称,由空间中点P(x,y,z)关于x轴对称点的坐标为(x,-y,-z)知,点M关于x轴的对称点为(-1,2,-3).答案:(-1,2,-3)7.在空间直角坐标系中,点(-1,b,2)关于y轴的对称点是(a,-1,c-2),则点P(a,b,c)到坐标原点的距离|PO|=________.解析:由点(x,y,z)关于y轴的对称点是点(-x,y,-z)可得-1=-a,b=-1,c-2=-2,所以a=1,c=0,故所求距离|PO|=12+-12+02= 2.答案: 28.在空间直角坐标系中,点M(-2,4,-3)在xOz平面上的射影为点M1,则点M1关于原点对称的点的坐标是________.解析:由题意,知点M 1的坐标为(-2,0,-3),点M 1关于原点对称的点的坐标是(2,0,3). 答案:(2,0,3)9.如图,已知长方体ABCD A 1B 1C 1D 1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.解:由题意,得点B 与点A 关于xOz 平面对称, 故点B 的坐标为(-2,3,-1);点D 与点A 关于yOz 平面对称,故点D 的坐标为(2,-3,-1); 点C 与点A 关于z 轴对称,故点C 的坐标为(2,3,-1); 由于点A 1,B 1,C 1,D 1分别与点A ,B ,C ,D 关于xOy 平面对称,故点A 1,B 1,C 1,D 1的坐标分别为A 1(-2,-3,1),B 1(-2,3,1),C 1(2,3,1),D 1(2,-3,1). 10.如图,在长方体ABCD A 1B 1C 1D 1中,|AB |=|AD |=2,|AA 1|=4,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 的中点,求M ,N 两点间的距离.解析:由已知条件,得|A 1C 1|=2 2.由|MC 1|=2|A 1M |,得|A 1M |=223, 且∠B 1A 1M =∠D 1A 1M =π4.如图,以A 为原点,分别以AB ,AD ,AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则M ⎝ ⎛⎭⎪⎫23,23,4,C (2,2,0),D 1(0,2,4).由N 为CD 1的中点,可得N (1,2,2).∴|MN |=⎝ ⎛⎭⎪⎫1-232+⎝ ⎛⎭⎪⎫2-232+2-42=533. 层级二 应试能力达标1.点A (0,-2,3)在空间直角坐标系中的位置是( ) A .在x 轴上 B .在xOy 平面内 C .在yOz 平面内D .在xOz 平面内解析:选C ∵点A 的横坐标为0,∴点A (0,-2,3)在yOz 平面内.2.在空间直角坐标系中,点P (2,3,4)和点Q (-2,-3,-4)的位置关系是( ) A .关于x 轴对称 B .关于yOz 平面对称 C .关于坐标原点对称D .以上都不对解析:选C 点P 和点Q 的横、纵、竖坐标均相反,故它们关于原点对称.3.设A (1,1,-2),B (3,2,8),C (0,1,0),则线段AB 的中点P 到点C 的距离为( )A.132 B.534 C.532D.532解析:选D 利用中点坐标公式,得点P 的坐标为⎝ ⎛⎭⎪⎫2,32,3,由空间两点间的距离公式,得|PC |=2-02+⎝ ⎛⎭⎪⎫32-12+3-02=532. 4.在长方体ABCD A 1B 1C 1D 1中,若D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5D .2 6解析:选B 由已知,可得C 1(0,2,3),∴|AC 1|=0-42+2-02+3-02=29.5.已知A (3,5,-7),B (-2,4,3),则线段AB 在yOz 平面上的射影长为________. 解析:点A (3,5,-7),B (-2,4,3)在yOz 平面上的射影分别为A ′(0,5,-7),B ′(0,4,3),∴线段AB 在yOz 平面上的射影长|A ′B ′|=0-02+4-52+3+72=101.答案:1016.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且点M 到点A ,B 的距离相等,则点M 的坐标是________.解析:因为点M 在y 轴上,所以可设点M 的坐标为(0,y,0).由|MA |=|MB |,得(0-1)2+(y -0)2+(0-2)2=(0-1)2+(y +3)2+(0-1)2,整理得6y +6=0,解得y =-1,即点M 的坐标为(0,-1,0).答案:(0,-1,0)7.在空间直角坐标系中,解答下列各题.(1)在x 轴上求一点P ,使它与点P 0(4,1,2)的距离为30;(2)在xOy 平面内的直线x +y =1上确定一点M ,使它到点N (6,5,1)的距离最短. 解:(1)设P (x,0,0). 由题意,得|P 0P |=x -42+1+4=30,解得x =9或x =-1.所以点P 的坐标为(9,0,0)或(-1,0,0). (2)由已知,可设M (x 0,1-x 0,0). 则|MN |=x 0-62+1-x 0-52+0-12=2x 0-12+51.所以当x 0=1时,|MN |min =51.此时点M 的坐标为(1,0,0).8.如图,正方体ABCD A 1B 1C 1D 1的棱长为a ,M 为BD 1的中点,N 在A 1C 1上,且|A 1N |=3|NC 1|,试求MN 的长.解:以D 为原点,以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则B (a ,a,0),A 1(a,0,a ),C 1(0,a ,a ),D 1(0,0,a ).由于M 为BD 1的中点,所以M ⎝ ⎛⎭⎪⎫a 2,a 2,a 2,取A 1C 1中点O 1,则O 1⎝ ⎛⎭⎪⎫a 2,a2,a ,因为|A 1N |=3|NC 1|,所以N 为O 1C 1的中点,故N ⎝ ⎛⎭⎪⎫a 4,34a ,a .由两点间的距离公式可得: |MN |= ⎝ ⎛⎭⎪⎫a 2-a 42+⎝ ⎛⎭⎪⎫a 2-34a 2+⎝ ⎛⎭⎪⎫a 2-a 2 =64a .(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A. 2 B .2 C .2 2D .4解析:选B 由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2,选B.2.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0 D .2x -y -1=0解析:选D 由题意,知圆的标准方程为(x -3)2+y 2=9,圆心为A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.3.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.4.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.5.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|-32+42=a 2+7-1,解得a =±3. 6.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米 D .251米解析:选D如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2),设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.7.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝ ⎛⎭⎪⎫2,12,半径长为123-12+1-02=52.故此圆的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.8.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2 C .2 D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB 的面积为12×22×12=1.故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)9.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________________.解析:由题意知圆心坐标为(2,-3),半径r =2-02+-3+22=5,∴圆C 的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=510.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)11.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4. 答案:412.已知过点(1,1)的直线l 与圆C :x 2+y 2-4y +2=0相切,则圆C 的半径为________,直线l 的方程为________.解析:圆C 的标准方程为x 2+(y -2)2=2, 则圆C 的半径为2,圆心坐标为(0,2).点(1,1)在圆C 上,则直线l 的斜率k =-12-10-1=1,则直线l 的方程为y =x ,即x -y =0. 答案: 2 x -y =013.已知圆C :(x -1)2+y 2=25与直线l :mx +y +m +2=0,若圆C 关于直线l 对称,则m =________;当m =________时,圆C 被直线l 截得的弦长最短.解析:当圆C 关于l 对称时,圆心(1,0)在直线mx +y +m +2=0上,得m =-1.直线l :m (x +1)+y +2=0恒过圆C 内的点M (-1,-2),当圆心到直线l 的距离最大,即MC ⊥l 时,圆C 被直线l 截得的弦长最短,k MC =-2-0-1-1=1,由(-m )×1=-1,得m =1.答案:-1 114.已知点M (2,1)及圆x 2+y 2=4,则过M 点的圆的切线方程为________,若直线ax -y+4=0与该圆相交于A ,B 两点,且|AB |=23,则a =________.解析:若过M 点的圆的切线斜率不存在,则切线方程为x =2,经验证满足条件.若切线斜率存在,可设切线方程为y =k (x -2)+1,由圆心到切线的距离等于半径得|-2k +1|k 2+1=2,解得k =-34,故切线方程为y =-34(x -2)+1,即3x +4y -10=0.综上,过M 点的圆的切线方程为x =2或3x +4y -10=0. 由4a 2+1=4-32得a =±15.答案:x =2或3x +4y -10=0 ±1515.已知两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0,则两圆圆心的最短距离为________,此时两圆的位置关系是________.(填“外离、相交、外切、内切、内含”中的一个)解析:将圆C 1:x 2+y 2-2ax +4y +a 2-5=0化为标准方程得(x -a )2+(y +2)2=9,圆心为C 1(a ,-2),半径为r 1=3,将圆C 2:x 2+y 2+2x -2ay +a 2-3=0化为标准方程得(x +1)2+(y-a )2=4,圆心为C 2(-1,a ),半径为r 2=2.两圆的圆心距d =a +12+-2-a2=2a 2+6a +5=2⎝ ⎛⎭⎪⎫a +322+12,所以当a =-32时,d min =22,此时22<|3-2|,所以两圆内含.答案:22内含 三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知正四棱锥P ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P ABCD 的底面边长为4,侧棱长为3,∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝ ⎛⎭⎪⎫-1,-1,12 ∴|BG |=32+32+14=732.17.(本小题满分15分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B .(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 124-02+6-02=13,∴以OP 为直径的圆的方程为(x -2)2+(y -3)2=13. (2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,x -22+y -32=13,得直线AB 的方程为4x +6y -1=0.18.(本小题满分15分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10.(2)法一:直线AB 的斜率k =4--2-1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x ,即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20. ∴所求圆的方程是(x -3)2+(y -2)2=20.法二:设圆的方程为(x -a )2+(y -b )2=R 2.则⎩⎪⎨⎪⎧1-a 2+-2-b 2=R 2,-1-a 2+4-b 2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.19.(本小题满分15分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5a -22=5a 2,解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5a -22-2|=5a 2,解得a =1-55或a =1+55(舍去). 综上所述,a =1±55. 20.(本小题满分15分)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径长为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)法一:因为直线l :y =kx +3与圆O 相交于A ,B 两点,所以圆心(0,0)到直线l 的距离d =|3|1+k2<2,解得k >52或k <-52. 假设存在点M ,使得四边形OAMB 为菱形,则OM 与AB 互相垂直且平分, 所以原点O 到直线l :y =kx +3的距离d =12|OM |=1.所以|3|1+k2=1,解得k 2=8,即k =±22,经验证满足条件. 所以存在点M ,使得四边形OAMB 为菱形. 法二:设直线OM 与AB 交于点C (x 0,y 0).因为直线l 斜率为k ,显然k ≠0,所以直线OM 方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx 0+3,y =-1k x 0,解得⎩⎪⎨⎪⎧x 0=-3k k 2+1,y 0=3k 2+1.所以点M 的坐标为⎝ ⎛⎭⎪⎫-6k k 2+1,6k 2+1.因为点M 在圆上,所以⎝⎛⎭⎪⎫-6k k 2+12+⎝ ⎛⎭⎪⎫6k 2+12=4,解得k =±22,经验证均满足条件. 所以存在点M ,使得四边形OAMB 为菱形.。
空间直角坐标系教案
【课题】4.3.1空间直角坐标系【教材】人教A版普通高中数学必修二第134页至136页.【课时安排】1个课时.【教学对象】高二〔上〕学生.【授课教师】***一.教材分析:本节内容主要引入空间直角坐标系的根本概念,是在学生已学过的二维平面直角坐标系的根底上进展推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的根底。
空间直角坐标系的知识是空间解析几何的根底,与平面解析几何的内容共同表达了"用代数方法解决几何问题〞的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形严密结合,提供一个度量几何对象的方法。
其对于沟通高中各局部知识,完善学生的认知构造,起到了很重要的作用。
二.教学目标:✧知识与技能(1)能说出空间直角坐标系的构成与特征;(2)掌握空间点的坐标确实定方法和过程;(3)能初步建立空间直角坐标系。
✧过程与方法(1)结合具体问题引入,诱导学生自主探究;. z.(2)类比学习,循序渐进。
情感态度价值观(1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。
(2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。
(3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。
三.教学重点与难点:教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。
教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。
四.教学方法:启发式教学、引导探究五.教学根本流程:↓. z.六.教学情境设计:. z.〔二〕引导探究,动手实践约6分钟思考:借助于平面直角坐标系,我们就可以用坐标来表示平面上任意一点的位置,则能不能仿照直角坐标系的方式来表示空间上任意一点的位置呢?不妨动手试一试……思路点拨:通过在地面上建立直角坐标系*Oy,则地面上任一点的位置可以用一对有序实数对〔*,y〕确定。
【参考教案】《空间直角坐标系》(人教)
《空间直角坐标系》(人教)第一章:空间直角坐标系的引入1.1 学习目标(1) 了解空间直角坐标系的定义和意义。
(2) 学会在空间直角坐标系中确定一个点的坐标。
1.2 教学内容(1) 空间直角坐标系的定义:三维空间中的一个参照系统,由三个互相垂直的坐标轴组成。
(2) 坐标轴的表示:通常用x, y, z表示三个坐标轴。
(3) 坐标点表示:一个点在空间直角坐标系中的位置由一对有序实数(x, y, z)表示。
1.3 教学活动(1) 利用实际例子(如地图上的位置表示)引出空间直角坐标系的定义。
(2) 通过图形和模型展示坐标轴的互相垂直关系。
(3) 让学生通过实际操作,学会在空间直角坐标系中表示一个点。
1.4 作业与练习(1) 完成练习题,包括在给定的坐标系中表示不同点的坐标。
(2) 设计一个小项目,要求学生自己创造一个坐标系,并标出一些特定的点。
第二章:坐标系的转换2.1 学习目标(1) 学会在不同坐标系之间进行转换。
(2) 理解坐标系转换的原理和意义。
2.2 教学内容(1) 坐标系之间的转换:通过变换矩阵实现不同坐标系之间的转换。
(2) 变换矩阵的定义和性质:变换矩阵是一个方阵,用于描述坐标系的转换关系。
2.3 教学活动(1) 通过图形和实例解释坐标系转换的原理。
(2) 引导学生学习变换矩阵的定义和性质。
(3) 进行实际操作,让学生学会使用变换矩阵进行坐标系之间的转换。
2.4 作业与练习(1) 完成练习题,包括使用变换矩阵进行坐标系转换。
(2) 设计一个小项目,要求学生自己创建一个坐标系转换问题,并给出解答。
第三章:坐标系的应用3.1 学习目标(1) 学会使用坐标系解决实际问题。
(2) 了解坐标系在各个领域中的应用。
3.2 教学内容(1) 坐标系在几何中的应用:通过坐标系解决几何问题,如计算距离、角度等。
(2) 坐标系在物理学中的应用:描述物体的运动轨迹和速度等。
3.3 教学活动(1) 通过实际例子展示坐标系在几何中的应用。
高中数学 第二章 解析几何初步 23 空间直角坐标系 233 空间两点间的距离公式教案 北师大版必修
空间两点间的距离公式一、教材的地位和作用距离是几何中的基本度量,几何问题和一些实际问题经常涉及距离,如建筑设计中常常需要计算空间两点间的距离。
点又是确定直线、平面的几何要素之一,所以对以后点、直线、平面的距离公式的推导和进一步学习,奠定了基础,具有重要作用。
二、教学目标1.知识与技能:(1)掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体的有关坐标。
(2)掌握空间两点的距离公式,会应用距离公式解决有关问题。
:通过空间直角坐标系的建立,空间两点距离公式的推导,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力。
3.情感态度与价值观:解析几何是用代数方法研究解决几何问题的一问数学学科,在教学过程中要让学生充分体会数形结合的思想。
三、教学重难点教学重点:空间两点间的距离公式和它的简单应用教学难点:空间两点间的距离公式的推导四、教法学法和教具创设问题情境——引导探究——归纳与总结,引导、启发、总结和归纳,把类比思想,化归思想贯穿始终以符合学生的现有知识水平的特点,从而促进思维能力的进一步发展,通过探索活动发现规律,解决问题,发展探究能力和创造能力。
教具:多媒体五、教学过程温故知新1.建立空间直角坐标系空间坐标系包括原点O, x 轴, y 轴, z 轴.记作:空间直角坐标系O-xyz .2.空间直角坐标系中点的坐标在空间直角坐标系中, 用一个三元有序数组来刻画空间点的位置,,)P x y z (.x 是横坐标, y 是纵坐标, z 是竖坐标.3.长方体的长、宽、高分别为a 、b 、c . 则对角线长d =222.a b c ++ 创设情境一楼屋顶C’处有一蜂窝,住户报119,消防官兵拟用高压水枪击落蜂巢,但水枪有效射程只有20米,而消防车也只能到达楼房角A 处,若屋的长、宽、高分别为15米、10米、4米,蜂巢能被击落吗?设计意图:通过谈话的方式将知识与生活中有实际联系的蜂巢能否被击落的问题创设情境,增强讲授的吸引力,提高学生的兴趣。
23空间直角坐标系教案(北师大版必修2).doc
3. 1空间直角坐标系的建立3. 2空间直角坐标系中点的坐标(教师用卩独具)•三维目标 1. 知识与技能掌握空间直角坐标系的有关概念,会写一些简单几何体的有关点坐标. 2. 过程与方法通过设置具体情境,感受建立空间直角朋标系的必要性,通过空间直角坐标系的建立, 使学牛初步意识到将空间问题转化为平面问题是解决空间问题的基本思路.3. 情感、态度与价值观通过本节的学习,培养学生的动手操作能力、空间想象能力. •重点难点重点:在空间直角坐标系中,确定点的坐标.难点:通过建立适当的直角坐标系,确定空间点的坐标.介绍空间直角处标系时,可以从平面直角处标系开始,使学生感受到只要在平面直角坐 标系的基础上再增加一根竖轴(z 轴),就成了空间直角坐标系.•教学建议本节课的授课内容是空间直角处标系及其建立、空间直角处标系的中点处标.教学时教 师要充分抓住学生的原有认知基础,紧紧扣住二维平面宜角坐标系的推广,引导学生将空间 立体儿何借助于建立空间处标系來代数化.教学吋提供多个现实情境,让学纶来分析、思考、 解决,进而让学生感受建立空I'可直角坐标系的必耍性,内容由浅入深、环环相扣,体现了知 识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中.对于空间处 标系建立的教学,紧紧地抓住了学生已有的立体几何知识,也可为水到渠成,口然流畅.而 中点公式的教学则乂一•次的利用了平而到空间的类比推广.教学时注重学生参与与学法指 导,真正体现以学生为主.•教学流程创设问题情境,提出问题。
引导学生回答问题,理解空间直角坐标系的冇关概念=>通过 例1及变式训练,使学牛掌握根据点的坐标确定点的位置。
通过例2及互动探究,使学牛掌 握已知点的位置写H 淇坐标3通过例3及变式训练,使学生掌握空间小点的对称问题。
归纳 整理,进行课堂小结,整体认识所学知识二完成当堂双基达标,巩固所学知识,并进行反馈、 娇正碟谕fl k 导学 理數材包爰自测a “基锚":[殳丫空间直角朋标系敘歩教法分析明课标分条解读现“敎法教学助 教区♦敖歩方案设计損方略滾41细解用”敎*•”(教师用书独具)教案设 计区*空间直角坐标系【问题导思】只给飞机所在位置的经度和纬度,能确定飞机的位置吗?再给出高度,能确定飞机的位査吗?在空间为了确定空间任意点的位置,需要儿个实数呢?【提示】不能,能,3个.1.空间直角坐标系的建立(1)空间直角朋标系建立的流程图:平面直角坐标系I通过原点0,再增加一条与xOy平面垂血的z轴空间直角坐标系(2)空间直角处标系的建系原则——右手螺旋法则:①伸出心手,让四指与大拇指垂直.②四指先指向x轴正方向.③让四指沿握拳方向旋转90。
高二数学 4-4第一章坐标系全部教案
表示方法?(3)、坐标不唯一是由谁引起的?(4)、不同的极坐标是否可以写出统一
表达式。约定:极点的极坐标是 =0, 可以取任意角。
变式训练 :在极坐标系里描出下列各点
A(3,0) B(6,2 )C(3, )D(5, 4 )E(3, 5 )F(4, )G(6, 5 )
2
3
6
3
例 2 在极坐标系中,
特别强调:由极径的意义可知 ≥0;当极角 的取值范围是[0,2 )时,平面上的 点(除去极点)就与极坐标(,)建立一一对应的关系 .们约定,极点的极坐标是极 径 =0,极角是任意角. 3、负极径的规定:在极坐标系中,极径 允许取负值,极角 也可以去任意的正角 或负角,当 <0 时,点 M (,)位于极角终边的反向延长线上,且 OM= 。
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
(二)、平面直角坐标轴中的伸缩变换
1、在平面直角坐标系中进行伸缩变换,即改变 x 轴或 y 轴的单位长度,将会对图形
产生影响。
2、探究:(1)在正弦曲线 y=sinx 上任取一点 P(x,y),保持纵坐标不变,将横坐标 x
π 3
<0,解得 k=-1,
= 3
-2 =- 5 , 点 A 的坐标为(5,- 5 ).
3
3
变式训练:1、若 ABC的的三个顶点为 A(5, 5 ), B(8, 5 ),C(3, 7 ),判断三角形的形状.
2
6
6
答案:正三角形。2、若 A、B 两点的极坐标为 (1,1), (2 ,2 ) 求 AB 的长以及 AOB 的 面积。(O 为极点)
高中数学《空间直角坐标系》说课稿 新人教A版
《空间直角坐标系》说课稿一、教材分析:本节课为高中一年级第四章《平面解析几何初步》的第三节第一课时的内容。
本节课是在学生已经学过的二维的平面直角坐标系的基础上的推广。
学生在九年制义务教育阶段已经画过长方体的直观图,在高一第一章中又画过棱柱与棱锥的直观图,在此基础上,我只作了适当的点拨,学生就自然而然地得出了空间直角坐标系的画法。
在研究过程中,我充分运用了类比、交换、数形结合等数学思想方法,有效地培养学生的思想品质。
在求空间直角坐标系中点的坐标时,学生不仅会很自然地运用类比的思想方法,同时也锻炼了他们的空间思维能力。
这节课是为以后的《空间向量及其运算》打基础的。
同时,在第二章《空间中点、直线、平面的位置关系》第一节《异面直线》学习时,有些求异面直线所成的角的大小,借助于空间向量来解答,要容易得多,所以,本节课为沟通高中各部分知识,完善学生的认知结构,起到很重要的作用。
二、教学方法和教材处理:本节课主要采用了启发式教学方法,通过激发学生学习的求知欲望,使学生主动参与教学实践活动。
首先,为了使学生比较顺利地从平面到空间的变化,即从二维向量到三维向量的变化,我采用了类比的数学教学手段,顺利地引导学生实现了这一转化,同时也引起了学生的兴趣。
然后,从与平面直角坐标系内点的坐标是借助一个长方形得到的过程,使学生顺理成章地想到空间点的坐标可能是通过借助长方体得到的,让学生亲手实践后,证实了这一结论,增强了学生学习的信心。
此后,马上将书上的例1作为学生的口答练习,〔一般学生都能回答正确〕然后,及时提出问题;如果改变坐标系的确定方法,点的坐标会发生什么变化?经过思考,学生一般也能回答正确,同时,又让学生明确了:坐标系建立的不同,得到的点的坐标也不同。
再让学生练习正四棱锥、正三棱锥的空间直角坐标系的建立方法以及根据不同的坐标系,求出各顶点的坐标。
在整个教学过程中,内容由浅入深、环环相扣,不仅使学生在学习过程中了解了知识的发生、发展的过程,也使学生尝到了成功的喜悦,对于增强学生的学习信心,起到了很好的作用。
人教A版高中数学必修二4.3.空间直角坐标系课件
【变式练习】 如图,在长方体OABC-D′A′B′C′中,|OA|
=3,|OC|=4,|OD′|=3,A′C′与B′D′相交于点P.
分别写出点C,B′,P的坐标. z
答案:ห้องสมุดไป่ตู้
D
A
P
C
B
AO x
Cy B
例2 结晶体的基本单位称为晶胞,如图(1)是食 盐晶胞的示意图(可看成是八个棱长为 1 的小正
z
在空间中,到定点的距离
等于定长的点的轨迹是 以原点为球心,
半径长为 r 的球面.
P
O y
x
2.如果是空间中任意一点P1(x1,y1,z1)到点P2 (x2,y2,z2)之间的距离公式会是怎样呢?
如图,设P1(x1,y1,z1)、P2(x2,y2,z2)
是空间中任意两点,且点P1(x1,y1,z1)、
轴,这三个平面的唯一交点就是有序实数组 (x, y, z)
确定的点M. z
R
pO x
M y
Q
这样,空间一点M的坐标可以用有序实数组 (x, y, z)
来表示,有序实数组 (x, y, z) 叫做点M在空间直角坐标 系中的坐标,记作M (x, y, z).其中 x, y, z
分别叫做点M的横坐标、纵坐标、竖坐标.
关于谁对称谁 不变
在空间直角坐标系中,若 已知两个点的坐标,则这两点 之间的距离是惟一确定的,我 们希望有一个求两点间距离的 计算公式,对此,我们从理论 上进行探究.
y
y2
P2(x2, y2)
y1 P1(x1,y1) Q(x2,y1)
O x1
x2 x
长a,宽b,高c的长方体的对角线,怎么求?
空间直角坐标系 高中数学教案 第一章3-1
1.3空间向量及其运算的坐标表示1.3.1空间直角坐标系【素养导引】1.了解空间直角坐标系的建系方式.(直观想象)2.掌握空间向量的正交分解及其坐标表示.(直观想象)3.能在空间直角坐标系中求出点的坐标和已知坐标作出点.(直观想象)【导学素材】【问题1】数轴Ox上的点M,用代数的方法怎样表示呢?【问题2】直角坐标平面上的点M,怎样表示呢?【问题3】如果我们也能建立一个空间直角坐标系,又该怎样表示空间的点呢?1.空间直角坐标系(1)建系:在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向,以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,这样就建立了空间直角坐标系.(2)有关概念:坐标轴x轴、y轴、z轴原点点O坐标向量i,j,k坐标平面通过每两条坐标轴的平面,分别称为Oxy平面、Oyz平面和Ozx 平面,它们把空间分成八个部分(3)建系的常用规则.①画空间直角坐标系Oxyz时,一般使∠xOy=135°(或45°),∠yOz=90°.②在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.【思考与交流】空间直角坐标系中,坐标轴上的点的坐标有何特征?提示:x轴上的点的纵坐标、竖坐标都为0,即(x,0,0).y轴上的点的横坐标、竖坐标都为0,即(0,y,0).z轴上的点的横坐标、纵坐标都为0,即(0,0,z).2.点的坐标和向量的坐标(1)点的坐标在空间直角坐标系Oxyz中,i,j,k为坐标向量,对空间任意一点A,对应一个向量OA⃗⃗⃗⃗⃗ ,存在唯一有序实数组(x,y,z),使OA⃗⃗⃗⃗⃗ =x i+y j+z k,则与OA⃗⃗⃗⃗⃗ 对应的有序实数组(x,y,z)叫做点A在空间直角坐标系中的坐标.(2)向量的坐标给定向量a,若OA⃗⃗⃗⃗⃗ =a,则a=x i+y j+z k,有序实数组(x,y,z)叫做a在空间直角坐标系Oxyz中的坐标,记作a=(x,y,z).【解透教材】1.(x,y,z)的双重意义(x,y,z)既可以表示向量,也可以表示点,要根据问题的情境辨别此符号的含义.2.确定空间任意一点P的坐标的方法过点P分别作三个坐标平面的平行平面(或垂面),分别交坐标轴于三个点,设这三个点在x轴、y轴和z轴上的坐标分别是x,y和z,那么点P的坐标为(x,y,z).【思考与交流】空间向量的坐标和点的坐标有什么关系?提示:点A在空间直角坐标系中的坐标为(x,y,z),那么向量OA⃗⃗⃗⃗⃗ 的坐标也为(x,y,z).【基础小测】1.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则点B1的坐标是()A.(1,0,0)B.(1,0,1)C.(1,1,1)D.(1,1,0)【解析】选C .点B 1到三个坐标平面的距离都为1,易知其坐标为(1,1,1). 2.在空间直角坐标系Oxyz 中,过点P (1,√2,√3)作Oxy 平面的垂线,垂足为Q ,则点Q 的坐标为 ( )A .(0,0,√3)B .(0,√2,√3)C .(1,0,√3)D .(1,√2,0)【解析】选D .垂足Q 为点P 在Oxy 平面上的射影,其横、纵坐标与点P 的相同,竖坐标为0.3.在空间直角坐标系中,点P (1,2,-3)关于坐标平面Oxy 的对称点为 ( ) A .(-1,-2,3) B .(-1,-2,-3) C .(-1,2,-3) D .(1,2,3) 【解析】选D .在空间直角坐标系中,两点关于坐标平面Oxy 对称,则这两点的横坐标、纵坐标都不变,它们的竖坐标互为相反数, 所以点P (1,2,-3)关于坐标平面Oxy 的对称点为(1,2,3).4.若向量i ,j ,k 为空间直角坐标系上对应x 轴,y 轴,z 轴正方向上的单位向量,且设a =2i -j +3k ,则向量a 的坐标为 .【解析】由向量的单位正交基底表示已知向量a 的坐标为(2,-1,3). 答案:(2,-1,3)5.如图所示,在正方体ABCD -A 1B 1C 1D 1中建立空间直角坐标系,若正方体的棱长为1,则AB ⃗⃗⃗⃗⃗ 的坐标为 ,DC 1⃗⃗⃗⃗⃗⃗⃗ 的坐标为 .【解析】AB ⃗⃗⃗⃗⃗ =i+0j+0k =(1,0,0),DC 1⃗⃗⃗⃗⃗⃗⃗ =DD 1⃗⃗⃗⃗⃗⃗⃗⃗ +D 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =i+0j+k =(1,0,1). 答案:(1,0,0) (1,0,1)学习任务一求空间点的坐标(直观想象)1.长方体ABCD-A1B1C1D1中,AB=4,AD=3,AA1=5,N为棱CC1的中点,分别以DA,DC,DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,如图,写出下列点的坐标.A,C,B,B1,N.2.已知正四棱锥P-ABCD的底面边长为4,侧棱长为10,建立空间直角坐标系如图所示,试写出各顶点的坐标.【解析】1.因为点A在x轴的正半轴上,且AD=3,所以A(3,0,0).同理,可得C(0,4,0).因为点B在坐标平面xOy内,BC⊥CD,BA⊥AD,所以B(3,4,0).与B的坐标相比,点B1的坐标中只有竖坐标不同,BB1=AA1=5,则B1(3,4,5).由C(0,4,0),C1(0,4,5),则C1C 的中点N(0,4,5).2答案:(3,0,0)(0,4,0)(3,4,0)(3,4,5) (0,4,5)22.因为正四棱锥P-ABCD的底面边长为4,侧棱长为10,所以底面正方形的对角线长为4√2,正四棱锥的高为2√23.所以正四棱锥各顶点的坐标分别为A(2√2,0,0),B(0,2√2,0),C(-2√2,0,0),D(0,-2√2,0),P(0,0,2√23).【思维提升】1.求点P的坐标的方法(1)作点P在Oxy平面上的射影M,过点M向x轴作垂线,垂足为N ,|ON| ,|NM| ,|MP| 分别为点P的横坐标、纵坐标、竖坐标的绝对值;(2)按O →N →M →P确定相应坐标的正负,与坐标轴同向为正,反向为负,即可得到点P的坐标.2.在空间直角坐标系中,若A(x1,y1,z1),B(x2,y2,z2),则线段AB的中点坐标为(x1+x22,y1+y22,z1+z22).【即学即练】如图所示,AF,DE分别是☉O,☉O1的直径,AD与两圆所在的平面均垂直,AD=8.BC 是☉O的直径,AB=AC=6,OE∥AD,试建立适当的空间直角坐标系,求出点A,B,C,D,E,F的坐标.【解析】因为AD与两圆所在的平面均垂直,OE∥AD,所以OE与两圆所在的平面也都垂直.又因为AB=AC=6,BC是☉O的直径,所以△BAC为等腰直角三角形且AF⊥BC,BC=6√2.以O为原点,OB,OF,OE所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A,B,C,D,E,F各个点的坐标分别为A(0,-3√2,0),B(3√2,0,0),C(-3√2,0,0),D(0,-3√2,8),E(0,0,8),F(0,3√2,0).【补偿训练】如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,P A⊥底面ABCD,∠PDA=30°.试建立适当的坐标系并求出图中各点的坐标.【解析】以点A为坐标原点,以AB,AD,AP所在的直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系.因为AB =BC =a ,所以A (0,0,0),B (a ,0,0),C (a ,a ,0). 因为AD =2a ,所以D (0,2a ,0). 因为P A ⊥底面ABCD ,所以P A ⊥AD. 又因为∠PDA =30°,所以P A =AD tan 30°=2√33a ,故P (0,0,2√33a). 学习任务二 空间点的对称问题(直观想象)1.在空间直角坐标系中,点P (3,4,5) 与点Q (3,-4,-5) 的位置关系是 ( ) A .关于x 轴对称B .关于Oxy 平面对称C .关于坐标原点对称D .以上都不对2.在空间直角坐标系Oxyz 中,点P (2,3,4)在坐标平面Oxy 内射影的坐标为 .3.点P (-3,2,-1)关于平面Ozx 的对称点是 ,关于z 轴的对称点是 ,关于M (1,2,1)的对称点是 .【解析】1.选A .两点横坐标相等,纵、竖坐标互为相反数,关于x 轴对称. 2.点在平面Oxy 内射影,只需z =0即可,所以P (2,3,4)在平面xOy 内射影的坐标为(2,3,0).答案:(2,3,0)3.点P (-3,2,-1)关于平面Oxz 的对称点是(-3,-2,-1),关于z 轴的对称点是(3,-2,-1). 设点P (-3,2,-1)关于M (1,2,1)的对称点为(x ,y ,z ).则{ x -32=1y+22=2z -12=1,解得{x =5y =2z =3.故点P (-3,2,-1)关于点M (1,2,1)的对称点为(5,2,3). 答案:(-3,-2,-1) (3,-2,-1) (5,2,3) 【思维提升】求对称点的坐标的关注点1.规律:“关于谁对称谁不变,其余的符号均相反.”2.点P (a ,b ,c )的几种特殊的对称点的坐标:对称轴或对称中心 对称点坐标P x 轴 (a ,-b ,-c ) y 轴 (-a ,b ,-c ) z 轴(-a ,-b ,c ) xOy 平面 (a ,b ,-c ) yOz 平面 (-a ,b ,c ) xOz 平面 (a ,-b ,c ) 坐标原点(-a ,-b ,-c )学习任务三 空间向量的坐标(直观想象)【典例】在正三棱柱ABC -A 1B 1C 1中,已知△ABC 的边长为1,三棱柱的高为2,建立适当的空间直角坐标系,并写出AA 1⃗⃗⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ 的坐标.【解析】分别取BC ,B 1C 1的中点D ,D 1,所以DC ,DA ,DD 1两两垂直,以D 为坐标原点,分别以DC ⃗⃗⃗⃗⃗ ,DA ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,如图所示.设i ,j ,k 分别是x ,y ,z 轴正方向上的单位向量,因为AD =√32,DC =12,所以AA 1⃗⃗⃗⃗⃗⃗⃗ =DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =0i +0j +2k ,AB 1⃗⃗⃗⃗⃗⃗⃗ =-DC ⃗⃗⃗⃗⃗ -DA ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-12i -√32j +2k ,AC 1⃗⃗⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ -DA ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =12i -√32j +2k ,所以AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2),AB 1⃗⃗⃗⃗⃗⃗⃗ =(-12,-√32,2), AC 1⃗⃗⃗⃗⃗⃗⃗ =(12,-√32,2). 【思维提升】用坐标表示空间向量的方法步骤【即学即练】如图,P A 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且P A =AB =1,试建立适当的空间直角坐标系,求向量MN⃗⃗⃗⃗⃗⃗⃗ 的坐标.【解析】因为P A =AB =AD =1,P A ⊥平面ABCD ,AB ⊥AD ,所以AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 是两两垂直的单位向量.设AB ⃗⃗⃗⃗⃗ =e 1,AD ⃗⃗⃗⃗⃗ =e 2,AP⃗⃗⃗⃗⃗ =e 3,以{e 1,e 2,e 3}为基底建立空间直角坐标系Axyz.因为MN ⃗⃗⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +PN⃗⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +12PC ⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +12(PA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) =-12AB ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +12(PA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ) =12AD ⃗⃗⃗⃗⃗ +12AP ⃗⃗⃗⃗⃗ =12e 2+12e 3, 所以MN⃗⃗⃗⃗⃗⃗⃗ =(0,12,12).。
北师大版高中数学必修2教案备课空间直角坐标系中点的坐标
§3空间直角坐标系3.1空间直角坐标系的建立3.2空间直角坐标系中点的坐标学习目标核心素养1.了解空间直角坐标系的建立方法及有关概念.2.会在空间直角坐标系中用三元有序数组刻画点的位置.(重点、难点)1.通过空间直角坐标系的建立方法及有关概念培养数学抽象素养.2.通过在空间直角坐标系中用三元有序数组,刻画点的位置提升直观想象素养.1.空间直角坐标系(1)空间直角坐标系建立的流程图:平面直角坐标系↓通过原点O,再增加一条与xOy平面垂直的z轴↓空间直角坐标系(2)空间直角坐标系的建系原则——右手螺旋法则:①伸出右手,让四指与大拇指垂直;②四指先指向x轴正方向;③让四指沿握拳方向旋转90°指向y轴正方向;④大拇指的指向即为z轴正方向.(3)有关名称:如图所示,①O叫作原点;②x,y,z轴统称为坐标轴;③由坐标轴确定的平面叫作坐标平面,由x,y轴确定的平面记作xOy平面,由y,z轴确定的平面记作yOz平面,由x,z轴确定的平面记作xOz平面.2.空间直角坐标系中点的坐标(1)空间直角坐标系中任意一点P的位置,可用一个三元有序数组来刻画.(2)空间任意一点P的坐标记为(x,y,z),第一个是x轴坐标,第二个是y轴坐标,第三个是z轴坐标.(3)空间直角坐标系中,点一一对应三元有序数组.(4)对于空间中点P坐标的确定方法是:过点P分别向坐标轴作垂面,构造一个以O,P为顶点的长方体,如果长方体在三条坐标轴上的顶点P1,P2,P3的坐标分别为(x,0,0),(0,y,0),(0,0,z),则点P的坐标为(x,y,z).思考:画空间直角坐标系时,任意两坐标轴的夹角是否都画成90°呢?提示:不是,空间直角坐标系中,任意两坐标轴的夹角都是90°,但在画直观图时通常画为∠xOy=135°,∠xOz=135°.1.点(2,0,3)在空间直角坐标系中的()A.y轴上B.xOy平面上C.xOz平面上D.第一象限内C[点(2,0,3)的y轴坐标为0,所以该点在xOz平面上.]2.点P(a,b,c)到坐标平面xOy的距离是()A.a2+b2B.|a|C.|b| D.|c|D[点P(a,b,c)到坐标平面的距离应为|c|.]3.在空间直角坐标系中,自点P(-4,-2,3)引x轴的垂线,则垂足的坐标为________.(-4,0,0)[∵点P(-4,-2,3),∴自点P引x轴的垂线,垂足坐标为(-4,0,0).]求空间点的坐标【例1】 如图,棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 是AB 的中点,F 是BB 1的中点,G 是AB 1的中点,试建立适当的坐标系,并确定E ,F ,G 三点的坐标.[思路探究] 取D 为空间坐标系的原点,过D 点的三条棱所在直线为坐标轴建立空间直角坐标系,按定义确定E ,F ,G 坐标.[解] 如图,以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴和z 轴建立空间直角坐标系,E 点在平面xDy 中,且|EA |=12.∴E 点的坐标为⎝ ⎛⎭⎪⎫1,12,0. ∵B 点和B 1点的坐标分别为(1,1,0)和(1,1,1),故F 点坐标为⎝ ⎛⎭⎪⎫1,1,12. 同理可得G 点坐标为⎝ ⎛⎭⎪⎫1,12,12.1.空间中点的位置和点的坐标是相对的,建立空间直角坐标系,要力争尽可能简捷地将点的坐标表示出来.因此,要确定各点到xDy 面、yDz 面、xDz 面的距离,同时中点坐标公式在空间直角坐标系中仍然适用.2.设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则P 1P 2中点P (x ,y ,z )坐标满足x =x 1+x 22,y =y 1+y 22,z =z 1+z 22.[跟进训练]1.(1)点M ⎝ ⎛⎭⎪⎫0,26,-13所在的位置是( ) A .x 轴上B .xOz 平面上C .xOy 平面内D .yOz 平面内(2)正方体ABCD -A ′B ′C ′D ′的棱长为1,且|BP |=13|BD ′|,建立如图所示的空间直角坐标系,则P 点的坐标为( )A.⎝ ⎛⎭⎪⎫13,13,13 B.⎝ ⎛⎭⎪⎫23,23,23 C.⎝ ⎛⎭⎪⎫13,23,13 D.⎝ ⎛⎭⎪⎫23,23,13 (1)D (2)D [(1)∵M 点的坐标为⎝ ⎛⎭⎪⎫0,26,-13,x =0, ∴点M 在平面yOz 内.(2)如图所示,过P 分别作平面xOy 和z 轴的垂线,垂足分别为E ,H ,过E 分别作x 轴和y 轴的垂线,垂足分别为F ,G ,由于|BP |=13|BD ′|,所以|DH |=13|DD ′|=13,|DF |=23|DA |=23,|DG |=23|DG |=23,所以P 点的坐标为⎝ ⎛⎭⎪⎫23,23,13,故选D.] 已知点的坐标确定点的位置[解] 法一:先确定点M ′(2,-6,0)在xOy 平面上的位置,因为点M 的竖坐标为4,则|MM ′|=4,且点M 和z 轴的正半轴在xOy 平面的同侧,这样就可确定点M 的位置了(如图所示).法二:以O 为一个顶点,构造三条棱长分别为2,6,4的长方体,使此长方体在点O 处的三条棱分别在x 轴正半轴、y 轴负半轴、z 轴正半轴上,则长方体中与顶点O 相对的顶点即为所求的点(图略).由点的坐标确定点位置的方法(1)先确定点(x 0,y 0,0)在xOy 平面上的位置,再由竖坐标确定点(x 0,y 0,z 0)在空间直角坐标系中的位置;(2)以原点O 为一个顶点,构造棱长分别为|x 0|,|y 0|,|z 0|的长方体(三条棱的位置要与x 0,y 0,z 0的符号一致),则长方体中与O 相对的顶点即为所求的点.[跟进训练]2.在空间直角坐标系中,作出点P (5,4,6).[解] 第一步从原点出发沿x 轴正方向移动5个单位,第二步沿与y 轴平行的方向向右移动4个单位,第三步沿与z 轴平行的方向向上移动6个单位(如图所示),即得点P .求空间某对称点的坐标1.平面中,两点P 1(x 1,y 1),P 2(x 2,y 2)的中点坐标是什么?类比平面中两点的中点坐标,空间中两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)的中点坐标是什么?提示:平面上两点P 1,P 2的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22;空间中两点P 1,P 2中点的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,z 1+z 22. 2.在空间直角坐标系中,关于一个平面对称的点有什么特点?关于一条坐标轴对称的点有什么特点?提示:关于哪个平面的对称点在这个平面上的坐标不变,另外的坐标变成原来的相反数.关于一条坐标轴的对称点这个坐标不变,另两个坐标变为原来的相反数.3.在空间直角坐标系中,关于原点对称的点的坐标有什么特点?提示:三个坐标分别互为相反数.【例3】求点A(1,2,-1)关于坐标平面xOy及x轴对称的点的坐标.[思路探究]解答本题可先作出点A的坐标,然后借助于图形,分析其对称点的情况.[解]如图所示,过A作AM⊥xOy交平面于M,并延长到C,使|AM|=|CM|,则A与C关于坐标平面xOy对称点C(1,2,1).过A作AN⊥x轴于N,并延长到点B,使|AN|=|NB|,则A与B关于x轴对称且B(1,-2,1),∴A(1,2,-1)关于坐标平面xOy 对称的点的坐标为(1,2,1);A(1,2,-1)关于x轴对称的点的坐标为(1,-2,1).[跟进训练]3.写出点P(-2,1,4)关于y轴,z轴,yOz面,xOz面的对称点的坐标.[解](1)点P关于y轴的对称点坐标为P1(2,1,-4),(2)点P关于z轴的对称点坐标为P2(2,-1,4),(3)点P关于面yOz的对称点为P3(2,1,4),(4)点P关于面xOz对称的点为P4(-2,-1,4).1.空间直角坐标系的作图要求(1)将空间直角坐标系Oxyz画在纸上时,x轴与y轴,x轴与z轴均画成135°,而z轴垂直于y轴.(2)y轴和z轴的单位长度相同,x轴的单位长度为y轴(或z轴)单位长度的一半.(3)每两条坐标轴确定的平面两两垂直.2.空间直角坐标系中点与有序实数组(x,y,z)的关系在空间直角坐标系中,空间任意一点A与有序实数组(x,y,z)之间是一种一一对应关系.(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴,y轴,z轴分别交于P,Q,R,点P,Q,R在相应数轴上的坐标依次是x,y,z,这样对于空间任意一点A,就定义了一个有序数组(x,y,z).(2)反之,对任意一个有序数组(x,y,z),按照上述作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴,y轴,z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点即为所求的点A.1.思考辨析(1)给定空间直角坐标系,空间任意一点与有序实数组(x,y,z)之间存在唯一的对应关系.()(2)点P(1,0,2)在空间直角坐标系中的xOy坐标平面上.()(3)空间直角坐标系中,y轴上的点的坐标为(0,y,0).()(4)在不同的空间直角坐标系中,同一点的坐标可能不同.()[解析](2)×,∵点P(1,0,2)的纵坐标为0,∴点P(1,0,2)应在坐标平面xOz上.[答案](1)√(2)×(3)√(4)√2.在空间直角坐标系中,点M(-2,1,0)关于原点的对称点M′的坐标是() A.(2,-1,0)B.(-2,-1,0)C.(2,1,0) D.(0,-2,1)A[很明显点M和M′的中点是原点,所以点M′的坐标是(2,-1,0).] 3.在空间直角坐标系中,已知点A(-1,2,-3),则点A在yOz平面内射影的点的坐标是________.(0,2,-3)[由空间直角坐标系中点的坐标的确定可知,点A在yOz平面内的射影的点的坐标是(0,2,-3).]4.如图,正四棱柱ABCD-A1B1C1D1(底面为正方形的直棱柱)中,AA1=2AB=4,点E在CC1上且C1E=3EC.试建立适当的坐标系,写出点B,C,E,A1的坐标.[解]以点D为坐标原点,射线DA,DC,DD1分别为x轴、y轴、z轴的正半轴,建立如图所示的空间直角坐标系.依题意知,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).。
高中数学必修2(人教A版)教案—4.3.1空间直角坐标系
4. 3.1空间直角坐标系(教案)【教学目标】1.让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法.2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.3.进一步培养学生的空间想象能力与确定性思维能力.【教学重难点】重点:求一个几何图形的空间直角坐标。
难点:空间直角坐标系的理解。
【教学过程】一、情景导入1. 确定一个点在一条直线上的位置的方法.2. 确定一个点在一个平面内的位置的方法.3. 如何确定一个点在三维空间内的位置?例:如图26-2,在房间(立体空间)内如何确定电灯位置?在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数.那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数.要确定电灯的位置,知道电灯到地面的距离、到相邻的两个墙面的距离即可.(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)教师:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定.为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可.例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3).这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O—xyz,从而确定了空间点的位置.二、合作探究、精讲点拨1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O—xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xO平面,yO平面,zOx平面.教师进一步明确:(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.(2)将空间直角坐标系O—xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y 轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的,这样,三条轴上的单位长度直观上大致相等.2. 空间直角坐标系O—xyz中点的坐标.思考1:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?在学生充分讨论思考之后,教师明确:(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A(x,y,z).教师进一步指出:空间直角坐标系O—xyz中任意点A的坐标的概念对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)思考2:(1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z).(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z).三、典型例题例1、在空间直角坐标系O—xyz中,作出点P(5,4,6).注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).变式练习:已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.注意:此题可以由学生口答,教师点评.解:A (0,0,0),B (12,0,0),D (0,8,0),A ′(0,0,5),C (12,8,0),B ′(12,0,5),D ′(0,8,5),C ′(12,8,5).讨论:若以C 点为原点,以射线CB ,CD ,CC ′方向分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?得出结论:建立不同的坐标系,所得的同一点的坐标也不同.例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz 后,试写出全部钠原子所在位置的坐标。
高中数学-《空间直角坐标系》教案、教学设计
《空间直角坐标系》教案、教学设计人教版高中数学必修二一、教学目标1.掌握空间直角坐标系的有关概念。
2.通过空间直角坐标系的建立,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法。
3.通过本节的学习,培养学生类比、迁移、化归的能力,培养学生积极参与,大胆探索的精神。
二、教学重难点【重点】空间直角坐标系的建立过程。
【难点】空间中任意点的坐标表示。
三、教学方法提问法、讲授法、小组讨论法。
四、教学过程环节一:情境导入大屏幕展示国庆60周年阅兵仪式飞行表演的视频,请学生思考:如何保证高速飞行的飞机不相撞,学生不难回答出在划定某条航线时,不仅要指出航线的经纬度,还需要指出航线距离地面的高度。
环节二:.探究新知活动一:空间直角坐标系的建立引导学生回忆初中学习过的直角坐标系,请学生思考:问题1:如何建立平面直角坐标系;问题2:平面直角坐标系上的点如何表示;问题3:如何确定教室里某位同学的头所在的位置,学生思考回答,引导学生得出至少需要三个实数来表示这位同学的头所在的位置。
教师及时给出建立空间直角坐标系的方法。
并板书作图(课本134页图4.3-1)。
强调空间坐标系的三要素:原点、坐标轴方向、单位长度。
概念讲解完成后,向学生介绍右手直角坐标系。
活动二:空间直角坐标系的划分提出问题:三个坐标轴确定几个平面,这些平面可把空间分成几个部分。
学生根据空间几何知识得出,三个平面,八个部分。
活动三:空间中点的坐标引导学生思考:在建立了空间直角坐标系以后如何来确定空间中点的坐标。
提示学生可类比平面直角坐标系,设置小组讨论环节,学生可根据平面直角坐标系推出做垂直,在空间中过一点做一条直线的垂线不唯一,所以需要做垂面。
教师进行归纳总结方法一:过M点分别做三个平面分别垂直于x,y,z轴。
环节三:巩固提升请学生观察大屏幕呈现的例1中各点的位置关系,同时分析相应点的坐标关系。
师生共同得出结论,出示第二种确定点的坐标的方法:过M点作xOy面的垂线,得到M的横坐标、纵坐标。
人教B版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 第2课时 空间直角坐标系
2
2
在本例中,若D是边AB的中点,E是AB的
1
分点,且靠近点A,求DE的长度.
4
1
1
解:∵D 是边 AB 的中点,∴D 2 ,0,3 .又 E 是 AB 的4分点,且靠近点 A,
1
∴E - ,1,3 ,∴DE=||=
4
1 1 2
- + (1-0)2 + (3-3)2 =
4 2
9
5
+1= .
向,在坐标平面xOy的上方,分别是第Ⅰ卦限、第Ⅱ卦限、第Ⅲ卦限、第Ⅳ
卦限;在xOy的下方,分别是第Ⅴ卦限、第Ⅵ卦限、第Ⅶ卦限、第Ⅷ卦限.事
实上,根据点的坐标的特征,第 Ⅰ 卦限的点集用集合可表示为
{(x,y,z)|x>0,y>0,z>0},其他卦限的点集可用类似的方法表示.
3.如图,建立空间直角坐标系,若正方体ABCD-A1B1C1D1的棱长为2,点P是
(1)BD1⊥AC;
(2)BD1⊥EB1.
证明:以 D 为坐标原点,, , 1 的方向分别为 x 轴、y 轴、z 轴正方向,建
立空间直角坐标系,如图所示.
设正方体的棱长为 1,则
1 1
B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E , ,0 ,B1(1,1,1).
1 5
C(2 , 2,3),求△ABC中边AB上的中线CD
的长度.
分析:先由中点坐标公式求出点D的坐标,再利用两点间距离公式求CD的
长度.
1
解:∵A(-1,2,3),B(2,-2,3),∴边 AB 的中点 D ,0,3 .
2
∴CD=| |=
5
.
湘教版高中高二数学必修三《空间直角坐标系》教案及教学反思
湘教版高中高二数学必修三《空间直角坐标系》教案及教学反思教学目标1.知道什么是空间直角坐标系,掌握空间直角坐标系的表示方法。
2.熟练掌握求两点间距离和中点坐标的方法。
3.掌握用空间直角坐标系表示直线和平面的方法。
4.能够利用空间直角坐标系求直线间的夹角和平面间的角度。
5.了解和掌握空间直角坐标系的几何意义。
教学过程第一节:空间直角坐标系教学目标•知道什么是空间直角坐标系,掌握空间直角坐标系的表示方法。
教学重点•熟练掌握空间直角坐标系的表示方法。
教学难点•空间直角坐标系的几何意义。
教学方法•讲授、举例。
教学时间•1个课时(45分钟)。
1.引入“空间直角坐标系”。
2.讲解空间直角坐标系的三条坐标轴和表示方法。
3.利用例题巩固学生对空间直角坐标系的掌握。
第二节:点和距离教学目标•熟练掌握求两点间距离和中点坐标的方法。
教学重点•熟练掌握求两点间距离和中点坐标的方法。
教学难点•互相垂直的两条直线间的距离的计算。
教学方法•讲授、举例。
教学时间•1个课时(45分钟)。
教学步骤1.引入“点和距离”。
2.讲解“两点间距离”的计算方法和“中点坐标”的求解方法。
3.利用例题巩固学生对点和距离的掌握。
第三节:直线和平面教学目标•掌握用空间直角坐标系表示直线和平面的方法。
教学重点•掌握用空间直角坐标系表示直线和平面的方法。
•立体图形在平面上的投影。
教学方法•讲授、演示。
教学时间•1个课时(45分钟)。
教学步骤1.引入“直线和平面”。
2.讲解用空间直角坐标系表示直线的方法和平面的表示方法。
3.利用立体图形在平面上的投影说明用空间直角坐标系表示直线和平面的方法。
第四节:角度教学目标•能够利用空间直角坐标系求直线间的夹角和平面间的角度。
教学重点•能够利用空间直角坐标系求直线间的夹角和平面间的角度。
教学难点•平面角和空间角的概念和计算。
教学方法•讲授、例题。
教学时间•1个课时(45分钟)。
1.引入“角度”。
2.讲解直线间的夹角的计算方法和平面间的角度的求解方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3.1 空间直角坐标系教案
(一) 教学任务分析
使学生深刻感受空间直角坐标系的建立的背景以及理解空间中点的坐标表示。
通过数轴与数,平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性。
(二) 教学重点和难点
重点:空间直角坐标系中点的坐标表示
难点:空间直角坐标系中点的坐标表示
(三)教学过程
(1) 空间直角坐标系的定义?
引导学生看上图,
单位正方体''''C B A D OABC ,让学生认识该空间直角坐标系O —xyz 中,什么是坐标原点,坐标轴以及坐标平面。
(2) 建立空间直角坐标系以后,空间中任意一点M 如何用坐标表示呢?
引导学生观察图[2],
点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标;如果给定了有序实数组),,(z y x ,它是否对应着空
间直角坐标系中的一点呢?
由上我们知道了空间中任意点M 的坐标都可以用有序实
数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中
的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M
的纵坐标,z 叫做点M 的竖坐标。
(3)例题讲解
例1 如图,在长方体OABC-D`A`B`C`中,|OA|=3,|OC|=4,
|OD`|=2,写出D`,C ,A`,B`四点的坐标.
)
2,4,3('),2,0,3('),0,4,0(),2,0,0('B A C D 解:由图可知:
(4)练习
1、如图,在长方体OABC-D`A`B`C`中,|OA|=3,|OC|=4,|OD`|=3,A`C`于B`D`相交于点P.分别写出点C ,B`,P 的坐标.
2、如图,棱长为a 的正方体OABC-D`A`B`C`中,对角线OB`于BD`相交于点Q.顶点O 为坐标原点,OA ,OC 分别在x 轴、y 轴的正半轴上.试写出点Q 的坐标.
3、在空间直角坐标系中标出下列各点:A(0,2,4),B(1,0,5),C(0,2,0),D(1,3,4)
四、课堂小结
• 深刻感受空间直角坐标系的建立的背景以及理解空间中点的坐标表示。
• 通过数轴与数,平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必
要性。
• 理解并掌握空间直角坐标系中点的坐标表示
五、作业
教科书 136页 练习
)3,2,23(P ),2,4,3('B ),0,4,0(C 解:由图可知:)2,2,2(Q a a a Q 为正方体的中心
解:由图可知:。