运筹学基础及应用课后习题答案(第一二章习题解答)
运筹学基础与应用课后习题答案(第一二章习题解答)
运筹学基础及应用 习题解答习题一 P46 1.1 (a)该问题有无穷多最优解,即满足210664221≤≤=+x x x 且的所有()21,x x ,此时目标函数值3=z 。
(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.3 (a)4(1) 图解法最优解即为⎩⎨⎧=+=+8259432121x x x x 的解⎪⎭⎫⎝⎛=23,1x ,最大值235=z(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 ⎩⎨⎧=++=+++++=825943 ..00510 max 4213214321x x x x x x t s x x x x z则43,P P 组成一个基。
令021==x x得基可行解()8,9,0,0=x ,由此列出初始单纯形表21σσ>。
5839,58min =⎪⎭⎫⎝⎛=θ02>σ,2328,1421min =⎪⎭⎫ ⎝⎛=θ 新的单纯形表为0,21<σσ,表明已找到问题最优解0 , 0 , 231,4321====x x x x 。
最大值 235*=z (b) (1) 图解法\\最优解即为⎩⎨⎧=+=+524262121x x x x 的解⎪⎭⎫⎝⎛=23,27x ,最大值217=z(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式1234523124125max 2000515.. 62245z x x x x x x x s t x x x x x x =+++++=⎧⎪++=⎨⎪++=⎩则3P ,4P ,5P 组成一个基。
令021==x x得基可行解()0,0,15,24,5x =,由此列出初始单纯形表21=+x x 2621+x x21σσ>。
245min ,,461θ⎛⎫=-= ⎪⎝⎭02>σ,1533min ,24,522θ⎛⎫== ⎪⎝⎭新的单纯形表为0,21<σσ,表明已找到问题最优解11x =,27 2x =,3152x =,40x =,50x =。
运筹学基础课后习题答案
运筹学基础课后习题答案[2002年版新教材]第一章导论P51.、区别决策中的定性分析和定量分析,试举例。
定性——经验或单凭个人的判断就可解决时,定性方法定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。
举例:免了吧。
2、.构成运筹学的科学方法论的六个步骤是哪些?.观察待决策问题所处的环境;.分析和定义待决策的问题;.拟定模型;.选择输入资料;.提出解并验证它的合理性(注意敏感度试验);.实施最优解;3、.运筹学定义:利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据第二章作业预测P251、.为了对商品的价格作出较正确的预测,为什么必须做到定量与定性预测的结合?即使在定量预测法诸如加权移动平均数法、指数平滑预测法中,关于权数以及平滑系数的确定,是否也带有定性的成分?答:(1)定量预测常常为决策提供了坚实的基础,使决策者能够做到心中有数。
但单靠定量预测有时会导致偏差,因为市场千变万化,影响价格的因素很多,有些因素难以预料。
调查研究也会有相对局限性,原始数据不一定充分,所用的模型也往往过于简化,所以还需要定性预测,在缺少数据或社会经济环境发生剧烈变化时,就只能用定性预测了。
(2)加权移动平均数法中权数的确定有定性的成分;指数平滑预测中的平滑系数的确定有定性的成分。
2.、某地区积累了5个年度的大米销售量的实际值(见下表),试用指数平滑法,取平滑系数α=0.9,预测第6年度的大米销售量(第一个年度的预测值,根据专家估计为4181.9千公斤)年度12345大米销售量实际值(千公斤)52025079393744533979。
答:F6=a*x5+a(1-a)*x4+a(1-a)~2*x3+a(1-a)~3*x2+a(1-a)~4*F16=0.9*3979+0.9*0.1*4453+0.9*0.01*3937+0.9*0.001*5079+0.9*0.0001*4181.9F6=3581.1+400.77+35.433+4.5711+0.3764F6=4022.33、某地区积累了11个年度纺织品销售额与职工工资总额的数据,列入下列表中(表略),计算:(1)回归参数a,b(2)写出一元线性回归方程。
运筹学基础及应用课后习题答案(第一二章习题解答)
运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。
2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。
二、填空题1. 线性规划问题的基本假设是______。
答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。
答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。
解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。
具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。
第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。
2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。
二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。
答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。
运筹学第三版课后习题答案 (2)
运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
运筹学1至6章习题参考答案
-0.25
1
1.5
2
C(j)-Z(j)
-1.75
0
0
1.25
0
-12.5
X1
-3
1
0
2
-1
0
2
M
X2
-5
0
1
-0.5
0.5
0
2
4
X5
0
0
0
-1.5
[0.5]
1
0
0
C(j)-Z(j)
0
0
3.5
-0.5
0
-16
X1
-3
1
0
-1
0
2
2
X2
-5
0
1
1
0
-1
2
X4
0
0
0
-3
1
2
0
C(j)-Z(j)
0
0
2
0
1
【解】设xj、yj(j=1,2,…,6)分别为1~6月份的生产量和销售量,则数学模型为
(1)
(2)目标函数不变,前6个约束右端常数800改为1000,第7~11个约束右端常数200改为0,第12个约束“≤200”改为“=-200”。
1.4某投资人现有下列四种投资机会,三年内每年年初都有3万元(不计利息)可供投资:
0
0
0
R. H. S.
Ratio
Basis
C(i)
X1
X2
X3
X4
X5
X6
X4
0
-1
2
3
1
0
0
4
M
X5
0
[4]
运筹学课后习题答案
目
录
第一章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 复习思考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 第二章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 复习思考题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 第 三 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 第 四 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 第 五 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 第 六 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 第 七 章 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 复 习 思 考 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
运筹学各章的作业题答案解析
《管理运筹学》各章的作业----复习思考题及作业题第一章绪论复习思考题1、从运筹学产生的背景认识本学科研究的内容和意义。
2、了解运筹学的内容和特点,结合自己的理解思考学习的方法和途径。
3、体会运筹学的学习特征和应用领域。
第二章线性规划建模及单纯形法复习思考题1、线性规划问题的一般形式有何特征?2、建立一个实际问题的数学模型一般要几步?3、两个变量的线性规划问题的图解法的一般步骤是什么?4、求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。
6、试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。
7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。
8在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?9、大M法中,M的作用是什么?对最小化问题,在目标函数中人工变量的系数取优质参考资料(2)x i3(1)什么?最大化问题呢?10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样 的情况下,继续第二阶段?作业题:1 、把以下线性规划问题化为标准形式:(i) max z= x i -2x 2 +x 3s.t.x i +x 2 +x 3 w i2 2x i +x 2 -x 3> 6 -x i+3x 2=9x i , x 2,x 3> 0(2)min z= -2x i -x 2 +3x 3 -5x 4s.tx i +2x 2 +4x 3 -x 462x i +3x 2-x 3 +x 4 = i2x i+x 3+x 4w 4x i ,x 2,x 4maxz= x i+3x 2 +4x 3(3)s.t.3x i +2x 2w i3x 2 +3x 3w i72x i+x 2 +x 3 =i3x i ,x 3> 02 、用图解法求解以下线性规划问题max z= x 1+3x 2s.t.x i +X 2< 10-2x i +2x 2 w 12 X i w 7 x i ,X 2 > 0min z= x 1 -3x 2 s.t.2x 1 -x 2 w 4 x i +X 2> 3x2 w 5 w4x1, X2 > 03、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解max z= 2x1 +x2 -x 3s.t. x1 + x2 +2x3 < 6x1 +4x2 -x 3 < 4x1, x2, x3 > 04、用单纯形表求解以下线性规划问题(1) max s.t. z= x1x12x 1-x 1x 1, -2x 2 +x3+X2 +X3 w 12 +X2 -x 3 w 6+3X2X2,w 9X3 > 0(2) min z= -2x 1 -X 2 +3X3 5X 4s.t x1 +2X 2 +4X3 -X 4 w 62x1 +3X 2 -X 3 +X4 w 12x1 +X3 +X4 w 4x1, X2, X3, X4 05、用大M法和两阶段法求解以下线性规划问题(1) MaX z= X1 +3X2 +4X3s.t. 3X 1 +2X2 w13X2 +3X3 w172X 1 +X2 +X3 =13X 1, X2, X3> 0(2) maX z= 2X 1 -X 2 +X3s.t. X1 +X2 -2X 3 w84X 1 -X 2 +X3 w22X 1 +3X2 -X 3 > 4X 1, X2, X3 > 06 、某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100 毫克维生素。
运筹学1-2章答案
1.1解(1)用图1-1中的阴影部分分为此线性规划问题的可行域,目标函数123z x x =+,即21133z x x =-+是斜率为13-的一族平行线,易知123,0x x ==为可行解,由线性规划的性质知,其最值在可行域的顶点取得,将直线1233x x +=沿其法线方向逐渐向上平移,直至A 点,A 点坐标为(2,4)。
所以 max 23414z =+⨯= 此线性规划问题有唯一最优解。
(2)用图1-2中的阴影部分分为此线性规划问题的可行域,目标函数121.5z x x =+,即212233x x z =-+是斜率为23-的一族平行线,易知123,0x x ==为可行解,由线性规划的性质知,其最值在可行域的顶点取得。
将直线121.53x x +=沿其法线方向逐渐向下平移,直至B 点,B 点坐标为31(,)22。
所以 319max 1.5224z =+⨯= 此线性规划问题有唯一最优解。
(3)用图1-3中的阴影部分分为此线性规划问题的可行域,目标函数1222z x x =+,即212zx x =-+是斜率为1-的一族平行线,易知120,0x x ==为可行解。
在将直线12220x x +=沿其法线方向逐渐向上平移的过程中发现:目标函数的值可以增加到无穷大,故此线性规划问题为无界解。
(4)如图1-4所示,此问题的可行域为空集,故此线性规划问题无可行解。
1.4 (2)解法一:图解法图中的阴影部分为此线性规划问题的可行域,目标函数1225z x x =+,即21255z x x =-+是斜率为25-的一族平行线,易知120,0x x ==为可行解,将直线12250x x +=沿其法线方向逐渐向上平移,直至B 点,B 点坐标为(2,6)。
所以 m a x22563z =⨯+⨯=解法2:单纯形法将上述问题化为标准型如下:12345max 25000z x x x x x =++++132412512345 + =4 212..3x 2 =18,,,,0x x x x s t x x x x x x x ⎧⎪+=⎪⎨++⎪⎪≥⎩表的最终结果表明:最优解 (2,6,2,0,0)T X =目标函数最优值 m a x34z = 迭代第一步得(1)(0,0,4,12,18)T X =表示图中原点。
运筹学基础及应用第四版胡运权主编课后练习答案
运筹学基础及应用第四版胡运权主编课后练习答案一、线性规划1. 求解下列线性规划问题:max z = 3x1 + 2x2s.t.2x1 + x2 ≤ 8x1 + 2x2 ≤ 6x1, x2 ≥ 0答案:首先将约束条件化为标准形式,得到:max z = 3x1 + 2x2 + 0s1 + 0s2s.t.2x1 + x2 + s1 = 8x1 + 2x2 + s2 = 6x1, x2, s1, s2 ≥ 0通过单纯形法求解,得到最优解为:x1 = 2, x2 = 2,最优值为8。
2. 求解下列线性规划问题的对偶问题:min z = 2x1 + 3x2s.t.x1 + 2x2 ≥ 42x1 + x2 ≥ 6x1, x2 ≥ 0答案:原问题的对偶问题为:max z' = 4y1 + 6y2s.t.y1 + 2y2 ≤ 22y1 + y2 ≤ 3y1, y2 ≥ 0通过单纯形法求解,得到最优解为:y1 = 1, y2 = 1,最优值为10。
二、非线性规划1. 求解下列非线性规划问题:min f(x) = x^2 + 2x + 3s.t.x ∈ [0, 4]答案:首先求导数,得到f'(x) = 2x + 2。
令导数等于0,得到x = -1。
由于x ∈ [0, 4],所以只需考虑x = 0和x = 4。
计算f(0) = 3,f(4) = 31。
因此,最小值为3,对应的x = 0。
2. 求解下列非线性规划问题:max f(x) = x^3 - 3x^2 + 4s.t.x ∈ [0, 3]答案:首先求导数,得到f'(x) = 3x^2 - 6x。
令导数等于0,得到x = 0或x = 2。
计算f(0) = 4,f(2) = 2,f(3) = 2。
因此,最大值为4,对应的x = 0。
三、整数规划1. 求解下列整数规划问题:max z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 8x1, x2 ∈ Z答案:通过分支定界法求解,得到最优解为:x1 = 2, x2 = 3,最优值为10。
【参考实用】运筹学课后习题答案.doc
第一章线性规划1、由图可得:最优解为2、用图解法求解线性规划:Min z=2R1+R2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-1058244212121xxxxxx解:由图可得:最优解R=1.6,R=6.43用图解法求解线性规划:MaR z=5R1+6R2⎪⎩⎪⎨⎧≥≤+-≥-,23222212121xxxxxx解:由图可得:最优解MaR z=5R1+6R2, MaR z= +4用图解法求解线性规划:MaRz = 2R1 +R2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤,5242261552121211xxxxxxx由图可得:最大值⎪⎩⎪⎨⎧==+35121xxx,所以⎪⎩⎪⎨⎧==2321xxmaR Z = 8.1212125.max23284164120,1,2maxZ.jZ x xx xxxx j=+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=R1-2R2+3R3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量R 4≥0,引入剩余变量R 5≥0,并令R 3=R 3’-R 3’’,其中R 3’≥0,R 3’’≥0MaR z ’=-R 1+2R 2-3R 3’+3R 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =R 1+2R 2+3R 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z’ = -z ,引进松弛变量R 4≥0,引进剩余变量R 5≥0,得到一下等价的标准形式。
运筹学课后习题答案
运筹学课后习题答案第一章线性规划1、由图可得:最优解为2、用图解法求解线性规划:Min z=2x1+x2解:由图可得:最优解x=1.6,y=6.43用图解法求解线性规划:Max z=5x1+6x2解:由图可得:最优解Max z=5x1+6x2, Max z= +4用图解法求解线性规划:Maxz = 2x 1 +x 2 由图可得:最大值==+35121x x x ,所以==2321x xmax Z = 8.6将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3 解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’7将线性规划模型化为标准形式Min Z =x1+2x2+3x3解:令Z’ = -z,引进松弛变量x4≥0,引进剩余变量x5≥0,得到一下等价的标准形式。
x2’=-x2 x3=x3’-x3’’Z’ = -min Z = -x1-2x2-3x39用单纯形法求解线性规划问题:Max Z =70x1+120x2解: Max Z =70x1+120x2单纯形表如下Max Z =3908.11.解:(1)引入松弛变量X4,X5,X6,将原问题标准化,得max Z=10X1+6X2+4X3X1+X2+X3+X4=10010 X1+4X2+5X3+X5=6002 X1+2X2+6X3+X6=300X1,X2,X3,X4,X5,X6≥0得到初始单纯形表:(2)其中ρ1 =C1-Z1=10-(0×1+0×10+0×2)=10,同理求得其他根据ρmax =max{10,6,4}=10,对应的X1为换入变量,计算θ得到,θmin =min{100/1,600/10,300/2}=60,X5为换出变量,进行旋转运算。
(3)重复(2)过程得到如下迭代过程ρj≤0,迭代已得到最优解,X*=(100/3,200/3,0,0,0,100)T,Z* =10×100/3+6×200/3+4×0 =2200/3。
运筹学课后习题答案
第一章 线性规划及单纯形法1.用X j (j=1.2…5)分别代表5中饲料的采购数,线性规划模型:12345123412341234min 0.20.70.40.30.8.3267000.50.2300.20.8100(1,2,3,4,5,6)0j z x x x x x st x x x x x x x x x x x x x x x x j =+++++++≥+++≥+++≥=≥555 +18 +2 0.5+2 2.解:设123456x x x x x x x 表示在第i 个时期初开始工作的护士人数,z 表示所需的总人数,则123456161223344556min .607060502030(1,2.3.4.5.6)0i z x x x x x x st x x x x x x x x x x x x x i =++++++≥+≥+≥+≥+≥+≥=≥ 3.解:设用i=1,2,3分别表示商品A ,B ,C ,j=1,2,3分别代表前,中,后舱,Xij 表示装于j 舱的i 种商品的数量,Z 表示总运费收入则:111213212223313233111213212223313233112131122232132333112131max 1000()700()600().6001000800105740010575400105715008652000z x x x x x x x x x st x x x x x x x x x x x x x x x x x x x x x =++++++++++≤++≤++≤++≤++≤++≤++≤ 122232132333112131122232132333122232112131132333865300086515008650.158658650.158658650.18650(1,2.3.1,2,3)ij x x x x x x x x x x x x x x x x x x x x x x x x x i j ++≤++≤++≤++++≤++++≤++≥== 5. (1)Z = 4(2)12121212max .6101207051038z x x st x x x x x x =++≤+≥≤≥≤≥ 解:如图:由图可得: **(10,6)16T x Z == ; 即该问题具有唯一最优解*(10,6)Tx =(3)无可行解(4)12121212max 56.22232,0z x x st x x x x x x =+-≥-+≤≥ 如图:由图知,该问题具有无界解。
运筹学基础与应用(第一二章习题解答)
运筹学基础及应用 习题解答习题一 P46 1.1 (a)该问题有无穷多最优解,即满足210664221≤≤=+x x x 且的所有()21,x x ,此时目标函数值3=z 。
(b)用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.2(a) 约束方程组的系数矩阵4⎪⎪⎪⎭⎫ ⎝⎛--=1000030204180036312A最优解()T x 0,0,7,0,10,0=。
(b) 约束方程组的系数矩阵⎪⎪⎭⎫⎝⎛=21224321A最优解Tx ⎪⎭⎫⎝⎛=0,511,0,52。
1.3 (a) (1) 图解法最优解即为⎩⎨⎧=+=+8259432121x x x x 的解⎪⎭⎫⎝⎛=23,1x ,最大值235=z(2)单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式 ⎩⎨⎧=++=+++++=825943 ..00510 max 4213214321x x x x x x t s x x x x z则43,P P 组成一个基。
令021==x x得基可行解()8,9,0,0=x ,由此列出初始单纯形表21σσ>。
5839,58min =⎪⎭⎫ ⎝⎛=θ02>σ,2328,1421min =⎪⎭⎫ ⎝⎛=θ 新的单纯形表为0,21<σσ,表明已找到问题最优解0 , 0 , 231,4321====x x x x 。
最大值 235*=z(b) (1) 图解法最优解即为⎩⎨⎧=+=+524262121x x x x 的解⎪⎭⎫⎝⎛=23,27x ,最大值217=z(2) 单纯形法首先在各约束条件上添加松弛变量,将问题转化为标准形式1234523124125max 2000515.. 62245z x x x x x x x s t x x x x x x =+++++=⎧⎪++=⎨⎪++=⎩则3P ,4P ,5P 组成一个基。
令021==x x得基可行解()0,0,15,24,5x =,由此列出初始单纯形表21=+x x 2621+x x21σσ>。
运筹学课后习题答案
s1 = 2, s2 = 0
5 、解: 标准形式: min f = 11x1 + 8x2 + 0s1 + 0s2 + 0s3
10x1 + 2x2 − s1 = 20 3x1 + 3x2 − s2 = 18 4x1 + 9x2 − s3 = 36 x1, x2 , s1, s2 , s3 ≥ 0
s1 = 0, s2 = 0, s3 = 13 6 、解:
3 车间每增加 1 工时,总利润增加 200 元 2、4 车间每增加 1 工时,总利润不增加。 d 3 车间,因为增加的利润最大 e 在 400 到正无穷的范围内变化,最优产品的组合不变
f 不变 因为在 [0,500]的范围内
g 所谓的上限和下限值指当约束条件的右边值在给定范围内变化时,约束条
件 1 的右边值在 [200,440]变化,对偶价格仍为 50(同理解释其他约束条件)
2、解:从上午 11 时到下午 10 时分成 11 个班次,设 xi 表示第 i 班次安排的临时 工的人数,则可列出下面的数学模型: min f=16(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11) s.t. x1+1 ≥ 9 x1+x2+1 ≥ 9 x1+x2+x3+2 ≥ 9 x1+x2+x3+x4+2 ≥ 3
x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0, x10=0,x11=0 最优值为 320。
a、 在满足对职工需求的条件下,在 10 时安排 8 个临时工,12 时新安排 1 个临时工,13 时新安排 1 个临时工,15 时新安排 4 个临时工,17 时新 安排 6 个临时工可使临时工的总成本最小。
运筹学1至6章习题参考答案
运筹学1至6章习题参考答案第1章 线性规划工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.表1-23310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:表1-24 窗架所需材料规格及数量【解】 第一步:求下料方案,见下表。
设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑L (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩L某企业需要制定1~6月份产品A 的生产与销售计划。
已知产品A 每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件。
1~6月份产品A 的单件成本与售价如表1-25所示。
运筹学基础及应用第四版胡运权主编课后练习答案
运筹学基础及丨、V:用习题解答习题一 P461.1(a)2 = 3。
(b)用亂解法找+到满足所打约柬条仲的公:it•范W,所以该问题无可行解。
1.2(a)约束方程组的系数矩阵最优解A.=(o,i a o,7,o,o)r(b)约束方程组的系数矩阵 f I 2 3 4、4 = l2 2 I 2,最优解1 = (^,0,11,0^ V55 )"1.3(a)(1)图解法⑵单纯形法首先在各约朿条件上添加松弛变铽,将问题转化为标准形式max z = 10a-, +5a'2 +0x3 +0a4[3a-. +4 义2 + A3 = 9 si.<[5a-j + 2X2 + a'4 = 8则A,P4组成个猫《=令 A = ;c2 = 0得-站可行解a_ = (0.0.9,8),山此列出初始单纯形表cr 2 >0, 0 - minj 2Ax2xi =~,a-3 =0, a 4最优解即为严+2X2=24的解x =卩,2V 最大值z : IA"i + X y =5I 2 2 /新的单纯形农为A', Xo X A14 14_5_ _25M ~T?q.qcO ,表明已找到问题垴优解.(b)(1)图解法17(2)单纯形法苘先在外约朿条件.h 添加松弛变M ,将问题转化为标准形式 max z = 2.v, + x 2 + Ox 3 + 0.v 4 + Oa 5 5a'2 + = 15 6.y, + 2x 2 + .v 4 = 240 00 --2 *^4o A :5、Q 0 一4(7,^2 <0,表明已找到问题最优解^ =1,X 2=- , A-32L估• 17Hi Z =——21.6(a)在约朿条件中添加松弛变量或剩余变量,且令k = jc 2 -a :; (a*2 > 0,.v ; > o)Xx = ~X->该问题转化为max z' = -3a, - x 2 + .v 2 - 2a 3 + 0.v 4 + (Xv 5 2x | + 3a -2 - 3a 2+ 4a 3 +a 4 =12攀 M I4a'| +x 2 -A*2 -2a*3 —^5 =8 3a*, -X 2 +X 2 — 3a*3 = 6A*,, A '2,X 2, x 3,A-4 , A 3 ^ 0-K 约朿系数矩陴为23 -34 I 0 4 丨-1-20-13 -丨丨一3 0 0在A 屮人为地添加两列单位向虽/>7,2 3 -3 4 1 0 0 0 4 丨-1 -2 t) -1 丨 0 3-1 I -3 0 0 0 1令 max z'= -3a -i - x 2 +x 2- 2.v 3 + Oa:., + 0.v 5 - Mx 6 - Mx 7 得初始单纯形表15最大a 4 = 0,x 5SS ^ Xi x 2x 4 x 5 x 6-2 0 0M -M4 10 -I 0 00 0 0-3 + 7M -J 1 -2-5M 0 -M 0 0-I-5(b)在约朿条件中添加松弛变M 或剩余变M ,.R 令a:3 (jc 3>0,.x ;>0)该问题转化为max z • = 一3^ - 5.v 2 + x ?- x ? + 0,v 4 + Ox 5 x, + 2X 2 + x^- x^-x 4 =6 2.v, + x 2- 3jc 3 - 3^:3 + a*5 = 16 x 2+ 5 a*3 一 5a*3= 10 •v p A :2,“x 4,A 5^0艽约柬系数矩阵为213-30-1 115-50 0v/ft A 屮人为地添加两列单位向觉p 7, 121-1-1010、2 13-30 100 115 -5 0 0 01、 /令 max z , = -3a*, 一 5,v 2 + .v 3 一 x 3 + 0x 4 + 0x s 一 Mx b - Mx 1衍初始单纯形表0 0 -M - M X. X, X,X, X, X, X, x n-A/ x 616-M x 7 10-3 + 2A/ 5 + 3M 1+6M -1-6M -M 0 0 0(a)解1:大\1法在上述线性规划问题中分别减去剩余变萤x 4,x 6,〜再加上人工变蛩15,17,',得max z = 2x t - x2 + 2x3 + 0,v4 - Mx s + 0,v6 - Mx7 + 0a8- Mx^-3 + 7M -J 1 -2-5M 0 -M 0 0A', + X 2 + A :3 - + JC 5 = 6 -2x l + jc 3 — a*6 + x 1 —2 2x z — j c 3 - a *8+ j c 9 =0a-,,.v 2,a*3,j:4,a:5,^6,x 7,x 8,a-9 >0,r,其中MS 个任意人的正数-据此可列出单纯形表22MMMjc, x 2x 4X5 X6 A-M x s 6 -M x 7一2 —Ma 、00 0 0[2]0 M 02-M 3A/-1 2 + A/ -M 1/2 -1/2 0 0-1/2 -1/2x s-M x,—Ix\ [1]1/2^ 5M 3 … ^… A/ I 1 3A/ 2-M0 ----- + — - M0 -M 0 ------------------ 一十 ---2 2 2 2 2 2-M jr 5 3 2 .v 3 2 -I x 2 I 3/2 -3/2 1/2 -1/2 -11-1/2 1/2 -1/2 1/20 0 0 1 1 03/40 0?>M +3 -5M -3 M-3M4Af+5 0 ■M22 2x, 3/4 A 3 7/2 7/40 00 1 0| 43/8 - 8 8-5/4 -M8山单纯形表计算结果可以ft 出,ct 4 >0且%<0(/ =丨,2,3),所以该线性规划问题有无界解 解2:两阶段法。
运筹学教材习题答案详解
显然用料最少的方案最优。
1.4A、B两种产品,都需要经过前后两道工序加工,每一个单位产品A需要前道工序1小时和后道工序2小时,每一个单位产品B需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案
一
二
三
四
五
六
七
八
九
十
十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
《运筹学》
第1章线性规划
第2章线性规划的对偶理论
第3章整数规划
第4章目标规划
第5章运输与指派问题
第6章网络模型
第7章网络计划
第8章动态规划
第9章排队论
第10章存储论
第11章决策论
第12章对策论
习题一
1.1讨论下列问题:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学基础及应用 习题解答
习题一 P46 1.1 (a)
该问题有无穷多最优解,即满足2
1
0664221≤≤=+x x x 且的所有()21,x x ,此时目标函数值3=z 。
(b)
用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解。
1.3 (a)
(1) 图解法
4
最优解即为⎩⎨
⎧=+=+82594321
21x x x x 的解⎪⎭⎫
⎝⎛=23,1x ,最大值235=z
(2)单纯形法
首先在各约束条件上添加松弛变量,将问题转化为标准形式 ⎩⎨⎧=++=+++++=8
25943 ..00510 max 421321
4321x x x x x x t s x x x x z
则43,P P 组成一个基。
令021==x x
得基可行解()8,9,0,0=x ,由此列出初始单纯形表 21σσ>。
5
839,58min =⎪⎭
⎫ ⎝⎛=θ
02>σ,23
28,1421min =⎪⎭⎫ ⎝
⎛=θ
0,21<σσ,表明已找到问题最优解0 , 0 , 2
3
1,4321
====x x x x 。
最大值 2
35*=z (b) (1) 图解法 \\
最优解即为⎩⎨
⎧=+=+5
24262121x x x x 的解⎪⎭⎫
⎝⎛=23,27x ,最大值217=z
(2) 单纯形法
首先在各约束条件上添加松弛变量,将问题转化为标准形式
21=+x x 2621+x x
1234523124125
max 2000515.. 6224
5z x x x x x x x s t x x x x x x =+++++=⎧⎪
++=⎨⎪++=⎩
则3P ,4P ,5P 组成一个基。
令021==x x
得基可行解()0,0,15,24,5x =,由此列出初始单纯形表
21σσ>。
245min ,,461θ⎛
⎫=-= ⎪⎝
⎭
02>σ,15
33min ,24,5
22θ⎛⎫== ⎪⎝⎭
新的单纯形表为
0,21<σσ,表明已找到问题最优解11x =,2 2x =,315
2
x =
,40x =,50x =。
最大值 *
17
2
z =
1.8
习题二 P76 2.2
(a)错误。
原问题存在可行解,对偶问题可能存在可行解,也可能无可行解。
(b)错误。
线性规划的对偶问题无可行解,则原问题可能无可行解,也可能为无界解。
(c)错误。
(d)正确。
2.8 将该问题化为标准形式:
()⎪⎩⎪
⎨⎧=≥=++-=++++++-=
5,104
26 ..002 max 521432154321 i x x x x x x x x t s x x x x x z i
用单纯形表求解 6=
由于0<j σ,所以已找到最优解()10,0,0,0,6*=X ,目标函数值12*=z (a) 令目标函数
112233max 2z x x x λλλ=+++()(-1+)(1+)
(1)令230λλ==,将1λ反映到最终单纯形表中
表中解为最优的条件:0-3-1≤λ,0- 1 -1≤λ,0-21≤-λ,从而11-≥λ (2)令031==λλ,将2λ反映到最终单纯形表中
表中解为最优的条件:0 3-2≤λ, 从而32≤λ (3) 令021==λλ,将3λ反映到最终单纯形表中
表中解为最优的条件:01-3≤λ, 从而13≤λ (b) 令线性规划问题为
()⎪⎩⎪
⎨⎧=≥+≤+-+≤+++-=3,10426 ..2 max 5
214
321321 i x x x x x x t s x x x z i
λλ (1)先分析的变化
⎪⎪⎭
⎫
⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=∆=∆-*111101101λλλb B b
使问题最优基不变的条件是010611≥⎪⎪⎭⎫
⎝
⎛++=∆+*
*
λλb b ,从而61-≥λ
(2)同理有0106
2≥⎪
⎪⎭
⎫
⎝⎛
+λ,从而102-≥λ (c) 由于)10,0,0,0,6(=*
x 代入26231<-=+-x x ,所以将约束条件减去剩余变量后的方
程22631=-+-x x x 直接反映到最终单纯形表中
因此增加约束条件后,新的最优解为
110 3
x=,
38 3
x=,
522 3
x=,最优值为28 3。