图形的相似练习题.doc
苏科版数学中考专题复习:图形的相似综合压轴题 专项练习题汇编(Word版,含答案)
苏科版数学中考专题复习:图形的相似综合压轴题专项练习题汇编1.已知四边形ABCD中,M,N两点分别在AB,BD上,且满足∠MCN=∠BDC.(1)如图1,当四边形ABCD为正方形时,①求证:△ACM∽△DCN;②求证:DN+BM=CD;(2)如图2,当四边形ABCD为菱形时,若∠BAD=120°,试探究DN,BM,CD的数量关系.2.在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.3.已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.问题发现:(1)①如图1,若四边形ABCD是正方形,且DE⊥CF于G,则=;②如图2,当四边形ABCD是矩形时,且DE⊥CF于G,AB=m,AD=n,则=;拓展研究:(2)如图3,若四边形ABCD是平行四边形,且∠B+∠EGC=180°时,求证:;解决问题:(3)如图4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,请直接写出的值.4.在等边△ABC中,D,E分别是AC,BC上的点,且AD=CE,连接BD、AE相交于点F.(1)如图1,当时,=;(2)如图2,求证:△AFD∽△BAD;(3)如图3,当时,猜想AF与BF的数量关系,并说明理由.5.如图1,点D是△ABC中AB边上一点,∠ACD=∠B,BC2=AB•BD.(1)求证:∠ADC=∠ACB;(2)求∠ACB的度数;(3)将图1中的△BCD绕点C顺时针旋转得到△ECF,BD的对应边EF经过点A(如图2所示),若AC=2,求线段CD的长.6.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN ⊥DM,且MN=DM,连接DN.(1)如图①,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM;(2)如图②,当AM=4BM时,求证:A,C,N三点在同一条直线上.7.在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上,AB=8,AD=6.(1)如图1,当点G在CD上时,求AE+DG的值;(2)如图2,FG与CD相交于点N,连接EN,当EF平分∠AEN时,求证:EN=AE+DN;(3)如图3,EG,FG分别交CD于点M,N,当MG2=MN•MD时,求AE的值.8.【问题背景】如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,由已知可以得到:①△≌△;②△∽△.【尝试应用】如图2,在△ABC和△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE =30°,求证:△ACE∽△ABD.【问题解决】如图3,在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE =30°,AC与DE相交于点F,点D在BC上,,求的值.9.已知正方形ABCD中,点E是边CD上一点(不与C、D重合),将△ADE绕点A顺时针旋转90°得到△ABF,如图1,连接EF分别交AC、AB于点P、G.(1)请判断△AEF的形状;(2)求证:P A2=PG•PF;(3)如图2,当点E是边CD的中点时,PE=1,求AG的长.10.如图,等边△ABC的边长为12,点D,E分别在边AB,AC上,且AD=AE=4,点F 为BA延长线上一点,过点F作直线l∥BC,G为射线BC上动点,连接GD并延长交直线l于点H,连接FE并延长交BC于点M,连接HE并延长交射线BC于点N.(1)若AF=4,当BG=4时,求线段HF和EH的长;(2)若AF=a(a>0),点G在运动过程中,请判断△HGN的面积是否改变.若不变,求出其值(用含a的代数式表示);若改变,请说明理由.11.在△ABC中,∠ACB=90°,AC=8,BC=6.(1)如图1,点D为AC上一点,DE∥BC交AB边于点E,若=,求AD及DE的长;(2)如图2,折叠△ABC,使点A落在BC边上的点H处,折痕分别交AC、AB于点G、F,且FH∥AC.①求证:四边形AGHF是菱形;②求菱形的边长;(3)在(1)(2)的条件下,线段CD上是否存在点P,使得△CPH∽△DPE?若存在,求出PD的长;若不存在,请说明理由.12.如图①,AB∥MH∥CD,AD与BC相交于点M,点H在BD上.求证:.小明的部分证明如下:证明:∵AB∥MH,∴△DMH∽△DAB,∴.同理可得:=,….(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图②,正方形DEFG的顶点D、E分别在△ABC的边AB、AC上,E、F在边BC 上,AN⊥BC,交DG于M,垂足为N,求证:.13.【问题情境】如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,我们可以得到如下正确结论:①CD2=AD•BD;②AC2=AB•AD;③BC2=AB•BD,这些结论是由古希腊著名数学家欧几里得在《几何原本》最先提出的,我们称之为“射影定理”,又称“欧几里德定理”.(1)请证明“射影定理”中的结论③BC2=AB•BD.【结论运用】(2)如图2,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,过点C作CF⊥BE,垂足为F,连接OF.①求证:△BOF∽△BED.②若CE=2,求OF的长.14.如图①,在正方形ABCD中,点P为线段BC上的一个动点,连接AP,将△ABP沿直线AP翻折得到△AEP,点Q是CD的中点,连接BQ交AE于点F,若BQ∥PE.(1)求证:△ABF∽△BQC;(2)求证:BF=FQ;(3)如图②,连接DE交BQ于点G,连接EC,GC,若FQ=6,求△GBC的面积.15.如图1,已知等边△ABC的边长为8,点D在AC边上,AD=2,点P是AB边上的一个动点.(1)连接PC、PD.①当AP=时,△APD∽△ACP;②若△APD与△BPC相似,求AP的长度;(2)已知点Q在线段PB上,且PQ=2.①如图2,若△APD与△BQC相似,则∠ACQ与∠PDC之间的数量关系是;②如图3,若E、F分别是PD、CQ的中点,连接EF,线段EF的长是否是一个定值,若是,求出EF的长,若不是,说明理由.16.(1)如图①,点E,F分别在正方形边AB,BC上,且AF⊥DE,请直接写出AF与DE的关系.(2)如图②,点E,F,G分别在矩形ABCD的边AB,BC,CD上,且AF⊥EG,求证:.(3)如图③,在(2)的条件下,连接AG,过点G作AG的垂线与CF交于点H,已知BH=3,HG=5,GA=7.5,求的值.17.【问题背景】正方形ABCD和等腰直角三角形CEF按如图①所示的位置摆放,点B,C,E在同一条直线上,其中∠ECF=90°.【初步探究】(1)如图②,将等腰直角三角形CEF绕点C按顺时针方向旋转,连接BF,DE,请直接写出BF与DE的数量关系与位置关系:;【类比探究】(2)如图③,将(1)中的正方形ABCD和等腰直角三角形CEF分别改成矩形ABCD和Rt△CEF,其中∠ECF=90°,且,其他条件不变.①判断线段BF与DE的数量关系,并说明理由;②连接DF,BE,若CE=6,AB=12,求DF2+BE2的值.18.在相似的复习课中,同学们遇到了一道题:已知∠C=90°,请设计三种不同方法,将Rt△ABC分割成四个小三角形,使每个小三角形与原三角形相似.(1)甲同学设计了如图1分割方法:D是斜边AB的中点,过D分别作DE⊥AC,DF ⊥BC,请判断甲同学的做法是否正确,并说明理由.(2)乙同学设计了如图2分割方法,过点D作FD⊥AB,DE⊥BC,连结EF,易证△ADF∽△ACB,△DEB∽△ACB,但是只有D在AB特殊位置时,才能证明另两个三角形与原三角形相似,李老师通过几何画板,发现∠A=30°时,,∠A=45°时,,∠A=60°时,.猜测对于任意∠A,当=(用AC,BC或AB相关代数式表示),结论成立.请补充条件并证明.(3)在普通三角形中,显然连结三角形中位线分割成四个小三角形与原三角形相似.你能参考乙同学的分割方法找到其他分割方法吗?请做出示意图并作适当分割说明(不要求证明过程).19.△ABC中,∠BAC=90°,AB=AC,点D在AB边上,点E在AC边上,连接DE,取BC边的中点O,连接DO并延长到点F,使OF=OD,连接CF,EF,令==k.(1)①如图1,若k=1,填空:=;△ECF是三角形.②如图2,将①中△ADE绕点A旋转,①中的结论是否仍然成立?若成立,请仅就图2所示情况给出证明;若不成立,请说明理由.(2)如图3,若k=,AB=AD,将△ADE由图1位置绕点A旋转,当点C,E,D三点共线时,请直接写出sin∠1的值.20.【基础探究】如图1,四边形ABCD中,∠ADC=∠ACB,AC为对角线,AD•CB=DC•AC.(1)求证:AC平分∠DAB.(2)若AC=8,AB=12,则AD=.【应用拓展】如图2,四边形ABCD中,∠ADC=∠ACB=90°,AC为对角线,AD•CB =DC•AC,E为AB的中点,连结CE、DE,DE与AC交于点F.若CB=6,CE=5,请直接写出的值.参考答案1.(1)①证明:∵四边形ABCD为正方形∴∠ACD=∠BDC=∠BAC=45°,又∵∠MCN=∠BDC,∴∠MCN=∠ACD=45°,∴∠MCA+∠ACN=∠ACN+∠DCN,∴∠MCA=∠DCN,∴△ACM∽△DCN.②证明:由①可知:△ACM∽△DCN,∴,∴DN=AM,∴AM+BM=AB=CD,∴DN+BM=CD.(2)解:如图所示:连接AC,在DN上取一点P使∠PCD=∠PDC=30°,过P作PQ ⊥CD于Q,∴∠PCD=∠PDC=30°,∴∠NPC=60°,又∵四边形ABCD为菱形且∠BAD=120°,∴∠BAC=60°,∴∠NPC=∠BAC,又∵∠ACP=∠ACD﹣∠PCD=30°,∠MCN=∠BDC=30°,∵∠MCN=∠ACP,∴∠MCA+∠ACN=∠ACN+∠NCP,∴∠MCA=∠NCP,∴△AMC∽△PNC,∴,∵,∴CD=CP,∴,∴AM,∴AM=PN,∴AM+MB=AB=CD,∴PN+MB=CD,∴(DN﹣DP)+MB=CD,∴(DN﹣CD)+MB=CD,即DN﹣CD+MB=CD,∴DN+MB=2CD.2.解:(1)∵∠ACB=∠ADE=90°,CA=CB,DA=DE,∴∠A=∠B=∠DEA=45°,∴AB=AC=m,AE=AD=m,∴CD=AC﹣AD=m,BE=AB﹣AE=m,∴BE=CD,∵∠A=45°,∴直线CD与BE的夹角为45°,故答案为:BE=CD,45°;(2)不满足,BE=CD,直线CD与BE的夹角为30°,理由如下:如图2,过点C作CH⊥AB于H,延长CD、BE交于点F,∵CA=CB,∴AH=HB,∵∠ACB=∠ADE=120°,CA=CB,DA=DE,∴∠CAB=∠CBA=30°,∠DAE=∠DEA=30°,∴AC=2CH,∠CAD=∠BAE,由勾股定理得:AH=AC,∴AB=AC,同理可得:AE=AD,∵∠CAD=∠BAE,∴△CAD∽△BAE,∴==,∠ACD=ABE,∴BE=CD,∠F=∠CAB=30°,∴BE=CD,直线CD与BE的夹角为30°;(3)如图3,点E在线段BD上,∵m=2,∴AD=DE=1,AB=2,由勾股定理得:BD==,∴BE=BD﹣DE=﹣1,∴CD=BE=,如图4,点D在线段BE上,BE=BD+DE=+1,∴CD=BE=,综上所述:当B,E,D三点共线.CD的长为或.3.(1)解:①∵四边形ABCD是正方形,∴AD=CD,∠BAD=∠ADC=90°,∵DE⊥CF,∴∠DGF=90°=∠ADC,∴∠ADE+∠EDC=90°=∠EDC+∠DCF,∴∠ADE=∠DCF,∴△ADE≌△DCF(ASA),∴DE=CF,故答案为:1;②解:∵四边形ABCD是矩形,∴∠A=∠FDC=90°,AB=CD=m,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴=,故答案为:;(2)证明:如图所示,∠B+∠EGC=180°,∠EGC+∠EGF=180°,∴∠B=∠EGF,在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM,∵AB∥CD,∴∠A=∠CDM,∵AD∥BC,∴∠B+∠A=180°,∵∠B=∠EGF,∴∠EGF+∠A=180°,∴∠AED=∠CFM=∠CMF,∴△ADE∽△DCM,∴,即;(3)解:过C作CN⊥AD于N,CM⊥AB交AB延长线于M,连接BD,设CN=x,∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四边形AMCN是矩形,∴AM=CN,AN=CM,在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴,∴,∴CM=x,在Rt△CMB中,CM=x,BM=AM﹣AB=x﹣5,由勾股定理得:BM2+CM2=BC2,∴(x﹣5)2+(x)2=52,解得:x1=0(舍去),x2=8,∴CN=8,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴==.4.解:(1)如图,∵∠ABC=∠C=60°,∴△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ABC=∠ACB=60°,∵AD=CE,∴△ABD≌△CAE(SAS),∴∠EAC=∠DBA,∵,∴点D是AC中点,且△ABC是等边三角形,∴∠DBA=30°,∴∠EAC=30°,∴∠BAE=∠DBA=30°,∴AF=BF,∴,故答案为:1;(2)由(1)可得△ABD≌△CAE,∴∠EAC=∠DBA,∵∠ADF=∠BDA,∴△AFD∽△BAD;(3)由(1)可得△ABD≌△CAE,∴BD=AE,∠EAC=∠DBA,∴∠BFE=∠DBA+∠BAF=∠EAC+∠BAF=∠BAD=60°,设AF=x,BF=y,AB=AC=BC=n,AD=CE=1,BD=AE=m,∵∠EAC=∠DBA,∠ADB=∠ADB,∴△ADF∽△BDA,∴,∴①,∵∠BFE=∠C=60°,∠DBC=∠DBC,∴△BFE∽△BCD,∴,∴②,①÷②得:,∴,∵,即n=4,∴.5.(1)证明:∵∠ACD=∠B,∠A=∠A,∴△ADC∽△ACB.∴∠ADC=∠ACB.(2)解:∵BC2=AB•BD,∴.又∵∠B=∠B,∴△ABC∽△CBD.∴∠ACB=∠CDB.∵∠ADC+∠CDB=180°,∠ADC=∠ACB,∴∠ACB=∠CDB=∠ADC=90°.(3)解:∵△BCD绕点C顺时针旋转得到△ECF,∴CE=BC,∠E=∠B.∵∠ACD=∠B,∴∠ACD=∠E.∴AC=AE.∵∠ADC=90°,∴CE⊥AB.∴CD=DE=CE.∴∵△ADC∽△ACB,∴.∴AD=•AC=1,在Rt△ADC中,.6.证明:(1)①∵四边形ABCD为矩形,DM⊥MN,∴∠A=∠DMN=90°,∵AB=6,AD=4,MN=DM,∴,∴△ABD∽△MND;②∵四边形ABCD为矩形,DM⊥MN,∴∠ABC=∠DMN=90°,∴∠ABD+∠CBD=90°,由①得△ABD∽△MND,∴∠ABD=∠DNM,又∵∠MEB=∠DEN,∴△MBE∽△DNE,∴,又∵∠MED=∠BEN,∴△DME∽△NBE,∴∠NBE=∠DME=90°,∴∠CBN+∠CBD=90°,∴∠CBN=∠DNM;(2)如图②,过点N作NF⊥AB,交AB延长线于点F,连接AC,AN,则∠NF A=90°,∵四边形ABCD为矩形,AD=4,AB=6,∴∠A=∠ABC=90°,BC=AD=4,,则∠ADM+∠AMD=90°,∵AM=4BM,AB=6,∴AM=AB=,又∵DM⊥MN,∴∠DMN=90°,∴∠AMD+∠FMN=90°,∴∠ADM=∠FMN,∴△ADM∽△FMN,∴,,∴MF=6,FN=,∴,∴,∵∠ABC=∠AFN=90°,∴△ABC∽△AFN,∴∠BAC=∠F AN,∴A,C,N三点在同一条直线上.7.(1)解:∵四边形ABCD是矩形,∴∠A=∠D=90°,EF=FG,∵∠EFG=90°,∴∠AFE+∠DFN=90°,∠AFE+∠AEF=90°,∴∠DFN=∠AEF.∴△DFG≌△AEF(AAS),∴AF=DG,AE=DF,∴AE+DG=AF+DF=AD=6;(2)证明:如图,延长NF,EA相交于H,∴∠HFE=90°,∠HAF=90°,∵∠HFE=∠NFE,EF=EF,∠HEF=∠NEF,∴△HFE≌△NFE(ASA),∴FH=FN,HE=NE,∵∠AFH=∠DFN,∠HAF=∠D,∴△HF A≌△NFD(AAS),∴AH=DN,∵EH=AE+AH=AE+DN,∴EN=AE+DN;(3)解:如图,过点G作GP⊥AD交AD的延长线于P,∴∠P=90°,∵MG2=MN•MD,∴=,∵∠GMN=∠DMG,∴△MGN∽△MDG,∴∠GDM=45°,∠PDG=45°,∴△PDG是等腰直角三角形,PG=PD,∵∠AFE+∠PFG=90°,∠AFE+∠AEF=90°,∴∠PFG=∠AEF,∵∠A=∠P=90°,EF=FG,∴△PFG≌△AEF(AAS),∴AF=PG,AE=PF,∴AE=PD+DF=AF+DF=AD=6.8.【问题背景】∵△ABC和△ADE是等腰直角三角形,∴△ABC∽△ADE.∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,故答案为:①△ABD≌△ACE;②△ABC∽△ADE.【尝试应用】∵△ABC∽△ADE,∴,∠CAB=∠EAD,∴∠CAE=∠BAD,∴△ACE∽△ABD;【问题解决】连接CE,由【尝试应用】知,△ABD∽△ACE,∴∠ACE=∠ABD=∠ADE=30°,∵∠AFD=∠EFC,∴△ADF∽△ECF,∴,∵,∴,∵,∴.9.(1)解:△AEF是等腰直角三角形,理由如下:由旋转的性质可知:AF=AE,∠F AE=90°,∴△AEF是等腰直角三角形;(2)证明:∵四边形ABCD是正方形,∠CAB=45°,由(1)知∠AFE=45°,∴∠P AG=∠AFP=45°,又∵∠APG=∠FP A,∴△APG∽△FP A,∴,∴P A2=PG•PF;(3)解:设正方形的边长为2a,∵将△ADE绕点A顺时针旋转90°得到△ABF,∴∠ABF=∠D=90°,DE=BF,∵∠ABC=90°,∴∠FBC=180°,∴F,B,C三点共线,∵DE=EC=BF=a,BC=2a,∴CF=3a,EF===a,∵BG∥EC,∴BG:EC=FB:CF=FG:FE=1:3,∴BG=,AG=,GE=a,∵∠GAP=∠EG=45°,∠AGP=∠EGA,∴△AGP∽△EGA,∴,∴AG2=GP•GE,∴()2=()×,∴a=或a=0(舍去),∴AG=.10.解:(1)如图1,由题意可得:BD=DF=8,∵HF∥BC,∴∠HFD=∠B,在△HFD和△GBD中,,∴△HFD≌△GBD(ASA),∴HF=BG=4,连接DE,∵△ABC是等边三角形,∴∠B=∠BAC=60°,∵AD=AE=4,∴△ADE是等边三角形,∴DE=AD=4,∠ADE=60°,∴∠ADE=∠B,∴DE∥BC,∴DE∥FH,∵FH=DE=4,∴四边形DEFH是平行四边形,∴HE和DF互相平分,∵DA=AF,∴HE经过点A,∴HE=2AE=8;(2)如图2,面积不变,理由如下:连接DE,作FK⊥BC于K,在Rt△BFK中,∠B=60°,BF=12+a,∴FK=BF•sin60°=,由(1)得,DE∥FH=BC,∴△HDE∽△HGN,△HFD∽△GBD,∴,,∴,∴,∴,∴GN=,∴S△HGN===,11.解:(1)∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴AD=2,;(2)①由翻折不变性可知:AF=FH,AG=GH,∠AFG=∠GFH,∵FH∥AC,∴∠AGF=∠GFH,∴∠AGF=∠AFG,∴AG=AF,∴AG=AF=FH=HG,∴四边形AGHF是菱形;②∵FH∥AC,∴△FBH∽△ABC,∴,又∵BC=6,AC=8,AB=10,∴BH:FH:BF=3:4:5,∴设BH=3a,则FH=AF=4a,BF=5a,∴4 a+5a=10,∴,∴FH=,即菱形的边长为;(3)在点P使得△CPH∽△DPE,理由如下:∵△CPH∽△DPE,∴,∵BH=,∴CH=,∴,∴.12.证明:(1)∴=,两边都除以MH,得,;(2)如图1,作AE⊥BD于E,MF⊥BD于F,CG⊥BD于G,∴AE∥MF∥CG,∴,∵HH∥AB,∴,∴,同理可得:,由(1)得,,两边乘以,得,(3)如图2,∵DG∥BC,∴△ADG∽△ABC,∴,∵,∴,∵四边形DEFG是正方形,∴MN=DE=DG,∴,两边都除以DG,得,.13.(1)证明:∵CD⊥AB,∴∠BDC=90°=∠ACB,∵∠CBD=∠ABC,∴△CBD∽△ABC,∴,∴BC2=AB•BD;(2)①证明:∵四边形ABCD是正方形,∴OC⊥BO,∠BCD=90°,∴BC2=BO•BD,∵CF⊥BE,∴BC2=BF•BE,∴BO•BD=BF•BE,即,∵∠OBF=∠EBD,∴△BOF∽△BED;②解:在Rt△BCE中,∵BC=6,CE=2,∴BE==2,∴DE=4,BO=3,由①知△BOF∽△BED,∴,∴,∴OF=.14.(1)证明:如图①中,∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB∥CD,∴∠ABF=∠CQB,由翻折的性质可知,∠E=∠ABC=90°∵PE∥BQ,∴∠AFB=∠E=90°,∴△AFB∽△BCQ;(2)证明:如图①中,设AB=BC=CD=AD=2a,∵Q是CD的中点,∴CQ=QD=a,∵∠C=90°,∴BQ===a,∵△AFB∽△BCQ,∴=,∴=,∴BF=a,∴QF=a,∴==,∴BF=QF;(3)解:如图②,建立如图平面直角坐标系,过点E作EH⊥AB于点T.∵BF=FQ,FQ=6,∴BF=4,∴BQ=BF+FQ=4+6=10,∴CQ=2,AB=BC=CD=AD=4,∴Q(4,2),∴直线BQ的解析式为y=x,∵∠EAT=∠CBQ,∠ATE=∠BCQ=90°,∴△ATE∽△BCQ,∴==,∴==,∴AT=8,ET=4,∴BT﹣AB﹣AT=4﹣8,∴E(4,4﹣8),∵D(4,4),∴直线DE的解析式为:y=x+2﹣10,由,解得,∴G(4﹣4,2﹣2),∴S△BCG=××(2﹣2)=20﹣4.15.解:(1)①∵等边△ABC的边长为8,∴AC=8,∵△APD∽△ACP,∴,∵AD=2,∴,∴AP=4,故答案为4;②∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=60°,∵△APD与△BPC相似,∴△APD∽△BPC或△APD∽△BCP,Ⅰ、当△APD∽△BPC时,,∴,∴AP=,Ⅱ、当△APD∽△BCP时,,∴,∴AP=4,即△APD与△BPC相似时,AP的长度为或4;(2)①∵△ABC为等边三角形,∴AB=BC=8,∠A=∠B=∠ACB=60°,∵△APD与△BQC相似,∴△APD∽△BQC或△APD∽△BCQ,Ⅰ、当△APD∽△BQC时,∠APD=∠BQC,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BQC,∴∠BQC=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(180°﹣∠B﹣∠BAC)=∠B+∠BQC﹣120°=60°+∠PDC﹣60°﹣120°=∠PDC﹣120°,∴∠PDC+∠ACQ=120°;Ⅱ、当△APD∽△BCQ时,∠APD=∠BCQ,∴∠PDC=∠A+∠APD=60°+∠APD=60°+∠BCQ,∴∠BCQ=∠PDC﹣60°,∴∠ACQ=∠ACB﹣∠BCQ=60°﹣(∠PDC﹣60°)=120°﹣∠PDC,∴∠ACQ+∠PDC=120°,即满足条件的∠ACQ与∠PDC之间的数量关系是∠ACQ+∠PDC=120°或∠PDC﹣∠ACQ=120°;②线段EF的长是一个定值,为.如图,连接AE并延长至G,使AE=GE,连接PG,QG,∵点E是DP的中点,∴DE=PE,∵∠AED=∠GEP,∴△AED≌△GEP(SAS),∴AE=GE,PG=AD=2,∠ADE=∠GPE,∴PG∥AD,∴∠QPG=∠BAC=60°,∵PQ=2=PG,∴△PQG为等边三角形,∴QG=2,∠PQG=60°=∠B,∴QG∥BC,连接GF并延长交BC于H,∴∠FQG=∠FCH,∵点F是CQ的中点,∴FQ=FC,∵∠QFG=∠CFH,∴△QFG≌△CFH(ASA),∴FG=FH,CH=QG=2,连接AH,过点A作AM⊥BC于M,∴∠AMC=90°,CM=BC=4,在Rt△AMC中,AC=8,根据勾股定理得,AM2=AC2﹣CM2=82﹣42=48,在Rt△AMH中,MH=CM﹣CH=2,根据勾股定理得,AH===2,∵AE=GE,FG=FH,∴EF是△AHG的中位线,∴EF=AH=,即线段EF的长是一个定值.16.解:(1)∵AF⊥DE,∴∠ADE+∠DAF=90°,∵∠ADE+∠AED=90°,∴∠DAF=∠AED,∵∠ADE=∠ABF=90°,AD=AB,∴△ADE≌△DAF(AAS),∴AF=DE;(2)过点G作GM⊥BA交于点M,∵AF⊥EG,∴∠F AB+∠AEG=90°,∵∠F AB+∠AFB=90°,∴∠AEG=∠AFB,∵∠GME=∠ABF=90°,∴△GME∽△ABF,∴=,∵AD=GM,∴;(3)连接AH,∵AG⊥GH,∴△AGH是直角三角形,∵HG=5,GA=7.5,∴AH=,在Rt△ABH中,BH=3,AH=,∴AB=,∵∠AGH=90°,∴∠DGA+∠CGH=90°,∵∠DGA+∠GAD=90°,∴∠GAD=∠CGH,∴△DAG∽△CGH,∴==,∴==,∴AD=6,由(2)知,∴==.17.解:(1)如图②,BF与CD交于点M,与DE交于点N,∵四边形ABCD是正方形,∴BC=DC,∠BCD=90°,∵△ECF是等腰直角三角形,∴CF=CE,∠ECF=90°,∴∠BCD=∠ECF,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∴△BCF≌△DCE(SAS),∴BF=DE,∠CBF=∠CDE,∵∠BMC=∠DMF,∠CBF+∠BMC=90°,∴∠CDE+∠DMF=90°,∴∠BND=90°,∴BF⊥DE,故答案为:BF=DE,BF⊥DE;(2)①如图③,,理由:∵四边形ABCD是矩形,∴∠BCD=90°,∵∠ECF=90°,∴∠BCD+∠DCF=∠ECF+∠DCF,∴∠BCF=∠DCE,∵,∴△BCF∽△DCE,∴=;②如图③,连接BD,∵△BCF∽△DCE,∴∠CBF=∠CDE,∵四边形ABCD是矩形,∴CD=AB=12,∵CE=6,,∴=,∴CF=8,BC=16,∵∠DBO+∠CBF+∠BDC=∠BDO+∠CDE+∠BDC=∠DBO+∠BDO=90°,∴∠BOD=90°,∴∠DOF=∠BOE=∠EOF=90°,在Rt△DOF中,DF2=OD2+OF2,在Rt△BOE中,BE2=OB2+OE2,在Rt△DOB中,DB2=OD2+OB2,在Rt△EOF中,EF2=OE2+OF2,∴DF2+BE2=OD2+OF2+OB2+OE2=DB2+EF2,在Rt△BCD中,BD2=BC2+CD2=162+122=400,在Rt△CEF中,EF2=EC2+CF2=62+82=100,∴BD2+EF2=400+100=500,∴DF2+BE2=500.18.解:(1)甲的做法正确,理由如下:∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵∠C=90°,∴四边形DECF是矩形,∴∠EDF=90°,DE∥BC,DF∥AC,∴,△AED∽△ACB,△BFD∽△BCA,即:AE=CE,同理可得:BF=CF,∴DF∥AC,EF∥AB,∴四边形AEFD是平行四边形,△CEF∽△CAB,同理可得:四边形DEFB是平行四边形,∴∠EFD=∠A,∵∠AED=∠EDF,∴△AED∽△FDE,∴四个小三角形与△ABC相似;(2)当时,△EDF∽△AFD∽△FEC,理由如下:∵△ADF∽△ACB,△DEB∽△ACB,∴①,②,得,,∴DE=EF,∵DE∥AF,∴四边形ADFE是平行四边形,由(1)可得,△DEF和△CEF与△ABC相似,故答案是:;(3)如图,根据和AC和AB及AB的长度找出点D的位置,然后作DE∥AC交BC于E,作EF∥AB交AC于F,连接DF即可.19.解:(1)①∵O是BC的中点,∴OB=OC,在△BOD和△COF中,,∴△BOD≌△COF(SAS),∴CF=BD,∠OCF=∠B,∵AD=AE,AB=AC,∴BD=CE,∴CE=CF,即:,∵∠B+∠ACB=90°,∴∠OCF+∠ACB=90°,∴∠ECF=90°,∴△ECF是等腰直角三角形,故答案是:1,等腰直角三角形,解:(2)如图1,仍然成立,理由如下:连接BD,由(1)得:CF=BD,CF∥BD,∴∠CFO=∠DBO,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠CAE=∠BAD,在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD,∠ACE=∠ABD,∴CE=CF,∵∠ACB+∠ABC=90°,∴∠ACE+∠EAO+∠ABC=90°,∴∠ABD+∠EAO+∠ABC=90°,∴∠EAO+∠DBO=90°,∴∠EAO+∠CFO=90°,∴∠FCE=90°,∴=1,△ECF是等腰直角三角形;(3)如图2,连接BD,作AG⊥CD于G,设AD=a,则AB=,AC=a,AE=,由(2)得:∠CAE=∠BAD,CF=BD,∵,∴△CAE∽△BAD,∴,∠ACD=∠ABD,∴,同理(2)得:∠CEF=90°,∴∠ECF=∠EAD=90°,∴点C、A、B、D共圆,∴∠1=∠ACG,∵AD=a,AE=,∠DAE=90°,∴DE=,由S△ADE=得,AG=a,∴sin∠ACD===,∴sin∠1=.20.(1)证明:∵∠ADC=∠ACB,,∴△ADC∽△ACB,∴∠DAC=∠CAB,∴AC平分∠DAB;(2)解:∵△ADC∽△ACB,∴,∴AC2=AB×AD,∵AC=8,AB=12,∴64=12AD,∴AD=,故答案为:;(3)解:∵∠ACB=90°,点E为AB的中点,∴AB=2CE=10,∴AC=8,∵△ADC∽△ACB,∴AD==6.4,由(1)知∠DAC=∠EAC,∵CE=AE,∴∠ECA=∠EAC,∴∠DAC=∠ECA,∴△AFD∽△CFE,∴.。
27.1图形的相似同步练习
27.1图形的相似同步练习一、选择题1.如图所示的两个四边形相似,则α的度数是()A.60°B.75°C.87°D.120°2.在下面的图形中,相似的一组是()3.如图,有甲、乙、丙三个矩形,其中相似的是()A.甲与丙B.甲与乙C.乙与丙D.三个矩形都不相似4.下列说法正确的是()A.有一个角等于100°的两个等腰三角形相似B.两个矩形一定相似C.有一个角等于45°的两个等腰三角形相似D.相似三角形一定不是全等三角形5.已知矩形ABCD中,AB=4,BC=3,下列四个矩形中,与矩形ABCD 相似的是()6.如图所示,在长为8cm,宽为6cm的条形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是()A.28cm2B.27cm2C.21cm2D.20cm27.两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()A.23B.32C.94D.498.一个多边形的边长为2,3,4,5,6,另一个和它相似的多边形最大边长为18,则最短边长为()A.6B. 8C. 12D. 109.下列说法正确的个数有()①同一底片印出来的不同尺寸的照片是相似的②放电影时胶片上的图象和它映射到屏幕上的图象是相似的③放大镜放大后的图形与原来的图形是相似的④水平观看装在带有水的透明玻璃杯中的金鱼所组成的像与金鱼本身的像是相似的A.1个B.2个C.3个D.4个10.用一个5倍的放大镜去观察一个三角形,对此,四位同学有如下说法:甲说:三角形的每个内角都扩大到原来的5倍;乙说:三角形的每条边都扩大到原来的5倍;丙说:三角形的面积扩大到原来的5倍;丁说:三角形的周长扩大到原来的5倍,上述说法中正确的是()A.甲和乙B.乙和丙C. 丙和丁D.乙和丁二、填空题1.一个多边形的边长依次为1,2,3,4,5,6,与它相似的另一个多边形的最大边长为8,那么另一个多边形的周长是_______.2.两个相似多边形的周长的比为2:3,较大多边形的面积为45cm2,则较小多边形的面积为_________cm23.如图,E,F分别为矩形ABCD的边AD,BC的中点,若矩形ABCD 与矩形EABF相似,则相似比等于________.4.秋天红透的枫叶,总能牵动人们无尽的思绪,所以诗人杜牧说:“停车坐爱枫林晚,霜叶红于二月花”如图是两片形状完全相同,大小不同的枫叶,则x的值为_______cm。
初三相似试题及答案
初三相似试题及答案
一、选择题
1. 在下列选项中,哪两个图形是相似的?
A. 一个正方形和一个矩形
B. 一个正三角形和一个等腰三角形
C. 一个圆形和一个椭圆形
D. 一个菱形和一个正方形
答案:A
2. 如果两个图形相似,那么它们的对应角:
A. 相等
B. 互补
C. 互为余角
D. 互为补角
答案:A
3. 相似图形的对应边成比例,那么下列说法正确的是:
A. 相似比是边长的比值
B. 相似比是面积的比值
C. 相似比是周长的比值
D. 相似比是体积的比值
答案:A
二、填空题
1. 两个相似图形的相似比是2:3,那么它们的面积比是________。
答案:4:9
2. 如果一个图形的长和宽分别是8cm和6cm,那么与它相似的图形的长和宽分别是12cm和________cm。
答案:9
3. 相似三角形的周长比是3:5,那么它们的面积比是________。
答案:9:25
三、解答题
1. 已知三角形ABC与三角形DEF相似,且三角形ABC的边长分别是
3cm、4cm和5cm,三角形DEF的边长分别是6cm、8cm和10cm。
求三角形ABC与三角形DEF的相似比。
答案:三角形ABC与三角形DEF的相似比是3:6,即1:2。
2. 一个矩形的长是10cm,宽是4cm,与它相似的另一个矩形的长是20cm,求这个矩形的宽。
答案:矩形的宽是8cm。
3. 一个正三角形的边长是6cm,与它相似的另一个正三角形的边长是9cm,求这两个三角形的面积比。
答案:这两个三角形的面积比是36:81。
中考数学总复习《图形的相似》专项提升训练(带有答案)
中考数学总复习《图形的相似》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.两个相似三角形的相似比是1:2,则其对应中线之比是( )A .1:1B .1:2C .1:3D .1:42.如图,在ABC 中2AC =,BC=4,D 为BC 边上的一点,且CAD B ∠=∠.若ADC △的面积为2,则ABD △的面积为( )A .4B .5C .6D .73.若35a b =,则下列各式一定成立的是( )A .53a b =B .35a b =C .65a b a +=D .145a b += 4.如图,在ABC 中DE BC ∥,AD=1,BD=2,AC=6,则CE 的长为( )A .2B .3C .4D .55.如图,在等边ABC 中,点D ,E 分别是BC AC ,上的点72AB CD ==,,60ADE ∠=︒则AE 等于( )A .5B .397C .6D .4176.下列命题正确的是( )A .方程210x x --=没有实数根B .两边成比例及一角对应相等的两个三角形相似C .平分弦的直径垂直于弦D .反比函数的图像不会与坐标轴相交7.已知ABC DEF ∽△△,:1:2AB DE =且ABC 的周长为6,则DEF 的周长为( ) A .3 B .6 C .12 D .248.在平面直角坐标系xOy 中,已知点()()()0,0,1,2,0,3O A B .若OA B ''△与OAB 是原点O 为位似中心的位似图形,且点B 的对应点为()0,9B '-,则点A 的对应点A '坐标为( ) A .()3,6 B .()3,6-- C .()3,6- D .()3,6- 9.如图,D 是ABC 边AB 上一点,添加一个条件后,仍不能使ACD ABC △∽△的是( )A .ACDB ∠=∠ B .ADC ACB ∠=∠ C .AD CD AC BC = D .AC AB AD AC = 10.如图,已知ABC DAC △∽△,37B ∠=︒和116∠=︒D ,则BAD ∠的度数为( )A .37︒B .116︒C .153︒D .143︒二、填空题11.如图,在矩形ABCD 中,8AB =和4BC =,连接AC ,EF AC ⊥于点O ,分别与AB 、CD 交于点E 、F ,连接AF 、CE ,则AF CE +的最小值为 .12.如图,在ABC 中,点D 、E 分别为AB 、AC 的中点,点F 为DE 中点,连接BF 并延长交AC 于点G ,则:AG GE = .13.如图AC ,AD 和CE 是正五边形ABCDE 的对角线,AD 与CE 相交于点F .下列结论:(1)CA 平分BCF ∠;(2)2CF EF =;(3)四边形ABCF 是菱形;(4)2AB AD EF =⋅.其中正确的结论是 .(填写所有正确结论的序号)14.如图AC 、BD 交于点O ,连接AB 和CD ,若要使AOB COD ∽,可以添加条件 .(只需写出一个条件即可)15.如图,在ABC 中4AC AB ==和30C ∠=︒,D 为边BC 上一点,且3CD =,E 为AB 上一点,若30ADE ∠=︒,则BE 的长为 .16.在ABC 中,6810AC BC AB D ===,,,是AB 的中点,P 是CD 上的动点,若点P 到ABC 的一边的距离为2,则CP 的长为 .17.如图,M 是Rt ABC △斜边AB 上的中点,将Rt ABC △绕点B 旋转,使得点C 落在射线CM 上的点D 处,点A 落在点E 处,边ED 的延长线交边AC 于点F .如果3BC =.4AC =那么BE 的长为 ;CF 的长为 .18.如图,在ABC 中,D 是AC 的中点,点F 在BD 上,连接AF 并延长交BC 于点E ,若:3:1BF FD =,8BC =则CE 的长为 .三、解答题19.已知O 为ABCD 两对角线的交点,直线l 过顶点D ,且绕点D 顺时针旋转,过点A ,C 分别作直线l 的垂线,垂足为点E ,F .(1)如图1,若直线l 过点B ,求证:OE OF =;(2)如图2,若EFO FCA ∠=∠,2FC AE =求CFO ∠的度数;(3)如图3,若ABCD 为菱形4AE =,6AO =和8EO =直接写出CF 的长. 20.如图,在ABC 中2BAC C ∠=∠,利用尺规作图法在BC 上求作一点D ,使得ABDCBA .(不写作法,保留作图痕迹)21.如图,在Rt ABC △中90ACB ∠=︒,D 是AB 的中点,连接CD ,过点A 作AE CD ⊥于点E ,过点E 作EF CB ∥交BD 于点F .(1)求证:ACE BAC ∽△△;(2)若5AC =,5AB =求CE 及EF 的长.22.如图,在直角梯形OABC 中BC AO ∥,=90AOC ︒∠点A 、B 的坐标分别为()5,0、()2,6点D 为AB 上一点,且2BD AD =.双曲线()0k y x x=>经过点D ,交BC 于点E .求点E 的坐标.23.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .求证:APE FPA △∽△.24.如图1,菱形AGBD 边长为3,延长DB 至点C ,使得5BC =.连接AB ,AB AD =点E ,F 分别在线段AD 和AB 上,且满足DE AF =,连接BE ,DF 交于点O ,过点B 作BM BE ⊥,交DF 延长线于点M ,连接CM .图1 图2(1)求OB 与BM 之间的数量关系;(2)当DMB DCM △∽△时,求DO 的长度;(3)如图2,过点M 作MN CD ⊥交CD 于N ,求MN MC的最大值. 1.B2.C3.A4.C5.B6.D7.C8.B9.C10.C11.1012.2:113.①①①14.A C ∠=∠(答案不唯一)15.9416.103或52或3512 17. 59418.16519.(2)60CFO ∠=︒(3)CF 的长为7 21.(2)1CE = 655EF =. 22.4,63⎛⎫ ⎪⎝⎭/11,63⎛⎫ ⎪⎝⎭ 24.(1)3BM OB =(2)1OD =(3)1014101911316206517MN CN ++=。
图形的相似 练习题
27.1 图形的相似练习题一、选择题。
1.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.6cm B.5cm C.18cm D.±6cm2.下列说法正确的是()A.两个等腰三角形一定相似B.两个等边三角形一定相似C.两个矩形一定相似D.两个直角三角形一定相似3.如图,菱形ABCD∽菱形AEFG,菱形AEFG的顶点G在菱形ABCD的BC边上运动,GF与AB相交于点H,∠E=60°,若CG=3,AH=7,则菱形ABCD的边长为()A.8B.9C.D.4.若a、b、c、d是成比例线段,其中a=5,b=2.5,c=8,则线段d的长为()A.2B.4C.5D.65.下列四组线段中,不成比例线段的是()A.2cm,5cm,10cm,25cm B.4cm,7cm,4cm,7cmC.2cm,cm,cm,4cm D.cm,cm,2cm,5cm6.甲、乙两地的实际距离是400千米,在比例尺为1:500000的地图上,甲乙两地的距离是()A.0.8cm B.8cm C.80cm D.800cm.7.在一张比例尺为1:50 000的地图上,一块多边形地区的面积是320cm2,这个地区的实际面积是()A.8×107m2B.8×108m2C.8×1010m2D.8×1011m28.将一条线段AB分割成长、短两条线段AP、PB,若短段与长段的长度之比等于长段的长度与全长之比,即,这种分割称为黄金分割,这时点P叫做线段AB的黄金分割点.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.2﹣2B.2﹣C.2﹣1D.﹣2二、填空题9.已知==,则=.10.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.11.已知=,则=.12.若===,(a+c+e≠0),则=.13.已知=,那么=.三.解答题14.如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,已知AC=3,BC=4.问线段AD,CD,CD,BD是不是成比例线段?写出你的理由.15.(1)解方程x2+2x﹣5=0(2)一支铅笔长10cm,把它按黄金分割后,较长部分涂上橘红色,较短部分涂上浅蓝色,求出橘红色部分的长度.16.如图,矩形ABCD剪去一个以宽为边长的正方形ABFE后,剩下的矩形EFCD的长与宽的比与原矩形长与宽的比相等,求原矩形的长与宽的比.17.已知线段a,b,c,d(b≠d≠0),如果,求证:.。
浙江省2023年中考数学真题(图形的相似)附答案
浙江省2023年中考数学真题(图形的相似)一、选择题1.如图.在直角坐标系中.△ABC的三个顶点分别为A(1.2) B(2.1) C(3.2).现以原点O为位似中心.在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′.则顶点C′的坐标是()A.(2,4)B.(4,2)C.(6,4)D.(5,4)2.如图.点P是△ABC的重心.点D是边AC的中点.PE∥AC交BC于点E.DF∥BC交EP于点F.若四边形CDFE的面积为6.则△ABC的面积为()A.12B.14C.18D.243.如图.在四边形ABCD中.AD∥BC.∥C=45°.以AB为腰作等腰直角三角形BAE.顶点E恰好落在CD边上.若AD=1.则CE的长是()A.√2B.√2C.2D.124.如图.在△ABC中.D是边BC上的点(不与点B.C重合).过点D作DE//AB交AC于点E;过点D作DF//AC交AB于点F.N是线段BF上的点.BN=2NF;M是线段DE上的点.DM=2ME.若已知△CMN的面积.则一定能求出()A.△AFE的面积B.△BDF的面积C.△BCN的面积D.△DCE的面积5.图1是第七届国际数学教育大会(ICME)的会徽.图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF.使点D.E.F分别在边OC.OB.BC上.过点E作EH⊥AB于点H.当AB=BC,∠BOC= 30°,DE=2时.EH的长为()A.√3B.32C.√2D.43二、填空题6.小慧同学在学习了九年级上册“4.1比例线段”3节课后.发现学习内容是一个逐步特殊化的过程.请在横线上填写适当的数值+感受这种特殊化的学习过程.7.如图.在△ABC中.AB=AC ∠A<90°.点D.E.F分别在边AB.BC.CA上.连接DE.EF.FD.已知点B和点F关于直线DE对称.设BCAB=k .若AD=DF.则CFFA=(结果用含k的代数式表示).8.如图.在Rt△ABC中.∠C=90°,E为AB边上一点.以AE为直径的半圆O与BC相切于点D.连接AD.BE=3 BD=3√5.P是AB边上的动点.当△ADP为等腰三角形时.AP的长为.三、解答题9.如图.在⊙O中.直径AB垂直弦CD于点E.连接AC AD BC作CF⊥AD于点F.交线段OB于点G(不与点O.B重合).连接OF.(1)若BE=1.求GE的长.(2)求证:BC2=BG⋅BO(3)若FO=FG.猜想∠CAD的度数.并证明你的结论.10.在边长为1的正方形ABCD中.点E在边AD上(不与点A.D重合).射线BE与射线CD交于点F.(1)若ED=13.求DF的长.(2)求证:AE⋅CF=1.(3)以点B为圆心.BC长为半径画弧.交线段BE于点G.若EG=ED.求ED的长.11.如图.已知矩形ABCD.点E在CB延长线上.点F在BC延长线上.过点F作FH⊥EF交ED的延长线于点H.连结AF交EH于点G,GE=GH.(1)求证:BE=CF.(2)当ABFH=56,AD=4时.求EF的长.12.如图1.AB为半圆O的直径.C为BA延长线上一点.CD切半圆于点D,BE⊥CD.交CD延长线于点E.交半圆于点F.已知OA=32,AC=1.如图2.连结AF.P为线段AF上一点.过点P作BC的平行线分别交CE.BE于点M.N.过点P作PH⊥AB于点H.设PH=x,MN=y.(1)求CE的长和y关于x的函数表达式.(2)当PH<PN.且长度分别等于PH,PN.a的三条线段组成的三角形与△BCE相似时.求a的值.(3)延长PN交半圆O于点Q.当NQ=154x−3时.求MN的长.13.在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列)AB=12,AD=10.∥B为锐角.且sinB=45.(1)如图1.求AB边上的高CH的长.(2)P是边AB上的一动点.点C,D同时绕点P按逆时针方向旋转90°得点C′,D′.①如图2.当点C′落在射线CA上时.求BP的长.②当ΔAC′D′当是直角三角形时.求BP的长.14.我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系.用直线上点的位置刻画圆上点的位置.如图.AB是⊙O的直径.直线l是⊙O的切线.B为切点.P.Q是圆上两点(不与点A重合.且在直径AB的同侧).分别作射线AP.AQ交直线l于点C.点D.(1)如图1.当AB =6.BP ⌢长为π时.求BC 的长.(2)如图2.当AQ AB =34.BP ⌢=PQ ⌢时.求BC CD的值. (3)如图3.当sin∠BAQ =√64.BC =CD 时.连接BP.PQ.直接写出PQ BP 的值. 15.如图1.锐角△ABC 内接于⊙O .D 为BC 的中点.连接AD 并延长交⊙O 于点E.连接BE ,CE .过C 作AC 的垂线交AE 于点F.点G 在AD 上.连接BG ,CG .若BC 平分∠EBG 且∠BCG =∠AFC .(1)求∠BGC 的度数.(2)①求证:AF =BC .②若AG =DF .求tan∠GBC 的值.(3)如图2.当点O 恰好在BG 上且OG =1时.求AC 的长.16.已知.AB 是半径为1的⊙O 的弦.⊙O 的另一条弦CD 满足CD =AB .且CD ⊥AB 于点H (其中点H 在圆内.且AH >BH ,CH >DH ).(1)在图1中用尺规作出弦CD 与点H (不写作法.保留作图痕迹).(2)连结AD.猜想.当弦AB 的长度发生变化时.线段AD 的长度是否变化?若发生变化.说明理由:若不变.求出AD 的长度.(3)如图2.延长AH 至点F.使得HF =AH .连结CF.∠HCF 的平分线CP 交AD 的延长线于点P.点M 为AP 的中点.连结HM.若PD =12AD .求证:MH ⊥CP . 17.如图.在∥O 中.AB 是一条不过圆心O 的弦.点C.D 是AB⌢的三等分点.直径CE 交AB 于点F.连结AD 交CF 于点G.连结AC.过点C 的切线交BA 的延长线于点H .(1)求证:AD∥HC ;(2)若OG GC=2.求tan∥FAG 的值; (3)连结BC 交AD 于点N .若∥O 的半径为5.下面三个问题.依次按照易、中、难排列.对应的分值为2分、3分、4分.请根据自己的认知水平.选择其中一道问题进行解答。
图形的相似单元测试(含答案)
图形的相似单元测试一、选择题1、【基础题】在比例尺为1:5000的地图上,量得甲,乙两地的距离为25 cm ,则甲、乙两地的实际距离是 ( ) A. 1250千米 B. 125千米 C. 12.5千米 D. 1.25千米2、【基础题】已知135=ab ,则ba b a +-的值是( ) ★ A. 32 B. 23 C. 49 D. 943、【基础题】如右图,在△ABC 中,看DE ∥BC ,12AD BD =,DE =4 cm ,则BC 的长为 ( ) A .8 cm B .12 cm C .11 cm D .10 cm4、【基础题】如右图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( ) A .1:1B .1:2C .1:3D .1:45、【基础题】如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( ) ★★★6、【基础题】下列结论不正确的是( ) ★ A. 所有的矩形都相似 B. 所有的正方形都相似 C. 所有的等腰直角三角形都相似 D. 所有的正八边形都相似7、【基础题】下列说法中正确的是( ) ★A. 位似图形可以通过平移而相互得到;B. 位似图形的对应边平行且相等C. 位似图形的位似中心不只有一个D. 位似中心到对应点的距离之比都相等8、【综合题Ⅰ】如右上图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出△ABP 与△ECP 相似的是( ) ★★★A. ∠APB =∠EPC ;B. ∠APE =90°C. P 是BC 的中点D. BP ︰BC =2︰3 9、【综合题Ⅱ】如右上图,Rt △ABC 中,AB ⊥AC ,AB =3, AC =4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP =x ,则PD+PE =( ) A.35x + B. 45x -C.72D.21212525x x -10、【综合题Ⅲ】如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )AB CA. b a c =+B. b ac =C. 222b a c =+D. 22b a c == 二、填空题11、【基础题】在同一时刻,高为1.5m 的标杆的影长为2.5m ,一古塔在地面上影长为50m ,那么古塔的高为 .12、【基础题】两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个三角形的周长是 . 13、【综合题Ⅰ】如左下图,在△ABC 中,AB =5,D 、E 分别是边AC 和AB 上的点,且∠ADE =∠B ,DE =2,那么AD·BC = .14、【基础题】如右上图,在△ABC 和△DEF 中,G 、H 分别是边BC 和EF 的中点,已知AB =2DE ,AC =2DF ,∠BAC =∠EDF . 那么AG :DH = ,△ABC 与△DEF 的面积比是 .15、【基础题】把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,边长应缩小到原来的____倍. 16、【综合Ⅱ】如左下图在Rt △ABC 中, ∠ACB =90°,CD ⊥AB 于D ,若AD =1,BD =4,则CD = .17、【基础题】如右上图,一人拿着一支厘米小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上12厘米的长度恰好遮住电线杆,已知手臂长约60厘米,则电线杆的高为 .18、【基础题】已知一本书的宽与长之比为黄金比,且这本书的长是20 cm ,则它的宽为_____cm.(结果保留根号) 19、【综合Ⅲ】顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,BD 是三角形ABC 的角平分线,那么AD =__ 20、【提高题】如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △、323A B B △的面积分别为1、4,则图中三个阴影三角形面积之和为 .(第20题图)OA 1 A 2A 3A 4 AB B 1 B 2 B 3 14三、解答题21、【基础题】(2008无锡)如图,已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD .22、【综合Ⅰ】如图27-106所示,已知E 为ABCD 的边CD 延长线上的一点,连接BE 交AC 于O ,交AD 于F .求证BO 2=OF ·OE .23、如图,在平面直角坐标系中,已知OA=12 cm ,OB=6 cm ,点P 从O 点开始沿OA 边向点A 以1cm/s 的速度移动,点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (单位:秒) 表示移动的时间(06t ≤≤),那么: (1)当t 为何值时, △POQ 与△AOB 相似?(2)设△POQ 的面积为y ,求y 关于t 的函数解析式。
中考数学《图形的相似》专项练习题及答案
中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。
小学四年级形的相似练习题
小学四年级形的相似练习题题目一:图形的相似1. 下面两个图形中,哪一个是另一个的放大缩小?(图片A) (图片B)2. 根据图片A中的图形,画出一个与其相似但更大的图形。
3. 根据图片B中的图形,画出一个与其相似但更小的图形。
4. 根据图片A中的图形,找出相似图形的特征,写下相似的规律。
5. 根据图片B中的图形,找出相似图形的特征,写下相似的规律。
题目二:相似图形的判断1. 以下哪个图形与给定图形相似?将选项填入括号内。
(图片C) (图片D)a) (图片C) b) (图片D) c) 既不是(图片C)也不是(图片D)2. 将给定图形向右平移2个单位,得到了新的图形E,判断图形E 与给定图形是否相似。
a) 相似 b) 不相似3. 将给定图形顺时针旋转90度,得到了新的图形F,判断图形F与给定图形是否相似。
a) 相似 b) 不相似4. 将给定图形按照比例放大1.5倍,得到了新的图形G,判断图形G与给定图形是否相似。
a) 相似 b) 不相似5. 将给定图形按照比例缩小0.5倍,得到了新的图形H,判断图形H与给定图形是否相似。
a) 相似 b) 不相似题目三:相似图形的比例关系1. 已知图形I是图形J的相似图形,图形I的面积是图形J的4倍,那么图形I的边长与图形J的边长的比值是多少?2. 已知图形K是图形L的相似图形,图形L的周长是图形K的3倍,那么图形K的边长与图形L的边长的比值是多少?3. 已知图形M是图形N的相似图形,图形N的周长是图形M的6倍,那么图形M的面积与图形N的面积的比值是多少?4. 已知图形O是图形P的相似图形,它们的边长比是2:5,那么图形O的周长与图形P的周长的比值是多少?5. 已知图形Q是图形R的相似图形,它们的面积比是3:4,那么图形Q的边长与图形R的边长的比值是多少?题目四:相似图形的判断与应用1. 判断下面两个图形是否相似,并给出理由。
(图片S) (图片T)2. 将图形U按照比例缩小0.8倍得到图形V,图形U的边长为16cm,求图形V的边长。
中考数学《图形的相似》真题汇编含解析
图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
《图形的相似》典型例题、习题精选
《图形的相似》典型例题、习题精选典型例题1.给出下列大小不同的4对几何图形:?两个圆;?两个长方形;?两个菱形;?两个正六边形;请指出其中哪几对是相似图形,哪几对不是相似图形,并简单说明理由(分析:两个菱形对应边成比例,但对应角不一定相等,两个长方形对应角相等,但对应边不一定成比例(解:??是相似图形,??不是相似图形点拨:相似图形应同时满足:(1)对应角相等;(2)对应边的比相等,缺一不可(2.如图,梯形ABCD中,AD//BC,EF//BC,EF将梯形ABCD分成两个相似的梯形,为梯形AEFD和梯形EBCF,若AD = 3,BC = 4,则EF的长是多少,分析:因为梯形AEFD与梯形EBCF相似,所以它们的对应边的比相等,即=,所以2EF = AD•BC;因为AD = 3,BC = 4,所以EF = 2解:EF = 2点拨:灵活运用相似多边形对应边的比相等的性质(3.如图所示,判断哪些是形状相同的图形(分析:判断两个图形的形状是否相同,应仔细观察,当两个图形的形状除了大小没有任何差异时,我们才说这两个图形形状相同(和(5),(2)和(6),(3)和(4)是形状相同的图形( 解:(1)点拨:两个边数不一样的图形,绝对不会是形状相同的图形(4.已知四边形ABCD相似于四边形A’B’C’D’,如图,求出?A与x的值(分析:因为这两个四边形相似,所以可知对应角相等,对应边成比例,从而可得?A与x的值(解:?四边形ABCD与四边形A’B’C’D’相似A =?A’,=又??A’= 107º,AB = 5,AD = 4,A’B’= 2A = 107º,=,?x =(点拨:一定要注意相似图形中的对应关系(习题精选选择题:1(RtΔABC的两条直角边分别为3cm、4cm,与它相似的RtΔA’B’C’(相似比为整数)的周长为( )A( 48cm B( 28cm C( 12cm D( 10cm答案:A说明:不难得出RtΔABC的斜边长为5cm,因为RtΔA’B’C’与RtΔABC相似,所以对应边应成比例,因此,可设RtΔA’B’C’的两直角边分别为3k、4k,斜边为5k,则它的周长为3k+4k+5k = 12k,且k为整数,因此,不难从四个选项中看出符合条件的选项应该是A,答案为A(2(下列说法中正确的是( )A(两个平行四边形一定相似B(两个菱形一定相似C(两个等腰直角三角形一定相似D(两个矩形一定相似答案:C说明:两个平行四边形对应边不一定成比例,对应角也不一定相等,所以不一定相似,A错;两个菱形对应边成比例,但对应角不一定相等,所以不一定相似,B 错;两个等腰直角三角形,直角边与斜边的比都是1:,两直角边的比都是1:1,三个角的度数为45º,45º,90º,所以,它们的对应边成比例,对应角相等,即两个等腰直角三角形一定相似这个说法正确;两个矩形对应角相等,但对应边不一定成比例,所以D错;答案为C(3(如果一个矩形与它的一半矩形是相似形,那么大矩形与小矩形的相似比是( )(A(:1 B(:2 C(2:1 D(1:2答案:A说明:小矩形是大矩形的一半,可设原矩形的长为a,宽为b,则一半矩形的长为b,宽为a,因为原矩形和一半矩形相似,所以=,可化简为=,所以答案为A(4(如图中每个正方形均由边长为1的小正方形组成,则下列选项中的三角形(阴影部分)与?ABC相似的是( )(答案:A说明:A选项中的三角形与ΔABC的对应边的比都等于,其它选项中的三角形与ΔABC的对应边的比不相等,故选A(5(如图,点A、B、C、D、E、F、G、H、K都是7×8方格纸中的格点,为使ΔDEM与ΔABC相似,则点M应是F、G、H、K四点中的( )A(F B(G C(H D(K答案:C说明:由题图易知AB = 4,AC = 6,DE = 2,因为ΔDEM与ΔABC相似,所以=,所以DM = 3,M点应该是H点(6(如图,是李连做的一个风筝的支架,AB = 40cm,BP = 60cm,ΔABC与ΔAPQ的相似比是( )A(3:2 B(2:3 C(2:5 D(3:5答案:C说明:相似多边形的对应边的比等于它的相似比,即AB:AP = 40:(40+60) = 2:5,所以选C(解答题:1(小颖的妈妈为小颖缝制了一个长50cm,宽30cm的矩形坐垫,又在坐垫的周围缝上了一圈宽3cm的花边,妈妈说:“里外两个矩形是相似形(”小颖说:“这两个不是相似形(”你认为谁说得对,说明你的理由(解:小颖说得对,这两个矩形不相似(理由:里边矩形长为50cm,宽为30cm;外边矩形长为56cm,宽为36cm,而对应边50:56?30:36,即对应边的比不相等,两个矩形不是相似形,所以小颖说得对(2(在一块长和宽分别为3m和2m的矩形塑料板四周镶上一根木条,若在长边上镶的木条的宽为0.5m,则要使木条内缘围成的矩形与木条外缘围成的矩形相似,在宽边上镶的木条的宽应是多少,解答:设宽边上镶的木条宽xm,则有=,解之得x = 0.75故宽边上镶的木条宽0.75m(3(如图,在矩形ABCD中,AB = 2AD,线段EF = 10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH,矩形MFGN,使矩形MFGN与矩形ABCD相似,且AB 边对应MF边,令MN = x,当x为何值时,矩形EMNH的面积S有最大值,最大值是多少,解:因为矩形MFGN与矩形ABCD相似,所以=MN = x,所以MF = 2x,EM = EF?MF = 10?2x 又因为AB = 2AD,22 S = x(10?2x) = ?2x+10x = ?2(x?)+ 矩形EMNH所以当x =时,S有最大值为(。
九年级上册数学相似图形练习题精选.doc
九年级上册数学相似图形练习题精选姓名:日期:一、 填空题:1、若 AB=1m,CD=25cm,则 AB ∶ CD= ;若线段 AB=m, CD=n,则 AB ∶ CD=.2、若 MN ∶PQ=4∶ 7, 则 PQ ∶ MN= , MN=PQ, PQ=MN。
3、若线段 a,b,c,d成比例 , 其中 a=5 ㎝,b=7 ㎝,c=4 ㎝ , 则 ,d=.4、若 a · b=c · d 则有 a ∶ d=;若 m ∶ x=n ∶ y, 则 x ∶ y=.5、已知 4x - 5y=0, 则( x + y )∶( x - y )的值为 .6、若 x ∶ y ∶z=2∶ 7∶5, 且 x -2y + 3z=6, 则 x=,y=,z=;x y z x+yy+3z7、设 3 = 5 = 7 , 则 y =___, 3y-2z =__ __.8、已知点 C 是线段 AB 的黄金分割点 , 且 AC>BC,则 AC ∶ AB=.9、如图 1,D 、 E 是 ABC 的边 AB 、 AC 上的点 , DE 与 BC 不平行 , 请填上一个你认为合适的条件:使得 ADE ∽ ACB.10、已知: ABC , P 是边 AB 上的一点 , 连结 CP.( 如图 2)(1) 当∠ ACP 满足 条件时 ,ACP ∽ ABC. (2) 当 AC ∶ AP=时 ,ACP ∽ ABC11 、在ABC 和 A ′ B ′ C ′中 ,∠ A=∠ A ′ = 40 °∠ B = 80 °∠ B ′ = 60 °则ABC 和A ′B ′C ′。
( 填“相似”与“不相似” )212、在如图 3 的 ABC 中 ,DE ∥ BC, 且 AD=3 BD,DE = 4cm , 则 BC =。
13、如图 4 在 ABC 中 , DE ∥BC, BC = 6cm, S ADE ∶ S ABC =1 ∶ 4 , 则 DE 的长为。
图形的相似经典测试题含答案
【详解】
解: BCE BDA, CEB DEA
ADE∽B查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的
圆周角相等.
2.如果两个相似正五边形的边长比为 1:10,则它们的面积比为( )
A.1:2
B.1:5
C.1:100
D.1:10
【答案】C
∴∠DFG=∠A=90°,
在 Rt△ADG 和 Rt△FDG 中,
AD=DF DG=DG
,
∴Rt△ADG≌Rt△FDG(HL),故①正确;
设正方形 ABCD 的边长为 a,AG=FG=x,BG=a−x,
∵BE=EC,
∴EF=CE=BE= 1 a 2
∴GE= 1 a+x 2
由勾股定理得:EG2=BE2+BG2,
即:( 1 a+x)2=( 1 a)2+(a-x)2 解得:x= 1
2
2
3
∴BG=2AG,
故②正确; ∵BE=EF,
∴△BEF 是等腰三角形,易知△GED 不是等腰三角形,
∴△EBF 与△DEG 不相似,
故③错误; 连接 CF, ∵BE=CE,
∴BE= 1 BC, 2
∴S△BFC=2S△BEF. 故④错误, 综上可知正确的结论的是 2 个. 故选:B.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质.
9.如图,在 Rt△ABC 中,∠ACB=90°,CD⊥AB 于点 D,如果 AC=3,AB=6,那么 AD 的值为 ()
A. 3 2
B. 9 2
C. 3 3 2
【答案】A
【解析】
【分析】
【详解】
第23章 图形的相似 达标测试卷(含答案)
第23章图形的相似达标测试卷一、选择题(每题3分,共24分)1.如图是某种汽车的标志示意图,下面选项的图形中与其相似的是()2.在△ABC中,D和E分别是BC和BA的中点,已知AC=4,则DE的长为() A.1 B.2 C.4 D.83.已知线段a,b,c,d是成比例线段,a=2,b=5,c=2 3,则d=()A. 153 B.4 155C.2 5 D.154.如图,AB∥CD∥EF,若ACCE=32,BD=12,则DF的长为()A.2 B.4 C.6 D.8(第4题)(第6题)(第7题)(第8题)5.若两个相似三角形的面积比是1∶9,则它们对应边的中线之比为() A.1∶9 B.3∶1 C.1∶3 D.1∶816.如图,△ABC和△DEF是以点O为位似中心的位似图形,若OA∶AD=2∶3,则△ABC与△DEF的周长之比是()A.2∶3 B.3∶2 C.2∶5 D.5∶27.如图,已知D是△ABC的边AC上一点,下列条件中,不能判定△CAB∽△CBD的是()A.∠A=∠CBD B.∠CBA=∠CDBC.AB·CD=BD·BC D.BC2=AC·CD8.如图,在平行四边形ABCD中,DE∶EC=3∶1,AE与BD交于点F,则S△DEF∶S四边形BCEF=()A .3∶5B .4∶7C .7∶15D .9∶19二、填空题(每题3分,共18分)9.在一幅比例尺是1∶6 000 000的图纸上,量得两地的图上距离是2 cm ,则两地的实际距离是________ km.10.如图,已知线段AB 和线段CD 是第一象限内以原点O 为位似中心的位似图形,点A 的坐标为(8,12),点C 的坐标为(2,3),则线段AB 和线段CD 的数量关系为________.(第10题) (第11题) (第12题) (第13题) (第14题) 11.如图,在△ABC 中,AB =13,BC =12,D ,E 分别是AB ,BC 的中点,连结DE ,CD ,如果DE =2.5,那么△ACD 的周长为________.12.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上.设△ABC 的周长为C 1,△DEF 的周长为C 2,则 C 1C2的值为________.13.图①,图②分别是液体沙漏某一时刻沙漏上半部分液面宽度与液面距离水平面高度的平面示意图,则图②中AB =__________cm.14.如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,P 为边AB 上一动点,若△P AD 与△PBC 是相似三角形,则满足条件的点P 有________个.三、解答题(第19~21题每题12分,第22题14分,其余每题7分,共78分) 15.已知a b =29,求2a -3b a +b 的值.16.王霞和爸爸妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出坐标原点O和x轴,y 轴,只知道游乐园D的坐标为(1,-2)(图中每个小正方形的边长均为1).(第16题)(1)请画出x轴,y轴,并标出坐标原点O;(2)写出其他各景点的坐标.17.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连结DE,EF.已知四边形BFED是平行四边形,DEBC=14.(第17题)(1)若AB=12,求AD的长;(2)若△ADE的面积为1,求平行四边形BFED的面积.318.图①,图②均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)在图①中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(2)在图②中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1∶2.(第18题)19.如图,在△ABC中,BC=3,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DH∥AB,交BC的延长线于点H.(第19题)(1)求证:△HCD∽△HDB;(2)求DH的长.20.如图所示,在△ABC中,DE∥BC,AD=5,BD=10,AE=3.(第20题) (1)求CE的长;(2)若点Q在BC上,AQ交DE于点P.小明认为DPBQ=PECQ,你认为小明的结论正确吗?请说明你的理由.21.如图,在Rt△ABC中,∠C=90°,AC=10 cm,BC=8 cm.点P从点C出发,5以2 cm/s的速度沿CA向点A匀速运动,同时点Q从点B出发,以1 cm/s的速度沿BC向点C匀速运动,当一个点到达终点时,另一个点随之停止.(第21题)(1)经过几秒后,△PCQ的面积等于△ABC的面积的2 5(2)经过几秒后,△PCQ与△ABC相似?22.【基础问题】(1)如图①,在矩形ABCD中,点E、F分别在边AD、CD上,BE⊥FE,AB=6,AE=9,DE=2,求DF的长;【拓展延伸】(2)如图②,在等边△ABC中,D为边BC上一点,E为边AB上一点,且∠ADE=60°,CD=3,BE=2,则BC的长为________;(3)如图③,在四边形ABCD中,DE∥BC,交AB于点E,CF∥AD,交AB于点F,∠DEC=∠A=∠B,FB=4,EB=6,则DEAE=________.(第22题)7 答案一、1.B 2.B 3.D 4.D 5.C 6.C 7.C 8.D二、9.120 10.AB =4CD 11.18 12.22 13.83 14.3三、15.解:∵a b =29,∴a 2=b 9. 设a 2=b9=k ,则a =2k ,b =9k ,∴2a -3b a +b =4k -27k 2k +9k=-23k 11k =-2311.(第16题)16.解:(1)x 轴,y 轴和原点O 如图所示.(2)音乐台A 的坐标为(-1,4),湖心亭B 的坐标为(-4,2),望春亭C 的坐标为(-3,-1),牡丹亭E 的坐标为(2,3).17.解:(1)∵四边形BFED 是平行四边形,∴DE ∥BF ,即DE ∥BC ,∴△ADE∽△ABC ,∴AD AB =DE BC =14. ∵AB =12,∴AD =3.(2)∵△ADE ∽△ABC ,∴S △ADE S △ABC =⎝ ⎛⎭⎪⎫DE BC 2=⎝ ⎛⎭⎪⎫142=116.∵△ADE 的面积为1,∴△ABC 的面积为16.∵四边形BFED 是平行四边形,∴EF ∥AB ,DE =BF ,∴△EFC ∽△ABC ,∴S △EFC S △ABC =⎝ ⎛⎭⎪⎫FC BC 2=⎝⎛⎭⎪⎫BC -BF BC 2=⎝ ⎛⎭⎪⎫BC -DE BC 2=⎝ ⎛⎭⎪⎫1-DE BC 2=⎝ ⎛⎭⎪⎫342=916,∴△EFC 的面积为9, ∴平行四边形BFED 的面积为16-9-1=6. 18.解:(1)如图①,点E 即为所求.(2)如图②,点P ,点Q 即为所求.(第18题)19.(1)证明:∵DH ∥AB ,∴∠A =∠HDC .∵∠CBD =∠A .∴∠HDC =∠CBD .又∵∠H =∠H ,∴△HCD ∽△HDB .(2)解:∵DH ∥AB ,∴△HCD ∽△BCA ,∴CD AC =CHBC . ∵AC =3CD ,BC =3,∴13=CH3,∴CH =1, ∴BH =BC +CH =3+1=4.由(1)知△HCD ∽△HDB ,∴DH BH =CHDH ,∴DH 2=4×1=4, ∴DH =2(负值舍去).20.解:(1)∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AD +BD =AEAE +EC.∵AD =5,BD=10,AE =3,∴CE =6.(2)结论正确.理由:在△ABQ 中,∵DP ∥BQ ,∴△ADP ∽△ABQ ,∴DP BQ =AP AQ .同理可得PE CQ =AP AQ ,∴DP BQ =PE CQ .21.解:(1)设经过x s 后,△PCQ 的面积等于△ABC 的面积的25.根据题意,得12×2x ×(8-x )=8×10×12×25.解得x 1=x 2=4.所以经过4 s 后,△PCQ 的面积等于△ABC 的面积的25.(2)设经过t s 后,△PCQ 与△ABC 相似,因为∠C =∠C ,所以分为两种情况:① PC BC =CQ CA ,即2t 8=8-t 10,解得t =167.②PC AC =CQ CB ,即 2t 10=8-t 8,解得t =4013.综上所述,经过167 s 或4013 s 后,△PCQ 与△ABC 相似.22.解:(1)∵BE ⊥FE ,∴∠BEF =90°.∵四边形ABCD 为矩形,∴∠A =∠D =90°,∴∠AEB +∠ABE =∠AEB +∠DEF =90°,∴∠ABE =∠DEF ,∴△ABE ∽△DEF ,∴AB DE =AE DF ,∴62=9DF ,解得DF =3.(2)9(3)62点拨:∵DE∥BC,∴∠DEC=∠BCE,∠B=∠DEA.∵AD∥CF,∴∠A=∠CFB.∵∠DEC=∠A=∠B,∴∠DEC=∠A=∠B=∠BCE=∠CFB=∠DEA,∴△DAE∽△CFB∽△ECB,∴EBBC=BCFB,DEBE=AEBC,即6BC=BC4,DE AE=EBBC,解得BC=24=2 6(负值舍去),∴DEAE=EBBC=62 6=62.9。
《图形的相似》单元练习题
27.1 图形的相似1.下列各组图形相似的是( )2.将左图中的箭头缩小到原来的12,得到的图形是( )3.将一个直角三角形三边扩大3倍,得到的三角形一定是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上三种情况都有可能 4.下列各线段的长度成比例的是( )A .2 cm ,5 cm ,6 cm ,8 cmB .1 cm ,2 cm ,3 cm ,4 cmC .3 cm ,6 cm ,7 cm ,9 cmD .3 cm ,6 cm ,9 cm ,18 cm5.两个相似多边形一组对应边分别为3 cm ,4.5 cm ,那么它们的相似比为( ) A.23B.32C.49D.946.(莆田中考)下列四组图形中,一定相似的是( ) A .正方形与矩形 B .正方形与菱形 C .菱形与菱形 D .正五边形与正五边形7.在比例尺为1∶200的地图上,测得A ,B 两地间的图上距离为4.5 cm ,则A ,B 两地间的实际距离为______m.8.在一张复印出来的纸上,一个多边形的一条边由原图中的2 cm 变成了6 cm ,这次复印的放缩比例是________.9.如图所示是两个相似四边形,求边x 、y 的长和∠α的大小.10.下列说法:①放大(或缩小)的图片与原图片是相似图形;②比例尺不同的中国地图是相似形;③放大镜下的五角星与原来的五角星是相似图形;④放电影时胶片上的图象和它映射到屏幕上的图象是相似图形;⑤平面镜中,你的形象与你本人是相似的.其中正确的说法有( ) A .2个 B .3个 C .4个 D .5个 11.(重庆中考)如图,△ABC 与△DE F 相似,相似比为1∶2,BC 的对应边是EF ,若BC =1,则EF 的长是( ) A .1 B .2 C .3 D .412.某机器零件在图纸上的长度是21 mm ,它的实际长度是630 mm ,则图纸的比例尺是( ) A .1∶20 B .1∶30 C .1∶40 D .1∶50 13.如图,正五边形FGHMN 与正五边形ABCDE 相似,若AB ∶FG =2∶3,则下列结论正确的是( )A .2DE =3MNB .3DE =2MNC .3∠A =2∠FD .2∠A =3∠F14.如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是( )15.如图所示,它们是两个相似的平行四边形,根据条件可知,∠α=________,m =________.16.如图,左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形,要求大小与左边四边形不同.17.为了铺设一矩形场地,特意选择某地砖进行密铺,为了使每一部分都铺成如图所示的形状,且由8块地砖组成,问:(1)每块地砖的长与宽分别为多少?(2)这样的地砖与所铺成的矩形地面是否相似?试明你的结论.27.2.1 相似三角形的判定第1课时平行线分线段成比例一. 填空题:1. 如图,梯形ABCD,AD//BC,延长两腰交于点E,若AD BC AB===264,,,则EDECDEDC==,第1题图第2题图第3题图第4题图2. 如图,∆ABC中,EF//BC,AD交EF于G,已知EG GF BD===235,,,则DC=.3. 如图,梯形ABCD中,DC AB DC AB//.,,==235,且MN//PQ//AB,DM MP PA==,则MN=________,PQ=________4. 如图,菱形ADEF,AB AC BC===756,,,则BE=________5. 如图,EA FC EB FD////,,则AB与CD的位置关系是________第5题图第6题图6. 如图,D是BC的中点,M是AD的中点,BM的延长线交AC于N,则AN:NC=____。
2024中考数学全国真题分类卷 第十五讲 图形的相似(含答案)
2024中考数学全国真题分类卷第十五讲图形的相似命题点1比例线段类型一比例的性质1.(2022大庆)已知x2=y3=z4≠0,则x2+xyyz=________.类型二黄金分割2.(2023山西)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()第2题图A.平移B.旋转C.轴对称D.黄金分割3.(新趋势)·数学文化(2023衡阳)在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是(结果精确到0.01m.参考数据:2≈1.414,3≈1.732,5≈2.236)()第3题图A.0.73mB.1.24mC.1.37mD.1.42m4.(新趋势)·数学文化(2023陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所做EF将矩形窗框ABCD分为上下两部分,其中E为边AB的黄金分割点,即BE2=AE·A B.已知AB为2米,则线段BE的长为________米.第4题图类型三平行线分线段成比例5.(2023丽水)如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A ,B ,C 都在横线上.若线段AB =3,则线段BC 的长是()第5题图A.23 B.1 C.32 D.26.(2023凉山州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC ,AD DB =23,DE =6cm ,则BC 的长为()第6题图A.9cmB.12cmC.15cmD.18cm命题点2相似的基本性质7.(2023甘肃省卷)若△ABC ∽△DEF ,BC =6,EF =4,则AC DF =()A.49 B.94 C.23 D.328.(2023连云港)△ABC 的三边长分别为2,3,4,另有一个与它相似的三角形DEF ,其最长边为12,则△DEF 的周长是()A.54B.36C.27D.219.(新趋势)·条件开放性问题(2023盐城)如图,在△ABC 与△A ′B ′C ′中,点D ,D ′分别在边BC ,B ′C ′上,且△ACD ∽△A ′C ′D ′,若________,则△ABD ∽△A ′B ′D ′.请从①BD CD =B ′D ′C ′D ′;②AB CD =A ′B ′C ′D ′;③∠BAD =∠B ′A ′D ′这3个选项中选择一个作为条件(写序号),并加以证明.第9题图命题点3相似三角形的判定与性质类型一A 字型10.(2023云南)如图,在△ABC 中,D ,E 分别为线段BC ,BA 的中点,设△ABC 的面积为S 1,△EBD 的面积为S 2,则S 2S 1=()第10题图A.12 B.14 C.34 D.7811.(2023贵阳)如图,在△ABC 中,D 是AB 边上的点,∠B =∠ACD ,AC ∶AB =1∶2,则△ADC 与△ACB 的周长比是()第11题图A.1∶2B.1∶2C.1∶3D.1∶4源自北师九上P90第3题12.(2023遂宁)如图,D ,E ,F 分别是△ABC 三边上的点,其中BC =8,BC 边上的高为6,且DE ∥BC ,则△DEF 面积的最大值为()第12题图A.6B.8C.10D.1213.(新趋势)·条件开放性问题(2023邵阳)如图,在△ABC中,点D在AB边上,点E在AC 边上,请添加一个条件________,使△ADE∽△AB C.第13题图14.(2023嘉兴)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD 的长为________.第14题图15.(2022南充)如图,在△ABC中,D为BC上一点,BC=3AB=3BD,则AD∶AC的值为________.第15题图16.(2023江西)如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:△ABC∽△AEB;(2)当AB=6,AC=4时,求AE的长.第16题图17.(2023杭州)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,连接DE ,EF .已知四边形BFED 是平行四边形,DE BC =14.(1)若AB =8,求线段AD 的长;(2)若△ADE 的面积为1,求平行四边形BFED 的面积.第17题图18.(2020上海)已知:如图,在菱形ABCD 中,点E ,F 分别在边AB ,AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:△BEC ∽△BCH ;(2)如果BE 2=AB ·AE ,求证:AG =DF .第18题图19.(挑战题)(2023宁波)【基础巩固】(1)如图①,在△ABC中,D,E,F分别为AB,AC,BC上的点,DE∥BC,BF=CF,AF 交DE于点G,求证:DG=EG;【尝试应用】(2)如图②,在(1)的条件下,连接CD,CG.若CG⊥DE,CD=6,AE=3,求DEBC的值;【拓展提高】(3)如图③,在▱ABCD中,∠ADC=45°,AC与BD交于点O,E为AO上一点,EG∥BD 交AD于点G,EF⊥EG交BC于点F.若∠EGF=40°,FG平分∠EFC,FG=10,求BF的长.第19题图类型二8字型20.(2022雅安)如图,将△ABC 沿BC 边向右平移得到△DEF ,DE 交AC 于点G .若BC ∶EC =3∶1.S △ADG =16.则S △CEG 的值为()第20题图A.2B.4C.6D.821.(2023包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接AB ,C D.则△ABE 与△CDE 的周长比为()第21题图A.1∶4B.4∶1C.1∶2D.2∶122.(2022连云港)如图,△ABC 中,BD ⊥AB ,BD ,AC 相交于点D ,AD =47AC ,AB =2,∠ABC =150°,则△DBC 的面积是()第22题图A.3314 B.9314 C.337 D.63723.(2022淄博)如图,在Rt △ABC 中,∠ACB =90°,CE 是斜边AB 上的中线,过点E 作EF ⊥AB 交AC 于点F ,若BC =4,△AEF 的面积为5,则sin ∠CEF 的值为()A.35 B.55 C.45 D.255第23题图24.(2022云南)如图,在△ABC 中,点D ,E 分别是BC ,AC 的中点,AD 与BE 相交于点F .若BF =6,则BE 的长是________.第24题图25.(2022包头)如图,在Rt △ABC 中,∠ACB =90°,过点B 作BD ⊥CB ,垂足为B ,且BD =3,连接CD ,与AB 相交于点M ,过点M 作MN ⊥CB ,垂足为N .若AC =2,则MN 的长为________.第25题图26.(新考法)·结合网格考查线段位置关系(2023河北)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?________(填“是”或“否”);(2)AE =________.第26题图27.(2022长春)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =4,BD =8,点E 在边AD 上,AE =13AD ,连接BE 交AC 于点M .(1)求AM 的长;(2)tan ∠MBO 的值为________.第27题图28.(2023泰安)如图,矩形ABCD中,点E在DC上,DE=BE,AC与BD相交于点O,BE 与AC相交于点F.(1)若BE平分∠CBD,求证:BF⊥AC;(2)找出图中与△OBF相似的三角形,并说明理由;(3)若OF=3,EF=2,求DE的长度.第28题图类型三旋转型29.(2023玉林)如图,在矩形ABCD中,AB=8,AD=4,点E是DC边上的任一点(不包括端点D,C),过点A作AF⊥AE交CB的延长线于点F,设DE=a.(1)求BF的长(用含a的代数式表示);(2)连接EF交AB于点G,连接GC,当GC∥AE时,求证:四边形AGCE是菱形.第29题图类型四三垂直型30.(2023达州)如图,点E在矩形ABCD的AB边上,将△ADE沿DE翻折,点A恰好落在BC边上的点F处,若CD=3BF,BE=4,则AD的长为()A.9B.12C.15D.18第30题图31.(2022台州)如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB =5,AE=DG=1,则BF=________.第31题图类型五网格中相似三角形的判定与性质32.(2020昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()第32题图A.4个B.5个C.6个D.7个33.(2022临沂)如图,点A,B都在格点上,若BC=2133,则AC的长为()第33题图A.13B.413C.213D.3133命题点4相似三角形的实际应用34.(2020绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2∶5,且三角板的一边长为8cm.则投影三角板的对应边长为()第34题图A.20cmB.10cmC.8cmD.3.2cm35.(2022河北)图①是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图②所示,此时液面AB=()第35题图A.1cmB.2cmC.3cmD.4cm36.(2023盐城)“跳眼法”是指用手指和眼睛估测距离的方法.步骤第一步:水平举起右臂,大拇指竖直向上,大臂与身体垂直;第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;第三步:闭上右眼,睁开左眼.此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离.参照被测物体的大小,估算横向距离的长度;第四步:将横向距离乘以10(人的手臂与眼距的比值一般为10),得到的值约为被测物体离观测点的距离值.如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为()第36题图A.40米B.60米C.80米D.100米37.(2023陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O,C,D,F,G五点在同一直线上,A,B,O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.第37题图源自北师九上P103活动参考答案与解析1.562.D3.B 【解析】设该雕像的下部设计高度约为x ,则上部高度为2-x ,根据题意得2-x x =x2,解得x =-1+5(负值已舍去),∴x =-1+2.236≈1.24.经检验x =1.24是该分式方程的解且符合实际,∴该雕像的下部设计高度约是1.24m.4.5-1【解析】∵E 为边AB 的黄金分割点,AB =2,∴BE AB =5-12,即BE2=5-12,∴BE =(5-1)米.5.C 【解析】∵五线谱中五条横线等距离且平行,∴分割线段AC 成比例,∴根据图形得ABBC =21,∵AB =3,∴BC =32.6.C 【解析】∵DE ∥BC ,AD DB =23,∴AD AB =DE BC =25,∵DE =6cm ,∴BC =15cm.7.D8.C 【解析】△ABC 的最长边为4,与△ABC 相似的△DEF 最长边为12,∴相似比为4∶12=1∶3,∵△ABC 的周长为2+3+4=9,∴△DEF 的周长为3×9=27.9.解:选择①BD CD =B ′D ′C ′D ′;证明:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A ′D ′C ′,AD A ′D ′=CDC ′D ′,∴∠ADB =∠A ′D ′B ′,又∵BD CD =B ′D ′C ′D ′,∴BD B ′D ′=CDC ′D ′,则BD B ′D ′=CD C ′D ′=AD A ′D ′,∴△ABD ∽△A ′B ′D ′.【一题多解】选择③∠BAD =∠B ′A ′D ′.证明:∵△ACD ∽△A ′C ′D ′,∴∠ADC =∠A ′D ′C ′,∴∠ADB =∠A ′D ′B ′,∵∠BAD =∠B ′A ′D ′,10.B 【解析】在△ABC 中,∵D 、E 分别为线段BC 、BA 的中点,∴DE ∥AC ,∴△BDE ∽△BCA ,∴S 2S 1=(BE AB )2=(12)2=14.11.B 【解析】∵∠CAD =∠BAC ,∠ACD =∠B ,∴△ADC ∽△ACB ,∴C △ADC C △ACB=AC AB =12.12.A【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,设相似比为k ,则DE =8k ,△ADE 的DE边上高为6k ,∴△DEF 的DE 边上高h =6-6k ,S △DEF =12DE ·h =12×8k ×(6-6k )=-24k 2+24k =-24(k -12)2+6,∴当k =12时,S 取最大值,此时最大值为6.13.∠ADE =∠B (答案不唯一)【解析】∵∠A =∠A ,∴添加条件∠ADE =∠B 即可得到△ADE ∽△ABC .14.233【解析】由题意得,DE =1,BC =3,在Rt △ABC 中,∠A =60°,则AB =BC tan A=33=3.∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AD AB ,即13=3-BD 3,解得BD =233.15.33【解析】∵BC =3AB =3BD ,∴BC AB =ABBD=3,∵∠B =∠B ,∴△ABC ∽△DBA ,∴AD AC =BD BA =33.16.(1)证明:∵四边形ABCD 是菱形,AC 为对角线,∴∠ACB =∠ACD .∵∠ACD =∠ABE ,∴∠ACB =∠ABE .又∵∠BAC =∠EAB ,∴△ABC ∽△AEB ;(2)解:∵△ABC ∽△AEB ,∴AB AE =AC AB ,∵AB =6,AC =4,∴6AE =46,∴AE =9.17.解:(1)∵四边形BFED 是平行四边形,∴DE ∥BC ,∴AD AB =DE BC =14,∵AB =8,∴AD =2;(2)设△ABC 的面积为S ,△ADE 的面积为S 1,△CEF 的面积为S 2.∵AD AB =14,∴S 1S =(AD AB )2=116,∵S 1=1,∴S =16.∵CE CA =34,同理可得S 2=9,∴平行四边形BFED 的面积为S -S 1-S 2=6.18.证明:(1)∵四边形ABCD 是菱形,∴CD =CB ,∠D =∠B ,∵DF =BE ,∴△CDF ≌△CBE (SAS),∴∠DCF =∠BCE ,∵CD ∥BH ,∴∠H =∠DCF ,∴∠H =∠BCE ,∵∠B =∠B ,∴△BEC ∽△BCH ;(2)∵BE 2=AB ·AE ,∴AB BE =BE AE ,∵CB ∥DG ,∴AE BE =AG BC ,∴AG BC =BE AB,∵BC =AB ,∴AG =BE ,∵△CDF ≌△CBE ,∴DF =BE ,∴AG =DF .19.(1)证明:∵DE ∥BC ,∴△ADG ∽△ABF ,△AEG ∽△ACF ,∴DG BF =AG AF ,EG CF =AG AF ,∴DG BF =EG CF .∵BF =CF ,∴DG =EG ;(2)解:由(1)得DG =EG ,∵CG ⊥DE ,∴CE =CD =6.∵AE =3,∴AC =AE +CE =9.∵DE ∥BC ,∴△ADE ∽△ABC ,∴DE BC =AE AC =13;(3)解:如解图,延长GE 交AB 于点M ,连接FM ,过点M 作MN ⊥BC ,垂足为N .在▱ABCD 中,BO =DO ,∠ABC =∠ADC =45°.∵EG ∥BD ,∴同(1)中的方法可得ME =GE .第19题解图∵EF ⊥EG ,∴FM =FG =10,∴∠EFM =∠EFG .∵∠EGF =40°,∴∠EFG =50°.∵FG 平分∠EFC ,∴∠EFG =∠CFG =50°,∴∠BFM =180°-∠EFM -∠EFG -∠CFG =30°.在Rt △FMN 中,MN =FM ·sin 30°=5,FN =FM ·cos 30°=53.∵∠MBN =45°,MN ⊥BC ,∴BN =MN =5,∴BF =BN +FN =5+53.20.B 【解析】由平移性质可得,AD ∥BE ,AD =BE ,∴△ADG ∽△CEG .∵BC ∶EC =3∶1,∴BE ∶EC =2∶1,∴AD ∶EC =2∶1,∴S △ADG ∶S △ECG =(AD EC)2=4.∵S △ADG =16,∴S △CEG =4.21.D 【解析】如解图,取格点F ,H ,易得△AHB ∽△DFC ,∴AB CD =AH DF =2,∠ABF =∠DCF ,∴AB ∥CD ,∴△ABE ∽△CDE ,∵AB ∶CD =2∶1,∴周长比为2∶1.第21题解图22.A 【解析】如解图,过点C 作BD 的垂线,交BD 的延长线于点E ,则∠E =90°,∵BD ⊥AB ,CE ⊥BD ,∴AB ∥CE ,∠ABD =90°,又∵∠ADB =∠CDE ,∴△ABD ∽△CED ,∴AD CD =ABCE=BD DE .∵AD =47AC ,∴AD CD =43,∴AB CE =2CE =43=BD DE ,则CE =32.∵∠ABC =150°,∠ABD =90°,∴∠CBE =60°,∴BE =33CE =32,∴BD =47BE =237,∴S △BCD =12BD ·CE =12×237×32=3314.第22题解图23.A 【解析】如解图,过点E 作EG ⊥AC 于点G ,过点C 作EF 的垂线交EF 的延长线于点H ,∵E 是AB 的中点,BC =4,∴EG ∥BC ,EG =12BC =2,∵△AEF 的面积为5,∴12AF ·EG=5,∴AF =5.∵∠H =∠FEA =90°,∠CFH =∠AFE ,∴△CFH ∽△AFE ,∴CH AE =CFAF,∵E 为AB 的中点,∠ACB =90°,∴CE =AE ,∴CH AE =CH CE =CFAF .∵∠FEA =∠ACB =90°,∠A =∠A ,∴△AEF ∽△ACB ,∴AE AC =AF AB ,∴12AB AC =5AB ,∴AB 2=10AC .∵在Rt △ABC中,AB 2=BC 2+AC 2,∴10AC =16+AC 2,∴AC =2(舍去),AC =8,∴CF =3,∴sin ∠CEF =CH CE =CF AF =35.第23题解图24.9【解析】∵点D ,E 分别是BC ,AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AB ,DE =12AB .∴△DEF ∽△ABF ,∴EF BF =DE AB =12,∵BF =6,即EF 6=12,∴EF =3,∴BE=BF +EF =6+3=9.25.65【解析】∵∠ACB =90°,BD ⊥CB ,MN ⊥CB ,∴AC ∥MN ∥DB ,∠CNM =∠CBD ,∴∠MAC =∠MBD ,∠MCA =∠MDB =∠CMN ,∴△MAC ∽△MBD ,△CMN ∽△CDB ,∴MC MD =AC BD =23,MN BD =CM CD ,∴CM CD =25,∴MN 3=25,∴MN =65.26.(1)是;(2)455【解析】(1)如解图,易得△ACH ≌△CGD ,则∠GCD =∠CAH ,又∵∠GCD+∠ECA =90°,∴∠CAH +∠ECA =90°,∴∠CEA =90°;(2)由解图可得△CEA ∽△DEB ,BD =3,AC =2,AB =22+42=25,∴AC BD =AE BE ,∴AE BE =23,∴AE =25AB =455.第26题解图27.解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,AD =BC .∴△AEM ∽△CBM ,∴AM CM =AE CB ,∵AE =13AD =13BC ,∴AM =13CM ,∴AM =14AC ,∵AC =4,∴AM =1;(2)14.【解法提示】∵四边形ABCD 是菱形,AC =4,BD =8,∴AO =OC =2,BO =OD =4,AC ⊥BD ,∵AM =1,∴OM =1,∴在Rt △BOM 中,tan ∠MBO =OM OB =14.28.(1)证明:如解图,∵四边形ABCD 为矩形,∴OC =OD ,AB ∥CD ,∴∠2=∠3=∠4.∵DE =BE ,∴∠1=∠2,∴∠1=∠3,第28题解图又∵BE 平分∠DBC ,∴∠1=∠6,∴∠3=∠6,又∵∠3+∠5=90°,∴∠6+∠5=90°,∴BF ⊥AC ;(2)解:△ECF ,△BAF 与△OBF 相似.理由如下:如解图,由(1)知∠1=∠2,∵AB ∥CD ,∴∠2=∠3=∠4,∴∠1=∠4,又∵∠OFB =∠BFO ,∴△OBF ∽△BAF ,∵∠1=∠3,∠OFB =∠EFC ,∴△OBF ∽△ECF ;(3)解:∵△OBF ∽△ECF ,∴EF OF =CF BF ,∵OF =3,EF =2,∴23=CF BF ,∴3CF =2BF .∵OA =OC ,∴OA =OF +CF ,∴3OA =3CF +3OF .∴3OA =2BF +9,①∵△OBF ∽△BAF ,∴OF BF =BF AF ,∴BF 2=OF ·AF ,∴BF 2=3(OA +3).②由①②,得BF =1+19(负值已舍去),∴DE =BE =2+1+19=3+19.29.(1)解:∵四边形ABCD 是矩形,∴∠ABC =∠BAD =∠D =90°,∴∠ABF =90°=∠D ,∠BAE +∠DAE =90°,∵AE ⊥AF ,∴∠BAE +∠BAF =90°,∴∠DAE =∠BAF ,∴△DAE ∽△BAF ,∴AD AB =DE BF ,即48=a BF,∴BF =2a ;(2)证明:如解图,∵四边形ABCD 是矩形,∴AB ∥CD ,∵CG ∥AE ,∴四边形AGCE 是平行四边形,第29题解图∴CE =AG ,∵AB =CD ,∴DE =GB =a ,∵BF =2a ,∴tan ∠BFG =BG BF =12,∵△DAE ∽△BAF ,∴AE AF =AD AB =12,∴tan ∠AFE =12,∴∠BFG =∠AFE ,即FE 平分∠AFC ,∵EA ⊥AF ,EC ⊥CF ,∴AE =EC ,∴四边形AGCE 是菱形.30.C 【解析】∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠B =∠C =90°,AB =CD ,∵将△ADE 沿DE 翻折,∴AD =DF ,AE =EF ,∠A =∠EFD =90°,设BF =x ,则AB =CD =3x ,∵BE =4,∴AE =EF =3x -4,在Rt △BEF 中,EF 2=BF 2+BE 2,∴(3x -4)2=x 2+42,解得x 1=3,x 2=0(不符合题意,舍去),∴EF =3x -4=5.∵∠BFE +∠CFD =90°,∠BFE+∠BEF =90°,∴∠CFD =∠BEF ,∵∠B =∠C ,∴△CFD ∽△BEF ,∴DF FE =CD BF ,∴DF 5=3BF BF,解得DF =15,即AD =15.31.54【解析】如解图,记EG 与AF 交于点H ,∵四边形ABCD 是正方形,∴∠BAD =∠B =90°.∵AF ⊥EG .∴∠AGE +∠GAH =90°,∠FAB +∠GAH =90°.∴∠AGE =∠FAB .∴△ABF ∽△GAE ,∴AB GA =BF AE ,∴AB AD -GD =BF AE ,∵AB =5,AE =GD =1,∴55-1=BF 1,解得BF =54.第31题解图32.C 【解析】如解图,使得△ADE ∽△ABC 的格点三角形一共有6个.第32题解图33.B 【解析】由相似得AC BC =42,∴AC 2133=42,解得AC =4133.34.A 【解析】设投影三角尺的对应边长为x cm ,∵三角尺与投影三角尺相似且相似比为2∶5,∴8∶x =2∶5,解得x =20.35.C 【解析】根据“相似三角形对应高的比等于相似比”可知15-711-7=6AB ,即84=6AB ,解得AB =3cm.36.C 【解析】根据三角形的相似,可以得到被测物体(汽车头部)到大拇指的距离为被测物体到睁开左眼时,大拇指指向的位置距离的10倍,而这个水平距离约是2个汽车的长度,因此这个距离约是2×4×10+大拇指到右眼的距离=80+0.7(估算手臂长度)≈80.7,因此汽车到观测点的距离约为80米.37.解:∵AD ∥EG ,∴∠ADO =∠EGF .又∵∠AOD =∠EFG =90°,∴△AOD ∽△EFG .∴AO EF =OD FG.∴AO =EF ·OD FG =1.8×202.4=15.同理,△BOC ∽△AOD .∴BO AO =OC OD,∴BO =AO ·OC OD =15×1620=12.∴AB =AO -BO =3(米).∴旗杆的高AB 为3米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大版数学第十八章(图形的相似)
(测试时间:90分钟满份:100分)
班级姓名得分
一、填空题(每小题2分,共20分)'
1、已知△ABC与△A'B'C'中,AB=6,BC=8,A'C'=4.5,B'C'=4,要使△ABC∽△A'B'C',则必有A'B'= 。
2、地图上两地间距离为5cm,表示实际距离100km,则地图的比例尺为。
3、三角形中两边中点的连线段与第三边之比为。
4、如图1,两个多边形若相似,则x只能取。
5、如图2,△ABC中,DC//EH//FI//BC,则图中相似三角形有对。
6、两个相似三角形的边长之比为m,面积之比为5,则m/5= .
7、某人身高1.7米,某一时刻影长2.04米,同时一棵树影长为10.2米,则此树高米。
8、如图3,小李在打网球时,使球恰好能打过网,而且落在离网6米的位置(BO长),若小李击球的高度2米(CD),网高0.8米,则击球处离网距离米。
9、如图4,表示△AOB以O位似中心,扩大到△COD,各点坐标分别为:A(1,2)、
B(3,0)、D(4,0)则点C坐标为。
10、观察图5,若第一个图中阴影部分面积为1,第二个图中阴影部分面积为4/3,第三个图中阴影部分面积为16/9,第四图中阴影部分的面积为64/27,则第n个图中阴影部分面积为。
二、选择题(每小题2分,共20分)
11、下列四个命题:①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的
正方形都相似;④所有的菱形都相似,其中正确有()
A、2个
B、3个
C、4个
D、1个
12、在△ABC与△A'B'C'中,∠B=∠B'=Rt∠,∠A=30°,则以下条件,不能证明△ABC
与△A'B'C'相似的为()
A、∠A'=30°
B、∠C'=60°
C、∠C=60°
D、∠A'=2/1∠C'
13、如图6、线段AB上有三点C、D、E,AB=8,AD=7,CD=4,AE=1,则比值不为1/2的线
段比为()
A、AE:EC
B、EC:CD
C、CD:AB
D、CE:CB
14、正方形ABCD、菱形EFGH,使这两个图形相似,则增加的条件不正确的是()
A、∠G=60°BEH⊥HG C、∠E=∠F D、∠G+∠E=180°
15、△ABC中,DE//BC,交AB、AC于D、E,AD=6,AE=4,BD=5,则EC长为()
A、3/10
B、3
C、3/22
D、2/7
16、如图7,已知AD是△ABC的中线,AE=EF=FC,下面给出三个关系式:
AG:AD=1:2;②GE:BE=1:3③GE:BE=4/3,其中正确的为()
A、①② B 、①③ C、②③ D、①②③
17、如图8,△ABC,AB=12,AC=15,D为AB上一点,且AD=3/2AB,在AC上取一点E,使
以A、D、E为顶点的三角形与ABC相似,则AE等于()
A2/32 B10 C、2/32或10 D、以上答案都不对
18、如图9,直线AB与 MNPQ的四边所在直线分别交于A、B、C、D,则图中的相似三
角形有()
A、4对
B、5对
C、6对
D、7对
19、如图10,△ABC的三边的三等分点,A1、A2,B1、B1B2C1C2,连接A2,B1、B2C1,C2A1,若△AB C
周长为L,则六边形A1、A2,B1、B1B2C1C2的周长为()
A、3/2L
B、3/4L
C、2L
D、3/5L
20、如图11, ABCD中,E为BC中点,F为BE中点,AE、DF交于H,过H的直线垂
直于AD,交于AD、BC于M、N,则NH:MH的值为()
A、2/1
B、3/1
C、4/1
D、5/1
三、解答题(60分)
21、在图12的网络中,描述右边图形的缩小图。
(4分)
22、下面是小于所在学校的平面示意图,其中各点分别表示:A(大门);B(教学楼);C、
(宿舍);D、(食堂);E(操场);F(卫生室);G(国旗),请你选择适当的坐标系,使所标的点尽量多的在坐标轴上,(1)根据坐标系描述食堂、宿舍、教学楼的位置;(2)其它各点中,哪一点距卫生室(F)最近?(3)现确定一图书馆的准确位置:使得与B、
D、C三点的距离都相等,请标出此出,并说明理由。
(5分)
23、已知,连结三角形三边中点,把任意三角形分成四个小三角形,它们的形状,大小完
全相同,并且与原三角形相似,如图(1)请把图(2)、(3)、(4)同样分成四块,使它们形状大小相同,且都和原图形相似,(注:图(2)为正方形,图(3)为菱形,图(4)为等腰三角形,且AD//BC,AB=CD=AD,∠B=60°)(7分)
24、如图,D为Rt△ABC的斜边BC中点,E为AB的中点,F为AE的中点,FM⊥BC,FN
⊥AD,垂足分别为M、N,试确定FM是FN的几倍,并说明你写结论的正确性。
(8分)
25、如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、
N,请写出图中相似的三角形,并说明其中两对相似的正确性。
(8分)
26、如图,AD为△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,试判断∠ADF与
∠AEF的大小,并说明明理由,(8分)
27、如图,在△ABC中,点D、E分别在BC、AB上,且∠CAD=∠ADE=∠B,AC:BC=1:
2,设△EBD、△ADC、△ABC的周长分别为m1 、m2、m3,求的值,(10分)
28、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与
AD相交于点F,(1)△ABC与△FCD相似吗?请说明理由;(2)若S =5,BD=10,求DE的长。
(10分)
参考答案
一、1、3 2、1:2000000 3、1:2 4、31.5 5、6
6、
7、8.5 8、9 9、(
4
3
,
8
3
)10、1
3
()
4
n-
二、11、A 12、C 13、D 14、A 15、A 16、B 17、C 18、C 19、A 20、C
21、略
22、以FE直线为X轴,BG直线为Y轴(1)D(4,0)C(4,0)B(0,6)(2)
A距F最近D距F最远(3)图书馆H(2,3)
23、略
24、FM=3FN 可证△FNA∽△FMA
25、△AMD∽△AND △BMD∽△BDC∽△DNC
26、△AEF∽△ACB 解得∠AEF=∠C=∠ADF
27、设AC=k BC=2k 由△ADC∽△BAC得m
m
=
AC
BC
=
3
4
且DC=
2
k
BD=
3
2
k,再
由△EBD∽△ABC,得m
m
=
BD
BC
=
3
4
则
m m
m
+
=
31
5
42
4
m m
m
+
=
28、(1)由DE⊥BC为BC中点,有EB=EC,即∠B=∠ECB 又AD=AC ∴∠ACD=
∠ADC,则△ABD∽△FCD(2)过点A作AM⊥DC于M,由△ABC∽△FCD
和BC=2CD,有S ABC
S FCD
=(
BC
CD
)= 4 又S ABC =5 ∴S ABC =20,又
S ABC=1
2
BC·AM 有AM= 4 又DE//AM,则DE:AM=BD:BM,∴
4
DE
=
5
5
5
2
+
∴DE=8 3。