船舶操纵11
船舶操纵试题十一
1. 直航船操一定舵角后,其转舵阶段的:A. 横移速度较小,横移加速度较小B. 横移速度较小,横移加速度较大C. 横移速度较大,横移加速度较大D. 横移速度较大,横移加速度较小2. 船舶旋回圈中的进距是指:A. 自操舵起,至航向改变90°时,其重心在原航向上的横向移动距离B. 自操舵起,至航向改变90°时,其重心在原航向上的纵向移动距离C. 自操舵起,至航向改变180°时,其重心在原航向上的横向移动距离D. 自操舵起,至航向改变180°时,其重心在原航向上的纵向移动距离3. 船舶航行中,突然在船首右前方近距离发现障碍物,应如何操纵船舶避离之?A. 立即操右满舵,待船首避离后,再操左满舵,使船尾避离B. 立即操右满舵,待船首避离后,保持右满舵,使船尾避离C. 立即操左满舵,待船首避离后,保持左满舵,使船尾避离D. 立即操左满舵,待船首避离后,再操右满舵,使船尾避离4. 船舶通过预配风流压差保持行驶在预定航线上,此时实现的是:A. 位置稳定性B. 直线稳定性C. 方向稳定性D. 方向和位置稳定性5. 船舶航向稳定性与船体水下侧面积形状分布和纵倾情况有关:A. 船尾钝材、尾倾越大,航向稳定性越好B. 船首钝材、尾倾越大,航向稳定性越好C. 船首钝材、首倾越大,航向稳定性越好D. 船尾钝材、首倾越大,航向稳定性越好6. 保向性与航向稳定性有关:A. 航向稳定性越好,保向越容易B. 航向稳定性越差,保向越容易C. 航向稳定性越好,保向越困难D. 保向性与航向稳定性无关7. 船舶从静止状态起动主机前进直至达到常速,满载船的航进距离约为船长的:A. 15倍,轻载时约为满载时的1/2~2/3B. 20倍,轻载时约为满载时的1/2~2/3C. 15倍,轻载时约为满载时的1/3~1/2D. 20倍,轻载时约为满载时的1/3~1/28. 一船的操纵性指数K值越小,则说明该船:A. 旋回性越差B. 旋回性越好C. 应舵越快D. 应舵越慢9. 船舶倒车停止性能或最短停船距离是指船在前进三中开后退三,从______停止时船舶所前进的距离。
科目:船舶操纵(一类三副10)
科目:船舶操纵(一类三副10)中华人民共和国海事局适任培训大纲熟悉训练1.船舶顺浪航行时,主要危害是:() [单选题] *A.拍底B.甲板上浪C.螺旋浆打空车D.尾淹(正确答案)2在航行中发现舵机突然失灵,可采取的措施是:I .减速或停车;Il .使用应急舵;III.立即抛锚。
() [单选题] *A. I、II(正确答案)B.II、IIIC.I、IIID.I、II 、III3.船舶碰撞发生后,当破损部位确定后,应立即___,采取堵漏措施,并通知机舱排水。
() [单选题] *A.搁浅B.掉头C.弃船D.关闭邻近舱室的水密门窗(正确答案)4.影响船舶航向稳定性的因素包括,①纵倾②舵工的操舵技能③船型④舵角。
()[单选题] *A. 1234B.13(正确答案)C.23D. 2345.内河船舶驶靠码头,尾缆的主要作用是防止船舶() [单选题] *A.前移(正确答案)B.后移C.外移D.内移6.船舶在风中的偏转方向取决于() [单选题] *A.风动力中心、船舶重心、水动力中心的相对位置(正确答案)B.风动力中心的位置C.船舶重心的位置D.水动力中心的位置7.船舶在航道宽阔水域掉头,采用哪种方法经济合理() [单选题] *A.连续进车掉头(正确答案)B.正倒车掉头C.进、退车掉头D.抛锚掉头8.对同一船舶,在其它条件相同时,各种锚泊方式下的偏荡从大到小的排列顺序为() [单选题] *A.八字锚、平行错、单锚B.单锚、平行锚、八字锚(正确答案)C.平行锚、单锚、八字锚D.平行锚、八字锚、单锚9.船舶在横倾状态下低速航行,向高舷一侧用舵、舵效__。
() [单选题] *A.好B.差(正确答案)C.不变D.不能确定10.前进中的双车船,采取下列何种操纵方法,才能使船舶向右旋回圈最小?()[单选题] *A.右满舵,左车和右车全速进车B.右满能,右车停车,左车全速进车C右满能,左车全速倒车,右车全速进车D.右满能,右车全速倒车,左车全速进车(正确答案)11.有关图中船舶掉头的说法,正确的是:①掉头前,船舶应先向掉头的相反方向操舵,拉大档子,腾出水域;②船首转向90°时,即位置4时,应停车,控制船舶冲程,然后开倒车;③船舶处于位置3~4开倒车后,在后退中会出现“船尾找风”的现象。
船舶操纵
2.2 操纵运动方程的线性化
水动力学数学模型
船舶静水中运动时的受力,采用三阶泰勒展开 水动力导数超过50个,可以参见 Fossen T. I. Guidance and Control of Ocean Vehicles, John Wiley & Sons, New York, USA, 1994
阿勃柯维奇
野本兼作(1957)
1.1 船舶操纵性总论
船舶操纵性研究的发展过程
迪德
提出了用于评价航向稳定性的螺旋试验方法 6自由度运动方程,及泰勒基数展开,为非线性研究 提供了数学工具 整个系统看作一个动态系统,研究了船舶对操舵的 频域响应(舵做输入,船运动作输出)
阿勃柯维奇
野本兼作(1957)
1.1 船舶操纵性总论
船舶操纵性研究的发展过程
独木舟时期:刳木为舟,剡木为楫,具有推进 和操纵功能; 随船舶容积的增加:一排长桨---〉短而宽的船 尾桨; 摇橹和舵是中国在操船技术上的重大发明,具 有重要意义; 19世纪后,风帆被蒸汽机和柴油机动力所代替, 但是舵却一直沿用至今。 经历了从简单到复杂,试验到理论的过程
水动力导数的物理意义
水动力和力矩的角加速度导数
正的回转角加速度在船首产横负的 在船尾产生正的 和负的 因此, 较小,取决于船型; 是一个很大的负值
和
和负的;
相当于船舶的附加惯性力 矩系数。
2.2 船舶操纵运动方程
水动力导数的物理意义
舵导数(控制导数)
右舵角为正,正的舵角产生负的舵力, 舵力矩使船向右转,是正的,故
2.2 操纵运动方程的线性化
船舶操纵
2.防抗台风的安全操作
1)方针:以防为主,防抗结合,适时早避,留有余 地. 2)台风预报:气象部门通过远程卫星扫描,近距 离雷达观测获得台风信息.船舶通过接收气象 传真,台风预报图获得台风运动等信息. 3)根据台风的位置和本船的动态决定避台方法.
海上避台与抗台
1)及时接收气象报告获得台风位置的准确信息,移动方向,移 动速度. 2)保持与台风的距离在200海里以上通过. 3)如船舶已经受到台风影响,正确判断船舶所处的位置.如在 北半球: (1)风向顺时针方向变化,则处在台风的右半园.若气压下降 则处于右前象限;若气压上升,则处于右后象限. (2)风向逆时针方向变化,则处在台风的左半园.若气压下降 则处于左前象限;若气压上升,则处于左后象限. (3)风向稳定少变,或虽有变动但忽而顺时转,忽而逆时针转, 风力渐大,气压下降,则处在台风的进路上;气压回升,风力 渐减,则处在后半园的路径上. 如在南半球,则与上述相反.
遭遇台风时的避离方法
1)北半球危险半园避离法 (1)采用与台风进路垂直的航向,即以船首右舷15-20度顶风,全速驶离台 风中心;随着风向顺时针的变化,相应地将航向逐渐向右变动,直至离开 危区. (2)若风浪十分猛烈或前方有浅滩或陆地阻挡,则可以采取船首右舷顶风 滞航方法;随着风向右转,不断向右调整航向,等待台风前移而避离台风 区. (3)若船舶虽处在危险半园内,但却离台风进路不远时,确信有足够的时间 和较快的速度,则可以从前面横越台风进路采取船尾右后斜顺浪航行 的方法,驶入可航半园予以避离. 2)北半球可航半园避离方法 (1)以船尾右舷受斜顺风,全速驶离;船尾受风舷角的大小,一般为15-30 度;同时航向应根据风的逆时针变化,而相应地向左改向. (2)若船前方有浅滩或陆地阻挡,可采取右首受风,顶风滞航. 3)北半球台风进路上的避离法:使船尾右舷受顺风,迅速驶入可航半园后, 依照可航半园内操纵方法进行. 4)南半球台风避离法与上述相反.
船舶操纵_精品文档
船舶操纵1、试述船舶静止,前进,后退中的风致偏转规律。
1)船舶在静止中或船速接近于零时,船舶将顺风偏转至接近风舷角100度左右向下风飘移2)船舶在前进中,正横前来风,慢速,空船,尾倾,船首受风面积较大的船舶,船首顺风偏转;前进速度较大的船舶或满载或半载,首倾,船尾受风面积较大的船舶,船首将迎风偏转;正横后来风,船舶将呈现极强的迎风偏转性。
3)船舶在后退中,在一定风速下并有一定的退速时,船舶迎风偏转。
这就是通常的尾找风现象,正横前来风比正横后来风显著,左舷来风比右舷来风显著;退速降低时,船舶的偏转与静止时的情况相同,并受倒车横向力的影响。
船尾不一定迎风。
2、船舶在静止中的风致漂移速度与哪些因素有关?大型船舶风致漂移速度的经验值多少?静止时风致漂移速度有关因素:风速,船体水线上下侧面积,水深与吃水比3、何为船舶的风中保向界限?船舶在风中的保向界限与哪些因素有关?能够用舵保持航向的风速界限,称为保向界限。
保向界限和风速与航速之比及相对风向角有关4、风对船舶操纵的影响船型一定时,风压力中心的位置随风舷角的增大逐渐向后移动,当风舷角小于90度时,风压中心位置在船中之前,正横来风时,风压中心位于船中附近,风舷角大于90度时,风压中心位置在船中之后。
除横风外,一般风压力作用中心不在船中处,故风压力的横向分量不但改变了船舶的横向运动状态,它还会时船舶产生力矩,该力矩称为风压力矩。
它使船舶产生角加速度,进而使船舶转动角速度发生变化。
风压力系数和风压力矩系数统称为风压系数。
风压力矩与相对风舷角在关,相对风舷角与风压力系数有关。
对于同一类船型,风压力系数取决于风舷角的大小,当风舷角为0度或180度时,风压力系数横向分量为0,纵向不为0,即顶风或顺风时仅对船速有影响。
当风舷角为90度时,风压系数纵向分量为0,横向为最大,对船速没影响,对横向运动状态影响最大。
当相对风舷角为30或160度时,纵向风压系数分量为最大,横向不为0。
船舶操纵011
系泊设备及作用
– 锚的运动及阻力
系泊设备及作用
– 锚的动抓力系数
• 操纵用锚一般出链长度比较短,锚在水底是处于拖 动状态的,操纵用锚的抓力仅为锚本身的抓力。 • 一般来说出链的长度应控制在水深的2.5倍左右,如 水深为10米,可采用出链一节落水或一节甲板。 出链长/水深
1.5
2.0
2.5
3.0
3.5
– 操纵用锚
– 系缆及其作用
• 靠离泊中系缆作用力的运用
港内水域概述
• 连接水域及码头前沿水域
– 码头前沿停泊水域
• 泊位长度一般为L ×120%; • 泊位方向通常与强风向接近; • 泊位方向与航道方向之间的交角越大,操纵难度越 大。
港内水域概述
• 连接水域及码头前沿水域
– 集装箱码头
• 有专门的装卸、运输设备,要有集运、贮存集装箱 的宽阔堆场,有供货物分类和拆装集装箱用的集装 箱货运站。 • 采用大型专门设备进行装卸、运输,保证货物装卸、 运输质量,提高码头装卸效率。
– 船首
• 先带前横缆; • 或将首缆和前倒缆同时带上,尽快绞紧;
– 船尾
• 船空载,吹开风强时,宜先带后横缆,后带尾缆和 后倒缆.
系解缆
• 离泊用缆
– 做好离泊前的准备工作; – 备车完毕后的离泊单绑(single up); – 离泊时倒缆的运用; – 溜缆。
系解缆
• 离泊前的准备
– 试车前检查并调整和收紧各缆,使之受力基本 均匀,以防试车时由于船身移动,缆绳受力不 均而造成断缆。
应急操纵用锚
• • • • • 避免碰撞、触礁、搁浅 保证狭水道航行安全 用于海上漂滞 用于系泊时缓和船体摇荡 搁浅后固定船体或协助脱浅
船舶操纵
4.4 船舶操纵控制船舶操纵是指船舶驾驶员根据船舶操纵性能和风、浪、流等客观条件,按照有关法规要求,正确运用操纵设备,使船舶按照驾驶员的意图保持或改变船舶水平运动状态的操作。
下面介绍现代船舶航向控制和船舶主机遥控操纵。
4.4.1 船舶操纵基本原理船舶操纵是一个大系统,由人、船舶和操船环境三个小系统构成,如图4–24所示。
该系统中,船舶驾引人员是主要组成部分,他们通过掌握和处理大量信息,将操船指令输人船舶,使船舶保持或改变运动状态而达到预期的目的。
图4–25为船舶驾引人员操纵船舶流程。
图中信息A 为本船运动状态,信息B为自然环境,信息C 为航行环境,信息D 为操船手册。
操纵船舶运动的机构,主要有舵和推进动力装置。
舵是船舶操纵的重要设备,操舵者通过操舵可以使船舶保持或改变其航向,达到控制船舶方向的目的。
推进器是指把主机发出的功率转换为推船运动的专用装置或系统,目前应用最广泛的推进器是螺旋桨。
螺旋桨分为等螺距螺旋桨、变螺距螺旋桨、固定螺距螺旋桨(FPP )和可调螺距螺旋桨(CPP )等不同类型。
20世纪50年代以来,船舶自动化经历了单元自动化、机舱集中监测与控制以及主机驾驶室遥控等几个阶段。
随后,由于计算机技术和自动化技术在实船上的应用,以及空间技术和通信技术的发展,使得船舶自动化由机舱自动化朝综合自动化和智能化方向发展。
螺旋桨转速舵 角锚的使用缆的使用拖船的使用图4–25 船舶操纵流程图4.4.2 船舶航向控制船舶航向控制的主要任务有二:一是保持航向;二是航向跟踪。
航向操纵部分——自动操舵系统自1922年自动操舵仪(也称自动舵)问世到今天,已经历了机械式自动舵、PID 自动舵和自适应自动舵三个发展阶段,目前正处于第四个研究发展阶段——智能自动舵。
1. 自动操舵系统1) 常规PID 自动舵在航海自动化系统中,船舶是系统的调节对象,若略去动力装置的影响,船舶运动状态的调节,将由舵来实现,并从船首方向表现出来。
《船舶操纵》课件
4) 旋回直径(final diameter)
旋回直径是指船舶作定常旋回时重心轨迹圆的直径, 亦称旋回终径,并以D表示之,它大约为旋回初径的 0.9~ 1.2倍。 5) 滞距(reach)
亦称心距。正常旋回时,船舶旋回直径的中心 O 总较操 舵时船舶重心位置更偏于前方。滞距是该中心 O 的纵距,并 以Re代表之,大约为1~2倍船长,它表示操舵后到船舶进入 旋回的“滞后距离”,也是衡量船舶舵效的标准之一。
二节 船舶操纵方程及船舶操纵性指数
一、船舶操纵运动方程
Tŕ+r=Kδ
式中:K —— 旋回性指数(s-1); T —— 追随性指数(s); r —— 旋回角速度(1/s); ŕ —— 旋回角加速度(1/s2);
δ —— 舵角(°)。
该方程最早是由日本学者野本谦作提出的,因此也称为 野本方程。该式中,T称之为船舶的追随性指数(turning lag index), 单 位 为 s;K 称 之 为 船 舶 的 旋 回 性 指 数 ( turning ability index)。
11.螺旋桨的转动方向
由于受螺旋桨横向力的影响,船舶向左或向右旋回时的旋回 圈的大小将有所不同。对于右旋固定螺距螺旋桨单车船而言,
在其他条件相同的情况下,向左旋回时的旋回初径要比向右 旋回时的旋回初径要小一些。但对于超大型船舶而言,这一 差别很小。 另外,船体的污底、风、流的作用都将对船舶旋回圈 的大小产生影响。例如顶风、顶流使旋回圈进距减小,顺风、 顺流使旋回圈进距增大等等。
四、旋回圈要素在实际操船中的应用
由旋回试验测定的旋回圈资料是船舶操纵性能的重要 内容之一,它不仅用来评价船舶的旋回性能,同时还可以 直接用于实际操船。
1.旋回初径、进距、横距、滞距和在实际操船 中的应用
船舶操纵
4.4 船舶操纵控制船舶操纵是指船舶驾驶员根据船舶操纵性能和风、浪、流等客观条件,按照有关法规要求,正确运用操纵设备,使船舶按照驾驶员的意图保持或改变船舶水平运动状态的操作。
下面介绍现代船舶航向控制和船舶主机遥控操纵。
4.4.1 船舶操纵基本原理船舶操纵是一个大系统,由人、船舶和操船环境三个小系统构成,如图4–24所示。
该系统中,船舶驾引人员是主要组成部分,他们通过掌握和处理大量信息,将操船指令输人船舶,使船舶保持或改变运动状态而达到预期的目的。
图4–25为船舶驾引人员操纵船舶流程。
图中信息A 为本船运动状态,信息B为自然环境,信息C 为航行环境,信息D 为操船手册。
操纵船舶运动的机构,主要有舵和推进动力装置。
舵是船舶操纵的重要设备,操舵者通过操舵可以使船舶保持或改变其航向,达到控制船舶方向的目的。
推进器是指把主机发出的功率转换为推船运动的专用装置或系统,目前应用最广泛的推进器是螺旋桨。
螺旋桨分为等螺距螺旋桨、变螺距螺旋桨、固定螺距螺旋桨(FPP )和可调螺距螺旋桨(CPP )等不同类型。
20世纪50年代以来,船舶自动化经历了单元自动化、机舱集中监测与控制以及主机驾驶室遥控等几个阶段。
随后,由于计算机技术和自动化技术在实船上的应用,以及空间技术和通信技术的发展,使得船舶自动化由机舱自动化朝综合自动化和智能化方向发展。
目标设定预测模型操船信息模型设定正确得到必要信息决定优先顺序指令N N Y Y Y N 螺旋桨转速舵 角锚的使用缆的使用拖船的使用A B C D图4–25 船舶操纵流程图4.4.2 船舶航向控制船舶航向控制的主要任务有二:一是保持航向;二是航向跟踪。
航向操纵部分——自动操舵系统自1922年自动操舵仪(也称自动舵)问世到今天,已经历了机械式自动舵、PID 自动舵和自适应自动舵三个发展阶段,目前正处于第四个研究发展阶段——智能自动舵。
1. 自动操舵系统人 船操纵环境 图4–24 船舶操纵系统 图4–25 船舶操纵流程图 A B C D N NN Y Y Y 目标设定 预 测 模 型 操船信息 模型设定正确 得到必要信息决定优先系列 预 测 模 型1) 常规PID 自动舵在航海自动化系统中,船舶是系统的调节对象,若略去动力装置的影响,船舶运动状态的调节,将由舵来实现,并从船首方向表现出来。
船舶操纵-PPT课件
2.2 船舶操纵运动方程
野本方程
操舵速度有限,船舶的惯性很大,船舶对舵的 响应也是一种非常缓慢的运动,因此有
建立了有效的数学研究方法,借鉴飞艇操纵理论
1939,巴辛
利用里亚谱诺夫运动稳定理论研究船舶的运动稳定 性
1.1 船舶操纵性总论
船舶操纵性研究的发展过程
1944,肯夫(kemf)
提出了用Z形操舵试验来评价船舶的操纵性,开创了 船舶对操舵的动态响应研究
1946,戴维逊(K. S. Davidson)和许夫(L. I. Schiff)
1.1 操纵性总论
操纵性的重要意义(经济性要求)
在海上的直航运动,
航向稳定性好 不用经常地去操舵,航迹接近直线
不好的船 频繁操舵纠正航向,经历曲折的航线,增加了实际 的航行距离,同时增加了操纵装置和推进装置的功 率消耗 由于操舵增加的功率消耗占主机功率的2%-3%,航 向稳定性不好的船,可以高达20%。
船舶有横漂速度 时横向力的导数。该力很大, 方向与 相反;
船舶有横漂速度 时横向力对重心力矩的导数。 该力矩不太大,为负值,方向有使漂角增大的趋势;
船舶有前进速度 时纵向力的导数。该力较小, 方向与 相反。
2.2 船舶操纵运动方程
水动力导数的物理意义
水动力和力矩的旋转导数 和
船首具有右舷攻角,产生负的水动力和负的水动力 矩
– 该时刻船舶运动状态决定的水动力 – 该时刻以前的运动历史决定的水动力
其他原因引起的外力,如托缆力和风压力等;
2.2 操纵运动方程的线性化
水动力学数学模型
船舶静水中运动时的受力,采用一阶泰勒展开
2.2 操纵运动方程的线性化
船舶操纵PPT学习教案课件
会计学
1
船舶操纵绪论
概述 船舶操纵运动学参数 船舶操纵动力学参数 船舶阻力与推进
第1页/共46页
船舶操纵概述
船舶操纵的含义 常规船舶操纵(ship handling)包括三种:
保持航向 改变航向 改变船速
第2页/共46页
船舶操纵概述
保持航向(Course keeping or steering)
第32页/共46页
船舶操纵动力学参数
船体水动力及其表 达式
水动力角是指水动力合力FH 方向与船舶首尾线之间的交 角γ;
水动力角可用水动力横向分 量与纵向分量的比值表示
第33页/共46页
船舶操纵动力学参数
船体水动力及其表 达式
水动力角的大小取决于横向 水动力系数和纵向水动力系 数的比值;
第6页/共46页
船舶操纵设备
• 其他设备:
– 侧推器设备; – 外力协助操纵—拖船的协助; – 系泊设备:锚、缆等。
第7页/共46页
船舶操纵特点
• 惯性大,缓变系统 • 控制输入较小 • 欠驱动特性:
控制输入的维数小于被 控自由度维数(dof), 例如,控制输入:车、 舵;被控坐标:横向位 移y1,航向角和纵向 位移x1
船体水动力及水动力矩
深水中,超大型船舶的纵向附加质 量mx≈0.07m;横向附加质量 my≈0.75m;附加惯性矩Jz≈1.0m。
为了研究问题的方便,有的资料将 船舶质量与附加质量之和称为虚质 量,惯性矩与附加惯性矩之和称 为虚惯性矩。
第30页/共46页
船舶操纵动力学参数
船体水动力及其 表达式
第36页/共46页
船舶操纵动力学参数
水动力作用中心
《船舶操纵》课件
船舶操纵的基本原则
01
遵守国际海上避碰规则 ,确保船舶之间的安全 避让。
02
根据船舶的装载状态、 吃水、风流影响等因素 ,合理调整船速和航向 。
03
注意观察周围环境和条 件,及时采取必要的措 施应对突发情况。
04
保持船员良好的心理状 态,避免因紧张或疏忽 导致的操作失误。
PART 02
船舶操纵性能
、航速、航向等因素,以便更好地进行避让操作。
船舶的应急操纵
总结词
应急操纵是船舶在紧急情况下采取的特殊操纵方式, 要求驾驶员熟悉应急操纵程序和方法,确保船舶在紧 急情况下能够安全脱险。
详细描述
应急操纵是船舶在紧急情况下采取的特殊操纵方式, 要求驾驶员熟悉应急操纵程序和方法。在应急操纵中 ,驾驶员需要保持冷静,迅速判断情况并采取适当的 措施。例如,在失火、碰撞等紧急情况下,驾驶员需 要迅速停车、倒车、转向等操作,以避免危险扩大。 此外,驾驶员还需要了解各种应急设备的使用方法, 如消防器材、救生设备等,以便在紧急情况下能够正 确使用。
PART 05
船舶操纵安全与管理
船舶操纵安全制度与规则
船舶操纵安全制度
为确保船舶操纵安全,必须制定和遵 守相关制度,包括航行制度、停泊制 度、作业制度等。
船舶操纵规则
遵循国际海事组织(IMO)和国内海 事管理机构制定的船舶操纵规则,确 保船舶在航行、停泊和作业过程中的 安全。
船舶操纵安全检查与评估
船舶操纵包括船舶推进、转向 、减速、停车和倒车等基本操 作。
Байду номын сангаас
船舶操纵是航海技术的重要组 成部分,是航海人员进行船舶 驾驶和操作的基本技能。
船舶操纵的重要性
船舶操纵是保证船舶 安全航行和作业的重 要手段。
11规则二三副大证考试船舶操纵吐血整理
11规则二三副大证考试船舶操纵考点1.满载船舶满舵旋回时的最大反移量约为船长的1%左右,船尾约为船长的1/5至1/102.船舶满舵旋回过程中,当转向角达到约1个罗经点左右时,反移量最大3.一般商船满舵旋回中,重心G处的漂角一般约在3°~15°4.船舶前进旋回过程中,转心位置约位于首柱后1/3~1/5船长处5.万吨船全速满舵旋回一周所用时间约需6分钟6.船舶全速满舵旋回一周所用时间与排水量有关,超大型船需时约比万吨船几乎增加1倍7.船舶尾倾,且尾倾每增加1%时,Dt/L将增加10%左右8.船舶从静止状态起动主机前进直至达到常速,满载船的航进距离约为船长的20倍,轻载时约为满载时的1/2~2/39.排水量为1万吨的船舶,其减速常数为4分钟10.从前进三至后退三的主机换向所需时间不同,一般:内燃机约需90~120s;汽轮机约需120~180s;而蒸汽机约需60~90s11.船舶航行中,进行突然倒车,通常在关闭油门后,要等船速降至全速的60%~70%,转速降至额定转速的25%~35%时,降压缩空气通入汽缸,迫使主机停转后,再进行倒车启动12.一般万吨级、5万吨级、10万吨级和15~20万吨级船舶的全速倒车冲程分别为:6~8L、8~10L、10~13L、13~16L13.CPP船比FPP船换向时间短,一般紧急停船距离将减为60%~80%14.螺旋试验的滞后环宽度达到20度以上时,操纵时由显著的困难15.IMO船舶操纵性衡准中要求旋回性能指标中的进距基准值为<4.5L16.IMO船舶操纵性衡准中要求旋回性能指标中的旋回初径基准值为<5.0L17.IMO船舶操纵性衡准中要求初始回转性能(操10度舵角,航向变化10度时船舶的前进距离)指标的基准值为<2.5L18.IMO船舶操纵性衡准中要求全速倒车冲程指标的基准值为<15L19.为了留有一定的储备,主机的海上功率通常为额定功率的90%20.船舶主机的传送效率的通常值为:0.95~0.9821.船舶的推进器效率的通常值为:0.60~0.7522.船舶的推进效率的通常值为:0.50~0.7023.为了保护主机,一般港内最高主机转速为海上常用住宿的70%~80%24.为了留有一定的储备,主机的海上转速通常定为额定转速的96%~97%25.为了保护主机,一般港内倒车最高主机转速为海上常用转速的60%~70%26.沉深比h/D在小于0.65~0.75的范围内,螺旋桨沉深横向力明显增大27.侧推器的功率一般为主机额定功率的10%28.当船速大于8kn时,侧推器的效率不明显29.当船速小于4kn时,能有效发挥侧推器的效率30.船舶操35度舵角旋回运动中,有效舵角通常会减小10—13度31.使用大舵角、船舶高速前进、舵的前端曲率大时,多的背流面容易出现空泡现象32.舵的背面吸入空气会产生涡流,降低舵效33.一般舵角为32~35度时的舵效最好34.当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为水中锚重的1.6倍35.当出链长度与水深之比为2.5时,拖锚制动时锚的抓力约为锚重的1.4倍36.一般情况下,万吨以下重载船拖锚制动时,出链长度应控制在2.5倍水深左右37.霍尔锚的抓力系数和链的抓力系数一般分别取为:3-5,0.75-1.538.满载万吨轮2kn余速拖单锚,淌航距离约为1.0倍船长39.满载万吨轮2kn余速拖双锚,淌航距离约为0.5倍船长40.满载万吨轮1.5kn余速拖单锚,淌航距离约为0.5倍船长41.满载万吨轮3kn余速拖双单锚,淌航距离约为1.0倍船长42.拖锚淌航距离计算:S=0.0135(△v k2/P a)43.均匀底质中锚抓底后,若出链长度足够,则抓力随拖动距离将发生变化:一般拖动约5-6倍锚长距离时,抓力达最大值44.当风速为30m/s时,根据经验,单锚泊出链长度与水深的关系为:4h+145 m45.当风速为20m/s时,根据经验,单锚泊出链长度与水深的关系为:3h+90 m46.在一般风、流、底质条件下与锚地抛锚,根据经验,单锚泊出链长度为5-7倍水深47.经验表明,船舶前进中用拖轮顶推大船船首转头时,拖轮起作用的大船的极限航速为5~6kn48.根据经验,风速低于15m/s,流速低于0.5kn,万吨级船舶所需拖轮功率(kw)应约为船舶总吨位的11%49.根据经验,风速低于15m/s,流速低于0.5kn,万吨级船舶所需拖轮功率(kw)应约为船舶载重吨位的7.4%50.固定螺距螺旋桨拖船的牵引力与主机马力可用100马力=1.0吨牵引力概算51.根据有关规定,载重量DW T≤2万吨的船舶,所需的港做拖船总功率为 0.075 DWT52.根据有关规定,载重量DWT处于2万吨至5万吨的船舶,所需的港做拖船的总功率为 0.060DWT53.根据有关规定,载重量大于5万吨的船舶所需的港做拖船总功率为 0.050 DWT54.吊拖时拖缆的俯角一般应低于 15度55.吊拖时拖缆长度应大于被拖船拖缆出口至水面距离的4倍;但不应小于45m56.当风舷角在30~40或140~160度时,风动力系数Ca为最大值57.当风舷角在0或180度时,风动力系数Ca为最小值58.风压力角α随风舷角θ增大而增大,θ=40~140之间时,α大体在 80~100之间59.风压力角α随风舷角θ增大而增大,θ=90±50之间时,α大体在 90±10之间60.水动力系数在漂角90度左右时达最大值;在0或180度时为最小值61.在深水中,静止中的船舶,正横附近受横风时,空载状态,水上侧面积与船长吃水之比Ba/L d≈1.5时,其匀速下风漂移速度Vy≈5%Va(相对风速)62.下风漂移速度Vy=0.041(√Ba/Ld)²Va63.航行中的漂移速度V y′与停船时的漂移速度Vy之间的关系:V y′= Vy e-1.4Vs64.船舶在均匀水流中顺流掉头的漂移距离为:流速³掉头时间³80%65.横向附加质量约为船舶质量的0.75倍;纵向附加质量约为船舶质量的0.07倍66.根据船模试验,水深/吃水=4~5时,船体阻力受浅水的影响应引起重视67.根据Hooft的研究,航道宽度与船长之比W/L为W/L≤1时,船舶操纵性会受到明显影响68.欧洲引航协会EMPA建议的外海航道富于水深为吃水的20%港外水道富于水深为吃水的15%港内水道富于水深为吃水的10%69.日本濑户内海主要港口的富于水深标准:吃水在9m以下,取吃水的5%吃水在9~12m的,取吃水的8%吃水在12m以上,取吃水的10%70.某船船宽为B,当横倾角为θ时,其吃水增加量可由公式:B²sinθ/2估算71.某船船长为L,当纵倾角为φ时,纵倾造成的吃水增加量可由公式:L²sinφ/2估算72.海图水深的误差:水深范围20m以下,允许误差0.3m水深范围20~100m,允许误差1.0m73.会产生船吸作用的两船间距约为两船船长之和的1倍;船吸作用明显加剧的两船间距约为小于两船船长之和的一半74.两船船吸吸引力的大小与两船间距的4次方成反比;与船速的2次方成正比75.两船转头力矩的大小与两船间距的3次方成反比;与船速的2次方成正比76.一般超大型油轮接近泊地时,由于其排水量答,相对主机功率低,通常备车时机至少在离泊地前剩余航程20海里以上77.一般现代化大型集装箱船舶在接近港口附近时,通常备车时机在至锚地剩余航程5海里或提前0.5小时78.一般现代化大型集装箱船舶在接近港口附近时,若交通条件复杂,通常备车时机在至锚地剩余航程10海里或提前1小时79.一般船舶在接近港口附近时,通常备车时机在至锚地剩余航程10海里或提前1小时80.船舶舵效随航速降低而变差,一般情况下,手动操舵保持舵效的最低航速约为2~3kn81.船舶舵效随航速降低而变差,一般情况下,自动操舵保持舵效的最低航速约为8kn以上82.实际操纵中,一般万吨船能保持舵效的最低船速约为2kn83.根据经验,在港内掉头中,对于单车右旋螺旋桨船舶,若先降速,而后提高主机转速,操满舵向右掉头,应至少需要直径3.0倍的船长84.根据经验,在港内掉头中,若有一艘拖船可用进行掉头,应至少需要直径2.0倍船长的圆形掉头区域85.受水域限制,单桨船利用锚和风、流有力影响自力掉头取应需2.0倍船长直径的水域86.根据经验,在港内掉头中,若有两艘以上拖船可用进行掉头,应至少需要直径1.5倍船长的圆形掉头区域87.重载万吨级船顺流抛锚掉头时,流速以1~1.5kn为宜88.顺流抛锚掉头一般出链长度应为2.5~3.0倍水深89.顶流拖首掉头,满载万吨轮应在掉头位置1000米以外停车淌航90.对于总长度大于100米的船舶,泊位有效长度应当至少为船舶总长的120%91.靠泊操纵中,在通常情况下船首抵达泊位中点时船舶最大余速应控制在2kn以下92.一般,风流不大时,船首抵达泊位前端的横距应有20m的安全余量93.船舶在一般情况下靠码头,其船尾距泊位下方停靠船的横距宜大于2倍船宽94.万吨级船舶,风速不大,顶流靠泊时靠拢角的最大值:α=arctanVb/VcVb——接近码头速度Vc——水流速度95.靠泊操纵中,一般船舶接触直壁式码头的速度应低于15cm/s96.靠泊操纵中,超大型船舶接触直壁式码头的速度应控制在2~5cm/s97.靠泊操纵中,超大型船舶进靠海上泊位的速度应低于5cm/s98.靠泊操纵中,万吨级船舶进靠栈式泊位的速度应低于10cm/s99.靠泊操纵中,10万吨级船舶进靠栈式泊位的速度应控制在2-8cm/s100.靠泊操纵中,20~30万吨级船舶进靠栈式泊位的速度一般应控制在1~5cm/s101.一般情况下,在船舶顶流拖首离泊时选择的离泊角度,流急时约为10度左右,流缓时约为20度左右102.靠泊仪可只是船首尾距码头距离和入泊角度,其量程和精度分别为:0~150米(±1%);0~20cm/s (±1%)103.一般空载万吨级船舶1.5kn流速影响约与5级风相影响抵消104.一般空载万吨级船舶2kn流速影响约与6级风相影响抵消105.右旋单车船顶风系单浮风力较弱时,应与浮筒保持1~1.5倍船宽横距置于右舷,以维持舵效最低航速驶近,距浮筒约0.5~1倍船长左右,采用倒车停船106.船舶系双浮筒时,如抛开锚,一般下锚点距浮筒连线的横距约需30~40m107.一般大型船舶在尾系泊时,船首应用交角约为20度的八字锚形式固定108.船舶采用尾靠泊方法时,抛锚点距码头边应有出链长与1.1倍船长之和的距离109.尾系泊时顺风进泊,倒车后淌航接近上风侧锚位时宜控制余速在1kn以内,出链2.5倍水深110.空船5-6级风,并靠重载锚泊大船,宜从锚泊船下风舷接近并靠泊111.万吨空船在风力3-4级时并靠超大型锚泊船,一般应靠锚泊船的上风舷112.过船闸前应事先向船闸当局申请并悬持国际信号旗K旗113.适合DW一万吨级货轮抛锚的锚地水深一般为:15~20m114.在有浪、涌侵入的开场锚地抛锚时,其低潮时的锚地水深至少应为1.5倍水深+2/3最大波高115.根据经验,一般万吨船在大风浪中锚泊时,充分考虑安全锚泊条件,至少应距下风方向10m等深线2海里116.单锚泊时本船与周围其他锚泊船或附表的距离可定为:一舷全部链长+ 1倍船长117.在水深能满足要求的锚地抛锚,锚位至浅滩、陆岸的距离应有:一舷全部链长+ 2倍船长118.港内锚地的单锚泊所需的水域的半径按:1倍船长+ 60-90m 估算119.港内锚地的八字锚泊所需的水域的半径按:1倍船长+ 45m120.深水区抛锚,锚地最大水深一般不得超过一舷锚链总长的1/4121.水深大于25m时,需用锚机将锚全部送达海底而后用刹车带将锚抛出;小于25米时可以自由落下122.深水抛锚的水深极限一般可取85米123.DW一万吨级商船抛锚时,对地船速一般应控制在2kn以下124.锚泊时,一般最初的出链长度为2.5倍水深时即应刹住,使其受力后在松链125.采用一字锚锚泊方法时,一般情况下,力链和惰链链长应分别控制在3节和3节;强流情况下,迎流锚链应为4节,落流锚链应为3节126.抛八字锚应保持两链间的合适夹角是30~60度;从减轻偏荡、环节冲击张力和增加稳定度出发两锚链张角以60-90度为宜127.八字锚两交角在60度左右时,其抓力约为单锚抓力的1.7~1.8倍128.为避免或减少船舶因流影响而回转所产生的双链绞缠,最好选择船舶在受台风影响,风力达到6级风以上时改抛一点锚129.单锚泊船大幅度偏荡时,小型船锚链受冲击张力大约为正面风压力的3~5倍130.单锚泊船偏荡激烈时,可加抛止荡锚,其出链长度以1.5~2.5倍水深为宜131.空船偏荡幅度较大,加大吃水是减小船体偏荡的有效措施,至少应加至满载吃水的75%132.驾驶台居尾有抑制偏荡的作用133.强风中的单锚泊船偏荡时使用止荡锚,其锚泊力可抗风的程度以20m/s风速为限134.超大型船舶靠泊时的靠拢角度多取为0 度;接近码头的速度应低于5cm/s135.大型油轮在风速15m/s条件下,有拖船协助掉头,需要直径为2.0L的掉头区域136.超大型船舶在锚泊时,抛锚时多采用深水退抛法,余速控制在0.5节以下137.超大型船单点系泊过程中,波浪较小时,出缆长度多为水面至缆孔高度的1.5倍;波浪明显时,则松长些为好138.一般情况下,超大型船舶当离锚地的锚泊点1海里时,其速度应控制在2节左右139.根据试验结果,4万吨油轮在停车后余速约3.2节时无舵效140.根据试验结果,23万吨油轮满载时在16节的船速下紧急停船,其冲程约为4000米,冲时约为20分钟141.根据实验结果,超大型船舶在水深与吃水之比为1.25倍时,进行旋回试验,其旋回圈比深水中增大约为70%142.根据国际石油开发公司(IMODOC)浮筒设计的要就,在余速为30m/s,流速为5kn时船舶仍可进行单点系泊安全作业143.岛礁水域呈现深紫蓝色,则水深H>70M黄绿色2M<H<5m带白的蓝色 H≈15m带紫的蓝色 H≈30m144.珊瑚岛礁多见于平均水温为25℃~35℃,海流较强的热带水域145.通过岛礁区时的航线拟定,若水域允许,一般至少要离礁盘 6 海里以外146.在晴朗的白天,大冰山的视距可达10海里147.在晴朗的黑夜,用望远镜可在1海里处看到冰山148.露出水面3米的冰山,雷达探测到该冰山的距离大约为2.0海里149.冰清通报中,称为“冰山”的直径约为30m以上小冰山6~30m冰岩2-6m冰原D大于5海里150.冰量一般以10法度量,分为8级151.若船舶不再海洋的寒流中,则当海水温度为1.1℃时,海水的冰缘已在100~150海里之内0.5 50152.雷达探测高达的冰山时,有时可以在10 海里的距离上显示回拨153.进入冰区航行前,个水舱的水量不得超过90%154.冰区航行前,上层边水舱,边水舱与前后尖舱的水量应不超过满载的85%155.进入冰区之前,必须保证一定的吃水,以使螺旋桨和舵没入水中一定深度,并保持1.0~1.5m的尾倾156.冰量在5/10时,只要冰厚不超过30cm,就可以通航157.冰量达6/10时,船舶航行比较困难,应争取破冰船引航158.当海面涌浪较大或有5级以上横风时,船舶不宜进入冰区159.船舶通过冰区航行过程中,冰量为4/10~5/10以下时,可以常速航行160.冰量增加1/10,应减速1节航行161.破冰船开路护航,编队船间距离宜保持2~3倍本船船长162.在冰量大且有压力的冰中拖带时,拖缆宜尽量缩短,一般为20~40米163.深海坦谷波的波速c和波浪周期τ与波长λ间的关系:c=1.25√λτ=0.8√λc=1.56τ164.大洋中易产生的波浪的波长时80~140m,周期为7~10s;最陡的波的倾斜度为1/10,一般为1/30~1/40 有1/10的波高是平均波高的2倍,称为最大波高有1/3 的报告时平均波高的1.6倍,称为有义波高或三分之一平均波高海上不规则波的最大能量波长约为三一波高的40倍海上不规则波的最大有义波长约为三一波高的60倍165.当水深H大于λ/2时为深水波,反之为浅水波166.货船压在情况下航行,其横摇周期一般为7—10s万吨级货船满载情况下航行,其横摇周期一般为9—14s167.根据经验数据,超大型油轮的横摇周期,一般空载时为6s以下满载14s以上168.简易估算船舶固有横摇周期,横摇周期系数约取0.8169.稳性高度GM与船宽B影响船舶的横摇,一般来说若G M>B/10 横摇过于剧烈 GM<B/30 横摇过“软”GM>B/30 横摇适中170.船舶在大风浪中避开谐振的条件是:Tθ/τ e 小于0.7或者大于1.3谐振范围是:0.7≤Tθ/τe≤1.3171.波速=波长/波浪周期172.波浪遭遇周期的估算公式(其中λ为波长,C为波速,Vs为船速,φ为浪向角):τ=λ/( C + Vs cosφ)173.船舶在大风浪中谐摇的横倾角,可用7.93倍最大波面角的平方根估算174.风浪中航行的船舶,在纵摇周期和遭遇周期不变的情况下,纵摇摆幅与船长L和波长λ的比值有关;当L大于1.5λ时,纵摇摆幅最小;当L远小于λ时,纵摇摆幅最大175.当船长大于1.5倍波长时,则船舶在游泳中的相对比值摇摆幅小于0.4176.当船长大于1.3倍波长时,则船舶在游泳中的相对比值摇摆幅小于0.6177.万吨船空载在风浪中航行时,为了减轻螺旋桨打空车,应保持螺旋桨桨叶没入水中20~30%的螺旋桨直径178.为确保风浪中空载船舶的航行安全,适当压在应以夏季满载排水量的50%~53%为好179.万吨船风浪中压载航行,即防止空车又减轻拍底,尾倾吃水差以1.5~2.0m为宜180.滞航是指以保持舵效的最小速度,将风浪放船首2~3个罗经点的方位上迎浪前进181.抢滩时若条件许可应尽量选择适合于该船的坡度,一般小型船选:1:15中型1:17大型1:19~1:24182.国际海事组织全球搜救计划中将全世界海区划为13个区183.在搜寻遇难船时,确定搜寻基点后,开始搜寻阶段的最可能区域时以基点为中心半径为10海里的圆的外切正方形184.扇形搜寻方式中,第一个搜寻循环中每次转向角为120,第一个搜寻循环结束时,右转30度进入第二个搜寻循环185.在海面平静的情况下应尽快释放救生艇或救助艇抢救落水人员,放艇时大船的余速不应超过5kn 186.船舶释放救生艇时,纵倾不应大于10度,横倾不应大于20度187.航行中的船舶在风浪大的海面上放艇,应将航速减至能维持舵效的速度,使放艇舷侧处于下风舷,为避免遭受横浪,应保持风舷角为20~30度188.海上拖带,拖缆应具有的悬垂量d应为拖缆长度的6%189.海上拖带,要求拖缆在水中有一定的下沉量,当海面比较平静时该下沉量应不少于8m当风浪大时该下沉量应不少于13m190.海上拖带中,拖带距离较短,海面平静时,拖缆的安全系数取为:4海面有风浪时,拖缆的安全系数取为:6—8191.海上拖带转向应每次转5~10度分段完成192.在汽缸尺寸和转速等相同的条件下,二冲程柴油机的功率是四冲程柴油机的1.7倍左右193.空调装置中的加湿器一般在摄氏气温低于0 度时投入工作194.海船舵机的电动舵角指示器在最大舵角时的指示误差不应超过±1°195.锚机的过载拉力应不小于额定拉力的 1.5倍196.柴油机换向操纵试验时间,按规定不大于 15s。
技能认证船舶操纵知识考试(习题卷11)
技能认证船舶操纵知识考试(习题卷11)第1部分:单项选择题,共88题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]船舶倒车冲程与主机换向所需时间及倒车功率有关,在其他情况相同的条件下:A)主机换向所需时间越长、倒车功率越小,倒车冲程越大B)主机换向所需时间越长、倒车功率越大,倒车冲程越大C)主机换向所需时间越短、倒车功率越小,倒车冲程越大D)主机换向所需时间越短、倒车功率越大,倒车冲程越大答案:A解析:2.[单选题]所谓滞航是指以保持舵效的最小速度,( )。
A)将风浪放船首1~2个罗经点的方位上迎浪前进的办法B)将风浪放船首2~3个罗经点的方位上迎浪前进的办法C)将风浪放船首3~4个罗经点的方位上迎浪前进的办法D)将风浪放船首4~5个罗经点的方位上迎浪前进的办法答案:B解析:3.[单选题]当航迹舵在自动校正风流压差影响的航向修正量大于( )时应发出警报。
A)5°B)10°C)15°D)20°答案:B解析:4.[单选题]靠、离泊操纵用锚时的_______。
A)出链长度以不超过1节入水B)出链长度以不超过2节入水C)出链长度以不超过3节入水D)出链长度以不超过4节入水答案:A解析:5.[单选题]浅水区的界定, 从对船舶操纵性能的影响来区分,______, 可认为船舶进人浅水区域。
A)船舶在水深与船舶吃水之比小于1.5时B)船舶在水深与船舶吃水之比大于1.5时C)船舶在水深与船舶吃水之比小于4时D)船舶在水深与船舶吃水之比小于2.5时答案:A解析:6.[单选题]关于弃船,下列说法正确的是:D)以上都不对答案:C解析:任何情况下应征得船东同意。
7.[单选题]船泊靠码头操纵之前、应做哪些准备?1掌握本船操纵性能2掌握外界环境条件 3制订靠泊操纵计划4做好应急准备、A)123B)234C)123D)1234答案:D解析:8.[单选题]液压操舵装置系统由( )( )液压控制泵、电动机、管路等部件组成。
船舶操纵知识点整理
2. 碰撞后的应急操船措施333.抢滩34四、海上搜救34(1)单旋回(single turn) 34(2)Williamson 旋回(Williamson turn) 35(3)Scharnow 旋回(Scharnow turn) 35第一章船舶操纵绪论1.船舶操纵定义船舶操纵分为常规操纵和应急操纵两大类。
常规操纵包括用小舵角保持航向、中等舵角改变航向以及加速减速操纵;应急操纵包括用大舵角进行旋回的用全速倒车进行进行紧急停船。
还包括侧推设备和拖船协助。
2.研究内容船舶受控运动规律、船舶操纵安全标准、港口设计航道工程以及其他水工设施。
3.船舶分类小型船舶:一万吨以下;中型船舶:3-5万吨;大型船舶:载重吨8万吨以上、船长250米以上的船舶。
20万吨VLCC 30万吨ULCC。
4.船舶数据杂货船船速一般为13-18节方形系数为0.65-0.7散货船船速一般为12-17节方形系数为0.8-0.85油船船速一般为12-16节方形系数为0.8-0.85集装箱船船速14-25节方形系数0.5-0.75.船舶运动学参数船舶运动学参数包括位置、船速、漂角、转向角、角速度等。
漂角是指船舶重心处的船速矢量与船舶首位线之间的交角,漂角等于横向速度比纵向速度的反正切。
航向角是指水平面内船舶首尾线与固定坐标系X轴的交角。
船舶转动时,如果船上的每一点都绕某一垂线做圆周运动,这一垂线称为转轴,转轴与船舶首尾线的交点叫做转心。
定常旋回时,一般转心在船首之后约三分之一船长处。
船舶存在尾倾时转心向后移动。
在转心处只有平动没有转动。
转心处的漂角为0.只有纵向速度。
6.船舶操纵运动方程7.附加质量和附加惯性矩物体在流体中变速运动,推动物体的力不仅要为增加物体的动能做功,还要为增加周围流体的动能做功。
因此质量为m的物体要获得加速度a,施加在它上面的力F将大于物体质量m与加速度a的乘积,增加的这部分质量就是附加质量。
若写为公式,则:,称为该物体的附加质量。
大连海事大学课件船舶操纵
在通航密度大的水域,应加强瞭望,及时掌握周围船舶动态。加强与其他船舶的沟通协调,保持紧密联系。严格遵守航行规则和避碰规则,确保安全操纵。
案例概述
某大型油轮在大窑湾港区遇到突发大风天气,需要进行紧急靠离泊操纵。
根据模拟器的功能和用途,船舶操纵模拟器可分为全任务模拟器和专项模拟器。全任务模拟器能够模拟船舶的全部操作过程,包括船舶航行、靠离码头、锚泊、装卸货等;专项模拟器则针对船舶操作的某一特定环节进行模拟,如船舶操纵中的转向、变速、掉头等。
定义
分类
船员培训
船舶操纵模拟器广泛应用于船员培训领域,通过模拟实际操作过程,提高船员的操作技能和应对紧急情况的能力。模拟器还可以用于评估和选拔船员,确保他们具备足够的操作能力和应对能力。
经验教训
在突发大风天气下,应加强气象观测和预报,提前做好应对措施。加强与港口调度和引航站的沟通协调,确保安全操纵。在操纵过程中,保持冷静,采取科学合理的应对措施,确保船舶安全。
01
02
03
04
案例概述:某大型散货船在大窑湾港区的狭窄水道进行靠离泊操纵。该水道宽度有限,且存在多个障碍物。
THANKS
总结词
CHAPTER
船舶操纵设备
03
锚设备概述
锚的类型
锚的操纵方式
锚的维护保养
01
02
03
04
锚设备用于固定船舶位置,防止船舶漂移和碰撞。
包括单爪锚、双爪锚、杆锚等,不同类型的锚适用于不同的航行环境和需求。
包括手动操纵和机械操纵,根据锚的大小和重量选择合适的操纵方式。
船舶操纵ppt
D NC
转头惯性角的估算
船舶在航行中改向操舵后,船舶的转头角速度r0
到达某一定值后操正舵,船首继续转头惯性角 为: =r0T
第二节 航向稳定性与保向性
主要内容
航向稳定性与保向性概念 航向稳定性的判别
一、航向稳定性与保向性的概念
1、直线稳定性(动航向稳定性):其重心轨迹 最终回复为一直线,航向发生变化。t→∞,r→0, 船舶沿新航向做直线运动
定常旋回直径D的估算
根据定常旋回运动中旋回角速度r0=Kδ0的结论,可以得
到船舶定常旋回直径的估算式: D=2R=2Vt/r=2Vt/(Kδ0)
R Ad Re
推定新航向距离DNC
DNC=Re+Rtg(φ/2)
t1 57.3 s (T tan ) 2 Kd 0 2
影响 因素
K’ 、T’ 变化
舵角 增加
同时 减小
吃水 增加
同时 增大
尾倾 增加
同时 减小
水深 变浅
同时 减小
船型 越肥大
同时 增大
五、K、T值的运用 船舶操纵性的分类及比较
区分船舶操纵有很 大的不同。按照 K、T指数比较船 舶的旋回轨迹, 可将船舶操纵性 概略地区分为四 类
航向稳定性(固有稳定性):船舶在直线航行过程中受外力 干扰取得回转角速度改变了原航向,当外力消失后,不经过 操纵就能在新航向上自动恢复直线运动的性能。 保向性:船舶在直线航行过程中受外力干扰取得回转角速度 改变了原航向,经过操纵能使船舶恢复在原航向上做直线运 动的性能。 小舵角、短时间内恢复原航向直线运动,保向性好; 反之,保向性差
2.载况
载况的改变将导致水下和水上船型的改变,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冰区操纵
• 航行准备工作
– – – – – 摸清冰区的规律及其特性; 备有足够的备用燃料、淡水和食物; 检查船体结构、卸除船旁水线附近的突出物; 检查排水设备及救生设备检查、充实堵漏器材; 调节货物、压载水、燃油、淡水,使螺旋桨全部没人 水中; – 防冻工作
冰区操纵
• 船舶操纵
– – – – – – – 迂回航线的选择 进入冰区, 通过冰区,转向角度宜小 冰困后的措施 冰区锚泊,冰锚 破冰船护航 冰中靠泊
• 不宜操纵 • 应保持在航道中央
– 顺流过弯
• 应保持在航道中央略偏向凹岸
岛礁水域的操船
• 操纵特点 • 操船要点 • 注意事项
岛礁水域的操船
• 操纵特点
– 珊瑚礁coral reef多以火山岛为基础发育而成, 并有裙状、环状等多种形式。 – 一般岸线向海的深度变化较为剧烈,因而可以 接近航行; – 但因岸形、浅滩位置和水深等常与海图和航路 指南有不同之处,故多礁水域中有许多值得重 视的特点。
锚泊操纵
• 锚泊偏荡
– 缓解偏荡的方法 • 增加压载水量; • 调成首纵倾 • 加抛止荡锚 • 改抛八字锚 • 恰当地使用主机 • 灵巧地使用侧推器
锚泊操纵
• 走锚
– 走锚的判断 • 利用各种定位方法勤测船位 • 连续观察偏荡情况 • 观测岸上串视标判断法 • 根据本船与他船相对位置变化来判断 • 观察锚链情况
锚泊操纵
• 走锚
– 应急措施 • 按国际信号规则规定,及时悬挂并鸣放“Y”信号,并 用VHF等通信手段警告附近他船; • 报告船长,同时通知机舱备车; • 及时加抛另一首锚并使之受力; • 在查明用无妨碍时,可用车抵抗外力以减轻锚链受力, 防止船舶继续走锚; • 如开车仍不能阻止走锚,则就果断决策,起锚另择锚 地或也海滞航。
港内掉头
• 常用掉头方法
– 顺流抛锚调头 • 合适的流速;1~1.5kn为宜 • 足够的掉头水域; • 右旋FPP单桨船一般宜采用向右掉头; • 横风时宜采取迎风掉头; • 弯曲水道应向凸岸一边掉头; • 控制余速; • 抛锚时机,船身约与流向成30度角; • 控制船身,转至横流时,进车、右舵; • 起锚。
靠离泊操纵
• 离泊操纵
– 操纵要领 • 确定离泊方法
– 首离,顶流较缓,有吹开风,泊位前方较清爽, 船首开出15°左右船尾的车舵与码头无碍时可 用; – 尾离,更为普遍的离码头方法,静水港内
• 掌握摆出角度 • 控制前冲后缩
靠离泊操纵
• 超大型船舶的操纵特点
– 质量大,惯性大,单位排水量主机功率远较 一般船为低,进行机动操纵异常呆笨; – 线型尺度大,浅水效应和岸壁效应较突出; – 由于水线上下面积的加大,受风、流影响较 大; – 航向稳定性差; – 淌航中丧失舵效的时间出现得较早。
岛礁水域的操船
• 操纵要点
– 确保船位
• 显著物标或航标、GPS、航路图志,对照陆岸的形 状
– 雷达观测和测深 – 减速航行 – 做好应急准备
岛礁水域的操船
• 注意事项
– 航路图志的精度不可盲目信赖 – 航标系统极不完备 – 多礁海域的海流和潮流多变 – 需要实行严密的瞭望
交通管制区域的操纵
• 研究、查核最新海图、熟悉分道通航制和交管 • 备车航行、加派了头、加强了望并开启雷达或 ARPA • 检查船舶操舵系统、声光信号设备、助航仪器 • 严格遵守各种航行规定 • 浮标、陆标进行定位核对 • 浅水区域应连续测深、保证足够富余水深 • 核对舵角指示器、车钟、转速表
狭水道中的船舶操纵
• 操船要点
– 全面调查地形地貌、水文情况、助航标志、交 通状况 – 采用正确的避险方法和导航方法,行驶在计划 航线上
• 导航方法有浮标导航、岸标导航(如人工叠标、自 然叠标等)单标方位导航等。 • 避险法可用物标方位线避险法、距离圈避险法等。
– 准确掌握转向点和施舵点及新航向距离
狭水道中的船舶操纵
• 注意事项
– 随时确认船位,注意是否偏离航线。 – 适时备车,备锚,必要时需不间断测深。 – 保持足够富余水深,必要时应降速航行。 – 选择视界良好、交通量较少的平流。 – 注意船行波将引发沿岸系泊船的激烈摇摆运动。 – 兼用雷达进行瞭望。
狭水道中的船舶操纵
• 有流弯曲航道
– 顶流过弯
本章作业
• • • • 船舶在选择锚地时应考虑哪些因素? 常用锚泊方式有哪几种,各有什么优缺点? 简述减轻单锚泊偏荡的措施。 简述超大型船舶的操纵性特点。
特殊水域中的操船
• • • • 狭水道中的船舶操纵 岛礁水域的操纵 交通管制区域的操纵 冰区操纵
狭水道中的船舶操纵
• 狭水道中的船舶操纵特点
冰区操纵
• 冰山与海冰
• 冰量通常采用十分法度量 – 无屏蔽水域(open water),1/10以下; – 稀疏冰(scattered ice)冰量1~5度,不能按预 定航向航行; – 疏散冰(broken ice)——冰量5~8度(5/10~ 8/10),航行有障碍; – 密集冰(close ice、close pack或packed ice)——冰量8度(8/10)以上,无破冰船(ice breaker)支援难以单独航行; – 固结冰——冰量10度,冰布满形成冰原。
冰区操纵
• 冰山与海冰 • 冰区操纵准备工作 • 冰区操纵
冰区操纵
• 冰山与海冰
– 冰山是南北两极周围山麓的冰河和冰棚崩塌滑 落而浮落于海洋的巨大冰块,多为淡水冰。 • 浮于海面以上的部分不过是其整体的1/8~ 1/7。 • 按大小可分为:
– 冰山(berg)直径超过30m; – 小冰山(berg bit)直径处于6~30m – 冰岩(growler)直径处于2~6m
冰区操纵
• 冰山与海冰的探测
• 使用雷达,与冰山的大小和反射面的角度有关 • 夜间,取决于月光强度与方向 • 冰光(ice blink)反射的太阳光线在其上空云底空 间所看到的现象。冰的反射光则为黄白色; • 冰区边缘往往出现浓雾; • 风力急剧减缓,浪涌也突然减低; • 海水温度急剧下降; • 汽笛声有回声,或大浪击壁声
冰区操纵
• 冰山与海冰
• 海冰(sea ice)为海水冻结(低于-1.9℃)的生成 物,系海水冰 – 冰晶(ice crystal)—薄片状的结晶; – 冰泥(ice slush)—浮于海面的初期极薄冰层; – 软冰(sludge ice)—由冰泥固结的软冰层,直 径约3~30m,圆盘状,对低速航行船舶无碍; – 荷叶冰(pancake ice)—较软冰略大,可达 30cm厚度,直径约为1.8m以下者;因其相互接 缘,故船舶以常速航行将损伤外板或推进器。
上节要点回顾
• 锚泊操纵
– 锚地的选择 – 锚泊方式 – 抛锚操纵 – 锚泊偏荡
本节主要内容
• 港内操船
– 锚泊操纵 • 走锚及其防止 – 港内掉头 – 靠、离泊操纵 • 靠离泊操纵要领 • 超大型船舶的– – – 狭水道中的船舶操纵 岛礁水域的操纵 交通管制区域的操纵 冰区操纵
港内掉头
• 常用掉头方法
– 顶流拖首调头 • 向右掉头; • 控制余速;掌握船位和船身进退;减低转头速度, 稳定船首向 – 拖尾掉头 • 在船舶前进时根据受力可知容易转向 • 较常用
靠离泊操纵
• 靠泊操纵
– 准备工作 • 掌握港口与码头信息 • 掌握本船情况 • 制定靠泊操纵计划 – 操纵要领 • 控制抵泊余速 • 合理选择横距 • 调整好靠拢角度(大型船舶平行靠)
靠离泊操纵
• 离泊操纵
– 准备工作 • 实地观察风、流及泊位前后情况,前后有无动车 余量、锚链方向及长度,系缆的角度及受力状态, 以及水域内来往船舶的动态 • 制定离泊方案,如有拖轮协助,应交待协助操纵 方案,以便使其主动配合 • 机舱活车,驾驶员应到船尾察看系缆及推进器附 近是否清爽 • 备车后单绑
– 狭水道是指相对水深或水道相对宽度较小,因而给通 过该水域的船舶进行操纵带来各种影响的水域。例如, 港区、江河、运河、锚地、岛礁区、雷区及狭窄海峡 等。 – 狭水道内,航道狭窄弯曲,水浅滩多甚而还有暗礁、 沉船或渔栅等障碍物,水文气象条件多变,船舶交通 密集。为确保狭水道内航行安全,必须经常研究和掌 握该水道的地理特点及水文气象条件,加强瞭望并谨 慎驾驶,避免发生碰撞和触浅等事故。