灰度共生矩阵定义91页PPT

合集下载

灰度共生矩阵的定义

灰度共生矩阵的定义
其中aij是模板中的元素(i,j=1,2,3,4,5)。 其中四个有最强性能的模板是:
E5L5
R5R5
E5S5
L5S5
它们分别可以滤出水平边缘、高频点、V形状和垂直边缘。
Laws纹理能量测量法的特点
Laws将Brodatz的8种纹理图像拼在一起, 对该图像作纹理能量测量,将每个像元指定 为八个可能类中的一个,正确率达87%。
一.影像纹理的直方图分析法
纹理区域的灰度直方图作为纹理特征,为了研究灰 度直方图的相似性,可以比较累积灰度直方图分布, 计算灰度级的最大偏差或总偏差。如果限定对象,则 采用这样简单的方法也能够识别纹理。但是灰度直方 图不能得到纹理的二维灰度变化,即使作为一般性的 纹理识别法,其能力是很低的。例如下图两种纹理具 有相同的直方图,只靠直方图就不能区别这两种纹理。
灰度共生矩阵反映了图像灰度关于方向、 相邻间隔、变化幅度的综合信息,它可作为分 析图像基元和排列结构的信息。作为纹理分 析的特征量,往往不是直接应用计算的灰度 共生矩阵,而是在灰度共生矩阵的基础上再 提取纹理特征量,称为二次统计量。一幅图 像的灰度级数一般是256,这样计算的灰度共 生矩阵太大。为了解决这一问题,在求灰度 共生矩阵之前,常压缩为16级。
L7=[1 6 15 20 15 6 1] E7=[-1 –4 –5 0 5 4 1] S7=[-1 -2 1 4 1 –2 –1] W7=[-1 0 3 0 –3 0 1] R7=[1 -2 –1 4 –1 –2 1] O7=[-1 6 –15 20 –15 6 –1] 振荡Oscillation)
概率P(i,j,δ,θ)的数学式表示为 :
P( i, j,δ,θ) ={ [(x,y), (x+Δx,y+Δy)] | f(x,y)=i, f(x+Δx,y+Δy)=j; x, y=0,1 ,…,N-1}

haralick特征-灰度共生矩阵

haralick特征-灰度共生矩阵

haralick特征-灰度共生矩阵下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!深入理解Haralick特征与灰度共生矩阵在图像处理和计算机视觉领域,Haralick特征和灰度共生矩阵(GLCM)是两种重要的概念,它们在纹理分析和图像描述中发挥着关键作用。

图像的灰度共生矩阵

图像的灰度共生矩阵

圖像的灰度共生矩陣Gray-level co-occurrence matrix from an image圖像的灰度共生矩陣灰度共生矩陣是像素距離和角度的矩陣函數,它通過計算圖像中一定距離和一定方向的兩點灰度之間的相關性,來反映圖像在方向、間隔、變化幅度及快慢上的綜合信息。

使用方法:glcm = graycomatrix(I)glcms = graycomatrix(I,param1,val1,param2,val2,...)[glcms,SI] = graycomatrix(...)描述:glcms = graycomatrix(I) 產生圖像I的灰度共生矩陣GLCM。

它是通過計算兩灰度值在圖像I 中水平相鄰的次數而得到的(也不必是水平相鄰的次數,這一參數是可調的,可能通過Offsets來進行調整,比如[0 D]代表是水平方向,[-D D]代表是右上角45度方向,[-D 0]代表是豎直方向,即90度方向,而[-D -D]則代表是左上角,即135度方向),GLCM中的每一個元素(i,j)代表灰度i與灰度j在圖像中水平相鄰的次數。

因為動態地求取圖像的GLCM區間代價過高,我們便首先將灰度值轉換到I的灰度區間裡。

如果I是一個二值圖像,那麼灰度共生矩陣就將圖像轉換到兩級。

如果I是一個灰度圖像,那將轉換到8級。

灰度的級數決定了GLCM的大小尺寸。

你可以通過設定參數「NumLevels」來指定灰度的級數,還可以通過設置「GrayLimits"參數來設置灰度共生矩陣的轉換方式。

下圖顯示了如何求解灰度共生矩陣,以(1,1)點為例,GLCM(1,1)值為1說明只有一對灰度為1的像素水平相鄰。

GLCM(1,2)值為2,是因為有兩對灰度為1和2的像素水平相鄰。

glcms = graycomatrix(I,param1,val1,param2,val2,...) 返回一個或多個灰度灰度共生矩陣,根據指定的參數。

灰度共生矩阵法

灰度共生矩阵法

灰度共生矩阵法1. 引言灰度共生矩阵法是一种用于图像分析和纹理特征提取的方法。

它通过计算图像中灰度级相邻像素之间的频次,用以描述图像的纹理特征。

本文将详细介绍灰度共生矩阵的原理、计算过程和应用领域。

2. 灰度共生矩阵的原理2.1 灰度共生矩阵介绍灰度共生矩阵(gray-level co-occurrence matrix,GLCM),又称共生矩阵或共生矩阵,是一种用于计算图像纹理特征的统计工具。

它描述了图像中相邻像素之间的灰度级关系,可以用来表征图像的纹理信息。

2.2 灰度共生矩阵的计算灰度共生矩阵的计算分为以下几个步骤: 1. 将原始图像转换为灰度图像。

2. 根据设定的像素间距(pixel distance)和方向(angle)参数,计算图像中每对相邻像素的灰度级对。

3. 统计每对灰度级对出现的频次,构建灰度共生矩阵。

3. 灰度共生矩阵的计算过程3.1 图像灰度化将彩色图像转换为灰度图像的常用方法有取平均灰度法、加权平均法和仅取一个分量法等。

选择合适的灰度化方法可以提取出图像中的纹理信息。

3.2 灰度共生矩阵的定义灰度共生矩阵是一个正方形矩阵,其大小为灰度级的个数。

矩阵的每个元素表示了某一对灰度级在特定方向上出现的频次。

3.3 灰度共生矩阵的计算对于给定的图像和参数,可以通过遍历图像的所有像素,并统计每对相邻像素的灰度级对出现的频次来计算灰度共生矩阵。

4. 灰度共生矩阵的应用领域4.1 纹理特征提取灰度共生矩阵能够提取图像的纹理特征,例如对比度、能量、协方差等。

这些特征可以用于图像分类、图像识别和图像检索等任务中。

4.2 图像分割灰度共生矩阵可以通过分析图像中的纹理信息,用于图像分割。

基于纹理的图像分割算法可以通过提取纹理特征,将图像分成不同的区域,有助于提高图像分割的准确性和效果。

4.3 缺陷检测灰度共生矩阵在材料缺陷检测中也有广泛应用。

通过提取纹理特征,可以对材料表面的缺陷进行分析和检测,有助于提高材料质量的控制。

灰度共生矩阵法

灰度共生矩阵法

灰度共生矩阵法灰度共生矩阵法是一种常用的图像纹理特征分析方法,它通过统计图像中不同灰度值之间出现的空间关系来描述图像的纹理特征。

本文将从以下几个方面详细介绍灰度共生矩阵法。

一、灰度共生矩阵法的基本原理灰度共生矩阵法是一种基于灰度级别的统计方法,它通过计算同一图像区域内不同位置处两个像素之间的灰度值关系,得出各种方向上不同距离处两个像素之间某些特定关系的概率分布。

具体而言,对于给定的图像I(x,y),以及距离d和角度θ,可以定义一个二元组(x,y)和另一个二元组(x+d*cosθ,y+d*sinθ)之间的关系,通常称为共生对。

然后可以通过统计所有这些共生对在整个图像中出现的频率来生成一个称为灰度共生矩阵(GLCM)的矩阵。

二、灰度共生矩阵法的主要步骤1. 灰度化:将彩色图像转换为灰度图像。

2. 分块:将整幅图像分割成若干个小块,每个小块的大小可以根据实际需求来确定。

3. 计算灰度共生矩阵:对于每个小块,计算其灰度共生矩阵。

具体而言,对于每个像素点,统计它周围距离为d、方向为θ的所有像素点的灰度值,并将这些灰度值作为共生对出现的频率填入GLCM中。

4. 特征提取:从GLCM中提取出各种特征参数。

常用的特征参数包括能量、熵、对比度、相关性等。

5. 分类识别:将提取出来的特征参数输入到分类器中进行分类识别。

三、灰度共生矩阵法的常用特征参数1. 能量(Energy):能量是指GLCM中所有元素平方和的开方,它反映了图像纹理的粗细程度。

能量越大,表示图像纹理越粗糙。

2. 熵(Entropy):熵是指GLCM中所有元素对数之和的相反数,它反映了图像纹理的复杂程度。

熵越大,表示图像纹理越复杂。

3. 对比度(Contrast):对比度是指GLCM中元素值之差与元素位置之间距离的加权和,它反映了图像纹理的明暗程度。

对比度越大,表示图像纹理越明暗分明。

4. 相关性(Correlation):相关性是指GLCM中元素值之间的线性关系程度,它反映了图像纹理的方向性。

Gray-level Co-occurrence Matrix(灰度共生矩阵)

Gray-level Co-occurrence Matrix(灰度共生矩阵)

Gray-level Co-occurrence Matrix(灰度共生矩阵)共生矩阵用两个位置的象素的联合概率密度来定义,它不仅反映亮度的分布特性,也反映具有同样亮度或接近亮度的象素之间的位置分布特性,是有关图象亮度变化的二阶统计特征。

它是定义一组纹理特征的基础。

一幅图象的灰度共生矩阵能反映出图象灰度关于方向、相邻间隔、变化幅度的综合信息,它是分析图象的局部模式和它们排列规则的基础。

设f(x,y)为一幅二维数字图象,其大小为M×N,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为P(i,j)=#{(x1,y1),(x2,y2)∈M×N|f(x1,y1)=i,f(x2,y2)=j}其中#(x)表示集合x中的元素个数,显然P为Ng×Ng的矩阵,若(x1,y1)与(x2,y2)间距离为d,两者与坐标横轴的夹角为θ,则可以得到各种间距及角度的灰度共生矩阵P(i,j,d,θ)。

纹理特征提取的一种有效方法是以灰度级的空间相关矩阵即共生矩阵为基础的[7],因为图像中相距(Δx,Δy)的两个灰度像素同时出现的联合频率分布可以用灰度共生矩阵来表示。

若将图像的灰度级定为N级,那么共生矩阵为N×N矩阵,可表示为M(Δx,Δy)(h,k),其中位于(h,k)的元素mhk的值表示一个灰度为h而另一个灰度为k的两个相距为(Δx,Δy)的像素对出现的次数。

对粗纹理的区域,其灰度共生矩阵的mhk值较集中于主对角线附近。

因为对于粗纹理,像素对趋于具有相同的灰度。

而对于细纹理的区域,其灰度共生矩阵中的mhk值则散布在各处。

为了能更直观地以共生矩阵描述纹理状况,从共生矩阵导出一些反映矩阵状况的参数,典型的有以下几种:(1)能量:是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。

如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些值大而其它值小,则ASM值大。

灰度共生矩阵

灰度共生矩阵

灰度共生矩阵(GLCM)共生矩阵用两个位置的象素的联合概率密度来定义,它不仅反映亮度的分布特性,也反映具有同样亮度或接近亮度的象素之间的位置分布特性,是有关图象亮度变化的二阶统计特征。

它是定义一组纹理特征的基础。

一幅图象的灰度共生矩阵能反映出图象灰度关于方向、相邻间隔、变化幅度的综合信息,它是分析图象的局部模式和它们排列规则的基础。

设f(x,y)为一幅二维数字图象,其大小为M× N ,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为P(i,j)=# {(x1,y1),(x2,y2) ∈M×N ∣ f(x1,y1)=i,f(x2,y2)=j }其中#(x)表示集合X中的元素个数,显然P为Ng×Ng的矩阵,若(x1,y1)与(x2,y2)间距离为d,两者与坐标横轴的夹角为θ,则可以得到各种间距及角度的灰度共生矩阵P(i,j,d,。

)纹理特征提取的一种有效方法是以灰度级的空间相关矩阵即共生矩阵为基础的,因为图像中相距(ΔχΔy的两个灰度像素同时出现的联合频率分布可以用灰度共生矩阵来表示。

若将图像的灰度级定为N级,那么共生矩阵为NXN矩阵,可表示为M(∆X' Δy)(h,k),其中位于(h,k)的元素mhk的值表示一个灰度为h而另一个灰度为k的两个相距为(ΔχΔy的像素对出现的次数。

对粗纹理的区域,其灰度共生矩阵的mhk值较集中于主对角线附近。

因为对于粗纹理,像素对趋于具有相同的灰度。

而对于细纹理的区域,其灰度共生矩阵中的mhk值则散布在各处。

为了能更直观地以共生矩阵描述纹理状况,从共生矩阵导出一些反映矩阵状况的参数,典型的有以下几种:(1)能量:是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。

如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些值大而其它值小,则ASM值大。

当共生矩阵中元素集中分布时,此时ASM值大。

ASM值大表明一种较均一和规则变化的纹理模式。

灰度共生矩阵专题(1)

灰度共生矩阵专题(1)

共生矩阵纹理特征常用度量
• 熵
ENT P i, j ln P i, j
i j
若灰度共生矩阵值分布均匀,也即图像近于随机或噪声很大,熵会有较大值。 熵值表明了图像灰度分布的复杂程度,熵值越大图像越复杂。
特征度量的含义:
• 1.熵(ENT)用来描述图像所具有的信息量。纹理也属于 图像的信息,纹理密集的图像熵值较大,反之,纹理稀 疏的图像熵值较小。 2.角二阶矩(ASM)是一种对图像灰度分布均匀性的度量, 当图像灰度分布比较均匀时,ASM值较大;反之,ASM值 则较小。 3.对比度(CON)可以理解为纹理的清晰程度。对于粗纹 理,CON值较小;对于细纹理,CON值较大。
0 0 2 2
7 0 水平方向无重复,变化 7 较快 0
0 0 2 0
水平方向重复多,变化慢,纹理 较粗
1)对角线元素全为0,表明同行灰度变化快
2)对角线元素较大,表明纹理较粗
• 如果对角线上的元素值很大,说明该方向有相距为d的相 同灰度的象素对,如d=1时,则表明有两两灰度相同的象 素对,该方向变化不会很快。
Mean 理解:纹理规则首先保持部分 P i, j 是比较大的, 就比较大(注意i与j的取值)。
共生矩阵纹理特征常用度量
• 方差/标准差
Variance P i, j i Mean
i j 2
Std
P i, j i Mean
i j
共生矩阵纹理特征常用度量
• 对比度度量
CON i j P i, j
2 i j
反映图像清晰度和纹理沟纹的深浅。
理解:若沟纹越深,则图像中灰度值差大的像 素对越多,则CON越大(即灰度共生矩阵中远 离对角线的元素值越大CON越大)。

灰度共生矩阵

灰度共生矩阵

灰度共生矩阵概念:像素灰度在空间位置上的反复出现形成图像的纹理,GLCM是描述具有某种空间位置关系两个像素灰度的联合分布含义:就是两个像素灰度的联合直方图,是一种二阶统计量就是两个像素点的关系。

像素关系可以根据不同的纹理特性进行选择,也就是的大小可以自由选像素的空间位置关系:取。

对于较细的纹理分析可以取像素间距为1,是水平扫描;是垂直扫描;是45度扫描;是135度扫描(原博文有错误)。

一旦位置空间确定,就可以生成灰度共生矩阵。

矩阵的物理意义:用表示灰度共生矩阵,它是一个的矩阵(L为灰度级,就是一幅图中包含的不同灰度或者颜色的个数),是具有空间位置关系且灰度分别为i和j的两个像素出现的次数或频率(归一化)例如:下图是某纹理像素的放大,和对应的像素灰度矩阵此图像只有三种灰度,故灰度级为3,灰度共生矩阵是一个3*3的矩阵归一化形式为改变位置空间的定义,灰度共生矩阵相应地改变:归一化形式为:矩阵的特征量:从灰度共生矩阵上可以简单的看出,如果对角附近的元素有较大的值,说明图像的像素具有相似的像素值,如果偏离对角线的元素会有比较大的值,说明像素灰度在局部有较大变化。

为了得到更多的纹理特征,我们还需要在进行计算:对比度)(或反差)(contrast):纹理沟纹越深,其对比度越大,视觉效果越清晰;反之,对比度小,则沟纹浅,效果模糊。

灰度差即对比度大的象素对越多,这个值越大。

灰度公生矩阵中远离对角线的元素值越大,con越大。

所以con越大图像越清晰相关度(inverse different moment):度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此,相关值大小反映了图像中局部灰度相关性。

当矩阵元素值均匀相等时,相关值就大;相反,如果矩阵像元值相差很大则相关值小。

能量:是灰度共生矩阵元素值的平方和,所以也称之为能量,反映了图像灰度分布均匀程度和纹理粗细度。

ASM值大表明一种较均一和规则变化的纹理模式。

熵(entropy):熵在物理中的含义就是物体的规则度,越有序熵越小,越无序熵越大。

灰度共生矩阵

灰度共生矩阵

1 引言图像识别是随计算机的发展而兴起的一门学科,现已渗透各个领域。

如生物学中的色体特性研究;天文学中的望远镜图像分析;医学中的心电图分析、脑电图分析、医学图像分析;军事领域中的航空摄像分析、雷达和声纳信号检测和分类、自动目标识别等等。

当前,对图像分类识别的常用方法是先提取图像特征,再进行特征值的归类。

图像特征包括几何特征、形状特征、颜色特征、纹理特征等等。

本文主要针对图像的纹理特征进行提取、分析,最后实现具有显著纹理特性的图像的分类识别。

2 图像的纹理特征纹理是景物的一个重要特征。

通常认为纹理是在图像上表现为灰度或颜色分布的某种规律性,这种规律性在不同类别的纹理中有其不同特点。

纹理大致可分为两类:一类是规则纹理,它由明确的纹理基本元素(简称纹理基元)经有规则排列而成,常被称为人工纹理。

另一类是准规则纹理,它们的纹理基元没有明确的形状,而是某种灰度或颜色的分布。

这种分布在空间位置上的反复出现形成纹理,这样的重复在局部范围内往往难以体察出来,只有从整体上才能显露。

这类纹理存在着局部不规则和整体规律性的特点,常被称为自然纹理。

纹理特征可用来描述对象物表面的粗糙程度和它的方向性,也可用来分析生物材料组织,或者用来进行图像分割。

纹理特征提取的方法随纹理类别的不同而不同,一般,规则纹理采用结构分析方法,准规则纹理采用统计分析方法。

3 灰度共生矩阵由于纹理是由灰度分布在空间位置上反复出现而形成的,因而在图像空间中相隔某距离的两象素之间会存在一定的灰度关系,即图像中灰度的空间相关特性。

灰度共生矩阵就是一种通过研究灰度的空间相关特性来描述纹理的常用方法。

3.1 灰度共生矩阵生成灰度直方图是对图像上单个象素具有某个灰度进行统计的结果,而灰度共生矩阵是对图像上保持某距离的两象素分别具有某灰度的状况进行统计得到的。

取图像(N×N)中任意一点(x,y)及偏离它的另一点(x+a,y+b),设该点对的灰度值为(g1,g2)。

灰度共生矩阵

灰度共生矩阵

灰度共生矩阵灰度共生矩阵是一种用于识别像素级关系的矩阵技术,主要用于图像处理和图像分析。

它可以准确检测到每个像素点的相邻关系,并按照它们的颜色灰度的大小来提取信息。

一、灰度共生矩阵的作用1、用于傅立叶变换和频域滤波:通过灰度共生矩阵可以计算出各个像素点的相邻的像素点的灰度,进而可以得到傅立叶变换中共生矩阵的系数,从而达到滤除图像噪声的目的。

2、用于检测图像的边界线;在检测图像边缘时,可以利用相邻像素点的灰度差来实现,从而找到图像边界线。

3、用于图像分割:灰度共生矩阵可以根据相邻的像素的颜色特征以及它们的灰度值之间的差异,进行图像分割或分类,从而提取图像中有用的信息。

二、灰度共生矩阵的原理灰度共生矩阵一般是定义一个比较矩阵(也被叫做比较灰度矩阵),用于表示像素到其它像素灰度值的关系,或者可以将它看作是有限个相邻像素之间的比较矩阵。

在数字图像处理和图像分析时,通过对比较矩阵行和列中的条目,能够得出当前点的像素邻域的规律。

这种规律表明,如果两个相邻像素之间的关系较强,它们之间的灰度变化就会较大;而灰度越不变,它们之间的关系就越弱。

所以,灰度共生矩阵可以用来提取出图像中的特定对象,或者识别本来装饰不同的像素。

三、灰度共生矩阵的实现灰度共生矩阵的实现有三个步骤:首先,计算每个像素点的邻域灰度值;其次,根据这些邻域灰度值之间的差别,计算出一个灰度共生矩阵;最后,根据灰度共生矩阵中的值来判断每个像素点和其它像素点之间的关系,最后提取出有价值的信息。

四、灰度共生矩阵的应用1、用于数字图像处理软件:通过灰度共生矩阵,可以把原始数字图像色彩叠加技术,用于增强三维图形的纹理、线条的清晰度;2、用于图像分割和分类:通过灰度共生矩阵可以对图像进行分割,根据相邻像素点的灰度之间的变化程度,把图像分割为不同的部分,从而可以更好地识别物体、特征和属性;3、用于图形识别:通过灰度共生矩阵,可以在图片中找到像素之间的相关关系,识别出图片中的景物,从而实现快速识别;4、用于影像分析:灰度共生矩阵可以根据图像中相邻像素的颜色特征和它们的灰度差异,实现影像的分析,从而获取更有价值的信息,从而改善图像处理的准确性和精确度。

图像的灰度共生矩阵

图像的灰度共生矩阵

图像的灰度共生矩阵收藏Gray-level co-occurrence matrix from an image图像的灰度共生矩阵灰度共生矩阵是像素距离和角度的矩阵函数,它通过计算图像中一定距离和一定方向的两点灰度之间的相关性,来反映图像在方向、间隔、变化幅度及快慢上的综合信息。

使用方法:glcm = graycomatrix(I)glcms = graycomatrix(I,param1,val1,param2,val2,...)[glcms,SI] = graycomatrix(...)描述:glcms = graycomatrix(I) 产生图像I的灰度共生矩阵GLCM。

它是通过计算两灰度值在图像I 中水平相邻的次数而得到的(也不必是水平相邻的次数,这一参数是可调的,可能通过Offsets来进行调整,比如[0 D]代表是水平方向,[-D D]代表是右上角45度方向,[-D 0]代表是竖直方向,即90度方向,而[-D -D]则代表是左上角,即135度方向),GLCM中的每一个元素(i,j)代表灰度i与灰度j在图像中水平相邻的次数。

因为动态地求取图像的GLCM区间代价过高,我们便首先将灰度值转换到I的灰度区间里。

如果I是一个二值图像,那么灰度共生矩阵就将图像转换到两级。

如果I是一个灰度图像,那将转换到8级。

灰度的级数决定了GLCM的大小尺寸。

你可以通过设定参数“NumLevels”来指定灰度的级数,还可以通过设置“GrayLimits"参数来设置灰度共生矩阵的转换方式。

下图显示了如何求解灰度共生矩阵,以(1,1)点为例,GLCM(1,1)值为1说明只有一对灰度为1的像素水平相邻。

GLCM(1,2)值为2,是因为有两对灰度为1和2的像素水平相邻。

glcms = graycomatrix(I,param1,val1,param2,val2,...) 返回一个或多个灰度灰度共生矩阵,根据指定的参数。

灰度

灰度

灰度共生矩阵的理解
灰度共生矩阵是一个图像中各个灰度级分布的矩阵表示。

假如有如表一所示的一张图像:
表一
灰度矩阵是这样表示的,因为它要表示图像的纹理特征,所以它要反应在某个标准下,图像中像素间的关系(这个像素间关系一般指的是两个像素点之间的关系)。

因此,我们可以用一个四维向量(p1,p2,d,θ)来表示任意两点之间关系。

这里,P1为第一个点,p2为第二个点,d 为两点之间的距离,θ为两点连线与X 轴夹角。

我们一般有四种共生矩阵,因为两点连线与X 轴夹角种类有四种:0度,45度,90度,135度。

(为了简便,其它角度一般不考虑)
如若给定一张图像,首先,我们要确定图像中灰度级有几级,有多少级就会产生一个多少*多少的共生矩阵。

此处图像有0,1,2,3四个灰度级。

所以会产生4*4的一个共生矩阵。

同时,我们定义相邻两个像素点间距离为1。

0度共生矩阵:两个像素连线与X 轴水平,即按逆时针方向旋转它与x 轴夹角为0度,距离为1。

两个像素点空间位置如下:
满足水平方向相邻,灰度级分别是(0,0)的像素对有2对,则在0度共生矩阵的(0,0)位置写入数字2;灰度级是(0,1)的像素对也有2对,同理,在共生矩阵(0,1)位置填写2。

依次写入,直到矩阵元素被填写满,则完成灰度共生矩阵的提取。

注意:每次填写一个矩阵元素的时候都要对整幅图像进行遍历,找到所有满足条件的像素对。

也就是因为每个矩阵元素与整幅图像的灰度级有关系,所以它提取的共生矩阵是对图像的一个很好的表示。

最后结果如表二:
45度,90度,135度也都是指的是与X 轴夹角的大小。

矩阵填写与0度类似。

灰度共生矩阵

灰度共生矩阵

灰度共生矩阵一.概念及流程纹理特征在地物光谱特征比较相似的时候常作为一种特征用于图像的分类和信息提取,是由灰度分布在空间位置上反复出现而形成的,因而图像空间中相隔某距离的两个像素之间存在一定的灰度关系,即图像中灰度的空间相关特性。

灰度共生矩阵是一种通过研究灰度的空间相关特性来描述纹理的常用方法。

具体描述如下:1)灰度降级,对原始影像进行灰度降级如8,16,32,64等;纹理计算的灰度降级策略来源于IDL的bytscl函数介绍,具体描述如下:图2 灰度降级2)根据设定好的窗口大小,逐窗口计算灰度共生矩阵;3)根据选择的二阶统计量,计算纹理值。

二.纹理算子协同性(GLCM_HOM):对应ENVI的Homogeneity反差性(GLCM_CON):非相似性(GLCM_DIS):均值GLCM_MEAN:对应ENVI的Mean方差GLCM_VAR:对应ENVI的Variance角二阶矩GLCM_ASM:对应ENVI的Second Moment相关性GLCM_COR:对应ENVI的CorrelationGLDV角二阶矩GLDV_ASM:熵GLCM_ENTROPY:对应ENVI的Entropy归一化灰度矢量均值GLDV_MEAN:对应ENVI的Dissimilarity归一化角二阶矩GLDV_CON:对应ENVI的Contrast三.实验报告1:打开ENVI4.5,File->Open Image File,打开实验图像2:Basic Tools->Resize Data(Spatial/Spectral),打开Resize Data I nput File对话框3:选择目标图像,在Spectral Subset中选择第三波段(考虑到第3波段地貌区分比较明显),在Spaial Subset中设置图像剪裁大小,进行剪裁。

分别剪裁出50*50的城区图像一幅与50*50的农区图像一幅,保存至文件。

4:Filter(滤波器)->Texture(纹理)->Co-occurrence Measures(二阶概率统计),打开Texture Input File对话框5:选择剪裁出的城区/农区图像,点击OK,弹出Co-occurrence Texture Parameters对话框6:在Processing Window中设置滤波器窗口大小,在Co-occurrence Shif t中设置对应窗口大小的灰度共生矩阵的距离差分值,Output Result to选择M emory 7:在工具栏选择Basic Tools->Statistics->Compute Statistics,弹出Compute Statistics Input File对话框8:选择第6步输出的Memory,点击OK,再点击一次OK,弹出统计结果9:对比两个纹理图像,在不同滤波窗口大小下不同距离差分下的统计结果,将各个统计结果中的统计均值Mean记录在表格上,做出图表,进行讨论。

灰度共生矩阵的概念

灰度共生矩阵的概念

灰度共生矩阵的概念
灰度共生矩阵是一种以组织协同和协同能力为核心的组织管理模式,它是指系统的信息与生活状态之间存在着协同关系,而灰度共生矩阵是用于灵活架构管理的一种有效且具有灵活性的方法。

它支持多种系统模式,可以帮助组织更好地进行协作,实现快速的创新,从而更好地满足企业的业务需求。

首先,灰度共生矩阵能够有效地处理组织中的复杂性。

它可以灵活地组织,以满足快速变化的企业需求,同时保持组织创新的活力。

整个系统可以使用结构性网络、指标、矩阵和模式来构建,将组织内部组成部分联系起来,有效地解决业务问题。

灰度共生矩阵采用灵活的方式,可以适应各种不同的组织环境,更好地融合组织的资源,从而实现精彩的结果。

其次,灰度共生矩阵可以支持多种系统模式,可以帮助组织更好地进行协作,实现快速的创新,从而更好地满足企业的业务需求。

此外,通过灰度共生矩阵,企业可以更好地了解其内部结构,实现有效的组织管理。

它可以有效地建立协作关系,可以有效地阻止组织中的问题,有利于企业把控风险,减少损失。

最后,灰度共生矩阵的概念给企业的管理带来了极大的便利,并以其灵活性和实用性赢得了众多企业的青睐。

因为它可以有效地处理复杂的组织结构,有效地支持多种不同的系统模式,帮助企业实现快速创新,满足企业的业务需求。

因此,灰度共生矩阵的概念在中国企业管理领域受到越来越多的重视和重视,并得到了广泛的应用。

灰度共生矩阵

灰度共生矩阵

灰度共⽣矩阵⼀、基本理论1、背景20世纪70年代,R.Haralick等⼈提出了⽤灰度共⽣矩阵(Gray-level Co-occurrence Matrix,GLCM)来描述纹理特征。

2、概念灰度共⽣矩阵(GLDM)的统计⽅法是20世纪70年代初由R.Haralick等⼈提出的,它是在假定图像中各像素间的空间分布关系包含了图像纹理信息的前提下,提出的具有⼴泛性的纹理分析⽅法。

[^1]灰度共⽣矩阵是像素距离和⾓度的矩阵函数,它通过计算图像中⼀定距离和⼀定⽅向的两点灰度之间的相关性,来反映图像在⽅向、间隔、变化幅度以及快慢上的综合信息。

3、含义灰度共⽣矩阵实质上是⼀幅图像中两个像素灰度级的联合直⽅图,是⼀种⼆阶统计量。

普通的灰度直⽅图是对图像上单个像素具有某个灰度进⾏统计的结果,⽽灰度共⽣矩阵是对图像上保持某距离的两像素分别具有某灰度的状况进⾏统计得到的。

取图像(N×N)中任意⼀点(x,y)及偏离它的另⼀点(x+a,y+b),设该点对的灰度值为(g1,g2)。

令点(x,y)在整个图像上移动,则会得到各种(g1,g2)值,设该灰度图像的灰度值级数为 k,则(g1,g2)的组合共有 k² 种。

对于整个图像矩阵,统计出每⼀种(g1,g2)值出现的次数,然后排列成⼀个⽅阵,再⽤(g1,g2)出现的总次数将它们归⼀化为出现的概率P(g1,g2),这样的⽅阵称为灰度共⽣矩阵。

[^2]4、例证下⾯以图⽰解释如何灰度共⽣矩阵的⽣成⽅法,下例中以GLCM表中的(1,1)点为例,GLCM(1,1)即为在左边的整个图像灰度矩阵I中寻找“两灰度值均为1且两像素点⽔平相邻的像素点对”的数量,例中GLCM(1,1)=1,即只有⼀对⽔平相邻的像素点对满⾜两灰度值均为1。

同理可得GLCM(1,2)=2。

GLCM表其实是所有像素点可能的排列⽅式以及每⼀种排列⽅式存在于该幅图像中的数量。

也就是,在图像矩阵I中,像素灰度值为i和像素灰度值为j的两个像素点组成的点对(i,j)的数量,就是GLCM(i,j)的值。

灰度共生矩阵

灰度共生矩阵

灰度共生矩阵灰度共生矩阵定义为像素对的联合分布概率,是一个对称矩阵,它不仅反映图像灰度在相邻的方向、相邻间隔、变化幅度的综合信息,但也反映了相同的灰度级像素之间的位置分布特征,是计算纹理特征的基础。

设f(x,y)为一幅数字图像,其大小为M×N,灰度级别为Ng,则满足一定空间关系的灰度共生矩阵为:其中#(x)表示集合x中的元素个数,显然P为Ng×Ng的矩阵,若(x1,y1)与(x2,y2)间距离为d,两者与坐标横轴的夹角为θ,则可以得到各种间距及角度的灰度共生矩阵(i,j,d,θ)。

其中元素(i,j)的值表示一个灰度为i,另一个灰度为j的两个相距为d的像素对在角的方向上出现的次数。

在计算得到共生矩阵之后,往往不是直接应用计算的灰度共生矩阵,而是在此基础上计算纹理特征量,我们经常用反差、能量、熵、相关性等特征量来表示纹理特征。

(1) 反差:又称为对比度,度量矩阵的值是如何分布和图像中局部变化的多少,反应了图像的清晰度和纹理的沟纹深浅。

纹理的沟纹越深,反差越大,效果清晰;反之,对比值小,则沟纹浅,效果模糊。

(2) 能量:是灰度共生矩阵各元素值的平方和,是对图像纹理的灰度变化稳定程度的度量,反应了图像灰度分布均匀程度和纹理粗细度。

能量值大表明当前纹理是一种规则变化较为稳定的纹理。

(3) 熵:是图像包含信息量的随机性度量。

当共生矩阵中所有值均相等或者像素值表现出最大的随机性时,熵最大;因此熵值表明了图像灰度分布的复杂程度,熵值越大,图像越复杂。

(4) 相关性:也称为同质性,用来度量图像的灰度级在行或列方向上的相似程度,因此值的大小反应了局部灰度相关性,值越大,相关性也越大。

应用由上面的叙述知道,可以根据各种间距和角度计算灰度共生矩阵,下面程序中给定了间距,根据传入的参数计算:#define GLCM_DIS 3 //灰度共生矩阵的统计距离#define GLCM_CLASS 16 //计算灰度共生矩阵的图像灰度值等级化#define GLCM_ANGLE_HORIZATION 0 //水平#define GLCM_ANGLE_VERTICAL 1 //垂直#define GLCM_ANGLE_DIGONAL 2 //对角int calGLCM(IplImage* bWavelet,int angleDirection,double* featureVector){int i,j;int width,height;if(NULL == bWavelet)return 1;width = bWavelet->width;height = bWavelet->height;int * glcm = new int[GLCM_CLASS * GLCM_CLASS];int * histImage = new int[width * height];if(NULL == glcm || NULL == histImage)return 2;//灰度等级化---分GLCM_CLASS个等级uchar *data =(uchar*) bWavelet->imageData;for(i = 0;i < height;i++){for(j = 0;j < width;j++){histImage[i * width + j] = (int)(data[bWavelet->widthStep * i + j] * GLCM_CLASS / 256);}}//初始化共生矩阵for (i = 0;i < GLCM_CLASS;i++)for (j = 0;j < GLCM_CLASS;j++)glcm[i * GLCM_CLASS + j] = 0;//计算灰度共生矩阵int w,k,l;//水平方向if(angleDirection == GLCM_ANGLE_HORIZATION){for (i = 0;i < height;i++){for (j = 0;j < width;j++){l = histImage[i * width + j];if(j + GLCM_DIS >= 0 && j + GLCM_DIS < width){k = histImage[i * width + j + GLCM_DIS];glcm[l * GLCM_CLASS + k]++;}if(j - GLCM_DIS >= 0 && j - GLCM_DIS < width){k = histImage[i * width + j - GLCM_DIS];glcm[l * GLCM_CLASS + k]++;}}}}//垂直方向else if(angleDirection == GLCM_ANGLE_VERTICAL){for (i = 0;i < height;i++){for (j = 0;j < width;j++){l = histImage[i * width + j];if(i + GLCM_DIS >= 0 && i + GLCM_DIS < height){k = histImage[(i + GLCM_DIS) * width + j];glcm[l * GLCM_CLASS + k]++;}if(i - GLCM_DIS >= 0 && i - GLCM_DIS < height){k = histImage[(i - GLCM_DIS) * width + j];glcm[l * GLCM_CLASS + k]++;}}}}//对角方向else if(angleDirection == GLCM_ANGLE_DIGONAL){for (i = 0;i < height;i++){for (j = 0;j < width;j++){l = histImage[i * width + j];if(j + GLCM_DIS >= 0 && j + GLCM_DIS < width && i + GLCM_DIS >= 0 && i + GLCM_DIS < height){k = histImage[(i + GLCM_DIS) * width + j + GLCM_DIS];glcm[l * GLCM_CLASS + k]++;}if(j - GLCM_DIS >= 0 && j - GLCM_DIS < width && i - GLCM_DIS >= 0 && i - GLCM_DIS < height){k = histImage[(i - GLCM_DIS) * width + j - GLCM_DIS];glcm[l * GLCM_CLASS + k]++;}}}}//计算特征值double entropy = 0,energy = 0,contrast = 0,homogenity = 0;for (i = 0;i < GLCM_CLASS;i++){for (j = 0;j < GLCM_CLASS;j++){//熵if(glcm[i * GLCM_CLASS + j] > 0)entropy -= glcm[i * GLCM_CLASS + j] * log10(double(glcm[i * GLCM_CLASS + j]));//能量energy += glcm[i * GLCM_CLASS + j] * glcm[i * GLCM_CLASS + j];//对比度contrast += (i - j) * (i - j) * glcm[i * GLCM_CLASS + j];//一致性homogenity += 1.0 / (1 + (i - j) * (i - j)) * glcm[i * GLCM_CLASS + j];}}//返回特征值i = 0;featureVector[i++] = entropy;featureVector[i++] = energy;featureVector[i++] = contrast;featureVector[i++] = homogenity;delete[] glcm;delete[] histImage;return 0;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档