利用基本不等式求最值的技巧题型分析
应用基本不等式求最值解题模板
A. B.5C. D.
【答案】C
【解析】
,
当且仅当 时取等号,即 , 时等号成立,
故选: .
【点睛】本题考查基本不等式的应用,属于中档题.
4.已知 ,则 的最小值等于_____ 时等号成立,所以 的最小值为 .
【点睛】本题考查了基本不等式的应用,考查了推理能力与计算能力,属于基础题.
【答案】
【解析】由 可得 ,即 ,
所以 ,
由 ,
得 ,当且仅当 时取等号,
所以有 , , ,
所以 ,
所以 的最小值为 ,当且仅当 时取等号,
故答案为: .
【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题.
14.已知正实数 , , 满足 ,则 的最小值为___________.
【解题方法思维导图预览】
【解题方法】
解题方法模板一:配凑法
使用情景:某一类函数的最值问题
解题模板:第一步根据观察已知函数的表达式,通常不符合基本不等式成立的三个条件“一正二定三相等”,将其配凑(凑项、凑系数等)成符合其条件;
第二步使用基本不等式对其进行求解即可;
第三步得出结论.
解题模板应用:
例1已知 ,求函数 的最大值.
例2求 的最小值.
【答案】9
【解析】
解题模板选择:
本题中分子是二次形式且分母是一次形式,故选取解题方法模板二分离法进行解答.
解题模板应用:
第一步,把分母子的一次形式当成一个整体,并将分子的二次形式配凑成一次形式的二次函数形式;
第二步,将其化简即可得到基本不等式 形式,
第三步,运用基本不等式得出结论:
高考数学专题--基本不等式求最值的常用方法(解析版)
高考数学专题--基本不等式求最值的常用方法(解析版)直线ab经过点M可得1+a*log(m)=b,化简得a*log(m)=b-1将a*log(m)代入第一个式子得到11/b+log(m)的最小值令t=log(m),则有11/b+t的最小值,根据部分“1”代换可得11/b+t=(1+1/b)*b+(t-1)的最小值,当且仅当b=2时取“=”,此时a=log(2)即为最小值。
已知$x>0$,$y>0$,且$x+y=1$,求$\frac{y^4}{x^2y^2}$的最小值。
解析:$\frac{y^4}{x^2y^2}=y^2+\frac{y^4}{x^2}\geq2\sqrt{y^2\cdot\frac{y^4}{x^2}}=2y^2$,所以最小值为$2$,当且仅当$x=y=\frac{1}{2}$时取等号。
已知正数$x$,$y$,且$x+y=4$,求$\frac{4}{x+2y+1}$的最小值。
解析:令$m=x+2$,$n=y+1$,则$x+2+y+1=m+n=5$,$\frac{4}{x+2y+1}=\frac{4}{m+n-2}\geq\frac{4}{4}=1$,所以最小值为$1$,当且仅当$x=2$,$y=1$时取等号。
已知$x>y>0$,且$x+y\leq 3$,求$\frac{3x+y}{2x+by+1}$的最小值。
解析:令$m=2x+y$,$n=y+1$,则$x=\frac{m-2n}{3}$,$y=n-1$,$x>y$可得$\frac{m-2n}{3}>n-1$,即$m>5n-3$。
所以$\frac{3x+y}{2x+by+1}=\frac{3m-6n+n}{2m+bn+1}=\frac{3}{2}\cdot\frac{m}{m+\frac{bn+1}{2}-n}\geq\frac{3}{2}\cdot\frac{5}{3}=2.5$,所以最小值为$2.5$,当且仅当$m=5n-3$时取等号,即$x=2$,$y=1$。
高三数学备考12利用基本不等式处理最值、证明不等式和实际问题解析版
问题12利用基本不等式处理最值、证明不等式和实际问题一、考情分析不等式问题始终是高考数学的热点题型之一,而基本不等式法是最为常见、应用十分广泛的方法之一.下面笔者以近几年高考试题及模拟题为例,对高考中考查利用基本不等式解题的基本特征和基本类型作一些分类解析,供参考. 二、经验分享(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. (2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(4)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解. (5)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(6)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围. 三、知识拓展 1.(1)若R b a ∈,,则;(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”).2.(1)若00a ,b >>,则ab ba ≥+2;(2)若00a ,b >>,则(当且仅当b a =时取“=”);(3)若00a ,b >>,则(当且仅当b a =时取“=”).3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”);若0x ≠,则12x x +≥,即12x x +≥或12x x+≤-(当且仅当b a =时取“=”). 4.若0>ab ,则2≥+a bb a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即2a b b a+≥或2a bb a+≤-(当且仅当b a =时取“=”). 6.若R b a ∈,,则(当且仅当b a =时取“=”).7.一个重要的不等式链:.8.9.函数图象及性质(1)函数图象如右图所示:(2)函数性质:①值域:;②单调递增区间:;单调递减区间:.10.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”;(2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.四、题型分析(一) 利用基本不等式求最值利用基本不等式求函数最值时,应注意三个条件:“一正,二定,三相等”,这三个条件中,以定值为本.因为在一定限制条件下,某些代数式需经过一定的变式处理,才可利用基本不等式求得最值,而怎样变式,完全取决于定值的作用.主要有两种类型:一类是中条件给出定值式,一类是条件中无定值式.类型一给出定值【例1】【江苏省南通市三县(通州区、海门市、启东市)2019届高三第一学期期末】已知实数,且,则的最小值为____【答案】【解析】由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,当且仅当,即当时,等号成立.因此,的最小值为.故答案为:.【小试牛刀】设,x y 是正实数,且1x y +=,则的最小值是__________.【答案】14. 【分析一】考虑通法,消元化为单元函数,而后可用导数法和判别式法求解函数的最小值; 【解析一】【分析二】考虑整体替换的方法,分母的和为常数. 【解析二】设2x s +=,1y t +=,则4s t +=,类型二 未知定值【例2】已知,x y 为正实数,则433x yx y x++的最小值为 A .53 B .103 C .32D .3 【答案】3 【解析】,当且仅当时取等号.【点评】配凑法是解决这类问题的常用方法,其目的是将代数式或函数式变形为基本不等式适用的条件,对于这种没有明确定值式的求最大值(最小值)问题,要灵活依据条件或待求式合理构造定值式. 【小试牛刀】已知函数在R 上是单调递增函数,则23cb a-的最小值是【答案】1 【解析】 由题意的,因为函数()f x 在R 上单调递增,所以满足,可得23b c a≥,且0a >所以,当且仅当3b a =时等号成立,所以.技巧一:凑项【例3】设0a b >>,则的最小值是【分析】拼凑成和为定值的形式 【解析】4=(当且仅当和1ab ab =,即⎪⎩⎪⎨⎧==222b a 时取等号). 【点评】使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图象,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型. 【小试牛刀】【江苏省无锡市2019届高三上学期期中】设为正实数,且,则的最小值为________. 【答案】27 【解析】因为,所以因此当且仅当时取等号,即的最小值为27.技巧二:凑系数【例4】 当04x <<时,求的最大值.【分析】由04x <<知820x ->,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到为定值,故只需将凑上一个系数即可.【解析】,当282x x =-,即2x =时取等号,∴当2x =时,的最大值为8.【评注】本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值. 【小试牛刀】设230<<x ,求函数的最大值.【解析】∵230<<x ,∴023>-x ,∴,当且仅当232x x =-,即时等号成立.【点评】总的来说,要提高拼凑的技巧,设法拼凑出乘积或和为定值的形式. 技巧三: 分离 【例5】 求的值域.【分析一】本题看似无法运用基本不等式,不妨将分子配方凑出含有()1x +的项,再将其分离. 【解析一】,当,即时,(当且仅当1x =时取“=”号).【小试牛刀】已知a,b 都是负实数,则的最小值是【答案】2(﹣1)【解析】222≥-.技巧四:换元【例6】已知a ,b 为正实数,2b +ab +a =30,求y =1ab 的最小值.【分析】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行.【解法一】由已知得a =30-2b b +1 ,ab =30-2b b +1 ·b =-2 b 2+30bb +1 .∵a >0,∴0<b <15.令t =b +1,则 1<t <16,∴ab =-2t 2+34t -31t =-2(t +16t )+34.∵t +16t ≥2t ·16t =8,∴ab ≤18,∴y ≥118 ,当且仅当t =4,即a =6,b =3时,等号成立.【解法二】由已知得:30-ab =a +2b .∵a +2b ≥22 ab ,∴30-ab ≥2 2 ab .令u =ab ,则 u 2+2 2 u -30≤0,-5 2 ≤u ≤3 2 ,∴ab ≤3 2 ,ab ≤18,∴y ≥118 .【点评】①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.【小试牛刀】设正实数y x ,满足1=+y x ,则的取值范围为【答案】]89,1[ 【解析】因为,所以410≤<xy设,所以当41=t 时,上式取得最大值当21=t 时,上式取得最小值所以的取值范围为]89,1[【点评】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解. 技巧五:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.【例7】已知0,0x y >>,且191x y +=,求x y +的最小值.【错解】Q 0,0x y >>,且191x y+=,∴,故.【错因】解法中两次连用基本不等式,在等号成立条件是x y =,在1992xyxy+≥等号成立条件是19x y=,即9y x =,取等号的条件的不一致,产生错误.因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法. 【正解】,,当且仅当9y x x y=时,上式等号成立,又191x y+=,可得时,.【小试牛刀】【江苏省苏北四市2019届高三第一学期期末】已知正实数满足,则的最小值为____. 【答案】【解析】正实数x ,y 满足1,则:x +y =xy , 则: 4x +3y ,则: 437+4,故的最小值为.故答案为:.技巧六:取平方【例8】已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.【解析】W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20,∴W ≤20 =2 5 . 【小试牛刀】求函数的最大值.【解析】注意到21x -与52x -的和为定值.,又0y >,,当且仅当21x -=52x -,即32x =时取等号,故max 22y =. 【点评】本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件. 技巧七:构造要求一个目标函数),(y x f 的最值,我们利用基本不等式构造一个以),(y x f 为主元的不等式(一般为二次不等式),解之即可得),(y x f 的最值. 【例9】设,x y 为实数,若,则2x y +的最大值是 .【分析】利用基本不等式将已知定值式中224x y ,xy +的均转化成含2x y +的不等式,再求2x y +的最大值.【答案】2105. 【解析】,可解得2x y +的最大值为2105. 【点评】本题的解法过程体现了“消元”的思想,所求目标函数是和的形式,那我们就设法消去条件等式中的乘积,方法就是利用基本不等式,这里它的作用,一个是消元,还有就是把条件的等式变为了不等式. 【小试牛刀】若正实数x ,y ,满足,则x y +的最大值为【分析】构成关于x y +的不等式,通过解不等式求最值 【解析】由,得.即,.计算得出:.y x +∴的最大值是4.技巧八:添加参数【例10】若已知0,,>c b a ,则的最小值为 .【解析】时可取得函数的最小值,此时,此时51=λ,最小值为552. 【小试牛刀】设w z y x ,,,是不全为零的实数,求的最大值.【解析】显然我们只需考虑的情形,但直接使用基本不等式是不行的,我们假设可以找到相应的正参数,αβ满足:故依据取等号的条件得,,参数t 就是我们要求的最大值.消去,αβ我们得到一个方程,此方程的最大根为我们所求的最大值,得到212t +=. 【点评】从这个例子我们可以看出,这种配凑是有规律的,关键是我们建立了一个等式,这个等式建立的依据是等号成立的条件,目的就是为了取得最值.【小试牛刀】设,,x y z 是正实数,求的最小值.【解析】引进参数k ,使之满足,依据取等号的条件,有:,故的最小值4.综上所述,应用均值不等式求最值要注意:一要“正”:各项或各因式必须为正数;二可“定”:必须满足“和为定值”或“积为定值”,要凑出“和为定值”或“积为定值”的式子结构,如果找不出“定值”的条件用这个定理,求最值就会出错;三能“等”:要保证等号确能成立,如果等号不能成立,那么求出的仍不是最值. (二) 基本不等式与恒成立问题 【例11】已知x >0,y >0,且21+=1x y,若恒成立,则实数m 的取值范围是 .【分析】先求左边式子的最小值 【解析】∵0>x ,0>y ,且21+=1x y,∴,当且仅当4y x =x y ,即y x 2=时取等号,又21+=1x y,∴4=x ,2=y ,∴,要使恒成立,只需,即28>m +2m ,解得24<<-m ,故答案为24<<-m .【点评】恒成立指函数在其定义域内满足某一条件(如恒大于0等),此时,函数中的参数成为限制了这一可能性(就是说某个参数的存在使得在有些情况下无法满足要求的条件),因此,适当的分离参数能简化解题过程.例:要使函数恒大于0,就必须对a 进行限制--令0≥a ,这是比较简单的情况,而对于比较复杂的情况时,先分离参数的话做题较简单.【小试牛刀】若对任意的正实数,x y 恒成立,求a 的最小值. 【解析】对任意的正实数,x y 恒成立,∴对任意的正实数,x y 恒成立.设,由取等号条件:,消去k ,可以得到:210t t --=,解得:512t +=,因此a 的最小值为512+.题型二 基本不等式的实际应用【例12】某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【解析】(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250 =-13x 2+40x -250; 当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x -1 450)-250 =1 200-(x +10 000x ).∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -2500<x <80,1 200-x +10 000xx ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950. 对称轴为x =60,即当x =60时,L (x )最大=950(万元); 当x ≥80时,L (x )=1 200-(x +10 000x ) ≤1 200-210 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当年产量为100千件时,年获利润最大.【点评】(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【牛刀小试】 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件. 【答案】80【解析】设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x8=20.当且仅当800x =x8(x >0),即x =80时“=”成立.(2)年平均利润为y x =-x -25x +18=-(x +25x )+18, ∵x +25x ≥2x ·25x =10,∴y x =18-(x +25x )≤18-10=8,当且仅当x =25x ,即x =5时,取等号. 五、迁移运用1.【江苏省南通市通州区2018-2019学年第一学期高三年级期末】对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______. 【答案】【解析】设直角三角形的斜边为c ,直角边分别为a ,b , 由题意知, 则,则三角形的面积,,,则三角形的面积,当且仅当a=b=取等即这个直角三角形面积的最大值等于,故答案为:.2.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟】在平面四边形中,,则的最小值为_____.【答案】【解析】如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为,AB=1,由数量积的几何意义知在方向的投影为3,∴可设C(3,n),又所以,,即,==,当且仅当,即n=1,m=时,取等号,故答案为.3.【江苏省常州市2019届高三上学期期末】已知正数满足,则的最小值为________. 【答案】4【解析】由基本不等式可得,所以,当且仅当,即当y=x2时,等号成立,因此,的最小值为4,故答案为:4.4.【江苏省扬州市2018-2019学年度第一学期期末】已知正实数x,y满足,若恒成立,则实数m的取值范围为_______.【答案】【解析】由于x+4y﹣xy=0,即x+4y=xy,等式两边同时除以xy得,,由基本不等式可得,当且仅当,即当x=2y=6时,等号成立,所以,x+y的最小值为9.因此,m≤9.故答案为:m≤9.5.【江苏省徐州市(苏北三市(徐州、淮安、连云港))2019届高三年级第一次质量检测】已知,,且,则的最大值为_________.【答案】【解析】化为,即,解得:,所以,的最大值为。
利用基本不等式求最值(解析版)-高中数学
利用基本不等式求最值题型梳理【题型1直接法求最值】【题型2配凑法求最值】【题型3常数代换法求最值】【题型4消元法求最值】【题型5构造不等式法求最值】【题型6多次使用基本不等式求最值】【题型7实际应用中的最值问题】【题型8与其他知识交汇的最值问题】命题规律基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.知识梳理【知识点1利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.举一反三【题型1直接法求最值】1(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【解题思路】用基本不等式求解即可.【解答过程】因为a>0,所以a+1a+1≥2a⋅1a+1=3,当且仅当a=1a即a=1时取等号;故选:B.【变式训练】1(2023·北京东城·统考一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.22【解题思路】由基本不等式求得最小值.【解答过程】∵x>0,∴x+4x-4≥2x×4x-4=0,当且仅当x=4x即x=2时等号成立.故选:B.2(2023上·山东·高一统考期中)函数y=x2-x+9x(x>0)的最小值为()A.1B.3C.5D.9【解题思路】利用均值不等式求最小值即可.【解答过程】y=x2-x+9x=x+9x-1≥2x⋅9x-1=5,当且仅当x=9x,即x=3时等号成立,故选:C.3(2023下·江西·高三校联考阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+43【解题思路】依题意可得3+1 x21+4x2=7+1x2+12x2,再利用基本不等式计算可得.【解答过程】3+1 x21+4x2=7+1x2+12x2≥7+21x2⋅12x2=7+43,当且仅当1x2=12x2,即x4=112时,等号成立,故3+1 x21+4x2的最小值为7+4 3.故选:D.【题型2配凑法求最值】1(2023·浙江·校联考模拟预测)已知a>1,则a+16a-1的最小值为()A.8B.9C.10D.11【解题思路】运用基本不等式的性质进行求解即可.【解答过程】因为a>1,所以由a+16a-1=a-1+16a-1+1≥2a-1⋅16a-1+1=9,当且仅当a-1=16a-1时取等号,即a=5时取等号,故选:B.【变式训练】1(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x-3+2x的最小值是()A.6B.8C.10D.12【解题思路】利用基本不等式求和的最小值,注意取值条件.【解答过程】由x-3>0,则y=2x-3+2(x-3)+6≥22x-3⋅2(x-3)+6=10,当且仅当x=4时等号成立,故最小值为10.故选:C.2(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x-1+4x-2,的最小值为()A.7B.8C.14D.15【解题思路】利用基本不等式求解.【解答过程】因为x>2,所以x-2>0,所以y=4x-1+4x-2=4x-2+4x-2+7≥24x-2⋅4x-2+7=15,当且仅当4x -2 =4x -2,即x =3时等号成立,所以函数y =4x -1+4x -2的最小值为15,故选:D .3(2023上·辽宁·高一校联考期中)若x >0,y >0且满足x +y =xy ,则2xx -1+4y y -1的最小值为()A.6+26B.4+62C.2+46D.6+42【解题思路】结合条件等式,利用基本不等式求和的最小值.【解答过程】若x >0,y >0且满足x +y =xy ,则有1x +1y=1,所以x >1,y >1,2x x -1+4y y -1=2x -1 +2x -1+4y -1 +4y -1=6+2x -1+4y -1≥6+22x -1⋅4y -1=6+28xy -x +y +1=6+42,当且仅当2x -1=4y -1,即x =1+22,y =1+2时等号成立.所以2x x -1+4y y -1的最小值为6+4 2.故选:D .【题型3 常数代换法求最值】1(2023上·内蒙古通辽·高三校考阶段练习)已知a >0,b >0,若2a +3b=1,则2a +b3的最小值是()A.8B.9C.10D.11【解题思路】利用基本不等式“1”的应用即可求解.【解答过程】由题意得a >0,b >0,2a +3b=1,所以2a +b 3=2a +b 3 2a +3b =4+1+2b 3a +6ab ≥5+22b 3a ×6a b=9,当且仅当2b 3a =6ab 时,即a =3,b =9,取等号,故B 项正确.故选:B .【变式训练】1(2023·河南·校联考模拟预测)已知正实数a ,b ,点M 1,4 在直线xa +y b=1上,则a +b 的最小值为()A.4B.6C.9D.12【解题思路】根据题意可得1a+4b=1,结合基本不等式运算求解.【解答过程】由题意得1a+4b=1,且a>0,b>0,故a+b=a+b⋅1a+4b=5+b a+4a b≥5+2b a×4a b=9,当且仅当ba=4ab,即a=3,b=6时,等号成立.故选:C.2(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y-xy=0,则2x+y的最大值为()A.25B.16C.37D.19【解题思路】根据等式计算得出1,再结合常值代换求和的最值,计算可得最大值.【解答过程】∵x>0,y>0,2x+8y-xy=0,∴2y+8x=1,x+y=x+y2y+8x=2x y+8+2+8y x≥22x y×8y x+10=18,∴2 x+y ≤218=19.故选:D.3(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【解题思路】首先根据题意求出0≤a<12,0<b≤1,然后将原式变形得2a2a+1+b2+1b=2a+1+1b-1,最后利用1的妙用即可求出其最值.【解答过程】∵2a+b=1,且a,b为非负实数,b≠0,则a≥0,b>0则b=1-2a>0,解得0≤a<12,2a=1-b≥0,解得0<b≤1,∴2a2 a+1+b2+1b=2(a+1)2-4(a+1)+2a+1+b2+1b=2(a+1)-4+2a+1+b+1b=(2a+b-2)+2a+1+1b=2a+1+1b-12 a+1+1b=42a+2+1b=13(2a+2)+b⋅42a+2+1b=135+4b2a+2+2a+2b≥135+24b2a+2⋅2a+2b=3,当且仅当4b2a+2=2a+2b即2a+2=2b,2a+b=1时,即b=1,a=0时等号成立,故2a+1+1b-1min=2,故选:B.【题型4消元法求最值】1(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x-4=9y,则x+8y的最小值为12.【解题思路】根据指数方程,得出x,y的关系式,运用消元法将所求式化成关于y的关系式,再利用基本不等式求解.【解答过程】由3x-4=9y,可得x-4=2y,即x=2y+4,代入x+8y中,可得2y+4+8y=2y+8y+4≥22y⋅8y+4=12,当且仅当y=2,x=8时,取等号,所以x+8y的最小值为12.故答案为:12.【变式训练】1(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为62-5.【解题思路】根据题意,化简得到x+2y=x2-3x+14x+1,设t=x+1,求得x2-3x+14x+1=t+18t-5,结合基本不等式,即可求解.【解答过程】由x,y∈R+,且2x+y+xy=7,可得y=7-2xx+1,则x+2y=x+2×7-2xx+1=x2-3x+14x+1,设t=x+1,可得x=t-1且t>1,可得x2-3x+14x+1=t2-5t+18t=t+18t-5≥2t⋅18t-5=62-5,当且仅当t=18t时,即t=32时,等号成立,所以x+2y的最小值为62-5.故答案为:62-5.2(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为13.【解题思路】根据基本不等式即可求解.【解答过程】由2a+b+6=ab可得a=b+6b-2>0,由于b>0,所以b>2,故a+2b=b+6b-2+2b=8b-2+2b-2+5,由于b>2,所以8b-2+2b-2≥216=8,当且仅当b=4时等号成立,故a+2b=8b-2+2b-2+5≥13,故a+2b的最小值为13,故答案为:13.3(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2-ab+1=0,c2+d2=1,则当(a-c)2+(b-d)2取得最小值时,ab=22+1.【解题思路】将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,进而转化为a,b与圆心0,0的距离,结合基本不等式求得最小值,进而分析求解即可.【解答过程】可将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,由a2-ab+1=0,得b=a+1 a,而c2+d2=1表示以0,0为圆心,1为半径的圆,c,d为圆上一点,则a,b与圆心0,0的距离为:a2+b2=a2+a+1 a2=2a2+1a2+2≥22a2⋅1a2+2= 22+2,当且仅当2a2=1a2,即a=±412时等号成立,此时a,b与圆心0,0的距离最小,即a,b与c,d两点间距离的平方最小,即(a-c)2+(b-d)2取得最小值.当a=412时,ab=a2+1=22+1,故答案为:22+1.【题型5构造不等式法求最值】1(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a-1+2b-2的最小值为2C.a+b有最小值3+2D.a2-2a+b2-4b有最大值4【解题思路】根据基本不等式运用的三个条件“一正、二定、三相等”,可知ab≥8,所以A错误;将原式化成a-1b-2=2,即可得1a-1+2b-2=1a-1+a-1≥2,即B正确;不等式变形可得2b+1a=1,利用基本不等式中“1”的妙用可知a+b≥3+22,C错误;将式子配方可得a2-2a+b2 -4b=(a-1)2+(b-2)2-5,再利用基本不等式可得其有最小值-1,无最大值,D错误.【解答过程】对于A选项,ab=2a+b≥22ab,即ab≥22,故ab≥8,当且仅当a=2,b=4时等号成立,故ab的最小值为8,A错误;对于B选项,原式化为a-1b-2=2,b=2aa-1>0,故a-1>0;a=bb-2>0,故b-2>0;所以1a-1+2b-2=1a-1+a-1≥2,当且仅当a=2,b=4时等号成立,B正确;对于C选项,原式化为2b+1a=1,故a+b=a+b2b+1a=2a b+1+2+b a≥3+22,当且仅当a=2+1,b=2+2时等号成立,C错误;对于D选项,a2-2a+b2-4b=(a-1)2+(b-2)2-5≥2a-1b-2-5=-1,当且仅当a=1+2,b=2+2时等号成立,故有最小值-1,D错误.故选:B.【变式训练】1(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy-3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是42-3【解题思路】利用基本不等式得x+y+xy-3≥(xy+3)(xy-1)、x+y+xy-3≤(x+y)24+(x+y)-3分别求xy、x+y的最值,注意取等条件;由题设有x=3-yy+1且0<y<3代入x+4y、x+2y,结合基本不等式求最值,注意取等条件.【解答过程】由x+y+xy-3≥xy+2xy-3=(xy+3)(xy-1),当且仅当x=y=1时等号成立,即(xy+3)(xy-1)≤0,又x>0,y>0,故0<xy≤1,仅当x=y=1时等号成立,所以0<xy≤1,故xy的最大值是1,A错误;由x+y+xy-3≤(x+y)24+(x+y)-3,当且仅当x=y=1时等号成立,所以(x+y)24+(x+y)-3≥0,即(x+y+6)(x+y-2)≥0,又x>0,y>0,则x+y≥2,仅当x=y=1时等号成立,故x+y的最小值是2,B正确;由x+y+xy-3=0,x>0,y>0,可得x=3-yy+1,且0<y<3,所以x +4y =3-y y +1+4y =4y 2+3y +3y +1=4(y +1)2-5(y +1)+4y +1=4(y +1)+4y +1-5≥24(y +1)⋅4y +1-5=3,当且仅当y +1=1,即y =0、x =3时等号成立,故x +4y >3,C 错误;同上,x +2y =3-y y +1+2y =2y 2+y +3y +1=2(y +1)2-3(y +1)+4y +1=2(y +1)+4y +1-3≥22(y +1)⋅4y +1-3=42-3,当且仅当y +1=2,即y =2-1、x =22-1时等号成立,故x +2y ≥42-3,D 错误;故选:B .2(2023上·江苏·高一专题练习)下列说法正确的是()A.若x >2,则函数y =x +1x -1的最小值为3B.若x >0,y >0,3x +1y =5,则5x +4y 的最小值为5C.若x >0,y >0,x +y +xy =3,则xy 的最小值为1D.若x >1,y >0,x +y =2,则1x -1+2y的最小值为3+22【解题思路】选项A :将函数变形再利用基本不等式进行判断最值即可,选项B :由基本不等式进行判断即可,选项C :结合换元法与基本不等式求最值进行判断即可,选项D :对式子进行变形得到1+yx -1+2x -1 y+2,再利用基本不等式进行判断即可.【解答过程】解:选项A :y =x +1x -1=x -1+1x -1+1≥2x -1·1x -1+1=3,当且仅当x -12=1时可以取等号,但题设条件中x >2,故函数最小值取不到3,故A 错误;选项B :若x >0,y >0,3x +1y =5,则5x +4y =153x +1y 5x +4y =1519+5x y +12y x ≥1519+25x y ·12y x=19+4155,当且仅当5xy =12y x时不等式可取等号,故B 错误;选项C :3-xy =x +y ≥2xy ⇒xy +2xy -3≤0当且仅当x =y 时取等号,令xy =t t ≥0 ,t 2+2t -3≤0,解得-3≤t ≤1,即0<xy ≤1,故xy 的最大值为1,故C 错误;选项D :x +y =2,(x -1)+y =1,1x -1+2y =1x -1+2y·x -1 +y =1+y x -1+2x -1 y+2≥3+2y x -1·2x -1y=3+22,当且仅当y =2x -2时取等号,又因为x +y =2,故x =2y =2-2 时等号成立,即1x -1+2y最小值可取到3+22,故D 正确.故选:D .3(2023上·广东中山·高三校考阶段练习)设正实数x ,y 满足x +2y =3,则下列说法错误的是()A.y x +3y 的最小值为4 B.xy 的最大值为98C.x +2y 的最大值为2D.x 2+4y 2的最小值为92【解题思路】根据基本不等式以及“1”的妙用判断各选项.【解答过程】对于A ,y x +3y =y x +x +2y y =y x +x y +2≥2yxxy+2=4,当且仅当x =y =1时取等号,故A 正确;对于B ,xy =12⋅x ⋅2y ≤12×x +2y 2 2=12×94=98,当且仅当x =2y ,即x =32,y =34时取等号,故B 正确;对于C ,(x +2y )2=x +2y +22xy ≤3+22×98=3+3=6,则x +2y ≤6,当且仅当x =2y ,即x =32,y =34时,故C 错误;对于D ,x 2+4y 2=(x +2y )2-4xy ≥9-4×98=92,当且仅当x =32,y =34时取等号,故D 正确.故选:C .【题型6 多次使用基本不等式求最值】1(2023·河南·校联考模拟预测)已知正实数a ,b ,满足a +b ≥92a +2b,则a +b 的最小值为()A.5B.52C.52D.522【解题思路】先根据基本不等式求出92a +2ba +b ≥252.然后即可根据不等式的性质得出a +b2≥92a +2ba +b ≥252,列出两个等号同时成立的条件,即可得出答案.【解答过程】由已知可得,a >0,b >0,a +b >0.因为92a+2ba+b=92+2+9b2a+2ab≥29b2a×2ab+132=6+132=252,当且仅当9b2a=2ab,即2a=3b时等号成立.所以,a+b2≥92a+2ba+b≥252,当且仅当2a=3ba+b=92a+2b,即a=322b=2时,两个等号同时成立.所以,a+b≥322+2=522.故选:D.【变式训练】1(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1x+2xy的最小值为()A.22-1B.22+1C.2-1D.2+1【解题思路】分为x>0与x<0,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.【解答过程】当x>0时,1x+2xy=x+yx+2xy=yx+2xy+1≥2yx⋅2xy+1=22+1,当且仅当yx=2xy,即x=2-1,y=2-2时等号成立,此时有最小值22+1;当x<0时,1x+2xy=x+y-x+-2xy=y-x+-2xy-1≥2y-x⋅-2xy-1=22-1.当且仅当y-x=-2xy,即x=-1-2,y=2+2时等号成立,此时有最小值22-1.所以,1x+2xy的最小值为22-1.故选:A.2(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx=2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2 D.52【解题思路】两次应用基本不等式,根据两次不等式等号成立的条件列方程求解即可.【解答过程】因为实数x,y,z>0,满足xy+zx=2,所以xy +zx=2≥2xy ×z x =2yz ⇒yz ≤1,当且仅当z =yx 2时,yz =1,所以4y +1z≥24y ×1z=24yz≥241=4,当且仅当4y =1z且yz =1时,等号成立;所以当yz =1且4y =1z 时,4y +1z取得最小值4,此时解得y =2z =12 ⇒y +z =52,故选:D .3(2023上·辽宁大连·高一期末)若a >0,b >0,a +b =1,则a 2+3ab a +2b +2b +1-1b 的最大值为()A.2B.2-2C.3-2D.3-22【解题思路】由已知可得a 2+3ab a +2b +1b +1=3-2b -1b +1,进而有a 2+3ab a +2b +2b +1-1b =3-2b -1b,结合基本不等式求最大值,注意取值条件.【解答过程】由题设,a 2+3ab a +2b +1b +1=a (a +3b )+1b +1=a (2b +1)+1b +1,而a =1-b >0,b >0,所以a (2b +1)+1b +1=2+b -2b 2b +1=1+1-2b 2b +1=1+2(1-b 2)-1b +1=3-2b -1b +1,所以a 2+3ab a +2b +2b +1-1b =3-2b -1b 且0<b <1,又2b +1b≥22b ⋅1b =22,当且仅当b =22时取等号,所以a 2+3ab a +2b +2b +1-1b ≤3-22,当且仅当a =1-22,b =22时取等号,即目标式最大值为3-2 2.故选:D .【题型7 实际应用中的最值问题】1(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为400m 2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为8400元/m 2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m 2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m 2.设总造价为y (单位:元),AD 长为x (单位:m ).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【解题思路】(1)由题意可得矩形AMQD的面积,即可得出AM=400-x2 4x;(2)先表示出总造价y,再由基本不等式求解即可.【解答过程】(1)由题意可得,矩形AMQD的面积为S AMQD=400-x24,因此AM=400-x24x,∵AM>0,∴0<x<20.(2)y=8400x2+420×400-x2+160×4×12×400-x24x2=8000x2+3200000x2+152000,0<x<20,由基本不等式y≥28000x2×3200000x2+152000=472000,当且仅当8000x2=3200000x2,即x=25时,等号成立,故当x=25时,总造价y最小,最小值为472000元.【变式训练】1(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.2≤x≤6(1)当宽为多少时,甲工程队报价最低,并求出最低报价.(2)现有乙工程队也要参与竞标,其给出的整体报价为900a x+2x元(a>0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a的取值范围.【解题思路】(1)根据题意,列出函数关系式,结合基本不等式代入计算,即可得到结果;(2)根据题意,列出不等式,分离参数,再结合基本不等式代入计算,即可得到结果.【解答过程】(1)设甲工程队的总造价为y 元,则y =150×2x +16x×3+400×16+800=900x +16x+7200≥900×2x ⋅16x +7200=14400当且仅当x =16x时,即x =4时等号成立.即当宽为4m 时,甲工程队的报价最低,最低为14400元.(2)由题意可得900x +16x +7200>900a x +2 x.对∀x ∈2,6 恒成立.即a <x 2+8x +16x +12令y =x 2+8x +16x +2=x +2 +4x +2+4∵2≤x ≤6,∴4≤x +2≤8.令t =x +2,t ∈4,8 ,则y =t +4t+4在4,8 上单调递增.且t =4时,y min =9.∴0<a <9.即a 的取值范围为0,9 .2(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x 米(1≤x ≤5).(1)记y 为甲工程队整体报价,求y 关于x 的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t (x +1)x元,问是否存在实数t ,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t 满足的条件;若不存在,请说明理由.【解题思路】(1)根据题意分别计算正面和侧面以及其它各面的费用,相加,可得答案;(2)由题意可得不等关系240184x +10x-3120>4800t (x +1)x,对任意x ∈[1,5]都成立,进而转化t <10x 2-13x +18420(x +1)恒成立,采用换元法,结合基本不等式求得答案.【解答过程】(1)由题意,隔离室的左右两侧的长度均为x米(1≤x≤5),则底面长为24x米,正面费用为3604×24x-2×6,故y=3604×24x-2×6+4×24x×100+2×300×4x+1200=240184x +10x-3120,1≤x≤5.(2)由题意知, 240184x +10x-3120>4800t(x+1)x,对任意x∈[1,5]都成立,即t<10x2-13x+18420(x+1)对任意x∈[1,5]恒成立,令k=x+1,则x=k-1,k∈[2,6],则t<10(k-1)2-13(k-1)+18420k=10k2-33k+20720k=k2+20720k-3320,而k2+20720k≥2k2⋅20720k=20710,当且仅当k=20710∈[2,6]取等号,故0<t<20710-3320,即存在实数0<t<20710-3320,无论左右两侧长为多少,乙工程队都能竞标成功.3(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=xcm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【解题思路】(1)根据题意列出总面积y表示为x的表达式即可.(2)根据(1)利用基本不等式求可使用宣传栏总面积最大时AD和CD的值.【解答过程】(1)根据题意DC=xcm,矩形海报纸面积为36000cm2,所以AD=36000xcm,又因为海报上所有水平方向和竖直方向的留空宽度均为10cm,所以四个宣传栏的总面积y =CD -5×10 AD -2×10 =x -50 36000x-20 ,其中x -50>036000x -20>0 所以x ∈50,1800 .即y =x -50 36000x-20,x ∈50,1800 .(2)由(1)知y =x -50 36000x-20 ,x ∈50,1800 ,则y =x -50 36000x -20 =37000-20x +1800000x,x ∈50,1800 20x +1800000x≥220x ×1800000x =12000,当且仅当x =300时取等号,则y =37000-20x +1800000x≤25000,当且仅当x =300时取等号,即CD =300cm ,AD =36000300=120cm 时,可使用宣传栏总面积最大为25000cm 2.【题型8 与其他知识交汇的最值问题】1(2023上·安徽·高三校联考阶段练习)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足c +b cos2A =2a cos A cos B A ≤B .(1)求A ;(2)若角A 的平分线交BC 于D 点,且AD =1,求△ABC 面积的最小值.【解题思路】(1)由已知结合正弦定理边化角即可求解;(2)表示出所求面积后运用基本不等式即可求解.【解答过程】(1)由已知和正弦定理可得:sin C +sin B cos2A =2sin A cos A cos B ,所以sin C =sin2A cos B -sin B cos2A =sin (2A -B )>0.又因为C ∈(0,π),2A -B ∈(0,π),所以C =2A -B 或者C +2A -B =π.当C =2A -B 时,A +B +2A -B =π,A =π3;当C +2A -B =π时,A =2B 与题设A ≤B 不符.综上所述,A =π3.(2)△ABC 面积S =12bc sin π3=34bc ,由AD 是角平分线,∠BAD =∠CAD =π6,因为S △ABC =S △ABD +S △ADC ,得12bc sin π3=12b sin π6+12c sin π6,即b +c =3bc ,由基本不等式3bc ≥2bc ,bc ≥43,当且仅当b=c=233时等号成立.所以面积S=34bc≥34×43=33.故△ABC面积的最小值3 3.【变式训练】1(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l 都经过点(0,2),且l⊥l ,直线l交圆C于M,N两点,直线l 交圆C于P,Q两点,求四边形PMQN面积的最大值.【解题思路】(1)根据面积解出半径,再应用圆的标准方程即可;(2)根据几何法求出弦长,再应用面积公式计算,最后应用基本不等式求最值即可.【解答过程】(1)由题可知圆C的圆心为C(0,0),半径r=3.所以圆C的方程为x2+y2=9.(2)当直线l的斜率存在且不为0时,设直线l的方程为y=kx+2,圆心到直线l的距离为d,则d=2k2+1,|MN|=232-d2=29-4k2+1,同理可得|PQ|=29-41k2+1=29-4k2k2+1,则S PMQN=12|MN|⋅|PQ|=12×29-4k2+1×29-4k2k2+1=29-4k2+19-4k2k2+1≤9-4 k2+1+9-4k2k2+1=14,当且仅当9-4k2+1=9-4k2k2+1,即k2=1时等号成立.当直线l的斜率不存在时,|MN|=6,|PQ|=232-22=25,此时S PMQN=12|MN|⋅|PQ|=12×6×25=65.当直线l的斜率为0时,根据对称性可得S PMQN=65.综上所述,四边形PMQN面积的最大值为14.2(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f x 满足f f x +12x+1-ln x=23恒成立.(1)设f x +12x+1-ln x=k,求实数k的值;(2)解不等式f7+2x>-2x2x+1+ln-ex;(3)设g x =f x -ln x,若g x ≥mg2x对于任意的x∈1,2恒成立,求实数m的取值范围.【解题思路】(1)由题意列方程求解;(2)由函数的单调性转化后求解;(3)参变分离后转化为最值问题,由换元法结合基本不等式求解.【解答过程】(1)由题意得f x =ln x-12x+1+k,f k =ln k-12k+1+k,由于y=ln k-12k+1+k在k∈0,+∞上单调递增,观察ln k-12k+1+k=23,可得k=1;(2)由于f x 在定义域内单调,所以f x +12x+1-ln x为常数,由(1)得f x =ln x-12x+1+1,f x 在x∈0,+∞上单调递增,f-x=ln-x-12-x+1+1=ln-ex-2x2x+1,故原不等式可化为f7+2x>-2x2x+1+ln-ex=f-x,由2x+7>0-x>07+2x>-x,解得-73<x<0,故原不等式的解集为-7 3 ,0;(3)g x =f x -ln x=-12x+1+1=2x2x+1>0,g x ≥mg2x可化为m≤2x2x+1⋅4x+14x=4x+14x+2x=1+-2x+14x+2x对于任意的x∈1,2恒成立,设t=-2x+1∈-3,-1,则-2x+14x+2x=t1-t2+1-t=1t+2t-3,t∈-3,-1,由基本不等式得t+2t=--t+2-t≤-22,当且仅当-t=2-t即t=-2时等号成立,故当t=-2时1t+2t-3min=22-3,故m≤22-2,当且仅当x=log22+1等号成立.实数m的取值范围为-∞,22-2.3(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD-A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A-PD1-C的平面角.(1)证明:点P 在A 1C 1上;(2)若AB =BC ,求直线PA 与平面PCD 所成角的正弦的最大值.【解题思路】(1)由二面角定义知AP ⊥PD 1,CP ⊥PD 1,利用线面垂直的判定及性质可证PD 1⊥面APC 、PD 1⊥面ACC 1A 1,结合面APC 与面ACC 1A 1有交线,确定它们同平面,进而证结论;(2)构建空间直角坐标系,令P 12,12,k且k >0,C (1,1,0),D (0,1,0),求直线方向向量、平面法向量,应用空间向量夹角坐标表示、基本不等式求线面角正弦值的最大值,注意取值条件.【解答过程】(1)由∠APC 是二面角A -PD 1-C 的平面角,则AP ⊥PD 1,CP ⊥PD 1,又AP ∩CP =P ,AP ,CP ⊂面APC ,则PD 1⊥面APC ,又AC ⊂面APC ,即PD 1⊥AC ,由长方体性质知A 1C 1⎳AC ,故PD 1⊥A 1C 1,由长方体性质:AA 1⊥面A 1B 1C 1D 1,又PD 1⊂面A 1B 1C 1D 1,则PD 1⊥AA 1,又A 1C 1∩AA 1=A 1,A 1C 1,AA 1⊂面ACC 1A 1,故PD 1⊥面ACC 1A 1,而面APC ∩面ACC 1A 1=AC ,且PD 1⊥面APC 、PD 1⊥面ACC 1A 1,根据过AC 作与PD 1垂直的平面有且仅有一个,所以面APC 与面ACC 1A 1为同一平面,又P ∈面A 1B 1C 1D 1,面ACC 1A 1∩面A 1B 1C 1D 1=A 1C 1,所以点P 在A 1C 1上;(2)构建如下图示的空间直角坐标系A -xyz ,令AB =BC =1,AA 1=k ,由题设,长方体上下底面都为正方形,由(1)知PD 1⊥A 1C 1,则P 为A 1C 1中点,所以P 12,12,k且k >0,C (1,1,0),D (0,1,0),则AP =12,12,k ,PC =12,12,-k ,PD =-12,12,-k ,若m =(x ,y ,z )是面PCD 的一个法向量,则m ⋅PC =12x +12y -kz =0m ⋅PD =-12x +12y -kz =0,令y =2,则m =0,2,1k,所以|cos ‹AP ,m ›|=|AP ⋅m||AP ||m |=212+k 2⋅4+1k 2=23+4k 2+12k 2≤23+22=2(2-1),仅当k =422时等号成立,故直线PA 与平面PCD 所成角的正弦的最大值为2(2-1).直击真题1(2022·全国·统考高考真题)若x ,y 满足x 2+y 2-xy =1,则()A.x +y ≤1B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1【解题思路】根据基本不等式或者取特值即可判断各选项的真假.【解答过程】因为ab ≤a +b 2 2≤a 2+b 22(a ,b ∈R ),由x 2+y 2-xy =1可变形为,x +y 2-1=3xy ≤3x +y 2 2,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为x 2+y 2-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1变形可得x -y 2 2+34y 2=1,设x -y 2=cos θ,32y =sin θ,所以x =cos θ+1 3sinθ,y=23sinθ,因此x2+y2=cos2θ+53sin2θ+23sinθcosθ=1+13sin2θ-13cos2θ+13=43+23sin2θ-π6∈23,2,所以当x=33,y=-33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC.2(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a-b>12C.log2a+log2b≥-2D.a+b≤2【解题思路】根据a+b=1,结合基本不等式及二次函数知识进行求解.【解答过程】对于A,a2+b2=a2+1-a2=2a2-2a+1=2a-1 22+12≥12,当且仅当a=b=12时,等号成立,故A正确;对于B,a-b=2a-1>-1,所以2a-b>2-1=12,故B正确;对于C,log2a+log2b=log2ab≤log2a+b22=log214=-2,当且仅当a=b=12时,等号成立,故C不正确;对于D,因为a+b2=1+2ab≤1+a+b=2,所以a+b≤2,当且仅当a=b=12时,等号成立,故D正确;故选:ABD.3(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.32【解题思路】因为C:x2a2-y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±bax,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2a2+b2,结合均值不等式,即可求得答案.【解答过程】∵C:x2a2-y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±bax∵直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=bax,解得{x=ay=b故D(a,b)联立{x=ay=-bax,解得{x=ay=-b故E(a,-b)∴|ED|=2b∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x2a2-y2b2=1(a>0,b>0)∴其焦距为2c=2a2+b2≥22ab=216=8当且仅当a=b=22取等号∴C的焦距的最小值:8故选:B.4(2021·天津·统考高考真题)若a>0,b>0,则1a+ab2+b的最小值为22.【解题思路】两次利用基本不等式即可求出.【解答过程】∵a>0,b>0,∴1 a +ab2+b≥21a⋅ab2+b=2b+b≥22b⋅b=22,当且仅当1a=ab2且2b=b,即a=b=2时等号成立,所以1a+ab2+b的最小值为2 2.故答案为:2 2.5(2020·天津·统考高考真题)已知a>0, b>0,且ab=1,则12a+12b+8a+b的最小值为4【解题思路】根据已知条件,将所求的式子化为a+b2+8a+b,利用基本不等式即可求解.【解答过程】∵a>0,b>0,∴a+b>0,ab=1,∴12a+12b+8a+b=ab2a+ab2b+8a+b=a+b2+8a+b≥2a+b2×8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3,或a=2+3,b=2-3时,等号成立.故答案为:4.6(2020·江苏·统考高考真题)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是45.【解题思路】根据题设条件可得x 2=1-y 45y 2,可得x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25,利用基本不等式即可求解.【解答过程】∵5x 2y 2+y 4=1∴y ≠0且x 2=1-y 45y 2∴x 2+y 2=1-y 45y 2+y 2=15y2+4y 25≥215y 2⋅4y 25=45,当且仅当15y2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.故答案为:45.7(2019·天津·高考真题)设x >0, y >0, x +2y =5,则(x +1)(2y +1)xy的最小值为43【解题思路】把分子展开化为2xy +6,再利用基本不等式求最值.【解答过程】∵(x +1)(2y +1)xy =2xy +x +2y +1xy,∵x >0, y >0, x +2y =5,xy >0,∴2xy +6xy ≥2⋅23xyxy =43,当且仅当xy =3,即x =3,y =1时成立,故所求的最小值为43.8(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【解题思路】得到总费用为4x +600x ×6=4x +900x,再利用基本不等式求最值.【解答过程】总费用为4x +600x ×6=4x +900x≥4×2900=240,当且仅当x =900x,即x =30时等号成立.故答案为30.。
基本不等式应用利用基本不等式求最值的技巧题型分析
基本不等式应用一、知识点:1.(1)若R b a ∈,,则ab b a 222≥+ 即:222b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 即:ab b a 2≥+(当且仅当b a =时取“=” ) (3)若R b a ∈,,则2)2(222b a b a ab +≤+≤(当且仅当b a =时取“=” ) 注:(1)利用均值不等式求最值的条件是:“一是正数,二为定值,三要有取等号的条件”(2)利用均值不等式求最值:当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最大值,正所谓“积为定值和有最小值,和为定值积有最大值”.应用基本不等式求最值的常见题型:1、直接利用基本不等式求解;2、若不直接满足基本不等式条件,则需要创造条件进行恒等变形,如构造“1”的代换;3、若可用基本不等式,但等号不成立,则一般利用函数的单调性求解。
二、求最值例1:设1,1,,>>∈b a R y x ,若,4==y x b a 且22=+b a ,求yx 11+的最大值。
例2、(凑项)已知54x <,求函数14245y x x =-+-的最大值。
例3、(凑系数)当时,求(82)y x x =-的最大值。
例4、(构造“1”)若正数y x ,满足xy y x 53=+,求y x 43+的最小值。
例5、( 换元)求2710(1)1x x y x x ++=>-+的值域。
三、基本不等式与恒成立问题例6、已知0,0x y >>且191x y +=,求使不等式x y m +≥恒成立的实数m 的取值范围。
例7、已知正实数y x ,满足,3xy y x =++若对任意满足条件的y x ,,都有()()012≥++-+y x a y x 恒成立,求实数a 的范围。
四、练习:1、设正实数z y x ,,满足04322=-+-z y xy x ,则当xyz 取最小值时,z y x -+2的最大值为( )A 、0 B 、89 C 、2 D 、492、已知()2,0∈x ,函数()x x y 38-=的最大值为3、若01>+x ,则11++x x 的最小值为4、设0>>b a ,则()b a a ab a -++112的最小值为( ) A 、1 B 、2 C 、3 D 、45、若直线()0,002>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则ba 11+的最小值为线性规划问题:由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,以下五类常见题型。
拓展培优---基本不等式求最值的应用技巧
5
当且仅当 x2=41x2,y2=41y2且yx=xy, 即 x=y= 22时,取等号.即最小值为 4. [答案] 4
6
类型三 配凑——配式配系数,凑出定值 有时为了挖掘出积或和为定值,常常需要根据题设条件采取合理配式配
系数的方法,使配好的代换式与待求值式相乘后可以应用基本不等式得出定
值,或配以恰当的系数后,使积式中的各项之和为定值. [典例3] 已知0<x<2,则x(5-2x)的最大值为____________.
[解析] 因为 0<x<2,所以 0<2x<4,5-2x>0,
则 x(5-2x)=12·2x·(5-2x)≤12·[2x+(25-2x)]2=12×245=285,当且仅
当 2x=5-2x,即 x=54时等号成立,故 x(5-2x)的最大值为285.
[答案]25 8源自7[典例 4] 当 x<32时,代数式 x+2x-8 3的最大值为________,此时 x 的值
[解析] 法一:令 y=xx2-+18,则 y=(x2-x-1)1 +9=x+1+x-9 1=(x-1)
+x-9 1+2≥2 (x-1)·x-9 1+2=2×3+2=8,当且仅当 x-1=x-9 1,即 x
=4 时等号成立.故xx2-+18(x>1)的最小值为 8.
法二:令
x
-
1
=
t(t>0)
,
则
x2+8 x-1
=
(t+1)2+8 t
=
t2+2t+9 t
=
t
+
9 t
+
2≥2× 9+2=8,当且仅当 t=3,即 x=4 时取等号.
[答案] 8
4
运用基本不等式求最值需注意的两个问题
基本不等式a +b 2≥ab (a ,b ∈R +)是高中数学中的重点知识,其应用范围较广,尤其在求最值时,运用基本不等式能使问题快速获解.而在运用基本不等式求最值时,我们需要注意以下两个问题.一、把握应用基本不等式的条件运用基本不等式求最值需把握三个条件:一正、二定、三相等.“一正”是指两个数或两个式子都是大于0的;“二定”是指两个数或两个式子的积或和为定值;“三相等”指在两个数或两个式子相等时不等式可取等号.运用基本不等式求最值,这三个条件缺一不可.例1.求函数y =x 2+1x 2+2的最值.解析:很多同学在解题时会直接利用基本不等式进行求解:y =x 2+2+1x 2+2-2≥2-2=0.出错的原因在于,忽略了“三相等”这一条件,很显然x 2+2≠1x 2+2,导致得到错误的答案.解答本题,我们需通过换元,令t =x 2+2(t ≥2),则y =t +1t-2,根据对勾函数y =t +1t -2在[2,+∞)上为增函数,得出y =x 2+1x 2+2的值域为[12,+∞).很多同学在运用基本不等式时往往会注意到“一正”“二定”两个条件,却忽略“三相等”这个条件.大家在解题时要警惕,避免出现这样的错误.二、灵活运用配凑技巧运用基本不等式求最值,关键是配凑出两式的和或积的定值.如何配凑呢?常见的配凑技巧有拆项、裂项、添项等,下面我们结合实例来说明.1.拆项在拆项时,我们要学会将某些项拆为两项之和、差、积的形式,以便配凑出两式的和或积.常见的拆项形式有:a +b =a 2+a 2+b 、x 2+m x =x +m x 等.例2.当x >0时,试求y =16x +9x2的最小值.分析:可将目标式中的16x 拆为8x +8x ,这样便构造出三项8x 、8x 、9x2积的定值,便可利用基本不等式求得最值.解:因为x >0,所以y =8x +8x +9x 2≥=1293,当且仅当8x =9x 2,即x =时,y 的最小值为1293.2.裂项裂项是指将某一项分裂为两项、三项之和或者差的形式,然后将各式重新组合,配凑出两式的和或积,运用基本不等式求得最值.裂项常用于求分式的最值.例3.已知x >-1,求函数y =x 2+7x +10x +1的最小值.分析:要运用基本不等式求得y 的最小值,需先将函数式中的分式裂项,配凑出分母x +1,才可利用基本不等式求得最值.解:∵x >-1,∴y =x 2+7x +10x +1=[]()x +1+4[]()x +1+1x +1=()x +1+4x +1+5≥+5=9,当且仅当x +1=4x +1,即x =1时,等号成立,∴y 的最小值为9.3.添项添项,即通过恒等变换,在代数式中添加某些项,从而配凑出两式的和或者积.常见的添项形式有:a +1a +m =()a +m +1a +m-m 、a =a -b +b 等.例4.已知a >1,b >1,且ab -()a +b =1,求a +b 的最小值.分析:因为ab -()a +b =1,所以()a -1()b -1=2,将其与目标式对比可发现,只需通过添项,构造出a -1、b -1,便可运用基本不等式求得问题的答案.解:a +b =()a -1+()b -1+2≥2()a -1()b -1+2=22+2,当且仅当a -1=b -1,即a =b =1+2时,等号成立,因此a +b 的最小值为22+2.虽然,基本不等式法是一种常用的解题方法,也是大家比较熟悉的方法,但是同学们在解题时一定要注意这两个问题,只有把握了应用基本不等式的条件,学会灵活运用配凑的技巧,才能顺利求得问题的答案.(作者单位:江苏省海门证大中学)思路探寻49。
精品:基本不等式的典型例题解题技巧
基本不等式应用应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --g 不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->Q ,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。
利用基本不等式处理最值证明不等式和实际问题
问题12利用基本不等式处理最值、证明不等式和实际问题一、考情分析不等式问题始终是高考数学的热点题型之一,而基本不等式法是最为常见、应用十分广泛的方法之一.下面笔者以近几年高考试题及模拟题为例,对高考中考查利用基本不等式解题的基本特征和基本类型作一些分类解析,供参考. 二、经验分享(1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件. (2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(4)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解. (5)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(6)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围. 三、知识拓展 1.(1)若R b a ∈,,则;(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”).2.(1)若00a ,b >>,则ab ba ≥+2;(2)若00a ,b >>,则(当且仅当b a =时取“=”);(3)若00a ,b >>,则(当且仅当b a =时取“=”).3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x +≤-(当且仅当1x =-时取“=”);若0x ≠,则12x x +≥,即12x x +≥或12x x+≤-(当且仅当b a =时取“=”).4.若0>ab ,则2≥+a bb a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即2a b b a+≥或2a bb a+≤-(当且仅当b a =时取“=”).6.若R b a ∈,,则(当且仅当b a =时取“=”).7.一个重要的不等式链:.8.9.函数图象及性质(1)函数图象如右图所示:(2)函数性质:①值域:;②单调递增区间:;单调递减区间:.10.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”; (2)求最值的条件“一正,二定,三相等”;(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 四、题型分析(一) 利用基本不等式求最值利用基本不等式求函数最值时,应注意三个条件:“一正,二定,三相等”,这三个条件中,以定值为本.因为在一定限制条件下,某些代数式需经过一定的变式处理,才可利用基本不等式求得最值,而怎样变式,完全取决于定值的作用.主要有两种类型:一类是中条件给出定值式,一类是条件中无定值式.【例1】【江苏省南通市三县(通州区、海门市、启东市)2019届高三第一学期期末】已知实数,且,则的最小值为____【答案】【解析】由于a +b =2,且a >b >0,则0<b <1<a <2, 所以,,令t =2a ﹣1∈(1,3),则2a =t +1, 所以,当且仅当,即当时,等号成立.因此,的最小值为.故答案为:.【小试牛刀】设,x y 是正实数,且1x y +=,则的最小值是__________.【答案】14. 【分析一】考虑通法,消元化为单元函数,而后可用导数法和判别式法求解函数的最小值; 【解析一】【分析二】考虑整体替换的方法,分母的和为常数. 【解析二】设2x s +=,1y t +=,则4s t +=,【例2】已知,x y 为正实数,则433x yx y x++的最小值为 A .53 B .103 C .32D .3 【答案】3 【解析】,当且仅当时取等号.【点评】配凑法是解决这类问题的常用方法,其目的是将代数式或函数式变形为基本不等式适用的条件,对于这种没有明确定值式的求最大值(最小值)问题,要灵活依据条件或待求式合理构造定值式. 【小试牛刀】已知函数在R 上是单调递增函数,则23cb a-的最小值是【答案】1 【解析】 由题意的,因为函数()f x 在R 上单调递增,所以满足,可得23b c a≥,且0a >所以,当且仅当3b a =时等号成立,所以.技巧一:凑项【例3】设0a b >>,则的最小值是【分析】拼凑成和为定值的形式 【解析】4=(当且仅当和1ab ab =,即⎪⎩⎪⎨⎧==222b a 时取等号). 【点评】使用该公式时一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图象,还应加强非定构定、不等作图这方面的训练,并注重表达的规范性,才能灵活应对这类题型. 【小试牛刀】【江苏省无锡市2019届高三上学期期中】设为正实数,且,则的最小值为________. 【答案】27 【解析】因为,所以因此当且仅当时取等号,即的最小值为27.技巧二:凑系数【例4】 当04x <<时,求的最大值.【分析】由04x <<知820x ->,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值.注意到为定值,故只需将凑上一个系数即可.【解析】,当282x x =-,即2x =时取等号,∴当2x =时,的最大值为8.【评注】本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值. 【小试牛刀】设230<<x ,求函数的最大值.【解析】∵230<<x ,∴023>-x ,∴,当且仅当232x x ,即时等号成立.【点评】总的来说,要提高拼凑的技巧,设法拼凑出乘积或和为定值的形式.技巧三: 分离 【例5】 求的值域.【分析一】本题看似无法运用基本不等式,不妨将分子配方凑出含有1x 的项,再将其分离.【解析一】,当,即时,(当且仅当1x 时取“=”号).【小试牛刀】已知a,b 都是负实数,则的最小值是【答案】2(﹣1)【解析】222≥-.技巧四:换元【例6】已知a ,b 为正实数,2b +ab +a =30,求y =1ab 的最小值.【分析】这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行.【解法一】由已知得a =30-2b b +1 ,ab =30-2b b +1 ·b =-2 b 2+30bb +1 .∵a >0,∴0<b <15.令t =b +1,则 1<t <16,∴ab =-2t 2+34t -31t =-2(t +16t )+34.∵t +16t ≥2t ·16t =8,∴ab ≤18,∴y ≥118 ,当且仅当t =4,即a =6,b =3时,等号成立.【解法二】由已知得:30-ab =a +2b .∵a +2b ≥22 ab ,∴30-ab ≥2 2 ab .令u =ab ,则 u 2+2 2 u -30≤0,-5 2 ≤u ≤3 2 ,∴ab ≤3 2 ,ab ≤18,∴y ≥118 .【点评】①本题考查不等式的应用、不等式的解法及运算能力;②如何由已知不等式出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围.【小试牛刀】设正实数y x ,满足1=+y x ,则的取值范围为【答案】]89,1[ 【解析】因为,所以410≤<xy设,所以当41=t 时,上式取得最大值 当21=t 时,上式取得最小值所以的取值范围为]89,1[【点评】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解. 技巧五:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.【例7】已知0,0x y >>,且191x y+=,求x y +的最小值.【错解】0,0x y >>,且191x y+=,∴,故.【错因】解法中两次连用基本不等式,在等号成立条件是x y =,在1992xyxy+≥等号成立条件是19x y=,即9y x =,取等号的条件的不一致,产生错误.因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法. 【正解】,,当且仅当9y x x y=时,上式等号成立,又191x y+=,可得时,.【小试牛刀】【江苏省苏北四市2019届高三第一学期期末】已知正实数满足,则的最小值为____. 【答案】【解析】正实数x ,y 满足1,则:x +y =xy , 则:4x +3y ,则: 437+4,故的最小值为.故答案为:.技巧六:取平方【例8】已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.【解析】W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20,∴W ≤20 =2 5 . 【小试牛刀】求函数的最大值.【解析】注意到21x -与52x -的和为定值.,又0y >,,当且仅当21x -=52x -,即32x =时取等号,故max 22y =. 【点评】本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件. 技巧七:构造要求一个目标函数),(y x f 的最值,我们利用基本不等式构造一个以),(y x f 为主元的不等式(一般为二次不等式),解之即可得),(y x f 的最值. 【例9】设,x y 为实数,若,则2x y +的最大值是 .【分析】利用基本不等式将已知定值式中224x y ,xy +的均转化成含2x y +的不等式,再求2x y +的最大值.【答案】2105.【解析】,可解得2x y +的最大值为2105. 【点评】本题的解法过程体现了“消元”的思想,所求目标函数是和的形式,那我们就设法消去条件等式中的乘积,方法就是利用基本不等式,这里它的作用,一个是消元,还有就是把条件的等式变为了不等式. 【小试牛刀】若正实数x ,y ,满足,则x y +的最大值为【分析】构成关于x y +的不等式,通过解不等式求最值 【解析】由,得.即,.计算得出:.y x +∴的最大值是4.技巧八:添加参数【例10】若已知0,,>c b a ,则的最小值为 .【解析】时可取得函数的最小值,此时,此时51=λ,最小值为552. 【小试牛刀】设w z y x ,,,是不全为零的实数,求的最大值.【解析】显然我们只需考虑的情形,但直接使用基本不等式是不行的,我们假设可以找到相应的正参数,αβ满足:故依据取等号的条件得,,参数t 就是我们要求的最大值.消去,αβ我们得到一个方程,此方程的最大根为我们所求的最大值,得到212t +=. 【点评】从这个例子我们可以看出,这种配凑是有规律的,关键是我们建立了一个等式,这个等式建立的依据是等号成立的条件,目的就是为了取得最值.【小试牛刀】设,,x y z 是正实数,求的最小值.【解析】引进参数k ,使之满足,依据取等号的条件,有:,故的最小值4.综上所述,应用均值不等式求最值要注意:一要“正”:各项或各因式必须为正数;二可“定”:必须满足“和为定值”或“积为定值”,要凑出“和为定值”或“积为定值”的式子结构,如果找不出“定值”的条件用这个定理,求最值就会出错;三能“等”:要保证等号确能成立,如果等号不能成立,那么求出的仍不是最值. (二) 基本不等式与恒成立问题【例11】已知x >0,y >0,且21+=1x y,若恒成立,则实数m 的取值范围是 .【分析】先求左边式子的最小值 【解析】∵0>x ,0>y ,且21+=1x y,∴,当且仅当4y x =x y ,即y x 2=时取等号,又21+=1x y,∴4=x ,2=y ,∴,要使恒成立,只需,即28>m +2m ,解得24<<-m ,故答案为24<<-m .【点评】恒成立指函数在其定义域内满足某一条件(如恒大于0等),此时,函数中的参数成为限制了这一可能性(就是说某个参数的存在使得在有些情况下无法满足要求的条件),因此,适当的分离参数能简化解题过程.例:要使函数恒大于0,就必须对a 进行限制--令0≥a ,这是比较简单的情况,而对于比较复杂的情况时,先分离参数的话做题较简单. 【小试牛刀】若对任意的正实数,x y 恒成立,求a 的最小值. 【解析】对任意的正实数,x y 恒成立,∴对任意的正实数,x y 恒成立.设,由取等号条件:,消去k ,可以得到:210t t --=,解得:512t +=,因此a 的最小值为512+.题型二 基本不等式的实际应用【例12】某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【解析】(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250 =-13x 2+40x -250; 当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x -1 450)-250 =1 200-(x +10 000x ).∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -2500<x <80,1 200-x +10 000xx ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950. 对称轴为x =60,即当x =60时,L (x )最大=950(万元); 当x ≥80时,L (x )=1 200-(x +10 000x ) ≤1 200-210 000=1 000(万元), 当且仅当x =100时,L (x )最大=1 000(万元),综上所述,当年产量为100千件时,年获利润最大.【点评】(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【牛刀小试】 某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件. 【答案】80【解析】设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x8=20.当且仅当800x =x8(x >0),即x =80时“=”成立.(2)年平均利润为y x =-x -25x +18=-(x +25x )+18, ∵x +25x ≥2x ·25x =10,∴y x =18-(x +25x )≤18-10=8,当且仅当x =25x ,即x =5时,取等号. 五、迁移运用1.【江苏省南通市通州区2018-2019学年第一学期高三年级期末】对于直角三角形的研究,中国早在商朝时期商高就提出了“勾三股四玄五”勾股定理的特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理如果一个直角三角形的斜边长等于5,那么这个直角三角形面积的最大值等于______. 【答案】【解析】设直角三角形的斜边为c ,直角边分别为a ,b , 由题意知, 则,则三角形的面积,,,则三角形的面积,当且仅当a=b=取等即这个直角三角形面积的最大值等于,故答案为:.2.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟】在平面四边形中,,则的最小值为_____.【答案】【解析】如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为,AB=1,由数量积的几何意义知在方向的投影为3,∴可设C(3,n),又所以,,即,==,当且仅当,即n=1,m=时,取等号,故答案为.3.【江苏省常州市2019届高三上学期期末】已知正数满足,则的最小值为________. 【答案】4【解析】由基本不等式可得,所以,当且仅当,即当y=x2时,等号成立,因此,的最小值为4,故答案为:4.4.【江苏省扬州市2018-2019学年度第一学期期末】已知正实数x,y满足,若恒成立,则实数m的取值范围为_______.【答案】【解析】由于x+4y﹣xy=0,即x+4y=xy,等式两边同时除以xy得,,由基本不等式可得,当且仅当,即当x=2y=6时,等号成立,所以,x+y的最小值为9.因此,m≤9.故答案为:m≤9.5.【江苏省徐州市(苏北三市(徐州、淮安、连云港))2019届高三年级第一次质量检测】已知,,且,则的最大值为_________.【答案】【解析】化为,即,解得:,所以,的最大值为。
专题27 基本不等式中常见的方法求最值(解析版)
专题27 基本不等式中常见的方法求最值一、例题选讲题型一、消参法消参法就是对应不等式中的两元问题,用一个参数表示另一个参数,再利用基本不等式进行求解.解题过程中要注意“一正,二定,三相等”这三个条件缺一不可!例1、(2017苏北四市期末). 若实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,则3x +1y -3的最小值为________. 【答案】 8【解析】解法1 因为实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,所以y =3x-3(y >3), 所以3x +1y -3=y +3+1y -3=y -3+1y -3+6≥2(y -3)·1y -3+6=8,当且仅当y -3=1y -3,即y =4时取等号,此时x =37,所以3x +1y -3的最小值为8.解法2 因为实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,所以y =3x -3(y >3),y -3=3x-6>0, 所以3x +1y -3=3x +13x -6=3x -6+13x -6+6≥2⎝⎛⎭⎫3x -6·13x -6+6=8,当且仅当3x -6=13x -6,即x =37时取等号,此时y =4,所以3x +1y -3的最小值为8.例2、(2013徐州、宿迁三检)若0,0a b >>,且11121a b b =+++,则2a b +的最小值为 .【解析】由已知等式得222122a b ab a b b ++=+++,从而212b b a b-+=,21222b b a b b b -++=+131222b b =++1122≥+=,题型二、双换元若题目中含是求两个分式的最值问题,对于这类问题最常用的方法就是双换元,分布运用两个分式的分母为两个参数,转化为这两个参数的不等关系例3、(2015苏锡常镇、宿迁一调)已知实数x ,y 满足x >y >0,且x +y ≤2,则2x +3y +1x -y的最小值为________.【答案】3+224【解析】设⎩⎪⎨⎪⎧x +3y =m ,x -y =n .解得⎩⎨⎧x =m +3n 4,y =m -n4.所以x +y =m +n 2≤2,即m +n ≤4.设t =2x +3y +1x -y =2m +1n,所以4t ≥⎝⎛⎭⎫2m +1n (m +n )=3+2n m +m n ≥3+2 2.即t ≥3+224,当且仅当2n m =mn ,即m =2n 时取等号.例4、(2013徐州、宿迁三检)若0,0a b >>,且11121a b b =+++,则2a b +的最小值为 .【解析】12,211m n a b m a b n b n --⎧+==⎧⎪⎨⎨+=⎩⎪=-⎩解得 所以111,m n +=332222m n a b +=+-,因为33113()()22222222m n m n m n m n n m+=++=++≥+所以332222m n a b +=+-≥题型三、1的代换1的代换就是指凑出1,使不等式通过变形出来后达到运用基本不等式的条件,即积为定值,凑的过程中要特别注意等价变形.例5、(2019苏锡常镇调研)已知正实数a ,b 满足a +b =1,则bb a a 421222+++的最小值为 . 【答案】.11【解析】思路分析:由于目标式比较复杂,不能直接求最小值,需要对该式子进行变形,配凑出使用基本不等式的条件,转化为熟悉的问题,然后利用基本不等式求解.1174274))(41()(24212421222=+⨯≥++=++++=+++=+++baa b b a a b b a b a b a b b a a b b a a 当且仅当b a a b 4=,即⎪⎩⎪⎨⎧==3231b a 时取“=”,所以b b a a 421222+++的最小值为.11例6、(2019年苏州学情调研)若正实数x y ,满足1x y +=,则4y x y+的最小值是 . 【答案】8【解析】因为正实数x y ,满足1x y +=,所以4()444y y x y y xx y x y x y ⨯++=+=++4448≥=+=,当且仅当4y x x y =,即2y x =,又1x y +=,即12,33x y ==,等号成立,即4yx y +取得最小值8.题型四、齐次化齐次化就是含有多元的问题,通过分子、分母同时除以得到一个整体,然后转化为运用基本不等式进行求解.例7、(2019通州、海门、启东期末)已知实数a>b>0,且a +b =2,则3a -ba 2+2ab -3b 2的最小值为________.【答案】3+54思路分析2 注意到所求的代数式的分子与分母分别为一次式、二次式,为此想到将它们转化为齐次式来加以处理,即将分子利用条件a +b =2,通过常数代换转化为二次式,进而将齐次式化为单变量的问题来加以处理.解析:(化齐次式法):因为a +b =2,所以3a -b a 2+2ab -3b 2=(a +b )(3a -b )2(a 2+2ab -3b 2)=32+2(-ab +2b 2)a 2+2ab -3b 2=32+2(2-ab )(a b )2+2·a b -3,令u =2-a b ,因为a +b =2,a>b>0,所以2-b>b>0,故0<b<1,从而u =2-a b =2-2-b b =3-2b ∈(-∞,1),则3a -b a 2+2ab -3b 2=32+2u u 2-6u +5=32+2u +5u-6 当u∈(0,1)时,u +5u -6>0,此时3a -b a 2+2ab -3b 2>32;当u<0时,u +5u -6=-⎝⎛⎭⎫-u +5-u -6≤-6-25,此时3a -b a 2+2ab -3b 2≥32+2-6-25=3+54,当且仅当u=-5时等号成立.因此3a -b a 2+2ab -3b 2的最小值为3+54.二、达标训练1、(2019年苏州学情调研)若正实数x y ,满足1x y +=,则4y x y+的最小值是 . 【答案】8【解析】因为正实数x y ,满足1x y +=,所以4()444y y x y y xx y x y x y ⨯++=+=++4448≥=+=,当且仅当4y x x y =,即2y x =,又1x y +=,即12,33x y ==,等号成立,即4yx y +取得最小值8.2、(2018苏锡常镇调研) 已知a>0, b>0,且2a +3b =ab,则ab 的最小值是________.【答案】 26【解析】思路分析 利用基本不等式,化和的形式为积的形式.因为ab =2a +3b ≥22a ·3b ,所以ab≥26,当且仅当2a =3b=6时,取等号.3、(2018苏锡常镇调研) 已知a b ,为正实数,且()234()a b ab -=,则11a b+的最小值为 .【答案】【解析】因为223()()44()4a b a b ab ab ab +=-+=+,所以3222114()44()()48()a b ab ab ab a b ab ab ab +++===+≥,故11a b +≥当且仅当21()4ab a b =⎧⎨-=⎩,即11a b ⎧=⎪⎨=⎪⎩时取得等号,所以11a b +的最小值为.224、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)已知a,b,c 均为正数,且abc =4(a +b),则a +b +c 的最小值为________. 【答案】 8【解析】由a,b,c 均为正数,abc =4(a +b),得c =4a +4b ,代入得a +b +c =a +b +4a +4b =⎝⎛⎭⎫a +4a +⎝⎛⎭⎫b +4b ≥2a·4a+2b·4b=8,当且仅当a =b =2时,等号成立,所以a +b +c 的最小值为8. 5、(2019苏北三市期末) 已知a>0,b>0,且a +3b =1b -1a ,则b 的最大值为________.【答案】 13【解析】由a +3b =1b -1a ,得1b -3b =a +1a .又a>0,所以1b -3b =a +1a ≥2(当且仅当a =1时取等号),即1b -3b≥2,又b>0,解得0<b≤13,所以b 的最大值为13.6、(2019扬州期末)已知正实数x,y 满足x +4y -xy =0,若x +y≥m 恒成立,则实数m 的取值范围为_________. 【答案】 (-∞,9]【解析】 m≤x +y 恒成立,m≤(x +y)min .解法1(消元法) 由x +4y -xy =0,得y =x x -4,因为x,y 是正实数,所以y>0,x>4,则x +y =x +x x -4=x +x -4+4x -4=x +4x -4+1=(x -4)+4x -4+5≥2(x -4)·4x -4+5=9,当且仅当x =6时,等号成立,即x +y 的最小值是9,故m≤9.解法2(“1”的代换) 因为x,y 是正实数,由x +4y -xy =0,得4x +1y =1,x +y =(x +y)·⎝⎛⎭⎫4x +1y =4y x +x y +5≥24y x ·xy+5=9,当且仅当x =6,y =3时,等号成立,即x +y 的最小值是9,故m≤9. 解法3(函数法) 令t =x +y,则y =t -x,代入x +4y -xy =0,得x 2-(3+t)x +4t =0.Δ=(t +3)2-16t =t 2-10t +q≥0,得t≤1或t≥9.又y =xx -4>0,且x>0,则x>4,故t>4,从而t≥9.所以m≤9. 7、(2017苏州期末) 已知正数x,y 满足x +y =1,则4x +2+1y +1的最小值为________. 【答案】 94【解析】 解法1 令x +2=a ,y +1=b ,则a +b =4(a >2,b >1),4a +1b =14(a +b )⎝⎛⎭⎫4a +1b =14⎝⎛⎭⎫5+4b a +a b ≥14(5+4)=94,当且仅当a =83,b =43,即x =23,y =13时取等号.8、(2019宿迁期末)已知正实数a,b 满足a +2b =2,则1+4a +3b ab 的最小值为________.【答案】252【解析】解法1(消元法) 由a +2b =2得a =2-2b >0,所以0<b <1,令f(b)=1+4a +3b ab =9-5b2b -2b 2,f′(b)=-10b 2+36b -18(2b -2b 2)2=-2(5b -3)(b -3)(2b -2b 2)2.当b∈⎝⎛⎭⎫0,35时,f′(b)<0,f(b)单调递减;当b∈⎝⎛⎭⎫35,1时,f′(b)>0,f(b)递增, 所以当b =35时,f(b)有唯一的极小值,也是最小值f ⎝⎛⎭⎫35=252. 解法2(齐次化) 因为a +2b =2,所以1+4a +3b ab =12a +b +4a +3bab =9a +8b 2ab =(9a +8b )(a +2b )4ab =9a4b +4b a +132≥29a 4b ·4b a +132=252,当且仅当a =45,b =35时取等号,所以所求的最小值为252.。
题型04 利用基本不等式求最值(解析版)
秒杀高考数学题型之利用基本不等式求最值【秒杀题型二】:利用基本不等式求最值。
『秒杀策略』:条件:一正、二定、三相等。
①和定,积有最大值,当且仅当两正数取等号时最大。
②积定,和有最小值,当且仅当两正数取等号时最小。
在求最值时要学会三种方法:以母题为例说明三种方法。
【高考母题】:如果0,0,2,x y x y xy >>++=则x y +的最小值为 ( )A.32B.1+2 D.2 【解析】:方法一:基本不等式法:思路:求y x +的最值要把xy 通过22⎪⎭⎫ ⎝⎛+≤y x xy 放缩到y x +,22)(2⎪⎭⎫ ⎝⎛+≤=+-y x xy y x ,得232-≤+y x ,选C 。
方法二:万能方法:思路:把所求的式子设为t ,与已知条件代入消元(含两个变量)转化为一元二次不等式,如含一个变量直接转化为一元二次不等式,令0≥∆得到t 的范围。
设t y x =+,代入得022=-+-t tx x ,0842≥-+=∆t t ,得322--≤t (舍去),232-≥t 。
方法三:秒杀方法:思路:当已知条件与所求式子中变量.............(.双变量...).系数一致时.....(.或能配成一致时,只考虑一............次和或平方和前的系数,乘积不用考虑,因为乘积可以配任意需要的系数..................................这种方法叫地位等价法求最值,..............当取等号时取到最值。
..........已知条件与所求式子中x 的系数均为1,y 的系数均为1,则当y x =时取到最值,即31+-==y x 时取到最值232-。
1.(2007年新课标全国卷7)已知0x >,0y >,y b a x ,,,成等差数列,y d c x ,,,成等比数列,则2()a b cd +的最小值为 ( )A.0B.1C.2D.4【解析】:基本不等式xy y x 2≥+,由等差与等比数列的性质得:22()()44a b x y xy cd xy xy++=≥=,选D 。
高中数学解题方法系列:用基本不等式求最值的4种策略
高中数学解题方法系列:用基本不等式求最值的4种策略基本不等式ab b a ≥+2(0,0>>b a 当且仅当b a =时等号成立)是高中必修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。
从本质上看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。
本文将结合几个实例谈谈运用基本不等式求最值的三大策略。
一、基本不等式的基础知识[1]基本不等式:如果0,0>>b a ,则ab b a ≥+2,当且仅当b a =时等号成立。
在基本不等式的应用中,我们需要注意以下三点:“一正”:a 、b 是正数,这是利用基本不等式求最值的前提条件。
“二定”:当两正数的和b +a 是定值时,积ab 有最大值;当两正数的积ab 是定值时,和b +a 有最小值。
“三相等”:b a =是ab b a =+2的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。
二、利用基本不等式求最值的四大策略策略一利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。
题型一配凑系数例1 设230<<x ,求函数)23(4x x y -=的最大值。
分析:因为x x x 23)23(4+=-+不是个定值,所以本题无法直接运用基本不等式求解。
但凑系数将4x 拆为x 22⋅后可得到和3)23(2=-+x x 为定值,从而可利用基本不等式求其最大值。
解:因为230<<x ,所以023>-x 故2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立. 所以原式的最大值为29. 题型二配凑项1 配凑常数项例2 已知54x <,求函数54124-+-=x x y 的最大值。
(完整版)一题多解之利用基本不等式求最值
一题多解之利用基本不等式求最值用基本不等式求函数的最大(小)值是高中数学的一个重点,三个条件必须同时具备,才能应用,即“一正,二定,三相等”.在具体的题目中“正数”条件往往易从题设中获得,“相等”条件也易验证确定,而要获得“定值”条件却常常被设计为一个难点,它需要一定的灵活性和变形技巧.因此,“定值”条件决定着不等式应用的可行性.这是解题成败的关键。
例、已知正数a,b 满足311=+b a ,求b a +的取值范围。
思路点拨:一种思路是根据划归思想,二元转化为一元,即利用311=+b a 将ba +中的b 用a 表示,然后用基本不等式求范围;另一种思路是对311=+b a 变形,获得b a +与ab 的关系,然后利用解不等式消去ab 建立b a +的不等式求解.解析:方法一:由311=+b a 得ab b a 3=+,13-=∴a a b ,由于a>0,b>0,可得31>a ,于是 )31(913113-++=-+=+a a a a a b a 3432)31(91)31(232)31(9131=+-⨯-≥+-+-=a a a a , 当)31(9131-=-a a ,即32=a 时取等号,b a +∴的取值范围是),34[+∞令t ta a a g +-=33)(2,则⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⨯--≥⨯-=∆+-=0)31(31323034)3(33)(22g t t t t ta a a g解得34≥t , 所以b a +的取值范围是),34[+∞ 运用基本不等式求最值的技巧: 1、含有多个变量的条件最值问题,一种方法是减少变量的个数,将问题转化为只含有一 个变量的函数的最值问题进行解决;另一种方法是采用代换的方法,对代数式变形后, 在运用基本不等式。
2、妙用“1”的代换求代数式的最值:在求解含有两个变量的代数式的最值问题时,通常的解决办法是变量替换或常值“1”的替换,即由已知条件得到某个式子的值为常 数,然后将欲求最值的代数式乘上常数,再对代数式进行变形整理,从而可利用基本 不等式求最值. 针对性练习:1.已知a >0,b >0,131,a b+=则a+2b 的最小值为( ) (A)726+(B)23 (C)723+ (D)14 解析:选A.()133a 2b a 2b a 2b ()16726,a b b a+=++=+++≥+Q ∴a+2b 的最小值为72 6.+ 2.若-4<x <1,则2x 2x 2f (x)2x 2-+=-( ) (A)有最小值1 (B)有最大值1 (C)有最小值-1 (D)有最大值-13.已知0<x <1,则4y lgx lgx=+的最大值为_________. 解析:∵0<x <1,∴lgx <0,-lgx >0. ()4y lgx ()244lgx∴-=-+-≥=,即y ≤-4. 当且仅当41lgx x lgx 100-=-=,即时等号成立,故y max =-4. 4.已知函数2x 2y (x 2).x x 1+=-++> (1)求1y 的取值范围; (2)当x 为何值时,y 取何最大值?5.已知a>0,b>0,a+b=2,则14a b+的最小值是( )(A)72(B)4 (C)92(D)5解析:选C.由已知可得14a b1412a b()2a b2a b2b2a++=⋅+=+++≥52a b922b2a2+⋅=,当且仅当24a b33==,时取等号,即14a b+的最小值是92.6.若a>0,b>0,且a+b=1,则ab+1ab的最小值为( )(A)2 (B)4 (C)174(D)227.已知f(x)=log2(x-2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值为( )(A)5 (B)7 (C)8 (D)9解析:选B.由已知得log2(m-2)+log2(2n-2)=3,即log2[(m-2)(2n-2)]=3,因此m2,n1,(m2)(2n2)8.>⎧⎪>⎨⎪--=⎩于是4n1.m2=+-所以444m n m1m232(m2)37.m2m2m2+=++=-++≥-=---g当且仅当4m2,m2-=-即m=4时等号成立,此时m+n取最小值7.。
高考数学专题--基本不等式求最值的常用方法(解析版)
基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。
利用基本不等式求最值技巧
利用基本不等式求最值的技巧基本不等式具有将“和式”转化为“积式”与将“积式”转化为“和式”的功能,但一定要注意应用的前提:“一正”、“二定”、“三相等”.所谓“一正”是指“正数”,“二定”指应用定理求最值时,和或积为定值,“三相等”是指满足等号成立的条件.在运用基本不等式ab b a 222≥+与2ba ab +≤或其变式解题时,要注意如下技巧 1:配系数【例1】已知230<<x ,求)23(x x y -=的最大值. 2:添加项 【例2】已知23>x ,求322-+=x x y 的最小值. 3:分拆项【例3】已知2>x ,求2632-+-=x x x y 的最小值.4:巧用”1”代换【例4】已知正数y x ,满足12=+y x ,求yx 21+的最小值.一般地有,2)())((bd ac ydx c by ax +≥++,其中d c b a y x ,,,,,都是正数.这里巧妙地利用”1”作出了整体换元,从而使问题获得巧解. 【例5】已知正数z y x ,,满足1=++z y x ,求zy x 941++的最小值. 5:换元【例6】已知c b a >>,求cb ca b a c a w --+--=的最小值.【例7】已知1->x ,求8512+++=x x x y 的最大值.6:利用对称性【例8】已知正数z y x ,,满足1=++z y x ,求121212+++++z y x 的最大值. 【分析】由于条件式1=++z y x 与结论式121212+++++z y x 都是关于正数z y x ,,轮换对称的,故最大值必然是当31===z y x 时取到,这时35121212=+=+=+z y x ,从而得到下面证明思路与方向 【解】利用基本不等式b a ab +≤2得351235)12(2++≤⨯+x x , 351235)12(2++≤⨯+y y ,351235)12(2++≤⨯+z z ,以上三式同向相加得1053)(235)121212(2=++++≤+++++z y x z y x ,所以化简得15121212≤+++++z y x ,所以当且仅当31===z y x 时121212+++++z y x 取到最大值15.一般地,如果条件式与结论式都是关于各个元素轮换对称的,则最值必定是在各个元素相等时取到.利用这一思想往往可给解题者提供解题的方向与思路.7:直接运用化为其它【例9】已知正数b a ,满足3++=b a ab ,求ab 的取值范围.含参不等式的解法举例当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。
基本不等式应用利用基本不等式求最值的技巧
基本不等式应用利用基本不等式求最值的技巧————————————————————————————————作者: ————————————————————————————————日期:ﻩ基本不等式应用利用基本不等式求最值的技巧 应用一:求最值例1:求下列函数的值域(1)y =3x 2+\f(1,2x 2) (2)y =x +错误!解:(1)y=3x 2+错误!≥2错误!=错误! ∴值域为[错误!,+∞)(2)当x >0时,y=x +错误!≥2错误!=2;当x<0时, y =x +1x = -(- x -1x)≤-2错误!=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。
高考数学重难点培优讲义之基本不等式求最值典型题型(含答案解析)
基本不等式求最值【题型1 直接法求最值】 (2)【题型2 配凑法求最值】 (3)【题型3 常数代换法求最值】 (3)【题型4 消元法求最值】 (4)【题型5 构造不等式法求最值】 (5)【题型6 多次使用基本不等式求最值】 (6)【题型7 实际应用中的最值问题】 (6)【题型8 与其他知识交汇的最值问题】 (9)基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.【知识点1 利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2 基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.【题型1 直接法求最值】【例1】(2023上·北京·高一校考阶段练习)已知a>0,则a+1+1的最小值为()aA.2B.3C.4D.5【变式1-1】(2023·北京东城·统考一模)已知x>0,则x−4+4的最小值为()xA.-2B.0C.1D.2√2【变式1-2】(2023上·山东·高一统考期中)函数y=x2−x+9(x>0)的最小值为()xA.1B.3C.5D.9【变式1-3】(2023下·江西·高三校联考阶段练习)(3+1)(1+4x2)的最小值为()x2A.9√3B.7+4√2C.8√3D.7+4√3【题型2 配凑法求最值】【例2】(2023·浙江·校联考模拟预测)已知a>1,则a+16a−1的最小值为()A.8B.9C.10D.11【变式2-1】(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x−3+2x的最小值是()A.6B.8C.10D.12【变式2-2】(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x−1+4x−2,的最小值为()A.7B.8C.14D.15【变式2-3】(2023上·辽宁·高一校联考期中)若x>0,y>0且满足x+y=xy,则2xx−1+4yy−1的最小值为()A.6+2√6B.4+6√2C.2+4√6D.6+4√2【题型3 常数代换法求最值】【例3】(2023上·内蒙古通辽·高三校考阶段练习)已知a>0,b>0,若2a +3b=1,则2a+b3的最小值是()A.8B.9C.10D.11【变式3-1】(2023·河南·校联考模拟预测)已知正实数a,b,点M(1,4)在直线xa +yb=1上,则a+b的最小值为()A.4B.6C.9D.12【变式3-2】(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y−xy=0,则2x+y的最大值为()A.25B.16C.37D.19【变式3-3】(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【题型4 消元法求最值】【例4】(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x−4=9y,则x+8y的最小值为.【变式4-1】(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为.【变式4-2】(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为.【变式4-3】(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2 −ab+1=0,c2 +d2 =1,则当(a−c)2 +(b−d)2取得最小值时,ab=.【题型5 构造不等式法求最值】【例5】(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a−1+2b−2的最小值为2C.a+b有最小值3+√2D.a2−2a+b2−4b有最大值4【变式5-1】(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy−3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是4√2−3【变式5-2】(2023上·江苏·高一专题练习)下列说法正确的是()A.若x>2,则函数y=x+1x−1的最小值为3B.若x>0,y>0,3x +1y=5,则5x+4y的最小值为5C.若x>0,y>0,x+y+xy=3,则xy的最小值为1D.若x>1,y>0,x+y=2,则1x−1+2y的最小值为3+2√2【变式5-3】(2023上·广东中山·高三校考阶段练习)设正实数x,y满足x+2y=3,则下列说法错误的是()A.yx +3y的最小值为4B.xy的最大值为98C.√x+√2y的最大值为2D.x2+4y2的最小值为92【题型6 多次使用基本不等式求最值】【例6】(2023·河南·校联考模拟预测)已知正实数a,b,满足a+b≥92a +2b,则a+b的最小值为()A.5B.52C.5√2D.5√22【变式6-1】(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1|x|+2|x|y的最小值为()A.2√2−1B.2√2+1C.√2−1D.√2+1【变式6-2】(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx =2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2D.52【变式6-3】(2023上·辽宁大连·高一期末)若a>0,b>0,a+b=1,则a2+3aba+2b +2b+1−1b的最大值为()A.√2B.2−√2C.3−√2D.3−2√2【题型7 实际应用中的最值问题】【例7】(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为400m2的十字形地域.计划在正方形MNPQ上建一座花坛,造价为8400元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m2.设总造价为y(单位:元),AD长为x(单位:m).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【变式7-1】(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.(2≤x≤6)(1)当宽为多少时,甲工程队报价最低,并求出最低报价.元(a>0)(整体报价中含固定费用).若无论(2)现有乙工程队也要参与竞标,其给出的整体报价为900a(x+2)x宽为多少米,乙工程队都能竞标成功,试求a的取值范围.【变式7-2】(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的.因此室的后长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x米(1≤x≤5).(1)记y为甲工程队整体报价,求y关于x的关系式;元,问是否存在实数t,使得(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t(x+1)x无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t满足的条件;若不存在,请说明理由.【变式7-3】(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=x cm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【题型8 与其他知识交汇的最值问题】【例8】(2023上·安徽·高三校联考阶段练习)记△ABC的内角A,B,C的对边分别为a,b,c,满足c+bcos2A= 2acosAcosB(A≤B).(1)求A;(2)若角A的平分线交BC于D点,且AD=1,求△ABC面积的最小值.【变式8-1】(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l′都经过点(0,2),且l⊥l′,直线l交圆C于M,N两点,直线l′交圆C于P,Q两点,求四边形PMQN 面积的最大值.【变式8-2】(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f(x)满足f(f(x)+1−2x+1恒成立.ln x)=23(1)设f(x)+1−ln x=k,求实数k的值;2x+1(2)解不等式f(7+2x)>−2x+ln(−ex);2x+1(3)设g(x)=f(x)−ln x,若g(x)≥mg(2x)对于任意的x∈[1,2]恒成立,求实数m的取值范围.【变式8-3】(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD−A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A−PD1−C的平面角.(1)证明:点P在A1C1上;(2)若AB=BC,求直线PA与平面PCD所成角的正弦的最大值.1.(2022·全国·统考高考真题)若x,y满足x2+y2−xy=1,则()A.x+y≤1B.x+y≥−2C.x2+y2≤2D.x2+y2≥12.(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a−b>12C.log2a+log2b≥−2D.√a+√b≤√23.(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2−y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.324.(2021·天津·统考高考真题)若a>0,b>0,则1a +ab2+b的最小值为.5.(2020·天津·统考高考真题)已知a>0,b>0,且ab=1,则12a +12b+8a+b的最小值为.6.(2020·江苏·统考高考真题)已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是.7.(2019·天津·高考真题)设x>0,y>0,x+2y=5,则√xy的最小值为. 8.(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是.基本不等式求最值【题型1 直接法求最值】 (2)【题型2 配凑法求最值】 (3)【题型3 常数代换法求最值】 (4)【题型4 消元法求最值】 (6)【题型5 构造不等式法求最值】 (8)【题型6 多次使用基本不等式求最值】 (11)【题型7 实际应用中的最值问题】 (13)【题型8 与其他知识交汇的最值问题】 (17)基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2 基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.【题型1 直接法求最值】【例1】(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【解题思路】用基本不等式求解即可.【解答过程】因为a>0,所以a+1a +1≥2√a⋅1a+1=3,当且仅当a=1a即a=1时取等号;故选:B.【变式1-1】(2023·北京东城·统考一模)已知x>0,则x−4+4x的最小值为()A.-2B.0C.1D.2√2【解题思路】由基本不等式求得最小值.【解答过程】∵x>0,∴x+4x −4≥2√x×4x−4=0,当且仅当x=4x即x=2时等号成立.故选:B.【变式1-2】(2023上·山东·高一统考期中)函数y=x2−x+9x(x>0)的最小值为()A.1B.3C.5D.9【解题思路】利用均值不等式求最小值即可.【解答过程】y=x2−x+9x =x+9x−1≥2√x⋅9x−1=5,当且仅当x=9x,即x=3时等号成立,故选:C.【变式1-3】(2023下·江西·高三校联考阶段练习)(3+1x2)(1+4x2)的最小值为()A.9√3B.7+4√2C.8√3D.7+4√3【解题思路】依题意可得(3+1x2)(1+4x2)=7+1x2+12x2,再利用基本不等式计算可得.【解答过程】(3+1x2)(1+4x2)=7+1x2+12x2≥7+2√1x2⋅12x2=7+4√3,当且仅当1x2=12x2,即x4=112时,等号成立,故(3+1x2)(1+4x2)的最小值为7+4√3.故选:D.【题型2 配凑法求最值】【例2】(2023·浙江·校联考模拟预测)已知a>1,则a+16a−1的最小值为()A.8B.9C.10D.11【解题思路】运用基本不等式的性质进行求解即可.【解答过程】因为a>1,所以由a+16a−1=a−1+16a−1+1≥2√(a−1)⋅16a−1+1=9,当且仅当a−1=16a−1时取等号,即a=5时取等号,故选:B.【变式2-1】(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x−3+2x的最小值是()A.6B.8C.10D.12【解题思路】利用基本不等式求和的最小值,注意取值条件.【解答过程】由x−3>0,则y=2x−3+2(x−3)+6≥2√2x−3⋅2(x−3)+6=10,当且仅当x=4时等号成立,故最小值为10.故选:C.【变式2-2】(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x−1+4x−2,的最小值为()A.7B.8C.14D.15【解题思路】利用基本不等式求解.【解答过程】因为x>2,所以x−2>0,所以y=4x−1+4x−2=4(x−2)+4x−2+7≥2√4(x−2)⋅4x−2+7=15,当且仅当4(x−2)=4x−2,即x=3时等号成立,所以函数y=4x−1+4x−2的最小值为15,故选:D.【变式2-3】(2023上·辽宁·高一校联考期中)若x>0,y>0且满足x+y=xy,则2xx−1+4yy−1的最小值为()A.6+2√6B.4+6√2C.2+4√6D.6+4√2【解题思路】结合条件等式,利用基本不等式求和的最小值.【解答过程】若x>0,y>0且满足x+y=xy,则有1x +1y=1,所以x>1,y>1,2x x−1+4yy−1=2(x−1)+2x−1+4(y−1)+4y−1=6+2x−1+4y−1≥6+2√2x−1⋅4y−1=6+2√8xy−(x+y)+1=6+4√2,当且仅当2x−1=4y−1,即x=1+√22,y=1+√2时等号成立.所以2xx−1+4yy−1的最小值为6+4√2.故选:D.【题型3 常数代换法求最值】【例3】(2023上·内蒙古通辽·高三校考阶段练习)已知a>0,b>0,若2a +3b=1,则2a+b3的最小值是()A.8B.9C.10D.11【解题思路】利用基本不等式“1”的应用即可求解.【解答过程】由题意得a>0,b>0,2a +3b=1,所以2a+b3=(2a+b3)(2a+3b)=4+1+2b3a+6ab≥5+2√2b3a×6ab=9,当且仅当2b3a =6ab时,即a=3,b=9,取等号,故B项正确.故选:B.【变式3-1】(2023·河南·校联考模拟预测)已知正实数a ,b ,点M (1,4)在直线x a+yb=1上,则a +b 的最小值为( )A .4B .6C .9D .12【解题思路】根据题意可得1a+4b=1,结合基本不等式运算求解. 【解答过程】由题意得1a +4b =1,且a >0,b >0, 故a +b =(a +b )⋅(1a +4b )=5+ba +4a b≥5+2√b a ×4a b=9,当且仅当ba =4a b,即a =3,b =6时,等号成立.故选:C.【变式3-2】(2023上·重庆·高一统考期末)若正实数x ,y 满足2x +8y −xy =0,则2x+y 的最大值为( )A .25B .16C .37D .19【解题思路】根据等式计算得出1,再结合常值代换求和的最值,计算可得最大值. 【解答过程】∵x >0,y >0,2x +8y −xy =0,∴2y +8x =1, x +y=(x +y )(2y +8x )=2x y+8+2+8y x≥2√2x y×8y x+10=18,∴2x+y ≤218=19. 故选:D.【变式3-3】(2023·重庆·统考一模)已知a ,b 为非负实数,且2a +b =1,则2a 2a+1+b 2+1b的最小值为( )A .1B .2C .3D .4【解题思路】首先根据题意求出0≤a <12,0<b ≤1,然后将原式变形得2a 2a+1+b 2+1b=2a+1+1b−1,最后利用1的妙用即可求出其最值.【解答过程】∵2a +b =1,且a ,b 为非负实数,b ≠0, 则a ≥0,b >0则b =1−2a >0,解得0≤a <12,2a =1−b ≥0,解得0<b ≤1,∴2a2a+1+b2+1b=2(a+1)2−4(a+1)+2a+1+b2+1b=2(a+1)−4+2a+1+b+1b=(2a+b−2)+2a+1+1b=2a+1+1b−12 a+1+1b=42a+2+1b=13[(2a+2)+b]⋅(42a+2+1b)=13(5+4b2a+2+2a+2b)≥13(5+2√4b2a+2⋅2a+2b)=3,当且仅当4b2a+2=2a+2b即2a+2=2b,2a+b=1时,即b=1,a=0时等号成立,故(2a+1+1b−1)min=2,故选:B.【题型4 消元法求最值】【例4】(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x−4=9y,则x+8y的最小值为12 .【解题思路】根据指数方程,得出x,y的关系式,运用消元法将所求式化成关于y的关系式,再利用基本不等式求解.【解答过程】由3x−4=9y,可得x−4=2y,即x=2y+4,代入x+8y中,可得2y+4+8y =2y+8y+4≥2√2y⋅8y+4=12,当且仅当y=2,x=8所以x+8y的最小值为12.故答案为:12.【变式4-1】(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为6√2−5.【解题思路】根据题意,化简得到x+2y=x2−3x+14x+1,设t=x+1,求得x2−3x+14x+1=t+18t−5,结合基本不等式,即可求解.【解答过程】由x,y∈R+,且2x+y+xy=7,可得y=7−2xx+1,则x+2y=x+2×7−2xx+1=x2−3x+14x+1,设t=x+1,可得x=t−1且t>1,可得x2−3x+14x+1=t2−5t+18t=t+18t−5≥2√t⋅18t−5=6√2−5,当且仅当t=18t时,即t=3√2时,等号成立,所以x+2y的最小值为6√2−5.故答案为:6√2−5.【变式4-2】(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为13 .【解题思路】根据基本不等式即可求解.【解答过程】由2a+b+6=ab可得a=b+6b−2>0,由于b>0,所以b>2,故a+2b=b+6b−2+2b=8b−2+2(b−2)+5,由于b>2,所以8b−2+2(b−2)≥2√16=8,当且仅当b=4时等号成立,故a+2b=8b−2+2(b−2)+5≥13,故a+2b的最小值为13,故答案为:13.【变式4-3】(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2−ab+1=0,c2+d2=1,则当(a−c)2+(b−d)2取得最小值时,ab=√22+1.【解题思路】将(a−c)2+(b−d)2转化为(a,b)与(c,d)两点间距离的平方,进而转化为(a,b)与圆心(0,0)的距离,结合基本不等式求得最小值,进而分析求解即可.【解答过程】可将(a−c)2+(b−d)2转化为(a,b)与(c,d)两点间距离的平方,由a2−ab+1=0,得b=a+1a,而c2+d2=1表示以(0,0)为圆心,1为半径的圆,(c,d)为圆上一点,则(a,b)与圆心(0,0)的距离为:√a2+b2=√a2+(a+1a )2=√2a2+1a2+2≥√2√2a2⋅1a2+2=√2√2+2,当且仅当2a2=1a2,即a=±√124时等号成立,此时(a,b)与圆心(0,0)的距离最小,即(a,b)与(c,d)两点间距离的平方最小,即(a −c)2+(b −d)2取得最小值. 当a =√124时,ab =a 2+1=√22+1,故答案为:√22+1.【题型5 构造不等式法求最值】【例5】(2023下·河南·高三校联考阶段练习)已知2a +b =ab(a >0,b >0),下列说法正确的是( )A .ab 的最大值为8B .1a−1+2b−2的最小值为2 C .a +b 有最小值3+√2 D .a 2−2a +b 2−4b 有最大值4【解题思路】根据基本不等式运用的三个条件“一正、二定、三相等”,可知ab ≥8,所以A 错误;将原式化成(a −1)(b −2)=2,即可得1a−1+2b−2=1a−1+(a −1)≥2,即B 正确;不等式变形可得2b+1a=1,利用基本不等式中“1”的妙用可知a +b ≥3+2√2,C 错误;将式子配方可得a 2−2a +b 2−4b =(a −1)2+(b −2)2−5,再利用基本不等式可得其有最小值−1,无最大值,D 错误. 【解答过程】对于A 选项,ab =2a +b ≥2√2ab ,即√ab ≥2√2,故ab ≥8, 当且仅当a =2,b =4时等号成立,故ab 的最小值为8,A 错误; 对于B 选项,原式化为(a −1)(b −2)=2,b =2a a−1>0,故a −1>0;a =b b−2>0,故b −2>0;所以1a−1+2b−2=1a−1+(a −1)≥2,当且仅当a =2,b =4时等号成立,B 正确;对于C 选项,原式化为2b +1a =1,故a +b =(a +b )(2b +1a )=2a b+1+2+ba ≥3+2√2,当且仅当a =√2+1,b =2+√2时等号成立,C 错误;对于D 选项,a 2−2a +b 2−4b =(a −1)2+(b −2)2−5≥2(a −1)(b −2)−5=−1, 当且仅当a =1+√2,b =2+√2时等号成立,故有最小值−1,D 错误. 故选:B.【变式5-1】(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy−3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是4√2−3【解题思路】利用基本不等式得x+y+xy−3≥(√xy+3)(√xy−1)、x+y+xy−3≤(x+y)24+(x+y)−3分别求xy、x+y的最值,注意取等条件;由题设有x=3−yy+1且0<y<3代入x+4y、x+2y,结合基本不等式求最值,注意取等条件.【解答过程】由x+y+xy−3≥xy+2√xy−3=(√xy+3)(√xy−1),当且仅当x=y=1时等号成立,即(√xy+3)(√xy−1)≤0,又x>0,y>0,故0<√xy≤1,仅当x=y=1时等号成立,所以0<xy≤1,故xy的最大值是1,A错误;由x+y+xy−3≤(x+y)24+(x+y)−3,当且仅当x=y=1时等号成立,所以(x+y)24+(x+y)−3≥0,即(x+y+6)(x+y−2)≥0,又x>0,y>0,则x+y≥2,仅当x=y=1时等号成立,故x+y的最小值是2,B正确;由x+y+xy−3=0,x>0,y>0,可得x=3−yy+1,且0<y<3,所以x+4y=3−yy+1+4y=4y2+3y+3y+1=4(y+1)2−5(y+1)+4y+1=4(y+1)+4y+1−5≥2√4(y+1)⋅4y+1−5=3,当且仅当y+1=1,即y=0、x时等号成立,故x+4y>3,C错误;同上,x+2y=3−yy+1+2y=2y2+y+3y+1=2(y+1)2−3(y+1)+4y+1=2(y+1)+4y+1−3≥2√2(y+1)⋅4y+1−3=4√2−3,当且仅当y+1=√2,即y=√2−1、x=2√2−1时等号成立,故x+2y≥4√2−3,D错误;故选:B.【变式5-2】(2023上·江苏·高一专题练习)下列说法正确的是()A.若x>2,则函数y=x+1x−1的最小值为3B.若x>0,y>0,3x +1y=5,则5x+4y的最小值为5C.若x>0,y>0,x+y+xy=3,则xy的最小值为1D.若x>1,y>0,x+y=2,则1x−1+2y的最小值为3+2√2【解题思路】选项A:将函数变形再利用基本不等式进行判断最值即可,选项B:由基本不等式进行判断即可,选项C:结合换元法与基本不等式求最值进行判断即可,选项D:对式子进行变形得到1+yx−1+2(x−1)y+2,再利用基本不等式进行判断即可.【解答过程】解:选项A:y=x+1x−1=x−1+1x−1+1⩾2√x−1·1x−1+1=3,当且仅当(x−1)2=1时可以取等号,但题设条件中x>2,故函数最小值取不到3,故A错误;选项B:若x>0,y>0,3x +1y=5,则5x+4y=15(3x+1y)(5x+4y)=15(19+5xy+12yx)⩾15(19+2√5xy·12yx)=19+4√155,当且仅当5xy=12yx时不等式可取等号,故B错误;选项C:3−xy=x+y⩾2√xy⇒xy+2√xy−3⩽0当且仅当x=y时取等号,令√xy=t(t⩾0),t2+2t−3⩽0,解得−3⩽t⩽1,即0<√xy⩽1,故xy的最大值为1,故C错误;选项D:x+y=2,(x−1)+y=1,1 x−1+2y=(1x−1+2y)·[(x−1)+y]=1+yx−1+2(x−1)y+2⩾3+2√yx−1·2(x−1)y=3+2√2,当且仅当y=√2x−√2时取等号,又因为x+y=2,故{x=√2y=2−√2时等号成立,即1x−1+2y最小值可取到3+2√2,故D正确.故选:D.【变式5-3】(2023上·广东中山·高三校考阶段练习)设正实数x,y满足x+2y=3,则下列说法错误的是()A.yx +3y的最小值为4B.xy的最大值为98C.√x+√2y的最大值为2D.x2+4y2的最小值为92【解题思路】根据基本不等式以及“1”的妙用判断各选项.【解答过程】对于A,yx +3y=yx+x+2yy=yx+xy+2≥2√yxxy+2=4,当且仅当x=y=1时取等号,故A正确;对于B,xy=12⋅x⋅2y≤12×(x+2y2)2=12×94=98,当且仅当x=2y,即x=32,y=34时取等号,故B正确;对于C,(√x+√2y)2=x+2y+2√2xy≤3+2√2×98=3+3=6,则√x+√2y≤√6,当且仅当x=2y,即x=32,y=34时,故C错误;对于D,x2+4y2=(x+2y)2−4xy≥9−4×98=92,当且仅当x=32,y=34时取等号,故D正确.故选:C.【题型6 多次使用基本不等式求最值】【例6】(2023·河南·校联考模拟预测)已知正实数a,b,满足a+b≥92a +2b,则a+b的最小值为()A.5B.52C.5√2D.5√22【解题思路】先根据基本不等式求出(92a +2b)(a+b)≥252.然后即可根据不等式的性质得出(a+b)2≥(9 2a +2b)(a+b)≥252,列出两个等号同时成立的条件,即可得出答案.【解答过程】由已知可得,a>0,b>0,a+b>0.因为(92a +2b)(a+b)=92+2+9b2a+2ab≥2√9b2a×2ab+132=6+132=252,当且仅当9b2a =2ab,即2a=3b时等号成立.所以,(a+b)2≥(92a +2b)(a+b)≥252,当且仅当{2a=3ba+b=92a+2b,即{a=3√22b=√2时,两个等号同时成立.所以,a+b≥3√22+√2=5√22.故选:D.【变式6-1】(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1|x|+2|x|y的最小值为()A.2√2−1B.2√2+1C.√2−1D.√2+1【解题思路】分为x>0与x<0,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.【解答过程】当x>0时,1|x|+2|x|y=x+yx+2xy=yx+2xy+1≥2√yx⋅2xy+1=2√2+1,当且仅当yx =2xy,即x=√2−1,y=2−√2时等号成立,此时有最小值2√2+1;当x<0时,1|x|+2|x|y=x+y−x+−2xy=y−x+−2xy−1≥2√y−x⋅−2xy−1=2√2−1.当且仅当y−x =−2xy,即x=−1−√2,y=2+√2时等号成立,此时有最小值2√2−1.所以,1|x|+2|x|y的最小值为2√2−1.故选:A.【变式6-2】(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx =2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2D.52【解题思路】两次应用基本不等式,根据两次不等式等号成立的条件列方程求解即可.【解答过程】因为实数x,y,z>0,满足xy+zx=2,所以xy+zx =2≥2√xy×zx=2√yz⇒yz≤1,当且仅当z=yx2时,yz=1,所以4y +1z≥2√4y×1z=2√4yz≥2√41=4,当且仅当4y=1z且yz=1时,等号成立;所以当yz=1且4y =1z时,4y+1z取得最小值4,此时解得{y=2z=12⇒y+z=52,故选:D.【变式6-3】(2023上·辽宁大连·高一期末)若a>0,b>0,a+b=1,则a2+3aba+2b +2b+1−1b的最大值为()A.√2B.2−√2C.3−√2D.3−2√2【解题思路】由已知可得a2+3aba+2b +1b+1=3−2b−1b+1,进而有a2+3aba+2b+2b+1−1b=3−2b−1b,结合基本不等式求最大值,注意取值条件.【解答过程】由题设,a2+3aba+2b +1b+1=a(a+3b)+1b+1=a(2b+1)+1b+1,而a=1−b>0,b>0,所以a(2b+1)+1b+1=2+b−2b2b+1=1+1−2b2b+1=1+2(1−b2)−1b+1=3−2b−1b+1,所以a2+3aba+2b +2b+1−1b=3−2b−1b且0<b<1,又2b+1b ≥2√2b⋅1b=2√2,当且仅当b=√22时取等号,所以a2+3aba+2b +2b+1−1b≤3−2√2,当且仅当a=1−√22,b=√22时取等号,即目标式最大值为3−2√2.故选:D.【题型7 实际应用中的最值问题】【例7】(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为400m2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为8400元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m2.设总造价为y(单位:元),AD长为x(单位:m).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【解题思路】(1)由题意可得矩形AMQD的面积,即可得出AM=400−x24x;(2)先表示出总造价y,再由基本不等式求解即可.【解答过程】(1)由题意可得,矩形AMQD的面积为S AMQD=400−x24,因此AM=400−x24x,∵AM>0,∴0<x<20.(2)y=8400x2+420×(400−x2)+160×4×12×(400−x24x)2=8000x2+3200000x2+152000,0<x<20,由基本不等式y ≥2√8000x 2×3200000x 2+152000=472000,当且仅当8000x 2=3200000x 2,即x =2√5时,等号成立,故当x =2√5时,总造价y 最小,最小值为472000元.【变式7-1】(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x 米.(2≤x ≤6) (1)当宽为多少时,甲工程队报价最低,并求出最低报价. (2)现有乙工程队也要参与竞标,其给出的整体报价为900a (x+2)x元(a >0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a 的取值范围.【解题思路】(1)根据题意,列出函数关系式,结合基本不等式代入计算,即可得到结果; (2)根据题意,列出不等式,分离参数,再结合基本不等式代入计算,即可得到结果. 【解答过程】(1)设甲工程队的总造价为y 元,则 y =150×2(x +16x)×3+400×16+800 =900(x +16x )+7200≥900×2√x ⋅16x+7200 =14400当且仅当x =16x时,即x =4时等号成立.即当宽为4m 时,甲工程队的报价最低,最低为14400元. (2)由题意可得900(x +16x)+7200>900a (x+2)x.对∀x ∈[2,6]恒成立.即a <x 2+8x+16x+12令y =x 2+8x+16x+2=(x +2)+4x+2+4∵2≤x ≤6,∴4≤x +2≤8. 令t =x +2,t ∈[4,8],则y=t+4t+4在[4,8]上单调递增.且t=4时,y min=9.∴0<a<9.即a的取值范围为(0,9).【变式7-2】(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x米(1≤x≤5).(1)记y为甲工程队整体报价,求y关于x的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t(x+1)x元,问是否存在实数t,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t满足的条件;若不存在,请说明理由.【解题思路】(1)根据题意分别计算正面和侧面以及其它各面的费用,相加,可得答案;(2)由题意可得不等关系240(184x +10x)−3120>4800t(x+1)x,对任意x∈[1,5]都成立,进而转化t<10x2−13x+18420(x+1)恒成立,采用换元法,结合基本不等式求得答案.【解答过程】(1)由题意,隔离室的左右两侧的长度均为x米(1≤x≤5),则底面长为24x米,正面费用为360(4×24x−2×6),故y=360(4×24x −2×6)+4×24x×100+2×300×4x+1200=240(184x+10x)−3120,1≤x≤5.(2)由题意知, 240(184x +10x)−3120>4800t(x+1)x,对任意x∈[1,5]都成立,即t<10x2−13x+18420(x+1)对任意x∈[1,5]恒成立,令k=x+1,则x=k−1,k∈[2,6],。
利用基本不等式求最值的技巧_题型分析
基本不等式应用注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最大值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
不等式专题:基本不等式求最值的6种常用方法(解析版)
基本不等式求最值的6种常用方法知识梳理:一、基本不等式常用的结论1、如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a b =时取等号“=”)推论:ab ≤a 2+b 22(a ,b ∈R ) 2、如果a >0,b >0,则a +b ≥2ab ,(当且仅当a =b 时取等号“=”).推论:ab ≤⎝ ⎛⎭⎪⎫a +b 22(a >0,b >0);a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 223、a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0)二、利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 三、利用基本不等式求最值的方法1、直接法:条件和问题间存在基本不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用基本不等式。
3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系; 方法2:待定系数法,适用于所有的形式,如分母为3a +4b 与a +3b ,分子为a +2b ,设a +2b =λ(3a +4b )+μ(a +3b )=(3λ+μ)a +(4λ+3μ)b∴ ⎩⎪⎨⎪⎧3λ+μ=1,4λ+3μ=2.解得:⎩⎨⎧λ=15,μ=25.4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。
5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用基本不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用基本不等式求最值的技巧一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+abb a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。
技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。
解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。
当,即时,59y ≥=(当且仅当x =1时取“=”号)。
技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。
22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,59y ≥=(当t =2即x =1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。
即化为()(0,0)()Ay mg x B A B g x =++>>,g (x )恒正或恒负的形式,然后运用基本不等式来求最值。
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x=+的单调性。
例:求函数2y =(2)t t =≥,则2y =1(2)t t t ==+≥因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。
因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。
所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭。
练习.求下列函数的最小值,并求取得最小值时,x 的值.(1)231,(0)x x y x x++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈2.已知01x <<,求函数y =的最大值.;3.203x <<,求函数y =.条件求最值1.若实数满足2=+b a ,则ba 33+的最小值是 .分析:“和”到“积”是一个缩小的过程,而且ba 33⋅定值,因此考虑利用均值定理求最小值, 解:b a 33和都是正数,ba 33+≥632332==⋅+b a b a当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,ba 33+的最小值是6.变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。
2:已知0,0x y >>,且191x y+=,求x y +的最小值。
错解..:0,0x y >>,且191x y +=,∴()1912x y x y x y ⎛⎫+=++≥ ⎪⎝⎭故 ()min 12x y += 。
错因:解法中两次连用基本不等式,在x y +≥x y =,在19xy+≥条件是19x y=即9y x =,取等号的条件的不一致,产生错误。
因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。
正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y xx y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。
变式: (1)若+∈R y x ,且12=+y x ,求yx11+的最小值(2)已知+∈R y x b a ,,,且1=+yb x a ,求y x+的最小值技巧七、已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22 。
同时还应化简1+y 2中y 2前面的系数为 12, x 1+y 2 =x2·1+y 22 = 2 x ·12 +y 22下面将x ,12 +y 22分别看成两个因式: x ·12 +y 22≤x 2+(12 +y 22 )22 =x 2+y 22 +12 2 =34即x 1+y 2 = 2 ·x12 +y 22 ≤ 342 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。
法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30bb +1由a >0得,0<b <15令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16t ≥2t ·16t=8∴ ab ≤18 ∴ y ≥118当且仅当t =4,即b =3,a =6时,等号成立。
法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2∴ab ≤3 2 ,ab ≤18,∴y ≥118点评:①本题考查不等式ab ba ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab ba ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧九、取平方5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.解法一:若利用算术平均与平方平均之间的不等关系,a +b 2 ≤a 2+b 22,本题很简单3x +2y ≤ 2(3x )2+(2y )2 = 23x +2y =2 5解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。
W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20∴ W ≤20 =2 5 变式: 求函数15()22y x =<<的最大值。
解析:注意到21x -与52x -的和为定值。
2244(21)(52)8y x x ==+≤+-+-=又0y >,所以0y <≤当且仅当21x -=52x -,即32x =时取等号。
故max y =。
评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件。
总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。