接触电阻的测量方法
接触电阻测量方法
接触电阻测量方法接触电阻是电气设备中常见的一个重要参数,它直接影响着设备的性能和可靠性。
因此,准确测量接触电阻是保证设备正常运行的关键之一。
在实际工作中,我们常常需要采用不同的方法来测量接触电阻,以确保测量结果的准确性和可靠性。
首先,我们需要了解接触电阻的定义。
接触电阻是指两个接触导体之间的电阻,它是由于接触面不完全接触或接触面上存在氧化膜、污染物等导致的。
接触电阻的大小与接触面积、接触压力、接触材料的性质等因素有关。
接下来,我们将介绍几种常见的接触电阻测量方法:1. 电桥法,电桥法是一种常用的测量接触电阻的方法。
它利用电桥平衡原理,通过调节电桥的电阻值,使得电桥两端电压为零,从而得到接触电阻的值。
这种方法适用于小电阻值的测量,具有测量精度高的优点。
2. 电流法,电流法是另一种常用的测量接触电阻的方法。
它利用一定大小的电流通过被测接触电阻,通过测量电压和电流值,计算出接触电阻的大小。
这种方法适用于大电阻值的测量,具有测量范围广的优点。
3. 接触电阻测试仪,现代化的接触电阻测试仪能够实现自动测量和数据记录,大大提高了测量效率和准确性。
通过选择合适的测试仪器和测量方法,可以更加方便地进行接触电阻的测量工作。
除了以上介绍的几种方法外,还有一些其他特殊情况下的接触电阻测量方法,如温度补偿法、频率扫描法等。
在实际工作中,我们需要根据具体情况选择合适的测量方法,并结合实际情况进行调整和改进,以确保测量结果的准确性和可靠性。
总之,接触电阻的测量是电气设备维护和检修工作中的重要环节,准确测量接触电阻对于保证设备的安全运行和延长设备的使用寿命具有重要意义。
希望通过本文的介绍,能够帮助大家更加深入地了解接触电阻的测量方法,提高测量工作的准确性和效率。
接触电阻率
接触电阻率介绍接触电阻率是描述接触电阻特性的一个参数,反映了两个接触体之间导电性能的好坏。
在电子设备、电力系统等领域中,接触电阻率是一个重要的电性能指标,关系到电流传输的可靠性和效率。
本文将介绍接触电阻率的概念、测量方法、影响因素以及改善接触电阻率的措施。
什么是接触电阻率接触电阻率是指两个接触体之间单位面积上的接触电阻。
它是表示两个接触体之间导电性能好坏的一个重要参数。
接触电阻率的大小直接影响到接触点的导电性能,即越小说明接触性能越好。
接触电阻率的单位为Ω·cm²。
接触电阻率的测量方法测量接触电阻率的方法多种多样,下面介绍几种常见的测量方法:1.四探针测量法:四探针测量法是一种常用的接触电阻率测量方法。
它通过在接触点上设置四个电极,两个作为电流源,另外两个作为电压检测。
通过测量电流和电压,计算出接触电阻率。
四探针测量法能够减小接触电阻中引线电阻的影响,使测量结果更准确。
2.接触电阻计测量法:接触电阻计是一种专用的仪器,用于测量接触电阻率。
它通过在接触点上施加一定的压力,然后测量通过接触点的电流和电压,计算出接触电阻率。
接触电阻计能够提供较高的测量精度,适用于工业生产中对接触电阻率的快速测量。
影响接触电阻率的因素接触电阻率受到多种因素的影响,下面列举几个常见的因素:1.表面粗糙度:表面粗糙度是指接触体表面的凹凸不平程度。
表面粗糙度越大,接触电阻率越高。
因为表面粗糙度大会导致接触面积减小,增加接触电阻。
2.接触压力:接触压力是指施加在接触体之间的压力大小。
适当的接触压力能够改善接触面间的接触性能,减小接触电阻率。
然而,过大的接触压力可能会导致接触变形、松动等问题,影响接触性能。
3.接触面积:接触面积是指两个接触体之间真正接触的面积。
接触面积越大,接触电阻率越小。
因此,增大接触面积可以有效地降低接触电阻。
改善接触电阻率的措施为了改善接触电阻率,可以采取以下措施:1.表面处理:通过机械抛光、化学镀银等方法对接触体表面进行处理,可以改善表面粗糙度,减小接触电阻。
接触电阻的测量实训报告
一、实习目的本次实习的主要目的是通过实际操作,掌握接触电阻的测量方法,了解接触电阻的基本原理,以及影响接触电阻的因素。
同时,通过本次实训,提高自己的动手能力和实验操作技能,培养严谨的科学态度和团队协作精神。
二、实习内容1. 接触电阻基本原理接触电阻是指两个不同金属接触时,由于电子在接触面上发生散射,从而产生的电阻。
接触电阻的大小取决于接触面积、接触压力、接触材料的种类、温度等因素。
2. 接触电阻测量方法(1)四线法测量接触电阻四线法是一种常用的测量接触电阻的方法,其原理是通过测量电流和电压,根据欧姆定律计算出接触电阻。
(2)两探针法测量接触电阻两探针法是一种简单的测量接触电阻的方法,通过测量电流和电压,根据欧姆定律计算出接触电阻。
3. 影响接触电阻的因素(1)接触面积:接触面积越大,接触电阻越小。
(2)接触压力:接触压力越大,接触电阻越小。
(3)接触材料的种类:不同材料的接触电阻不同,一般来说,银、金等贵金属的接触电阻较小。
(4)温度:温度越高,接触电阻越小。
三、实习过程1. 实验器材(1)电源:直流稳压电源(2)待测接触电阻:铜片、铝片(3)测试仪器:数字多用表、万用表、四线法测量电路2. 实验步骤(1)搭建四线法测量电路,将待测接触电阻接入电路中。
(2)使用数字多用表测量电流和电压,根据欧姆定律计算出接触电阻。
(3)改变接触面积、接触压力、接触材料的种类、温度等,观察接触电阻的变化。
3. 实验数据(1)接触面积为1cm²,接触压力为0.1N,接触材料为铜片,温度为25℃时,接触电阻为0.1Ω。
(2)接触面积为1cm²,接触压力为0.5N,接触材料为铝片,温度为25℃时,接触电阻为0.3Ω。
(3)接触面积为2cm²,接触压力为0.1N,接触材料为铜片,温度为50℃时,接触电阻为0.08Ω。
四、实习结果与分析1. 通过本次实训,我们掌握了接触电阻的测量方法,了解了接触电阻的基本原理。
接触电阻的多种测量方法
接触电阻的多种测量方法接触电阻就是电流流过闭合的接触点对时的电阻。
这类测量是在诸如连接器、继电器和开关等元件上进行的。
接触电阻一般非常小其范围在微欧姆到几个欧姆之间。
根据器件的类型和应用的情况,测量的方法可能会有所不同。
ASTM 的方法B539 测量电气连接的接触电阻和MIL-STD-1344 的方法3002 低信号电平接触电阻是通常用于测量接触电阻的两种方法。
通常,一些基本的原则都采用开尔文四线法进行接触电阻的测量。
测量方法图4-42 说明用来测试一个接点的接触电阻的基本配置。
使用具有四端测量能力的欧姆计,以避免在测量结果中计入引线电阻。
将电流源的端子接到该接点对的两端。
取样(Sense)端子则要连到距离该接点两端电压降最近的地方。
其目的是避免在测量结果中计入测试引线和体积电阻(bulk resistance)产生的电压降。
体积电阻就是假定该接点为一块具有相同几何尺寸的金属实体,而使其实际接触区域的电阻为零时,整个接点所具有的电阻,设计成只有两条引线的器件有的时候很难进行四线连接。
器件的形式决定如何对其进行连接。
一般,应当尽可能按照其正常使用的状态来进行测试。
在样品上放置电压探头时不应当使其对样品的机械连接产生影响。
例如,焊接探头可能会使接点发生不希望的变化。
然而,在某些情况下,焊接可能是不可避免的。
被测接点上的每个连接点都可能产生热电动势。
然而,这种热电动势可以用电流反向或偏置补偿的方法来补偿。
干电路(Dry Circuit)测试通常,测试接点电阻的目的是确定接触点氧化或其它表面薄膜积累是否增加了被测器件的电阻。
即使在极短的时间内器件两端的电压过高,也会破坏这种氧化层或薄膜,从而破坏测试的有效性。
击穿薄膜所需要的电压电平通常在30mV 到100mV 的范围内。
在测试时流过接点的电流过大也能使接触区域发生细微的物理变化。
电流产生的热量能够使接触点及其周围区域变软或熔解。
结果,接点面积增大并导致其电阻降低。
测电阻的六种方法
THANKS FOR WATCHING
感谢您的观看
的电阻测量。
01
02
03
1. 确保电源电压稳定,避免 测量误差。
2. 选择合适的电流表和电压 表量程,避免测量超量程或
欠量程。
04
05
3. 在测量前检查已知电阻是 否准确可靠,以减小误差。
04 电桥法
定义与原理
定义
电桥法是一种利用电桥平衡原理来测量电阻的方法。
原理
电桥平衡时,比较臂电阻与被测电阻的阻值相等,通过测量比较臂电阻的数值 即可得出被测电阻的阻值。
操作步骤
准备测量仪器和工具,如电桥、电源、导线等。 调节电桥平衡,使电流表读数为零。
将比较臂电阻和被测电阻接入电桥电路中。
记录比较臂电阻的数值,并根据电桥平衡原理计算被测 电阻的阻值。
适用范围与注意事项
适用范围
适用于测量中、小电阻的阻值,具有较高的测量精度和灵敏 度。
注意事项
在测量前应检查仪器和工具是否完好,避免因仪器故障导致 测量误差;在测量过程中应保持电桥平衡,避免因外界干扰 导致测量误差;在测量结束后应及时整理仪器和工具,并做 好记录和保存工作。
定义与原理
• 替代法是用与被测电阻相等的已知电阻,通过与被测电阻 串联或并联,使电流或电压相等,从而得到被测电阻阻值 的测量方法。其原理基于欧姆定律和基尔霍夫定律。
操作步骤
1. 准备已知电阻和测量仪表, 如电压表、电流表等。
04
4. 记录此时仪表读数,根据欧 姆定律计算被测电阻阻值。
01 03
2. 将被测电阻接入电路中, 记录仪表读数。
2. 进行实际测量,记录相 关数据。
4. 考虑系统误差和偶然误 差,对测量结果进行评估。
接触电阻测量方法
接触电阻测量方法接触电阻是指两个接触物体之间由于接触不良或者表面氧化等原因而产生的电阻。
在电子元器件、电路连接、电气设备等领域中,接触电阻的大小直接影响着电路的性能和设备的稳定性。
因此,准确测量接触电阻是非常重要的。
本文将介绍几种常用的接触电阻测量方法,希望能够帮助大家更好地理解和应用接触电阻测量技术。
1. 万用表测量法。
万用表是一种常用的电工测量仪器,可以用来测量电阻。
在接触电阻测量中,可以使用万用表的电阻档位来测量接触电阻。
具体操作方法是将万用表的两个测试笔分别接触被测接触物体的两端,然后读取万用表上的电阻数值。
需要注意的是,在测量接触电阻时,要确保测试笔与被测接触物体之间的接触良好,以保证测量结果的准确性。
2. 四线法测量法。
四线法是一种常用的精密电阻测量方法,适用于测量低阻值的接触电阻。
四线法的原理是通过两对测试线,一对用于加电流,另一对用于测量电压,从而消除了测试线电阻对测量结果的影响。
在实际测量中,可以使用专门的四线法测量仪器,按照仪器说明书上的操作步骤进行测量。
四线法测量精度高,适用于对接触电阻精度要求较高的场合。
3. 接触电阻测试仪测量法。
接触电阻测试仪是一种专门用于测量接触电阻的仪器,具有测量速度快、操作简便、精度高等特点。
在使用接触电阻测试仪进行测量时,只需要将测试仪的测试夹具夹住被测接触物体,然后按下测试按钮即可完成测量。
接触电阻测试仪通常还具有数据存储、打印输出、数据分析等功能,能够满足不同场合的测量需求。
4. 热敏电阻法测量法。
热敏电阻法是一种利用热效应来测量接触电阻的方法。
具体操作是将一定电流通过被测接触物体,使其产生热量,然后利用热敏电阻或红外线测温仪等设备测量接触物体的温度变化,从而计算出接触电阻。
热敏电阻法测量接触电阻的原理简单,但需要注意控制电流大小和测温精度,以确保测量结果的准确性。
5. 超声波法测量法。
超声波法是一种利用超声波在材料中传播的速度来测量接触电阻的方法。
接触阻抗测试方法
接触阻抗测试方法接触阻抗测试方法是用来测量电极与测试物质之间的接触质量的一种测试方法。
在许多领域中,如医疗设备、生物传感器、电化学分析等,接触阻抗是一个重要的参数,它可以影响到电流传输和信号传感的效果。
因此,准确地测试接触阻抗对于保证设备和传感器的性能至关重要。
接触阻抗测试方法可以采用多种技术,下面将介绍其中几种常见的方法。
1. 四电极法(Four-electrode method)四电极法是一种常用的接触阻抗测试方法。
该方法使用两对电极,一对电极用于施加电流,另一对电极用于测量电压。
通过测量电压和电流的关系,可以计算出接触阻抗的值。
四电极法的优点是能够准确测量接触阻抗,而不受电极电阻的影响。
2. 微分阻抗法(Differential impedance method)微分阻抗法是一种基于频率扫描的接触阻抗测试方法。
该方法通过施加不同频率的电流信号,并测量相应的电压响应,然后根据频率和相位差的变化来计算接触阻抗。
微分阻抗法的优点是可以快速测量大范围的接触阻抗,并且对于复杂的接触体系也适用。
3. 电化学阻抗谱法(Electrochemical impedance spectroscopy, EIS)电化学阻抗谱法是一种基于交流电信号的接触阻抗测试方法。
该方法通过施加交变电压或电流信号,并测量相应的电压和电流响应,然后利用频率和相位差的变化来计算接触阻抗。
电化学阻抗谱法的优点是可以准确测量接触阻抗,并且对于液体和固体接触体系都适用。
4. 接触电阻法(Contact resistance method)接触电阻法是一种简单直接的接触阻抗测试方法。
该方法通过测量电极之间的电压和电流来计算接触阻抗。
接触电阻法的优点是仪器简单易用,测试速度快,但对于高接触阻抗的测试物质可能不够准确。
以上介绍了几种常见的接触阻抗测试方法,每种方法都有其适用的场景和优缺点。
在选择测试方法时,需要根据具体的应用需求和测试对象的特性来进行选择。
电阻测量的六种方法
电阻测量的六种方法
电阻的测量方法有哪些呢?
1.万用表测量法
把万用表转换开关拨至电阻挡(×1,×10,×100,×1K),选择适当的量程,两表笔短接后旋转调零旋钮使指针指在零刻线上,然后两表笔分别接触待测电阻的两端,从万用表指针所指的数值即可知道电阻值。
(注:电阻值等于指示数值乘以所选量程的倍数)
2.伏安法
器材:电流表、电压表、滑动变阻器、开关、电源、待测电阻和导线。
测量方法:用电压表测出待测电阻Rx两端的电压U,用电流表测出通过Rx的电流I,则Rx=U/I。
伏安法测电阻有内接法和外接法两种。
3.伏阻法
器材:电压表、阻值已知的定值电阻R0、阻值未知的电阻Rx、开关、电源和导线。
方法一、改接电表法:即通过移动电压表的位置来测量电阻。
方法二、开关通断法:即通过某些开关的闭合或断开,改变电路的连接情况来测量电阻。
4.安阻法
器材:电流表一个、阻值已知的定值电阻R0、开关、电源、待测电阻Rx和导线。
方法一、改接电表法:即通过改变电流表的位置来测电阻。
方法二、开关通断法:A.短路法;B.开路法;
5.安滑法
器材:电流表、已知最大阻值为R的滑动变阻器、开关、电源、待测电阻和导线。
6.伏滑法
器材:电压表、已知最大阻值为R的滑动变阻器、开关、电源、待测电阻Rx和导线。
接触电阻测试方法
接触电阻测试方法接触电阻测试是一种用于测量接点或连接器的电阻值的测试方法。
它通常用于确保连接器或接点的连接质量符合设计要求,并且能够正常工作。
接触电阻测试方法可以有效地检测接点及连接器的质量,避免因为连接不良导致的故障,是电气连接器制造和维护过程中必不可少的一项测试。
接触电阻测试方法一般通过使用电流源和电压测量仪器来完成。
以下是一般的接触电阻测试方法步骤:1. 设定测试电流:首先,需要确定测试电流的大小。
测试电流的大小应该能够保证准确地测量出接触电阻,但又不能太大以致于损坏被测连接器或接点。
通常,测试电流的大小在毫安级别。
2. 连接测试夹具:将被测连接器或接点与测试夹具连接起来,确保连接牢固可靠,并且不会引起额外的干扰。
3. 测量接触电压:在施加测试电流的情况下,使用电压测量仪器来测量连接器或接点的接触电压。
接触电压是由于接触电阻产生的电压降。
通过测量电压和已知的电流值,可以计算出接触电阻的大小。
4. 分析测试结果:根据测量的电压和电流值,计算出接触电阻的大小。
接触电阻的大小应该在设计要求的范围内。
接触电阻测试方法在电子制造和电气设备维护中应用广泛。
它可以用于测试插座、插头、开关、断路器、继电器、传感器等电接点件,确保它们符合设计要求,并能够正常工作。
接触电阻测试还可以用于评估连接器的寿命和稳定性,对产品的可靠性和持久性进行评估。
在电子制造过程中,接触电阻测试通常作为产品质量控制的一部分。
通过对连接器和接点进行接触电阻测试,可以确保产品品质良好,提高产品的可靠性和稳定性。
同时,通过对接触电阻测试结果的分析,可以监测产品的生产工艺,及时发现生产线上的问题,并进行改进,保证产品质量和一致性。
在设备维护和故障排除过程中,接触电阻测试可以用于快速定位故障点。
当设备出现电气连接问题时,通过对连接器和接点进行接触电阻测试,可以确定故障在哪里,从而快速进行修复和恢复设备正常工作。
接触电阻测试的正确性对于电子产品的性能和可靠性具有至关重要的作用。
接触电阻测量方法
接触电阻测量方法接触电阻是指两个电气接触面之间的电阻,它是电气设备中常见的一种电阻。
在电气设备中,接触电阻的大小直接影响着设备的电气性能和安全性能。
因此,准确测量接触电阻是非常重要的。
本文将介绍几种常见的接触电阻测量方法,以便读者能够更好地理解和掌握接触电阻的测量技术。
1. 电桥法。
电桥法是一种常见的接触电阻测量方法。
它利用电桥原理来测量接触电阻的大小。
在测量时,需要使用专门的接触电阻测量电桥,将待测接触电阻与标准电阻相连,通过调节电桥的平衡,可以得到接触电阻的准确数值。
2. 电流法。
电流法是另一种常用的接触电阻测量方法。
在这种方法中,通过施加一定的电流,利用欧姆定律来计算接触电阻的大小。
在实际测量中,可以使用万用表或者专门的接触电阻测量仪器来进行测量。
3. 温升法。
温升法是一种间接测量接触电阻的方法。
在这种方法中,通过施加一定的电流,观察接触电阻的温升情况,根据温升的大小来推算接触电阻的数值。
这种方法需要考虑到环境温度的影响,因此在实际应用中需要进行修正计算。
4. 红外线测温法。
红外线测温法是一种非接触的接触电阻测量方法。
通过使用红外线测温仪,可以直接测量接触电阻的温度变化,根据温度变化来推算接触电阻的数值。
这种方法无需直接接触待测电气设备,能够提高测量的安全性和便捷性。
5. 振动法。
振动法是一种通过施加机械振动来测量接触电阻的方法。
在这种方法中,通过施加一定的振动频率和幅度,观察接触电阻的变化情况,根据振动的影响来推算接触电阻的大小。
这种方法需要考虑到振动对电气设备的影响,因此在实际应用中需要谨慎操作。
总结。
接触电阻的测量方法多种多样,每种方法都有其适用的场合和注意事项。
在实际应用中,需要根据具体情况选择合适的测量方法,并注意测量的准确性和安全性。
希望通过本文的介绍,读者能够更好地理解和掌握接触电阻的测量技术,为电气设备的维护和管理提供参考。
接触电阻测试
接触电阻形成原理
在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑, 则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的 接触,并不整个接触面的接触,而是散布在接触面上一些点的接 触。实际接触面必然小于理论接触面。根据表面光滑程度及接触 压力大小,两者差距有的可达几千倍。 实际接触面可分为两部分: 一.真正金属与金属直接接触部分。即金属间无过渡电阻的接 触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后 形成的。此部分约占实际接触面积的5-10%。 二.通过接触界面污染薄膜后相互接触的部分。因为任何金属 都有返回 原氧化物状态 的倾向。
由于四线法测量接触电阻采用10mA/100mA的恒流源,故测量接触电阻的 的恒流源, 由于四线法测量接触电阻采用 的恒流源 实质是测量微动接触电压。 实质是测量微动接触电压。
影响接触电阻的因素
接触形式
接触电阻的形式可分为三类:点接触、线接触和面接触。
接触形式对收缩电阻Rs的影响主要表现在接触点的数目上。一般情 况下,面接触的接触点数n最大而Rs最小;接触则n最小,Rs最 大;线 接触则介于两者之间。 接触形式对膜电阻Rf的影响主要是看每一个接触点所承受的压力F。 一般情况下,在对触头外加压力F相同的情况下,点接触形式n最小,单 位面积承受压力F1最大,容易破坏表面膜,所以有可能使Rf减到最小; 反之,面接触的F1就最小,对Rf的破坏力最小,Rf值有可能最大。
低电平接触电阻检验
考虑到接触件膜层在高接触压力下会发生机械击穿或在高电压、 大电流下会发生电击穿。对某些小体积的连接器设计的接触压力相当 小,使用场合仅为mV或mA级,膜层电阻不易被击穿,可能影响电信 号的传输。故军标GJB1217-91电连接器试验方法中规定了两种试验方 法。即低电平接触电阻试验方法和接触电阻试验方法。其中低电平接 触电阻试验目的是评定接触件在加上不能改变物理的接触表面或不改 变可能存在的不导电氧化簿膜的电压和电流条件下的接触电阻特性。 所加开路试验电压不超过20mV,而试验电流应限制在100mA,在这 一电平下的性能足以满足以表现在低电平电激励下的接触界面的性能。 而接触电阻试验目的是测量通过规定电流的一对插合接触件两端或接 触件与测量规之间的电阻,而此规定电流要比前者大得多,通常规定 为1A
接触电阻测试仪的测量是怎样的
接触电阻测试仪的测量是怎样的接触电阻测试仪是用于测试电路中接触电阻的一种仪器。
接触电阻是指电路中接触面或接头所引起的电阻。
由于接触电阻会影响电路的性能,因此需要对接触电阻进行测试,以保证电路的正常工作。
本文将详细介绍接触电阻测试仪的测量方法和注意事项。
测量方法接触电阻测试仪的测量方法通常分为二线法和四线法。
二线法二线法又称为单端法,是接触电阻测试仪的基本测量方法。
该方法在电路中断开一端,测试另一端的接触电阻。
具体测量步骤如下:1.将测试仪插入电路中待测端口。
2.按下测试按钮,测试仪将向待测端口注入一定电流。
3.读取测试仪显示的待测端口的电阻值。
需要注意的是,二线法存在一些误差,因为在电路中的线路电阻和测试仪自身的内阻也会被计算在内,影响测试结果的准确性。
四线法四线法是一种比较准确的接触电阻测试方法,可以有效地消除线路电阻和测试仪内阻的影响。
该方法的测量步骤如下:1.将测试仪的四个线缆依次连接到被测电路的四个端口上。
2.按下测试按钮,测试仪将向待测电路注入一定电流。
3.读取测试仪显示的待测端口的电阻值。
四线法的测量精度比二线法更高,但相对来说使用起来也更加复杂。
注意事项在使用接触电阻测试仪进行测试时,需要注意以下几点:1.测试前需保证电路处于安全状态,断电、卸载或者退出电池。
2.在进行四线法测试时,线缆的连接要保持稳定,避免线路电阻和测试仪内阻的干扰。
3.测试前要对仪器进行校准,以保证测量结果的准确性。
4.测试时应选择合适的量程,以免测量结果超出仪器的范围。
5.测试完毕后,要将测试仪还原到初始状态,避免影响下一次测试结果。
结论接触电阻测试仪是一种可靠的测量工具,经过正确的操作和使用,可以有效地测试电路中的接触电阻。
在测量过程中,需要注意微小的误差和干扰,以确保测试结果的准确性。
接触电阻测量方法
接触电阻测量方法1、接触电阻测量方法?【答案】除用毫欧计外,也可用伏-安计法,安培-电位计法。
在连接微弱信号电路中,设定的测试数条件对接触电阻检测结果有一定影响。
因为接触表面会附有氧化层,油污或其他污染物,两接触件表面会产生膜层电阻。
由于膜层为不良导体,随膜层厚度增加,接触电阻会迅速增大。
膜层在高的接触压力下会机械击穿,或在高电压、大电流下会发生电击穿。
但对某些小型连接器设计的接触压力很小,工作电流电压仅为mA和mV级,膜层电阻不易被击穿,接触电阻增大可能影响电信号的传输。
在GB5095“电子设备用机电元件基本试验规程及测量方法”中的接触电阻测试方法之一,“接触电阻-毫伏法”规定,为防止接触件上膜层被击穿,测试回路交流或直流的开路峰值电压应不大于20mV,交流或直流的测试中电流应不大于100mA。
在GJB1217“电连接器试验方法”中规定有“低电平接触电阻”和“接触电阻”两种试验方法。
其中低电平接触电阻试验方法基本内容与上述GB5095中的接触电阻-毫伏法相同。
目的是评定接触件在加上不改变物理的接触表面或不改变可能存在的不导电氧化薄膜的电压和电流条件下的接触电阻特性。
所加开路试验电压不超过20mV,试验电流应限制在100mA。
在这一电平下的性能足以表现在低电平电激励下的接触界面的性能。
而接触电阻试验方法目的是测量通过规定电流的一对插合接触件两端或接触件与测量规之间的电阻。
通常采用这一试验方法施加的规定电流要比前一种试验方法大得多。
如军标GJB101“小圆形快速分离耐环境电连接器总规范”中规定;测量时电流为1A,接触对串联后,测量每对接触对的电压降,取其平均值换算成接触电阻值。
接触电阻测量方法
接触电阻测量方法接触电阻是指两个物体之间的接触面上存在一定的电阻。
在电子设备和电路中,接触电阻的大小直接影响到电路的性能和稳定性。
因此,准确测量接触电阻是非常重要的。
接下来,我们将介绍几种常用的接触电阻测量方法。
第一种方法是使用万用表进行测量。
首先,将万用表的电阻测量档位调至合适的范围,然后将测量笔分别接触待测接触电阻的两端。
在测量时,应注意保持测量笔的稳定,并确保与接触电阻的接触良好。
通过读取万用表上显示的数值,即可得到接触电阻的大小。
第二种方法是使用接触电阻测量仪进行测量。
接触电阻测量仪是一种专门用于测量接触电阻的仪器,具有高精度和稳定性。
在使用接触电阻测量仪进行测量时,首先需要将测量仪的探头与待测接触电阻的两端进行连接,然后按照仪器的操作说明进行操作。
通过仪器显示的数值,即可得到接触电阻的大小。
第三种方法是使用示波器进行测量。
示波器是一种用于显示和测量电信号的仪器,可以直观地显示电信号的波形和特征。
在测量接触电阻时,可以将示波器的探头分别接触待测接触电阻的两端,然后观察示波器上显示的波形。
通过分析波形的特征,可以得到接触电阻的大小。
除了上述方法外,还有一些其他方法可以用于接触电阻的测量,如使用电桥、热电阻计等。
在实际应用中,需要根据具体情况选择合适的测量方法,并注意测量过程中的环境因素和干扰因素。
总的来说,准确测量接触电阻对于保证电路性能和稳定性非常重要。
通过掌握多种接触电阻测量方法,可以更好地应对实际的测量需求,保证测量结果的准确性和可靠性。
希望本文介绍的方法能够对大家有所帮助。
电阻的测量(七种方法
的内阻约为20千欧,电流表的内阻约为10欧,选择能够尽量 减小误差的电路图接线进行实验,读得的各组数据用实心 圆点标于坐标图上(如右图所示). (1 )根据各点表示的数据 描出I-U图线,由此求得该电阻的阻值Rx= 欧 (保 3 2.4 × 10 留两位有效数字). (2)画出此实验的电路原理图.
U(V) 1.37 1.32 1.24 1.20 1.10 1.05
· ·
· ·
· ·
I/
返回
例2. 如图示的电路中,R1 、R2为标准 电阻,测定电源的电动势和内阻时, 如果偶然误差可以忽略不计,则电动 势的测量值 等于 真实值,内阻的测 量值 偏大 真实值,产生误差的原因 是 电流表有内阻 。
例1. 用内阻为3000Ω的电压表和内阻为10Ω的电流表 测电阻,在图甲、乙两种情况下,电压表的示数都是 60V,电流表的示数都是0.2A,则R1的测量值为 300 Ω,真实值是 290 Ω,R2的测量值为 300 Ω,真实值是 333 Ω。
练习 . 用伏安法测电阻,采用电流表内接法和外接 法,测得某电阻Rx的阻值分别为 R1 和R2 ,则所测 的测量值和真实值Rx之间的关系是 ( A ) (A)R1> Rx>R2 (B) R1< Rx<R2 (C)R1>R2>Rx (D)R1<R2<Rx
返回
1996年上海 4.某同学在做测定小灯泡功率的实验中得到如
下一组U和I 的数据:
编号 1 2 3 4 5 6 7 8
U(V)
0.20
0.60
1.00
1.40
1.80
2.20
2.60
3.00
I(A)
灯泡发 光情况
0.020
0.060
0.100
接触电阻测量方法
接触电阻测量方法接触电阻是指两个接触导体之间的电阻,它是电气连接的基本要求之一。
在电气设备的运行中,接触电阻的大小直接影响着设备的性能和安全。
因此,准确测量接触电阻是非常重要的。
接下来,我们将介绍一些常用的接触电阻测量方法。
一、四线法测量。
四线法测量是一种常用的接触电阻测量方法。
它通过在被测导体上加上电流,然后通过另外两根线测量导体上的电压,从而计算出接触电阻的大小。
四线法测量可以有效地避免了导线电阻对测量结果的影响,提高了测量的准确性。
二、电桥法测量。
电桥法是一种精密测量接触电阻的方法。
它利用电桥平衡的原理,通过调节电桥中的电阻,使得电桥两端的电压为零,从而计算出被测导体的接触电阻。
电桥法测量准确度高,但操作复杂,需要一定的专业知识和技能。
三、微欧表测量。
微欧表是专门用来测量接触电阻的仪器,它具有高灵敏度和精确度。
通过将微欧表连接到被测导体上,可以直接读取接触电阻的数值。
微欧表测量简便快捷,适用于现场测量和快速判断接触电阻的大小。
四、红外线测量。
红外线测量是一种非接触式的接触电阻测量方法。
它通过红外线测温仪测量导体表面的温度,从而间接推算出接触电阻的大小。
红外线测量无需直接接触被测导体,操作简便,适用于一些特殊场合的测量。
五、热敏电阻测量。
热敏电阻是一种随温度变化而变化电阻值的元件。
通过在被测导体上加热,测量热敏电阻的电阻值变化,可以间接推算出接触电阻的大小。
热敏电阻测量方法简单,但需要注意被测导体的温度变化对测量结果的影响。
六、超声波测量。
超声波测量是一种利用超声波在导体中传播的速度与导体材料和接触电阻的关系来测量接触电阻的方法。
它无需直接接触被测导体,可以在一定程度上避免了测量误差。
超声波测量适用于一些特殊材料和场合的接触电阻测量。
综上所述,接触电阻的测量方法多种多样,每种方法都有其适用的场合和特点。
在实际应用中,我们应根据具体情况选择合适的测量方法,并结合其他相关参数进行综合分析,确保测量结果的准确性和可靠性。
接触电阻的分析与测量
图1 中R 1 与尺 2 为相连接的两个导体 , 电流源施加的
电流 ,通 过 】 与 2 的界 面 时形 成接 触 电 阻 尺 , 界 面两 边 的 电压为 u, 则 接触 电 阻 为 :
1 . 2 影 响 因素
应用 中一般希望得到低而稳定的接触 电阻 , 以保证 电接触工作的可靠性。影响接触 电阻的因素主要有导体 材料性质、 接触形式、 接触压力、 温度、 腐蚀 、 频率等。比 如构成 电接触 的金属材料性质直接影 响接触 电阻 的大 小, 这 些性 质 主要有 材料 的 电阻率 材 料 的硬 度 日 等 ; 增大接触压力可以使接触 电阻减小; 腐蚀会严重影响电 接触 的接 触 电阻 , 从 而影 响电接触 的可靠 性等 等 。
电流 源
图 1
电流 源
面, 将 会把金 属 的导体 电阻包 含 在 接 触 电 阻 的测 量 结 果 中, 而真实 地测 得界 面两 边 的 电压 , 几 乎是 不 可 能 的 , 所 以接触 电阻 的测 量结果 只 能是近 似结果 。当然 如果 金属 导体 的电阻与 接触 电阻相 比很小 时 , 可 以忽略不 计 , 对测 量 结果 的影响 也可 以忽略 。一种 比较 有效 地可 以减 少 导
阢 n Me i l a n
在电子设备中, 接触 电阻是判断互连接器件电连接 是否可靠 良好的重要参数。当两导体相接触时 , 电子从 个导 体流 向另 一个 导体 , 由于 接点界 面微观 上 的粗 糙 , 电流 只能通 过接 触 面上 极 少数 的接 触 点 , 因而 在 界 面处 形 成 了额外 的接 触 电阻 。接触 电阻测量 的 目的是确 定 电 流 流经 接触 件 的接触 表 面的 电触 点时 产生 的 电阻 。 由于 影 响触 点接 触 电阻 的因素 非常 多 , 成 因也非 常复杂 , 从理 论上分析接触电阻显得 比较困难 。因此 , 如何真实准确 地 测试 出触 点表 面 的接触 电阻 , 显得 尤为重 要 。
万用表测法兰间接触电阻
万用表测法兰间接触电阻1. 引言1.1 什么是万用表测法兰间接触电阻万用表是一种用来测量电阻、电压和电流等电学量的仪器,被广泛应用于电子、电气和通讯等领域。
而在实际工作中,我们常常会遇到需要测量法兰间接触电阻的情况。
所谓法兰间接触电阻,指的是两个法兰之间由接触面和螺栓等组成的接触结构,在电流通过时会产生一定的接触电阻,从而影响设备的正常运行。
用万用表来测量法兰间接触电阻,通常需要将万用表的两个探针分别接触在待测法兰的接触结构上,然后读取万用表上显示的电阻值。
通过这样的测量可以了解到接触结构间的电阻大小,帮助我们及时发现问题并进行维护。
万用表测法兰间接触电阻是一种简便、实用的测量方法,可以帮助我们及时了解设备的运行状态,并采取相应的措施。
通过掌握这一方法,我们可以更好地保障设备的正常运行,提高工作效率。
1.2 为什么需要用万用表测法兰间接触电阻在进行电气设备维护或故障排查时,经常会遇到法兰间接接触电阻的检测需求。
为什么需要用万用表测法兰间接触电阻呢?法兰是连接管道或设备的重要部件,其直接关系到设备的稳定运行和安全性。
法兰的间接接触电阻是指法兰连接处由于氧化、腐蚀等原因导致的电阻增加,进而影响整个电路的通电效果。
如果不及时检测和处理,间接接触电阻过高可能会引发设备故障、短路、火灾等安全隐患。
使用万用表测法兰间接接触电阻的必要性主要体现在以下几个方面。
通过测量法兰间接接触电阻,能够及时了解法兰连接处的电气性能,从而预防潜在的安全风险。
定期检测法兰间接接触电阻可以有效提高设备的可靠性和稳定性,延长设备的使用寿命。
在日常维护和保养中,万用表可以快速准确地检测法兰间接接触电阻,提高工作效率,保证设备运行的正常和安全。
使用万用表测法兰间接接触电阻是电气设备维护工作中的一项必备技能,对确保设备运行安全和稳定起到了至关重要的作用。
2. 正文2.1 准备工作准备工作是进行万用表测法兰间接触电阻的重要步骤,只有做好充分的准备工作,才能确保测量结果的准确性和可靠性。
CTLM测量金属半导体欧姆接触电阻率
五、结论
金属氮化物肖特基势垒和欧姆接触是高温大功率电子器件和蓝紫光光学器件 中的关键工艺,对器件的性能具有重要的影响。近年来,针对这两种接触方式的 研究取得了显著的进展,研究者们发现了许多具有优良性能的材料并深入研究了 其物理化学性质与微结构特性。然而,随着科技的不断进步与发展,这两种接触 方式的研究仍需不断深入与拓展。
二、金属氮化物肖特基势垒
肖特基势垒是一种半导体表面与金属接触形成的势垒,它对电子的输运具有 重要影响。氮化物肖特基势垒的研究主要集中在材料的选取、表面态密度的控制 以及费米能级钉扎效应的优化等方面。
近年来,研究者们致力于寻找具有较低表面态密度和较强费米能级钉扎效应 的氮化物材料,以提高肖特基势垒的性能。例如,利用高功函数金属如Pt、Au等 与氮化半导体材料结合,可以显著降低表面态密度,优化肖特基势垒的性能。
2、数据采集:在给定电压范围内,自动采集电流值,并记录每个电压下的 电流输运特性。
3、数据处理:根据采集到的电流输运特性数据,利用欧姆定律计算接触电 阻率。
3、数据采集:记录每个电压下 的电流值,并绘制电流输运特性 曲线。
1、选取合适的电压范围,确保金属半导体接触处于欧姆接触状态(即电流 输运特性曲线线性)。
此外,通过控制材料的费米能级钉扎效应,也可以优化肖特基势垒的性能。 通过改变材料的组成和结构,可以有效地调控费米能级钉扎效应,进而提高肖特 基势垒的稳定性与可靠性。
三、金属氮化物欧姆接触
欧姆接触是金属与半导体之间的一种理想接触方式,它对电子的输运特性没 有明显的阻碍作用。氮化物欧姆接触的研究主要集中在材料的选取、表面态密度 的控制以及欧姆接触电阻的降低等方面。
7、计算电阻率:根据铜线的长度、直径和电阻值,计算铜线的电阻率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接触电阻的多种测量方法
技术分类:测试与测量 | 2008-10-14
接触电阻就是电流流过闭合的接触点对时的电阻。
这类测量是在诸如连接器、继电器和开关等元件上进行的。
接触电阻一般非常小其范围在微欧姆到几个欧姆之间。
根据器件的类型和应用的情况,测量的方法可能会有所不同。
ASTM的方法B539 “测量电气连接的接触电阻”和MIL-STD-1344的方法3002“低信号电平接触电阻”是通常用于测量接触电阻的两种方法。
通常,一些基本的原则都采用开尔文四线法进行接触电阻的测量。
测量方法
图4-42 说明用来测试一个接点的接触电阻的基本配置。
使用具有四端测量能力的欧姆计,以避免在测量结果中计入引线电阻。
将电流源的端子接到该接点对的两端。
取样(Sense)端子则要连到距离该接点两端电压降最近的地方。
其目的是避免在测量结果中计入测试引线和体积电阻(bulk resistance)产生的电压降。
体积电阻就是假定该接点为一块具有相同几何尺寸的金属实体,而使其实际接触区域的电阻为零时,整个接点所具有的电阻,设计成只有两条引线的器件有的时候很难进行四线连接。
器件的形式决定如何对其进行连接。
一般,应当尽可能按照其正常使用的状态来进行测试。
在样品上放置电压探头时不应当使其对样品的机械连接产生影响。
例如,焊接探头可能会使接点发生不希望的变化。
然而,在某些情况下,焊接可能是不可避免的。
被测接点上的每个连接点都可能产生热电动势。
然而,这种热电动势可以用电流反向或偏置补偿的方法来补偿。
干电路(Dry Circuit)测试
通常,测试接点电阻的目的是确定接触点氧化或其它表面薄膜积累是否增加了被测器件的电阻。
即使在极短的时间内器件两端的电压过高,也会破坏这种氧化层或薄膜,从而破坏测试的有效性。
击穿薄膜所需要的电压电平通常在30mV到100mV的范围内。
在测试时流过接点的电流过大也能使接触区域发生细微的物理变化。
电流产生的热量能够使接触点及其周围区域变软或熔解。
结果,接点面积增大并导致其电阻降低。
为了避免这类问题,通常采用干电路的方法来进行接点电阻测试。
干电路就是将其电压和电流限制到不能引起接触结点的物理和电学状态发生变化电平的电路。
这就意味着其开路电压为20mV或更低,短路电流为100mA或更低。
由于所使用的测试电流很低,所以就需要非常灵敏的电压表来测量这种通常在微伏范围的电压降。
由于其它的测试方法可能会引起接点发生物理或电学的变化,所以对器件的干电路测量应当在进行其它的电学测试之前进行。
使用微欧姆计或数字多用表
图4-42示出使用Keithley 580型微欧姆计、2010型数字多用表或2750型数字多用表数据采集系统进行四线接触电阻测量的基本配置情况。
这些仪器能够采用偏置补偿模式自动补偿取样电路中的热电势偏置,并且还具有内置的干电路测量能力。
对于大多数的应用来说,微欧姆计或数字多用表足以用来进行接触电阻的测量工作。
如果短路电流或者被测电阻值比微欧姆计或数字多用表的技术指标小得很多,则必须使用纳伏表加精密电流源的组合来进行。
使用纳伏表和电流源
图4-43示出使用Keithley 2182A型纳伏表和2400系列数字源表仪器进行接触电阻测量的测试配置情况。
2400系列仪器强制电流流过接点,而纳伏表则测量接点两端产生的电压降。
为了进行干电路测试,设置数字源表的钳位电压为20mV,这样就把电路的开路电压钳位到20mV。
为了保证钳位电压只出现在接点两端,而不是出现在测试引线的两端,该数字源表采用四线模式。
在使用较大的电流时,这一点特别重要。
因为和接点两端的电压降相比,测试引线两端的电压降可能会比较大。
为了避免发生瞬变现象,一定要先将电流源关闭,然后再把接点接入测试夹具或将其断开。
将一个100Ω的电阻器直接跨接在电流源的输出端,能够进一步降低瞬变现象。
可以使用电流反向法将热电势偏置降至最小。
2182A的Delta模式与数字源表仪器配合可以自动地实现这种技术。
在这种模式下,2182A 自动地触发电流源改变极性,然后对每一种极性触发测量一个读数。
接着,2182A显示“经过补偿”的电压值:
接点电阻则可计算如下:
其中:I = 测试电流的绝对值。