眼图知识简介
眼图常用知识介绍

关于眼图及其测量大家已经做了较多的讨论 最经典的文章是 传输指标测试大全 中有关 眼图部分 其侧重于眼图的定义和测量 光眼图分析 张轩/22336著 其侧重点在于眼图产生 的机理 以及色散对长距离传输后的眼图的影响
我们本次讨论的侧重点是如何来从眼图的中看出一些量化的数据 如 信号的上升 下降时 间 交叉点位置 消光比 Q因子 信噪比 抖动等 以及如何从各个方面来衡量一个眼图的优 劣 最后简单介绍一下CSA8000及其使用注意事项
眼图常用知识介绍
部门内公开
以下为一个较好的2.5G的 眼图比较对称 眼线比较细 0 光比适中 Q因子较高
1 电平都比较平滑 消
以下为较好的10G的眼图 眼图对称 眼图比较细 特别是 0
1 电平 上升 下降沿
稍粗一点 可见信号的抖动较大 消光比适中 Q因子较高 交叉点稍高 实际调试中 可以将交
叉点调低一点点
80C09-CR 光测量模块 输入光功率不能超过7dBm 即 5mW 建议输入光功率在
0dBm左右 带宽可选择30GHz和20GHz两种 可以以时钟恢复方式 不需要外加触发时钟 测量
9.95G 10.71G信号 或者以外触发方式测试 10.66G信号 滤波器有9.95G 10.71G两种 80C05 80C06为高带宽光测量模块 可以测量40G信号 80C07为多速率光测量模块 可以测
生误码并且通道代价满足指标要求 只要消光比大于ITU-T建议的最低值 多大都可以 交叉点比例反映信号的占空比大小 由于传输过程中 光信号的脉冲宽度将会展宽 导致接
收侧的交叉点相对于发送侧上移 为了有利于长距离传输 保证接收侧的交叉点比例在大约50 左 右 使得接收侧的灵敏度最佳 我们一般建议在发送侧把交叉点的位置稍微下移一些 一般发送侧
信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
眼图测量基础知识

—“眼图就是象眼睛一样形状的图形。
”眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。
眼图上通常显示的是1.25UI的时间窗口。
眼睛的形状各种各样,眼图的形状也各种各样。
通过眼图的形状特点可以快速地判断信号的质量。
图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。
图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。
图八的眼图非常漂亮,这可能是用采样示波器测量的眼图。
图五眼图定义图六“双眼皮”眼图由于眼图是用一张图形就完整地表征了串行信号的比特位信息,所以成为了衡量信号质量的最重要工具,眼图测量有时侯就叫“信号质量测试(Signal Qu ality Test,SQ Test)”。
此外,眼图测量的结果是合格还是不合格,其判断依据通常是相对于“模板(Mask)”而言的。
模板规定了串行信号“1”电平的容限,“0”电平的容限,上升时间、下降时间的容限。
所以眼图测量有时侯又被称为“模板测试(Mask Test)”。
模板的形状也各种各样,通常的NRZ信号的模板如图五和图八蓝色部分所示。
在串行数据传输的不同节点,眼图的模板是不一样的,所以在选择模板时要注意具体的子模板类型。
如果用发送端的模板来作为接收端眼图模板,可能会一直碰模板。
但象以太网信号、E1/T1的信号,不是NRZ码形,其模板比较特别。
当有比特位碰到模板时,我们就认为信号质量不好,需要调试电路。
有的产品要求100%不能碰模板,有的产品是允许碰模板的次数在一定的概率以内。
(有趣的是,眼图85%通过模板的产品,功能测试往往是没有问题的,譬如我在用的电脑网口总是测试不能通过,但我上网一直没有问题。
这让很多公司觉得不用买示波器做信号完整性测试以一样可以做出好产品来,至于山寨版的,更不会去买示波器测眼图了。
)示波器中有测量参数可自动统计出碰到模板的次数。
光眼图介绍

光眼图分析(6)
n n
现象:反射reflections 原因:阻抗不连续, 引起振铃
光眼图分析(7)
n n
现象:双线 原因:PDJ(patter dependent jitter)引起 高低频响应不同
光眼图分析(8)
n n
现象:不对称 原因:常发现在直调激光器上,对eml激 光器很少见。可能由于上升下降时间不 等,也可能是占空比问题
交流
眼图(eyediagram)
王伟 2006.7.27
目录
n n n
眼图的形成 眼图的参数 光眼图分析
眼图形成
1 0 T Trigger
眼图参数和术语
n n n
n
Amplitude(Pk-Pk,Mean,overshoot…) Time(Risetime, falltime,duty,Period…) Comm(Ext ratio,Q factor, Jitter(Pk-Pk), Jitter(RMS),Noise ratio…) Mask(margin,filter,hits…)
光眼图分析(1)
n
激光器驱动曲线
光眼图分析(2)
n n
现象:过冲明显,0线重 原因:偏流过低,0电平位于域值以下
光眼图分析(3)
n n
现象:有overshoot 原因:上升沿过快
光眼图分析(4)
n n
现象:有undershoot 原因下降沿过缓,负载电容过大光眼图分析(5)
n n
现象:ringing 原因:阻抗不连续,引起振铃
光眼图分析(9)
n n
现象:全部双线 原因:可能是功率控制不稳定的原因
1 0 T
光眼图分析(10)
眼图常识

眼图常用知识介绍关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著以及色散对长距离传输后的眼图的影响如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣现在我们公司常用的测量眼图的仪器为CSA80001眼图与常用指标介绍下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光功率Rise下降时间峰值抖动RMSJ消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议衡量器件是否符合要求除了满足建议要求之外一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBµ«ÊÇÕâ²¢²»Òâζ×ÅÏû¹â±È可以无限大将导致激光器的啁啾系数太大不利于长距传输与速率的最低要求消光比大0.5~1.5dBÖ®ËùÒÔ¸ø³öÕâôһ¸öÊýÖµÊǺ¦ÅÂÏû¹â±ÈÌ«¸ßÁ˵¼ÖÂÎóÂë²úÉú»òͨµÀ´ú¼Û³¬±êûÓвúÉúÎóÂë²¢ÇÒͨµÀ´ú¼ÛÂú×ãÖ¸±êÒªÇó¶à´ó¶¼¿ÉÒÔÓÉÓÚ´«Êä¹ý³ÌÖе¼Ö½ÓÊÕ²àµÄ½»²æµãÏà¶ÔÓÚ·¢ËͲàÉÏÒƱ£Ö¤½ÓÊÕ²àµÄ½»²æµã±ÈÀýÔÚ´óÔ¼50ʹµÃ½ÓÊÕ²àµÄÁéÃô¶È×î¼ÑÒ»°ã·¢ËͲཻ²æµã±ÈÀý½¨Òé¿ØÖÆÔÚ4045Q因子综合反映眼图的质量问题表明眼图的质量越好光功率一般来说1Խƽ»¬ÔÚ²»¼Ó¹âË¥¼õµÄÇé¿öÏÂ越高越好越高越好如果需要准确地测量光功率信号的上升时间下降的快慢的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718在测量抖动的时候才能保证测量值相对准确做为一个比较参考一般在发送侧的测量值都大于30dB2典型的眼图介绍接下来我们来看一些典型的较好的眼图和一些有问题的眼图以下的为一个较好的622M的眼图眼线很细Q因子很高以下为不加STM-4滤波器的622M的眼图特别是上升电平有点波纹信号的高频谐波没有被虑掉我们看到即使电平不平坦以下为一个较好的2.5G的眼线比较细0电平都比较平滑Q因子较高以下为较好的10G的眼图眼图比较细0电平下降沿稍粗一点消光比适中交叉点稍高可以将交叉点调低一点点总的来说眼图质量将越差第一是抖动抖动越难控制由于测试过程一般都要加相应的低通滤波器622M信号的低通滤波器的带宽大约为500MHz8GHz这个频率范围的噪声却没有被10G信号的滤波器滤掉10G信号的噪声更大一下3有问题的眼图分析以下为一个有问题的622M眼图我们来一一分析眼图有非常明显的两个上升俗称双眼皮电平1ÐźÅÓйý³åÏû¹â±ÈÆ«µÍÖ»ÓÐ4.1dBµ¼ÖÂÐźŵĹý³åÕâ¸öÑÛͼ»¹ËµÃ÷ÁËÁíÒ»¸öÎÊÌâ¶ø²»ÊÇΨһµÄÒªÇóÕâ¸öÑÛͼµÄ±ßµÄÀëÄ£°å»¹ÊÇÓÐÒ»¶¨µÄÓàÁ¿µÄÎÒÃÇÔÙÀ´¿´¿´ÒÔÏÂ622M眼图估计是信号的滤波没有处理好以下为2.5G 眼图存在的问题是眼图有点歪这个跟激光器的调制特性有一定的关系以下2.5G 眼图注意与上一个眼图比较下降沿都较粗均方根抖动部门内公开眼图常用知识介绍以下2.5G的眼图就比较糟糕上升信号质量不好消光比也很低其原因可能是驱动器或者阻抗非常不匹配以下一个为2.5G眼图可能两个原因引起的第二是直调激光器的张驰振荡引起的振铃以下为10G 眼图第一消光比太低眼图电平很粗可能的原因是以下10G 眼图没有其测量数据下降沿比较粗可以看出来部门内公开眼图常用知识介绍以下为10G眼图这从那里看出来呢眼图的上升电平都比较粗很不干净以上三个眼图我们分析了导致眼图不好的三种情况抖动这三种情况如何从眼图看出来呢1²»Æ½Ì¹½â¾öÎÊÌâÒª´Ó±£Ö¤´Óʼ¶Ëµ½ÖÕ¶Ë×迹ƥÅä如果眼图的上升中间那么就是抖动引起的如合理设计锁相环如果眼图的都比较粗一般来说是电源噪声解决问题也是要从这几方面着手不能以一把尺子来衡量眼图质量越难保证要求的眼图质量也好时钟输入的光模块比只有数据输入的光模块的眼图质量会更好一些EA调制方式的眼图比直接调制方式的眼图表现会好一些4CSA8000简介与使用注意事项4.1CSA8000简介CSA8000为TEKTRONIX公司最新的通讯分析仪同时可以测量信号的其他一些指标消光比信噪比CSA8000为WINDOWS界面支持鼠标面板按键操作界面方便快捷拷贝CSA8000仪表包括主机以及测量模块80C01-CR光测量模块即带宽为20GHz²»ÐèÒªÍâ¼Ó´¥·¢Ê±ÖÓ 2.488G信号2.488G10.66G滤波器的可以选择622M9.95G三种输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G信号或者以外触发方式测试10.66GÂ˲¨Æ÷Ö»ÓÐ9.95G一种输入光功率不能超过7dBm5mW在测量过程中输出光可以直接输入给测量模块可以以时钟恢复方式测量1.063G 2.488G滤波器的可以选择1.063G2.488G三种输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G»òÕßÒÔÍâ´¥·¢·½Ê½²âÊÔ10.71G信号10.66G两种输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G»òÕßÒÔÍâ´¥·¢·½Ê½²âÊÔ 10.66G信号10.71G两种80C06为高带宽光测量模块80C07为多速率光测量模块622M这些模块我们暂时没有这里不做更进一步的介绍用与测量电信号眼图建议输入信号幅度为500mV左右带宽高达50GÌرð×¢ÒâµÄÊÇÐèҪרÃŵÄת½ÓÍ·²ÅÄÜʹÓÃÓÃÓë²âÁ¿µçÐźÅÑÛͼ建议输入信号幅度为500mV左右其带宽为20G80E04模块还有一个独特的功能另外还有80E02ÆäÄÜʵÏֵŦÄܲ»µ¥¶À½éÉÜ光测量模块的输入光功率不能超过允许的范围否则可能造成测量模块的永久损坏使用中要注意防静电特别是以外触发方式测量的时候为了测量的数据准确可靠包括暗电流校正和温度补偿校正首先把测量模块的光接口盖上首先要将测量仪表打开然后对仪表进行温度补偿校正注意校正过程较长具体操作如下 要选择选择好相应的速率的滤波器和模板GE信号就选择GE的滤波器与模板交叉点比例等数值时候选择滤波器操作步骤如下选择正确的滤波器Setup-->Mask-->选择正常的通道C8。
眼图详解(眼图分析)

眼图详解关于眼图的基本知识1、眼图的作用数字信号的眼图可以体现数字信号的整体特征,能够很好地评估数字信号的质量,因而眼图的分析是数字系统信号完整性分析的关键之一。
2、眼图的形成串行数据的传输由于通讯技术发展的需要,特别是以太网技术的爆炸式应用和发展,使得电子系统从传统的并行总线转为串行总线。
串行信号种类繁多,如PCI Express、SPI、USB 等,其传输信号类型时刻在增加。
相比并行数据传输,串行数据传输的整体特点如下:1)信号线的数量减少,成本降低2)消除了并行数据之间传输的延迟问题3)时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了4)传输线的PCB 设计也更容易些5)信号完整性测试也更容易实际中,描述串行数据的常用单位是波特率和UI,串行数据传输示例如下:串行数据传输示例例如,比特率为3.125Gb/s 的信号表示为每秒传送的数据比特位是3.125G 比特,对应的一个单位间隔即为1UI。
1UI表示一个比特位的宽度,它是波特率的倒数,即1UI=1/(3.125Gb/s)=320ps。
现在比较常见的串行信号码形是NRZ 码,因此在一般的情况下对于串行数据信号,我们的工作均是针对NRZ 码进行的。
由于示波器的余辉作用,将扫描所得的每一个码元波形重叠在一起,从而形成眼图。
眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而可以估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
眼图实际上就是数字信号的一系列不同二进制码按一定的规律在示波器屏幕上累积后的显示,简单地说,由于示波器具有余辉功能,只要将捕获的所有波形按每三个比特分别地叠加累积(如上图所示),从而就形成了眼图。
目前,一般均可以用示波器观测到信号的眼图,其具体的操作方法为:将示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
眼图形成及其基本知识归纳

* * 1眼图基本观点眼图的形成原理眼图是一系列数字信号在示波器上积累而显示的图形,它包含了丰富的信息,从眼图上能够察看出码间串扰和噪声的影响,表现了数字信号整体的特色,从而预计系统好坏程度,因此眼图剖析是高速互连系统信号完好性剖析的核心。
此外也能够用此图形对接收滤波器的特征加以调整,以减小码间串扰,改良系统的传输性能。
用一个示波器跨接在接收滤波器的输出端,而后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
示波器一般丈量的信号是一些位或某一段时间的波形,更多的反应的是细节信息,而眼图则反应的是链路上传输的全部数字信号的整体特色,以下列图所示:图示波器中的信号与眼图假如示波器的整个显示屏幕宽度为100ns ,则表示在示波器的有效频宽、取样率及记忆体配合下,获取了100ns 下的波形资料。
但是,对于一个系统而言,剖析这么短的时间* *内的信号其实不拥有代表性,比如信号在每一百万位元会出现一次突波(Spike ),但在这100ns 时间内,突波出现的机率很小,所以会错过某些重要的信息。
假如要权衡整个系统的性能,这么短的时间内丈量获取的数据明显是不够的。
假想,假如能够以重复叠加的方式,将新的信号不停的加入显示屏幕中,但却仍旧记录着上次的波形,只需积累时间够久,就能够形成眼图,从而能够认识到整个系统的性能,如串扰、噪声以及其余的一些参数,为整个系统性能的改良供给依照。
剖析实质眼图,再联合理论,一个完好的眼图应当包含从“000 ”到“ 111 ”的全部状态组,且每一个状态组发生的次数要尽量一致,不然有些信息将没法表此刻屏幕上,八种状态形成的眼图以下所示:图眼图形成表示图由上述的理论剖析,联合示波器实质眼图的生成原理,能够知道一般在示波器上观察到的眼图与理论剖析获取的眼图大概靠近(无串扰等影响),以下所示:* *图示波器实质观察到的眼图假如这八种状态组中缺失某种状态,获取的眼图会不完好,以下所示:图示波器观察到的不完好的眼图经过眼图能够反应出数字系统传输的整体性能,但是怎么样才能正确的掌握其判断方法呢?这里有必需对眼图中所波及到的各个参数进行定义,认识了各个参数此后,其判断方法很简单。
眼图形成及其原理总结

1眼图基本概念1、1眼图得形成原理眼图就是一系列数字信号在示波器上累积而显示得图形,它包含了丰富得信息,从眼图上可以观察出码间串扰与噪声得影响,体现了数字信号整体得特征,从而估计系统优劣程度,因而眼图分析就是高速互连系统信号完整性分析得核心.另外也可以用此图形对接收滤波器得特性加以调整,以减小码间串扰,改善系统得传输性能.用一个示波器跨接在接收滤波器得输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元得周期同步,这时示波器屏幕上瞧到得图形就称为眼图。
示波器一般测量得信号就是一些位或某一段时间得波形,更多得反映得就是细节信息,而眼图则反映得就是链路上传输得所有数字信号得整体特征,如下图所示:图示波器中得信号与眼图如果示波器得整个显示屏幕宽度为100ns,则表示在示波器得有效频宽、取样率及记忆体配合下,得到了100ns下得波形资料.但就是,对于一个系统而言,分析这么短得时间内得信号并不具有代表性,例如信号在每一百万位元会出现一次突波(Spike),但在这100ns 时间内,突波出现得机率很小,因此会错过某些重要得信息。
如果要衡量整个系统得性能,这么短得时间内测量得到得数据显然就是不够得.设想,如果可以以重复叠加得方式,将新得信号不断得加入显示屏幕中,但却仍然记录着前次得波形,只要累积时间够久,就可以形成眼图,从而可以了解到整个系统得性能,如串扰、噪声以及其她得一些参数,为整个系统性能得改善提供依据.分析实际眼图,再结合理论,一个完整得眼图应该包含从“000”到“111”得所有状态组,且每一个状态组发生得次数要尽量一致,否则有些信息将无法呈现在屏幕上,八种状态形成得眼图如下所示:图眼图形成示意图由上述得理论分析,结合示波器实际眼图得生成原理,可以知道一般在示波器上观测到得眼图与理论分析得到得眼图大致接近(无串扰等影响),如下所示:图示波器实际观测到得眼图如果这八种状态组中缺失某种状态,得到得眼图会不完整,如下所示:图示波器观测到得不完整得眼图通过眼图可以反映出数字系统传输得总体性能,可就是怎么样才能正确得掌握其判断方法呢?这里有必要对眼图中所涉及到得各个参数进行定义,了解了各个参数以后,其判断方法很简单。
眼图有关知识详细解释

眼图综述报告-----------李洋目录1. 眼图的形成 (2)1.1 传统的眼图生成方法 (2)1.2 实时眼图生成方法 (3)1.3 两种方法比较 (4)2. 眼图的结构与参数介绍 (4)2.1 眼图的结构图 (4)2.2 眼图的主要参数 (5)2.2.1 消光比 (5)2.2.2 交叉点 (5)2.2.3 Q因子 (6)2.2.4 信号的上升时间、下降时间 (6)2.2.5 峰—峰值抖动和均方根值抖动 (6)2.2.6 信噪比 (6)3. 眼图与系统性能的关系 (7)4. 眼图与BER的关系 (7)4. 如何获得张开的眼图 (8)5. 阻抗匹配的相关知识 (9)5.1 串联终端匹配 (9)5.2 并联终端匹配 (10)6. 眼图常见问题分析 (10)7. 总结 (17)1.眼图的形成眼图是一系列数字信号在示波器上累积而显示的图形,其形状类似于眼睛,故叫眼图。
在用余辉示波器观察传输的数据信号时,使用被测系统的定时信号,通过示波器外触发或外同步对示波器的扫描进行控制,由于扫描周期此时恰为被测信号周期的整数倍,因此在示波器荧光屏上观察到的就是一个由多个随机符号波形共同形成的稳定图形。
这种图形看起来象眼睛,称为数字信号的眼图。
示波器测量的一般信号是一些位或某一段时间的波形,更多的反映的是细节信息。
而眼图则反映的是链路上传输的所有数字信号的整体特性。
如下图:1.1 传统的眼图生成方法采样示波器的CLK通常可能是用户提供的时钟,恢复时钟,或者与数据信号本身同步的码同步信号.图:采样示波器眼图形成原理1.2 实时眼图生成方法实时示波器通过一次触发完成所有数据的采样,不需附加的同步信号和触发信号.通常通过软件PLL方法恢复时钟。
图:实时示波器眼图形成原理另一种示意图:图:实时示波器眼图形成原理1.3 两种方法比较1.传统的方法比实时眼图生产方法测量的速度要慢100至1000倍。
2.传统的眼图生成方法测量精度没有实时眼图生成方法高。
眼图形成及其基本知识归纳

1眼图基本概念1.1 眼图的形成原理眼图是一系列数字信号在示波器上累积而显示的图形,它包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
示波器一般测量的信号是一些位或某一段时间的波形,更多的反映的是细节信息,而眼图则反映的是链路上传输的所有数字信号的整体特征,如下图所示:图示波器中的信号与眼图如果示波器的整个显示屏幕宽度为100ns,则表示在示波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。
但是,对于一个系统而言,分析这么短的时间内的信号并不具有代表性,例如信号在每一百万位元会出现一次突波(Spike),但在这100ns时间内,突波出现的机率很小,因此会错过某些重要的信息。
如果要衡量整个系统的性能,这么短的时间内测量得到的数据显然是不够的。
设想,如果可以以重复叠加的方式,将新的信号不断的加入显示屏幕中,但却仍然记录着前次的波形,只要累积时间够久,就可以形成眼图,从而可以了解到整个系统的性能,如串扰、噪声以及其他的一些参数,为整个系统性能的改善提供依据。
分析实际眼图,再结合理论,一个完整的眼图应该包含从“000”到“111”的所有状态组,且每一个状态组发生的次数要尽量一致,否则有些信息将无法呈现在屏幕上,八种状态形成的眼图如下所示:图眼图形成示意图由上述的理论分析,结合示波器实际眼图的生成原理,可以知道一般在示波器上观测到的眼图与理论分析得到的眼图大致接近(无串扰等影响),如下所示:图示波器实际观测到的眼图如果这八种状态组中缺失某种状态,得到的眼图会不完整,如下所示:图示波器观测到的不完整的眼图通过眼图可以反映出数字系统传输的总体性能,可是怎么样才能正确的掌握其判断方法呢?这里有必要对眼图中所涉及到的各个参数进行定义,了解了各个参数以后,其判断方法很简单。
眼图基础知识ppt课件

辅助设备 待测设备
转接
小板
HUB
PC
探头1 探头2 探头3
示波器
高速
示波器
探头1
转接 小板
HOST
ppt课件完整
12
眼图测试-模板
高速
ppt课件完整
全速
13
案例分析-串22欧电阻
1.5m
6.5m
PASS
NG
ppt课件完整
14
案例分析-串共模电感
1.5m
3.5m
6.5m
PASS
PASS
ppt课件完整
眼图基础知识分享
ppt课件完整
1
目录
1. 关于USB
2. 眼图的定义
3. 眼图测试方法
4. 如何获得张开大的眼图
5. 眼图常见问题
ppt课件完整
2
USB-电气特性
速率 输出电流 幅度 上升时间
低速 1.5Mbps 500mA 3.3V 75-300ns
全速 12Mbps 500mA
3.3V
4-20ns
高速 480Mbps 500mA 400mV 500ps
应用 键盘、鼠标
触摸框 U盘、硬盘
ppt课件完整
3
USB--物理特性
ppt课件完整
4
USB-接口定义
引脚编号 信号名称 缆线颜色
1
Vcc
红
2 Date-(D-) 白
3 Date+(D+) 绿
4
Ground
黑
ppt课件完整
5
USB-全速和低速设备识别
反映波形的细节
体现信号的整体特征
ppt课件完整
9
眼图分析方法

信号完整性分析基础系列之一“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。
眼图是由各段码元波形叠加而成的,眼图中央的垂直线表示最佳抽样时刻,位于两峰值中间的水平线是判决门限电平。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
图一眼图(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
眼图基本原理

PCross1 PCross2
眼图测量特征量
TCross1
PTop
TCross2
PBase Eye Aperture
P Values
PTopmean , the mean value of PTop PTopsigma , the standard dev of PTop PBasemean , mean value within aperture PBasesigma , std dev of PBase in aperture Pcrossmean , vertical mean of crossing pt.
TDS8200 ET Scope (20GHz 80E03)
TDS6154C RT w. DSP
眼图与CLK-时钟速率提高,眼图质量下降
125M CLK
250M CLK
500M CLK
示波器上的眼图
提供串行总线数据的丰富信息:通过比较发送端和接收端的眼图质量可 以分析出信号传输的问题
眼高,眼底,眼宽 上升时间 下降时间 模板测试
Tx + +
path
--
+ + Rcv --
Fast, sharp, edges at transmitter launch
Smeared edges at end of long interconnect.
Reference Maxim Note HFDN-27.0 (Rev. 0, 09/03)
高速串行总线-串扰
Tx + +
【通信】概念解释12、眼图和信号眼图

概念分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
2码间串扰眼图的 “眼睛” 张开的大小反映着码间串扰的强弱。
“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。
当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。
若同时存在码间串扰, “眼睛”将张开得更小。
与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。
噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。
眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰。
( 1 )最佳抽样时刻应在 “眼睛” 张开最大的时刻。
( 2 )对定时误差的灵敏度可由眼图斜边的斜率决定。
斜率越大,对定时误差就越灵敏。
( 3 )在抽样时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变。
( 4 )眼图中央的横轴位置应对应判决门限电平。
( 5 )在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决。
( 6 )对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响。
3眼图的形成原理一般均可以用示波器观测到信号的眼图,其具体的操作方法为:将示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
示波器一般测量的信号是一些位或某一段时间的波形,更多的反映的是细节信息,而眼图则反映的是链路上传输的所有数字信号的整体特征,两者对比如下图所示:[1]如果示波器的整个显示屏幕宽度为100ns,则表示在示波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。
眼图测量

Click to edit text styles
Edit your company slogan
Text
Text
Text
眼图基本概念
串行数据的背景
眼图测量方法
眼图基本概念
眼图是用余辉方式累积叠加显示采集到的
串行信号的比特位的结果,叠加后的图形形 状看起来和眼睛很像,故名眼图。
眼图上通常显示的是1.25UI的时间窗口。眼
图三
图三
眼图测试方法
Click to edit text styles
Edit your company slogan
眼图测试方法
传统方法
现代方法
传统方法
同步触发+叠加显示
传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼
图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是 “Single-Bit Eye”,每触发一次眼图上只增加了一个比特位。
能有串扰或预(去)加重
ቤተ መጻሕፍቲ ባይዱ
睛的形状各种各样,眼图的形状也各种各样。 通过眼图的形状特点可以快速地判断信号的 质量。
漂亮的眼图 双眼皮眼图
漂亮的眼图
串行数据的背景知识
一个单位间隔(1UI)表示为一个比特位的
宽度是波特率的倒数,1UI=1/(3.125Gb/s) =320ps。现在比较常见的串行信号码形是 NRZ码。正电平表示”1”,负电平表示“0”。 图三所示是示波器捕获到的一组串行信号, 虚线之间的时间间隔代表了一个UI,图中对 应的码型是101100101010001。
现代方法
示波器首先捕获一组连续比特位的信号,然后用软件PLL方法恢复出时钟,最
剖析眼图

深入剖析眼图应用文章摘要本文介绍了什么是眼图,眼图是如何构建的,触发是生成眼图的一个共同方法。
然后描述了使用不同的方式切割眼图,可以获得更多深入的信息。
同时还讨论了一些发射机、传输链路和接收机测试的基本方法。
本文的目的是为了工程师掌握眼图这个新领域的基本概念。
2 /bertscope应用文章眼图测量基础知识眼图是一种快速、直观地评估一个数字信号质量非常成功的方法。
一个正确构建的眼图应该包含从简单的101和010到对连续的长0序列后单独的1和其它问题序列的每一个可能的位序列,所以眼图往往可以看出系统设计中存在的问题。
眼图能告诉我们什么眼图显示信号的参数信息 - 如系统带宽等物理层所产生的影响,这将不显示协议层或逻辑层的问题,如果一个逻辑1在眼图上是好的话,这并不表明该系统发送一个0事实,但是,如果该物理系统的逻辑1在眼图上失真的话,当逻辑1通过系统传送到远端的接收机就会错误的当作一个0,这还应该是一个良好的眼图。
表征一个眼图常见的方法是测量的上升时间、下降时间、在眼图中间交叉点的抖动、过冲,和许多描述眼图行为其它数值。
仪器通常提供自动测量,简化和加快眼图测量的任务。
图1:位序列叠加形成的眼图深入剖析眼图关于眼图触发的影响在测试设备上构建的许多眼图使用重复的测试码型,例如利用BERT(误码率分析仪)生成PRBS码型。
这种仪器设备通常可以产生触发信号的类型有:1. 同一速率的时钟触发,并与数据信号同步2.时钟分频触发,分频比是数据速率是2的幂,如÷4、÷16等3. 码型触发 - 码型重复一次就提供一个触发信号4. 数据本身可以作为一个触发5.最后一个方法是通过从数据信号中进行时钟恢复来获取触发信号。
见图2。
当用来构造波形时,每种方法将会提供了不同的结果。
时钟触发提供了一个经典的眼图,在眼图中包含了所有可能的位跳变分频时钟触发也可以产生眼图,当用来测量眼图的仪器的触发输入带宽比被测信号的数据速率窄时,这可能是非常有用。
眼图

[转帖]眼图基本知识介绍随着数据速率超过Gb/s水平,工程师必须能够识别和解决抖动问题。
抖动是在高速数据传输线中导致误码的定时噪声。
如果系统的数据速率提高,在几秒内测得的抖动幅度会大体不变,但在位周期的几分之一时间内测量时,它会随着数据速率成比例提高,进而导致误码。
新兴技术要求误码率(BER),亦即误码数量与传输的总码数之比,低于一万亿分之一(10-12)。
随着数据通信、总线和底板的数据速率提高,市场上已经出现许多不同的抖动检定技术,这些技术采用各种不同的实验室设备,包括实时数字示波器、取样时间间隔分析仪(TIA)、等时取样示波器、模拟相位检波器和误码率测试仪(BERT)。
为解决高数据速率上难以解决的抖动问题,工程师必需理解同步和异步网络中使用的各种抖动分析技术本文重点介绍3 Gb/s以上新兴技术的数据速率。
低于3 Gb/s的实时示波器可以捕获连续的数据流,可以同时在时域和频域中分析数据流;在更高的数据速率上,抖动分析要更具挑战性。
本文将从数字工程师的角度,介绍应对SONET/SDH挑战的各种经验。
抖动分析基本上包括比较抖动时钟信号和参考时钟信号。
参考时钟是一种单独的黄金标准时钟,或从数据中重建的时钟。
在高数据速率时,分析每个时钟的唯一技术是位检测和误码率测试;其它技术则采用某种取样技术。
如图1所示,眼图是逻辑脉冲的重叠。
它为测量信号质量提供了一种有用的工具,即使在极高的数据速率时,也可以在等时取样示波器上简便生成。
边沿由‘1’到‘0’转换和‘0’到‘1’转换组成,样点位于眼图的中心。
如果电压(或功率)高于样点,则码被标为逻辑‘1’;如果低于样点,则标为‘0’。
系统时钟决定着各个位的样点水平位置。
图1: 具有各项定义的眼图E1是逻辑‘1’的平均电压或功率电平,E0是逻辑‘0’的平均电压或功率电平。
参考点t = 0在左边的交点进行选择,右边的交点及其后是位周期TB。
Eye Crossing Point: 眼图交点Left Edge: 左沿Right Edge: 右沿Nominal Sampling Point: 标称样点幅度噪声可能会导致逻辑‘1’的电压或功率电平垂直波动,低于样点,导致逻辑‘1’码错误地标为逻辑‘0’码,即误码。
眼图基本原理

高速串行总线-信号线上不仅包含数据信息还包 含时钟信息
Differential serial data is sent without any clock signal across the interconnect to the receiver
Tx + +
path
--
+ + Rcv --
CDR DATA
DATA CLOCK
A clock is “recovered” from the incoming data at the receiver through a clock and data recovery circuit (CDR).
高速串行总线-数据传输过程中干扰因素增多
Tx + +
Байду номын сангаас
PBase Eye Aperture
Quality Factor = (PTopmean-PBasemean)/(PTopsigma+PBasesigma)
Eye Height = (PTopmean-3*PTopsigma)-(PBasemean+3*PBasesigma)
Eye Width = (TCross2mean-3*TCross2sigma)-(TCross1mean+3*TCross1sigma) Crossing Percent, Duty Cycle Distortion, Noisepk-pk, NoiseRMS, SNR
高速串行总线和传统并行总线对比
高速串行总线-新兴标准和数据速率
FibreChannel 4X FBDIMM
4.25 Gb/s 4.8 Gb/s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002-05-29
版权所有 侵权必究
第10页 共13页
眼图常用知识介绍
部门内公开
如果眼图的上升 下降沿比较粗 中间 那么就是抖动引起的 解决问题要从减小信号抖 动 如 提高输入时钟质量 合理设计锁相环 特别是低通滤波器部分着手
RMSJ
消光比定义为眼图中 1 电平比 0 电平的值 在建议中根据不同的速率 传输距离又不 同的要求 对于我们直接外购的光模块要根据ITU-T G.957 G.691 的建议 以及厂家的器件资 料的测试 衡量器件是否符合要求 对于我们自己开发的光模块 除了满足建议要求之外 不同的 激光器的类型有不同的要求 一般的对于FP/DFB直调激光器要求 消光比不小于8.2dB EML电吸 收激光器消光比不小于10dB ITU-T中对于消光比没有规定一个最大值 但是这并不意味着消光比
些 特别在抖动方面 EA调制方式的眼图比直接调制方式的眼图表现会好一些
2002-05-29
版权所有 侵权必究
第11页 共13页
2002-05-29
版权所有 侵权必究
第9页 共13页
眼图常用知识介绍
部门内公开
以下为10G眼图 这个眼图的问题是噪声比较大 这从那里看出来呢 请注意 眼图的上升 下降 1 电平都比较粗 整个眼图散点比较多 很不干净
以上三个眼图我们分析了导致眼图不好的三种情况 阻抗不匹配 抖动 噪声 这三种情况 如何从眼图看出来呢
生误码并且通道代价满足指标要求 只要消光比大于ITU-T建议的最低值 多大都可以 交叉点比例反映信号的占空比大小 由于传输过程中 光信号的脉冲宽度将会展宽 导致接
收侧的交叉点相对于发送侧上移 为了有利于长距离传输 保证接收侧的交叉点比例在大约50 左 右 使得接收侧的灵敏度最佳 我们一般建议在发送侧把交叉点的位置稍微下移一些 一般发送侧
2002-05-29
版权所有 侵权必究
第8页 共13页
眼图常用知识介绍
部门内公开
以下为10G眼图 眼图存在两个问题 第一消光比太低 只有10dB 眼图 1 电平很粗 不 平坦 可能 的原因是 信号不匹配引起的
以下10G眼图没有其测量数据 但是从眼图的上升 下降沿比较粗可以看出来 其信号的抖动 比较大
眼图常用知识介绍
部门内公开
以下2.5G的眼图就比较糟糕 眼图扭来扭去的 上升 下降都很缓 信号质量不好 Q因子只 有6.4 消光比也很低 只有6.6dB 其原因可能是驱动器 激光器本身问题 或者阻抗非常不匹 配
以下一个为2.5G眼图 可以明显看出眼图的上升沿有振铃 可能两个原因引起的 第一是信 号线上面阻抗不匹配 第二是直调激光器的张驰振荡引起的振铃
般在发送侧的测量值都大于30dB 定量地测量需要使用光谱分析仪
2002-05-29
版权所有 侵权必究
第2页 共13页
眼图常用知识介绍
部门内公开
总的来说 速率越高 眼图质量将越差 这主要由两个方面引起 第一是抖动 速率越高 抖动越难控制 第二是噪声 由于测试过程一般都要加相应的低通滤波器 10G信号的低通滤波器 的带宽大约为8GHz 622M信号的低通滤波器的带宽大约为500MHz 从500MHz 8GHz这个频率 范围的噪声 被622M信号的滤波器滤掉了 却没有被10G信号的滤波器滤掉 所以从眼图看了 10G信号的噪声更大一下
2002-05-29
版权所有 侵权必究
第5页 共13页
眼图常用知识介绍
3 有问题的眼图分析
部门内公开
以下为一个有问题的622M眼图 这个眼图问题比较多 我们来一一分析
首先 眼图有非常明显的两个上升 下降沿 俗称双眼皮
0 电平 1 电平不平
坦 信号有过冲 下冲 消光比偏低只有4.1dB 产生这些现象的原因怀疑是信号的阻抗不匹配
如果眼图的都比较粗 全部 那么就是噪声引起的 一般来说是电源噪声 地回路不通畅 或者信号周围有大的干扰源引起的 解决问题也是要从这几方面着手
对于眼图 不能以一把尺子来衡量 速率越高 眼图质量越难保证 目标传输距离越远 要 求的眼图质量也好 同时有数据 时钟输入的光模块比只有数据输入的光模块的眼图质量会更好一
CSA8000可以近似测量平均光功率 如果需要准确地测量光功率 建议最好使用光功率计 信号的上升时间 下降时间反映了信号的上升 下降的快慢 一般指整个信号幅度的20 80 的变化的时间 一般要求其上升 下降时间不能大于信号的周期的40 如9.95G信号要求其 上升 下降时间不大于40ps 峰 峰值抖动和均方根值抖动 可以定性反映信号的抖动大小 做为比较参考 这两个测量
眼图常用知识介绍
部门内公开
可以无限大 消光比太高了 将导致激光器的啁啾系数太大 导致通道代价超标 不利于长距传 输 一般建议实际消光比实际光接口类型 与速率 传输距离有关 的最低要求消光比大
0.5~1.5dB 这不是一个绝对的数值 之所以给出这么一个数值是害怕消光比太高了 传输以后信 号劣化太厉害 导致误码产生或通道代价超标 如果一个光模块传输传输其标称距离以后 没有产
部门内公开
以下为2.5G眼图 总的质量还不错 存在的问题是眼图有点歪 不对称 这个跟激光器的调 制特性有一定的关系
以下2.5G眼图 存在的问题是抖动较大 注意与上一个眼图比较 其上升 下降沿都较粗 特别注意比较其峰峰值抖动 均方根抖动 下图都比上图的大
2002-05-29
版权所有 侵权必究
第7页 共13页
导致信号的过冲 下冲和多径 这个眼图还说明了另一个问题 眼图要能够套住模板只是眼图的最
基本的要求 而不是唯一的要求 我们看一下 这个眼图的边的离模板还是有一定的余量的
我们再来看看以下622M眼图 其问题在于噪声非常大 估计是信号的滤波没有处理好
2002-05-29
版权所有 侵权必究
第6页 共13页
眼图常用知识介绍
交叉点比例建议控制在40 45 Q因子综合反映眼 图的质量问题 Q因子越高越好 表明眼 图的质量越好 Q因子一般受噪
声 光功率 电信号是否从始端到终端阻抗匹配等因素影响 一般来说 眼图中 1 电平的这条 线越细 越平滑 Q 因子越高 在不加光衰减的情况下 发送侧光眼图的Q因子不应该小于12 越 高越好 接收测的Q因子不应该小于6 越高越好
2002-05-29
版权所有 侵权必究
第3页 共13页
眼图常用知识介绍
关于眼图及其测量大家已经做了较多的讨论 最经典的文章是 传输指标测试大全 中有关 眼图部分 其侧重于眼图的定义和测量 光眼图分析 张轩/22336著 其侧重点在于眼图产生 的机理 以及色散对长距离传输后的眼图的影响
我们本次讨论的侧重点是如何来从眼图的中看出一些量化的数据 如 信号的上升 下降时 间 交叉点位置 消光比 Q因子 信噪比 抖动等 以及如何从各个方面来衡量一个眼图的优 劣 最后简单介绍一下CSA8000及其使用注意事项
眼图常用知识介绍
部门内公开
以下为一个较好的2.5G的 眼图比较对称 眼线比较细 0 光比适中 Q因子较高
1 电平都比较平滑 消
以下为较好的10G的眼图 眼图对称 眼图比较细 特别是 0
1 电平 上升 下降沿
稍粗一点 可见信号的抖动较大 消光比适中 Q因子较高 交叉点稍高 实际调试中 可以将交
叉点调低一有 侵权必究
第4页 共13页
眼图常用知识介绍
2 典型的眼图介绍
部门内公开
接下来我们来看一些典型的较好的眼图和一些有问题的眼 图 并分析这些眼图的问题在哪 里
以下的为一个较好的 622M的眼图 我们可以看出眼图比较对称 眼线很细 消光比适中 Q因子很高 达到24
以下为不加STM-4滤波器的622M的眼图 可以看出眼图的眼线较细 特别是上升 下降沿 1 电平有点波纹 这是因为不加低通滤波器以后 信号的高频谐波没有被虑掉 各谐波分量叠 加起来成为有波纹的方波 我们看到即使 1 电平不平坦 其Q因子仍然达到21.7
现在我们公司常用的测量眼图的仪器为CSA8000 我们主要以CSA8000来讨论
1 眼图与常用指标介绍
下图为一个10G光信号的眼图 左边是眼图的形状以及10G眼图的模板 右边一栏为这个光信 号的一些测量值 从上而下分别为消光比 ExdB 交叉点比例 Crs Q因子 QF 平均光 功率 AOP 上升时间 Rise 下降时间 Fall 峰 峰值抖动 PFJi 均方根值抖动
值 是 越 小 越 好 定 量 地 测 量 输 出 抖 动 还 是 要 专 门 的 测 试 抖 动 的 仪 表 如 Agilint 的 37718 ACTERNA 的ANT20-SE 在测量抖动的时候 仪表一般需要预热30分钟以上 才能保证测量值相 对准确
信噪比同样可以定性反映信号的质量好坏 做为一个比较参考 这个测量值是越大越好 一