大学物理第11章习题课选讲例题
《大学物理》11磁场习题解析共141页文档

25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
《大学物理》11磁场习题解 析
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。Байду номын сангаас—培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
物理学11章习题解答(第三版)

[物理学11章习题解答]11-1如果导线中的电流强度为8.2 a,问在15 s内有多少电子通过导线的横截面?解设在t秒内通过导线横截面的电子数为n,则电流可以表示为,所以.11-2 在玻璃管内充有适量的某种气体,并在其两端封有两个电极,构成一个气体放电管。
当两极之间所施加的电势差足够高时,管中的气体分子就被电离,电子和负离子向正极运动,正离子向负极运动,形成电流。
在一个氢气放电管中,如果在3 s内有2.81018 个电子和1.01018 个质子通过放电管的横截面,求管中电流的流向和这段时间内电流的平均值。
解放电管中的电流是由电子和质子共同提供的,所以.电流的流向与质子运动的方向相同。
11-3 两段横截面不同的同种导体串联在一起,如图11-7所示,两端施加的电势差为u。
问:(1)通过两导体的电流是否相同?(2)两导体内的电流密度是否相同?(3)两导体内的电场强度是否相同?(4)如果两导体的长度相同,两导体的电阻之比等于什么?(5)如果两导体横截面积之比为1: 9,求以上四个问题中各量的比例关系,以及两导体有相同电阻时的长度之比。
解(1)通过两导体的电流相同,。
(2)两导体的电流密度不相同,因为图11-7,又因为,所以.这表示截面积较小的导体电流密度较大。
(3)根据电导率的定义,在两种导体内的电场强度之比为.上面已经得到,故有.这表示截面积较小的导体中电场强度较大。
(4)根据公式,可以得到,这表示,两导体的电阻与它们的横截面积成反比。
(5)已知,容易得到其他各量的比例关系,,,.若,则两导体的长度之比为.11-4两个同心金属球壳的半径分别为a和b(>a),其间充满电导率为的材料。
已知是随电场而变化的,且可以表示为 = ke,其中k为常量。
现在两球壳之间维持电压u,求两球壳间的电流。
解在两球壳之间作一半径为r的同心球面,若通过该球面的电流为i,则.又因为,所以.于是两球壳之间的电势差为.从上式解出电流i,得.11-5一个电阻接在电势差为180 v电路的两点之间,发出的热功率为250w。
大学物理-第11章小结与习题课

c
d
B 0 nI
电场、磁场中典型结论的比较
电荷均匀分布 长直线 电流均匀分布
E 2 0 r
E0
0 I B 2r
B0
长 直 圆 柱 面
长 直 圆 柱 体
内 外
内 外
E 2 0 r r E 2 0 R 2 E 2 0 r
0 I B 2r 0 Ir B 2R 2 0 I B 2r
o r nI
,
磁场强度H=
nI
.
7.将流过强度为I=1000 A电流的直导线置于匀强磁场 中,且垂直磁力线。若磁感应强度B=1T,磁场作用在 长度为L=1 m的一段导线上的力F为
1000N
.
F BIL
8.质量为m、电量为q的粒子具有动能E,垂直磁力线
方向飞入磁感应强度为B的匀强电场中,当该粒子越出
磁力线闭合、 无自由磁荷 磁场是无源场
1.一运动电荷q,质量m,以初速度 V0 进入均匀磁场 中,若 V0 与磁场的方向夹角为 ,则
A、其动能改变,动量不变. B、其动能和动量都改变. C、其动能不变,动量改变. D、其动能、动量都不变.
[ C
]
2. 有一个半径为 R 的单匝圆线圈,通以电流 I ,若 将该导线弯成 匝数 N = 2 的平面圆线圈,导线长度 不变,并通以同样的电流,则线圈中心的磁感应强 度和线圈的磁矩分别是原来的 (A) 4倍和 1 / 8 , (B) 4倍和 1 / 2 , (C) 2倍和 1 / 4 , (D) 2倍和 1 / 2 。
/4
方法二: 在稳恒磁场中,一个与磁场方向垂直放置的闭 合线圈所受的合力为零。 与直线电流ab所受的力大小相等,方向相反。
F 2BIR
《大学物理》(下2010.12.9)习题课

第11章光的量子效应及光子理论一、 选择题1. 金属的光电效应的红限依赖于: 【 C 】(A)入射光的频率; (B)入射光的强度;(C)金属的逸出功; (D)入射光的频率和金属的逸出功。
2. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足: 【 A 】hceU )D (;hceU )C (;eU hc )B (;eU hc)A (0≥≤≥≤λλλλ 3. 关于光电效应有下列说法:(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;(2) 对同一金属如有光电子产生,则入射光的频率不同,光电子的初动能不同; (3) 对同一金属由于入射光的波长不同,单位时间内产生的光电子的数目不同; (4) 对同一金属,若入射光频率不变而强度增加一倍,则饱和光电流也增加一倍。
其中正确的是: 【 D 】(A) (1),(2),(3); (B) (2),(3),(4); (C) (2),(3); (D)(2),(4)二、填空题1. 当波长为300 nm 光照射在某金属表面时,光电子的能量范围从0到.J 100.419-⨯在作上述光电效应实验时遏止电压为V 5.2U a =;此金属的红限频率Hz 104140⨯=ν。
2. 频率为100MHz 的一个光子的能量是J 1063.626-⨯,动量的大小是s N 1021.234⋅⨯-。
3. 如果入射光的波长从400nm 变到300nm ,则从表面发射的光电子的遏止电势增大(增大、减小)V 03.1U =∆。
4. 某一波长的X 光经物质散射后,其散射光中包含波长大于X 光和波长等于X 光的两种成分,其中大于X 光波长的散射成分称为康普顿散射。
三、计算题1. 已知钾的红限波长为558 nm ,求它的逸出功。
如果用波长为400 nm 的入射光照射,试求光电子的最大动能和遏止电压。
由光电方程2m mv 21A h +=ν,逸出功0h A ν=,0chA λ=,eV 23.2A =用波长为400nm 的入射光照射,光电子的最大动能:A h mv 212m -=ν A chE km -=λ,将nm 400=λ和eV 23.2A =代入得到:eV 88.0E km =遏止电压:a 2m eU mv 21=,2m a mv e21U =,V 88.0U a = 2. 从铝中移出一个电子需要4.2 eV 的能量,今有波长为200 nm 的光投射至铝表面。
大学物理-上海交通大学[下册]-11章-课后习题答案解析
![大学物理-上海交通大学[下册]-11章-课后习题答案解析](https://img.taocdn.com/s3/m/0c18553403d8ce2f006623c2.png)
习题1111-1.直角三角形ABC的A点上,有电荷C108.191-⨯=q,B点上有电荷C108.492-⨯-=q,试求C点的电场强度(设0.04mBC=,0.03mAC=)。
解:1q在C点产生的场强:1124ACqE irπε=,2q在C点产生的场强:2220BCqE jπε=,∴C点的电场强度:44122.710 1.810E E E i j=+=⨯+⨯;C点的合场强:43.2410VE m==⨯,方向如图:1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm50的圆环,两端间空隙为cm2,电量为C1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d mπ=-=,∴电荷线密度:911.010q C mlλ--==⨯⋅心处场强等于闭合线圈产生电场再减去md02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。
解法1:利用微元积分:21cos4O xRddERλθθπε=⋅,∴2000cos2sin2444OdE dR R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m-=⋅;解法2:直接利用点电荷场强公式:由于d r<<,该小段可看成点电荷:112.010q d Cλ-'==⨯,则圆心处场强:1191222.0109.0100.724(0.5)OqE V mRπε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆心O点的场强。
解:以O为坐标原点建立xOy坐标,如图所示。
①对于半无限长导线A∞在O点的场强:ix有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩ ②对于半无限长导线B ∞在O 点的场强: 有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:20002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。
大学物理课后习题答案(第十一章) 北京邮电大学出版社

习题十一11-1 圆柱形电容器内、外导体截面半径分别为1R 和2R (1R <2R ),中间充满介电常数为ε的电介质.当两极板间的电压随时间的变化k t U =d d 时(k 为常数),求介质内距圆柱轴线为r 处的位移电流密度.解:圆柱形电容器电容12ln 2R R l C πε= 12ln 2R R lU CU q πε== 1212ln ln 22R R r U R R r lU S q D εππε=== ∴ 12ln R R r k t D j ε=∂∂=11-2 试证:平行板电容器的位移电流可写成t U C I d d d =.式中C 为电容器的电容,U 是电容器两极板的电势差.如果不是平板电容器,以上关系还适用吗?解:∵ CU q = S CU D ==0σ ∴ CU DS D ==Φ不是平板电容器时0σ=D 仍成立 ∴ t UC ID d d =还适用.题11-3图11-3 如题11-3图所示,电荷+q 以速度v向O 点运动,+q 到O 点的距离为x ,在O 点处作半径为a 的圆平面,圆平面与v 垂直.求:通过此圆的位移电流.解:如题11-3图所示,当q 离平面x 时,通过圆平面的电位移通量 )1(222a x x q D +-=Φ[此结果见习题8-9(3)] t U C t I D D d d d d ==Φ∴ 23222)(2d d a x v qa tI D D +==Φ 题11-4图11-4 如题11-4图所示,设平行板电容器内各点的交变电场强度E =720sin t π510V ·m -1,正方向规定如图.试求:(1)电容器中的位移电流密度;(2)电容器内距中心联线r =10-2m 的一点P ,当t =0和t =51021-⨯s 时磁场强度的大小及方向(不考虑传导电流产生的磁场).解:(1)t Dj D ∂∂=,E D 0ε= ∴ t t t t E j D ππεπεε50550010cos 10720)10sin 720(⨯=∂∂=∂∂=2m A -⋅ (2)∵ ⎰∑⎰⋅+=⋅)(0d d S D l S j I l H取与极板平行且以中心连线为圆心,半径r 的圆周r l π2=,则D j r r H 22ππ=D j r H 2=0=t 时0505106.3107202πεπε⨯=⨯⨯=r H P 1m A -⋅ 51021-⨯=t s 时,0=P H11-5 半径为R =0.10m 的两块圆板构成平行板电容器,放在真空中.今对电容器匀速充电,使两极板间电场的变化率为t Ed d =1.0×1013 V ·m -1·s -1.求两极板间的位移电流,并计算电容器内离两圆板中心联线r (r <R )处的磁感应强度Br 以及r =R 处的磁感应强度BR .解: (1)t E t D j D ∂∂=∂∂=0ε 8.22≈==R j S j I D D D πA (2)∵ S j I l H S D l d d 0⋅+=⋅⎰∑⎰取平行于极板,以两板中心联线为圆心的圆周r l π2=,则202d d 2r t E r j r H D πεππ==∴t E r H d d 20ε=t E r H B r d d 2000εμμ==当R r =时,600106.5d d 2-⨯==t E R B R εμT *11-6 一导线,截面半径为10-2m ,单位长度的电阻为3×10-3Ω·m -1,载有电流25.1 A .试计算在距导线表面很近一点的以下各量:(1)H 的大小;(2)E 在平行于导线方向上的分量;(3)垂直于导线表面的S 分量.解: (1)∵ ⎰∑=I l H d取与导线同轴的垂直于导线的圆周r l π2=,则I r H =π2 21042⨯==rI H π1m A -⋅(2)由欧姆定律微分形式 E j σ=得 21053.7/1/-⨯====IR RS S I j E σ 1m V -⋅ (3)∵H E S ⨯=,E 沿导线轴线,H 垂直于轴线 ∴S 垂直导线侧面进入导线,大小1.30==EH S 2m W -⋅*11-7 有一圆柱形导体,截面半径为a ,电阻率为ρ,载有电流0I . (1)求在导体内距轴线为r 处某点的E 的大小和方向; (2)该点H 的大小和方向; (3)该点坡印廷矢量S的大小和方向;(4)将(3)的结果与长度为l 、半径为r 的导体内消耗的能量作比较. 解:(1)电流密度S I j 00=由欧姆定律微分形式E j σ=0得2000a I j j E πρρσ===,方向与电流方向一致(2)取以导线轴为圆心,垂直于导线的平面圆周r l π2=,则 由 ⎰⎰=⋅S l S j l H d d 0可得2202a r I r H =π∴202a rI H π=,方向与电流成右螺旋 (3)∵ H E S⨯= ∴ S垂直于导线侧面而进入导线,大小为 42202a r I EH S πρ==可见,电磁波的幅射压强(包括光压)是很微弱的.。
赵近芳大学物理学第五版第十一章课后习题答案

习题1111.1选择题(1)一圆形线圈在均匀磁场中作下列运动时,哪些情况会产生感应电流()(A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直;(C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场()(A )静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3)用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m=()(A )只适用于无限长密绕线管;(B )只适用于一个匝数很多,且密绕的螺线环;(C )只适用于单匝圆线圈;(D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力;(B )涡旋电场由变化的磁场产生;(C )涡旋场由电荷激发;(D )涡旋电场的电力线闭合的。
[答案:C]11.2填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到。
[答案:磁力](2)产生动生电动势的非静电场力是,产生感生电动势的非静电场力是,激发感生电场的场源是。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在,这个导线上的电动势最大,数值为;如果转轴的位置在,整个导线上的电动势最小,数值为。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率trd d =80cm/s 收缩时,求回路中感应电动势的大小.解:回路磁通2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m ΦεV 11.4一对互相垂直的相等的半圆形导线构成回路,半径R =5cm,如题11.4图所示.均匀磁场B =80×10-3T,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms内均匀降为零时,求回路中的感应电动势的大小及方向.解:取半圆形cba 法向为i,题11.4图则αΦcos 2π21B R m=同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵B 与i 夹角和B 与j夹角相等,∴︒=45α则αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图11.5如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解:作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ∴0=MeNM ε即MNMeN εε=又∵⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2dcos 0πμπε所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμM 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量;(2)线圈中的感应电动势.解:以向外磁通为正则(1)]ln [ln π2d π2d π2000da db a b Il r l r I r l r I ab b a d d m +-+=-=⎰⎰++μμμΦ(2)tI b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解:)cos(2π02ϕωΦ+=⋅=t r B S B m∴Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴RBf r R I m 22π==ε11.8如题11.8图所示,长直导线通以电流I =5A,在其右方放一长方形线圈,两者共面.线圈长b =0.06m,宽a =0.04m,线圈以速度v =0.03m/s垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题11.8图解:AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势.DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a I vbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.111(π2-⨯=+-=+=ad d Ibv μεεεV 方向沿顺时针.11.9长度为l 的金属杆ab 以速率v在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解:⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴klvt tm-=-=d d Φε即沿abcd 方向顺时针方向.题11.9图11.10一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解:如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε;题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε;出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示.题11.11图11.11导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求:(1)ab 两端的电势差;(2)b a ,两端哪一点电势高?解:(1)在Ob 上取dr r r +→一小段则⎰==320292d l Ob l B r rB ωωε同理⎰==302181d l Oa l B r rB ωωε∴2261)92181(l B l B Ob aO ab ωωεεε=+-=+=(2)∵0>ab ε即0<-b a U U ∴b 点电势高.题11.12图11.12如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则ba b a Iv r r a r Iv l B v b a b a B A AB -+-=-+-=⋅⨯=⎰⎰+-lnd 211(2d )(00πμπμε ∵<AB ε∴实际上感应电动势方向从A B →,即从图中从右向左,∴ba ba Iv U AB -+=ln 0πμ题11.13图11.13磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解:∵bcab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=--∴tB R acd d ]12π43[22+=ε∵0d d >tB∴0>ac ε即ε从ca →11.14半径为R的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题11.14图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量436π(22R R B S B m -=⋅= Φ∴tBR R i d d )436π(22--=ε∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解:由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向.(1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴⎰=⋅ll 0d 旋∴0=ab ε,有b a U U =(2)同理,0d >⋅=⎰l E cddc旋ε∴0<-c d U U 即dc U U >题11.16图11.16一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解:设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar r Ia μμΦ∴2ln π2012aI M μΦ==11.17两线圈顺串联后总自感为1.0H,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H.试求:它们之间的互感.解:∵顺串时M L L L 221++=反串联时M L L L 221-+='∴M L L 4='-15.04='-=L L M H题11.18图11.18一矩形截面的螺绕环如题11.18图所示,共有N匝.试求:(1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少?解:如题11.18图示(1)通过横截面的磁通为⎰==baabNIh r h r NI ln π2d π200μμΦ磁链abIh N N lnπ220μΦψ==∴ab h N I L lnπ220μψ==(2)∵221LI W m =∴ab h I N W m lnπ4220μ=11.19一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时20π2R I B r μ=∴4222002π82R r I B w m μμ==取r r V d π2d =(∵导线长1=l )则⎰⎰===RR m I R r r I r r w W 00204320π16π4d d 2μμπ。
大学物理(机械工业出版社)下册-课后练习标准答案

第11章 热力学基础11-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。
(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。
利用理想气体物态方程即可求解本题。
位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。
解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。
由分析知湖底处压强为gh p gh p p ρρ+=+=021。
利用理想气体的物态方程可得空气泡到达湖面的体积()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ11-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。
某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。
从氧气质量的角度来分析。
利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。
解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n11-3 一抽气机转速ω=400rּmin -1,抽气机每分钟能抽出气体20升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A)
0I
2πR
(B)
0 I (1 π )
4πR 2
(C)
0I
4R
(D)
0 I (1
4πR
π) 2
A
R
B
O
例 一长直载流 I 的导线,中部折成图示一个半 径为R的圆,则圆心的磁感应强度大小为
(A) 0 I
2R
(B) 0 I
2πR
(C) 0 I 0 I
2R 2πR
(D) 0
R
O
例 如图所示,四条皆垂直于纸面“无限长”载 流直导线,每条中的电流均为 I . 这四条导线被纸面截 得的断面组成了边长为 2a 的正方形的四个顶角,则其 中心点 O 的磁感应强度的大小为
(A) 20 I
πa
(B) 20 I
0I
2R2
Bde
1 4
0I
2R1
Bef
1 0I 2 2R1
方向:
Bab 0
Bcd 0 a
B
0I
0I
0I
8R1 4R1 8R2
例 无限长载流圆柱体的磁场
(4)
B dl
L4
0I
L4
例 一带电粒子,垂直射入均匀磁场,如果粒子质 量增大到2倍,入射速度增大到2倍,磁场的磁感应强度 增大到4倍,则通过粒子运动轨道包围范围内的磁通量 增大到原来的
(A)2倍 (B)4倍 (C)1/2倍 (D)1/4倍
例 在均匀磁场中,有两个平面线圈,其面积 A1 =
2A2,通有电流 I1 = 2I2,它们所受到的最大磁力矩之比
但,是以R1为半径的1/4 圆弧
a
直电流ef与圆弧电流de在 e点相切
求:场点o处的磁感强度
B
解:
场点o处的磁感强度是由五段
特殊形状电流产生的场的叠加,f I
o dc
R1 R2
eI
即
B Bab Bbc Bcd Bde Bef
b
由毕萨拉定律得到各电流的磁感强度分别是 I
Bbc
1 4
d
a R O r O´
解:
运用补偿法解题:令小 圆柱体通有等量反向电流, 电流密度和大柱体相同。
d × × × × ×
× ×× × × ×
××
R × ×
×
o× ×
××
××
× ..×o..´×
r× × ×
××
×× × ×
O点的磁场等于大柱体电流 (横截面上全部通有电流)的磁场和小柱体 反向电流磁场的叠加。
oq
x
y x
y = Rcosq x = Rsinq
例 在半径为R的无限长金属圆柱体内挖 去一半径为 r 无限长圆柱体,两圆柱体的轴线平 行,相距为 d,如图所示。今有电流沿空心柱体的 的轴线方向流动,电流 I 均匀分布在空心柱体的 横截面上。
分别求圆柱轴线上和 空心部分轴线上的磁感应 强度的大小;
M1 / M2等于
(A)1
(B)2
(C)4
(D)1 / 4
例:电流均匀地流过宽度为 b 的无限 长平面导体薄板,电流为 I ,沿板长方向流 动。求:
在薄板平面内, 距板的一边为 b 的 P 点处的磁感应强度;
I
b .P
b
恒定磁场习题课选讲例题
物理学教程 (第二版)
第十一章 恒定磁场
例 半径为R的木球上绕有细导线, 所绕线圈很紧密,相邻的线圈彼此平行地 靠着,以单层盖住半个球面,共有N 匝。 如图所示。设导线中通有电流 I 。求:在 球心O处的磁感应强度。
2R
解:dN = πN2dq
dB =
0I y 2 2(x 2+y 2)3
dN
2
=π(
0 NI x 2+
y y
2
)2 3
2
dq
=π(R2c0oNsI2qR+2cRo2ssi2qn2q )3 2 dq
= π0RNI cos 2q dq
B=
π0RNI
π
2 cos 2q dq 0
=
0NI 4R
y
R dq
大柱体的电流在O点的磁感应强度为零, 所以O点的磁场等于小柱体反向电流在O点 所产生的磁场。
d × × × × ×
× ×× × × ×
××
R × ×
×
o× ×
××
××
× ..×o..´×
r× × ×
××
×× × ×
小圆柱体的电流在O´点的磁感应强度为零, 所以O´的磁场等于大圆柱体电流在该点的 磁场。
2πa
2a
(C) 0
(D) 0 I
πa
O
例 图中有两根“无限长” 载流均为 I 的直导线, 有一回路 L,则下述正确的是
(A) B dl 0 ,且环路上任意一点 B 0
L
(B) B dl 0 ,且环路上任意一点 B 0
L
(C) B dl 0 ,且环路上任意一点 B 0
o
R
r
dr
dB0
0
4π
dqv r2
dq 2π rdr
dB 0 dr
2
v r
B 0 R dr 0R
20
2
例:一长直电流I在平面内被弯成如图所示的形状,
其中 直电流 ab和cd的延长线
o dc
fI
R1 R2
eI
过o
b
电流bc是以o为圆心、以 R2为半径的1/4圆弧
I
电流de也是以o为圆心、
L
(D) B dl 0 ,且环路上任意一点 常量 L
I I
L
B
例 取一闭合积分回路L ,使三根载流导线穿过
它所围成的面,现改变三根导线之间的相互间隔,但
不越出积分回路,则: ()
(1) 回路 L内的 I 不变,L上各点的B 不变.
(2) 回路L 内的I 不变,L 上各点的B 改变.
(3) 回路 L内的 I 改变,L上各点的B 不变.
(4) 回路 L内的 I 改变,L上各点的B 改变.
例 边长为 l 的正方形线圈 ,分别用图示两种方 式通以电流 I(其中ab 、cd 与正方形共面),在这两
种情况下 ,线圈在其中心产生的磁感强度的大小分别
为: ( )
(1) B1 0 , B2 0
I B1
(2)
B1 0 , B2 2
20I
例 半径 为 R的带电薄圆盘的电荷面密度
为 , 并以角速度 绕通过盘心垂直于盘面的轴转
动 ,求圆盘中心的磁感强度.
o
R
r
解法一 圆电流的磁场
dI 2π rdr rdr
2π
dr
0,
B 向外
0, B 向内
dB 0dI 0 dr
2r 2
B 0 R dr 0R
20
2
解法二 运动电荷的磁场
πl
a
I
b
(3)
B1 2
20I
πl
,
B2 0
B2
cd I
(4) B1 2
20I
πl
,
B2
2
20I
πl
例 如图,流出纸面的电流为 2I ,流进纸面的电
流为 I ,则下述各式中哪一个是正确的? ()
(1)
B dl
L1
20I
L2
(2)
B dl
L2
0I
I
(3)
B dl
L3
0I
2I L1 L3