相似三角形的判定练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的判定练习题
1、如图,点D 在△ABC 的边AC 上,添加 条件,可判定△ADB 与△ABC 相似。
2、如图,在△ABC 中.∠ACB=90°,CD ⊥AB 于点D ,则图中相似三角形有 。
3、如图,在▱ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于G ,延长BE 交CD 的延长线于点H ,则图中的相似三角形是 。
4、如图,P 为线段AB 上一点,AD 与BC 交干E ,∠CPD=∠A=∠B ,BC 交PD 于E ,AD 交PC 于G ,则图中相似三角形
有 。
5、如图,已知AB=AC ,∠A=36°,AB 的中垂线MD 交AC 于点D 、交AB 于点M .下列结论:
①BD 是∠ABC 的平分线;②△BCD 是等腰三角形;③△ABC ∽△BCD ;④△AMD ≌△BCD .正确的有 。 6、如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论中正确的是 ①∠EAF=45°;②△ABE ∽△ACD ;③EA 平分∠CEF ;④BE 2+DC 2=DE 2
7、如图,在△ABC 中,∠ACB=90°,∠A=30°,将△ABC 绕点C 顺时针旋转得到△A′B′C ,点B′在AB 上,A′B′交AC 于F ,则图中与△AB'F 相似的三角形有(不再添加其它线段)是 。 8、如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=
4
1
CD ,下列结论:①∠BAE=30°,②△ABE ∽△AEF ,③AE ⊥EF ,④△ADF ∽△ECF .其中正确的为 。
9、在△ABC 中,∠C=90°,D 是边AB 上一点(不与点A ,B 重合),过点D 作直线与另一边相交,使所得的三角形与原三角形相似,这样的直线有 条。
10、在△ABC 中,AB=6,AC=4,P 是AC 的中点,过P 点的直线交AB 于点Q ,若以A 、P 、Q 为顶点的三角形和以A 、B 、C 为顶点的三角形相似,则AQ 的长为
11、如图,AD ∥BC ,∠D=90°,DC=7,AD=2,BC=4.若在边DC 上有点P 使△PAD 和△PBC 相似,求PD 的值。
12、如图,在矩形ABCD 中,对角线AC 、BD 相交于点G ,E 为AD 的中点,连接BE 交AC 于F ,连接FD ,若∠BFA=90°,求
证:①△BEA ∽△ACD ;②△FED ∽△DEB ;③△CFD ∽△ABG
13、如图,△ABC 与△AFG 是两个全等的等腰直角三角形,∠BAC=∠F=90°,BC 分别与AF ,AG 相交于点D ,E .找出图中所有不全等的相似三角形并证明。
14、如图,四边形ABCD 是平行四边形.O 是对角线AC 的中点,过点O 的直线EF 分别交AB 、DC 于点E 、F ,与CB 、AD 的
延长线分别交于点G 、H .
(1)写出图中所有不全等的两个相似三角形(并选择一种情况证明);
(2)除AB=CD ,AD=BC ,OA=OC 这三对相等的线段外,图中还有多对相等的线段,请选出其中一对加以证明.
14、已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.
(1)求证:①BE=CD;②△AMN是等腰三角形;
(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立,并证明。
(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.
15、如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.
(1)求证:△PFA∽△ABE;
(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x 的值;若不存在,说明理由.(画出满足题意的图形)16、如图,在△ABC和△DEF中,∠A=∠D=90°,AB=DE=3,AC=2DF=4.
(1)判断这两个三角形是否相似并说明为什么?
(2)能否分别过A,D在这两个三角形中各作一条辅助线,使△ABC分割成的两个三角形与△DEF分割成的两个三角形分别对应相似?证明你的结论.
17、如图,∠ACB=∠ADC=90°,AC=6,AD=2.问当AB的长为多少时,这两个直角三角形相似.
18、如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA 方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?