一元一次方程十六种常见题型

合集下载

一元一次方程题型总结

一元一次方程题型总结

一元一次方程题型总结一元一次方程是代数学中最基础的方程类型之一。

它由一个变量和一个常数项组成,可以表示为 ax + b = 0 的形式,其中 a 和 b 是已知数,x 是未知数。

1. 等式形式:在一元一次方程中,最常见的题型是让我们求解方程的解。

解就是使得方程左右两边相等的变量值。

例如:2x + 3 = 7我们可以通过逆运算的方法,将常数项移到方程的另一边,然后用系数除以变量的系数,求得解 x 的值。

在这个例子中,我们可以得出 x = 2。

2. 换元法:有时候,我们需要用一个变量来表示另一个变量,然后将其代入方程中求解。

例如:2(x + 3) = 14这个方程中,我们可以将 x + 3 表示为一个新的变量 y,然后将方程转化为2y = 14。

解这个方程后,我们可以得到 y = 7,进而求得 x = 4。

3. 线性关系:一元一次方程也可以表示两个变量之间的线性关系。

例如:2x + 3y = 10这个方程中,我们需要找到使得方程成立的 x 和 y 的取值。

我们可以通过解方程组或者图形法来求解。

4. 比例关系:在一元一次方程中,有时候我们需要找到变量之间的比例关系。

例如:(2x + 3) / 5 = 7在这个方程中,我们需要求解 x 的值。

我们可以通过逆运算,将常数项移到方程的另一边,然后用系数乘以分母,求得解 x 的值。

5. 实际问题:一元一次方程也可以应用于解决实际问题。

例如:一家商店打折出售一件商品,原价为 x 元,现在以 30% 的折扣出售,售价为120 元。

我们可以列出方程 0.7x = 120,并求解 x 的值来得到原价。

总结一下,一元一次方程是求解变量与常数之间的关系的基础代数方程。

在解题过程中,我们常常需要运用逆运算、换元法以及其他解方程的方法来求解。

它们不仅能帮助我们理解方程的解,也有助于我们解决实际生活中的问题。

一元一次方程应用专题十大题型(包括数轴上动点问题)

一元一次方程应用专题十大题型(包括数轴上动点问题)

一元一次方程应用专题十大题型(包括数轴上动点问题)一元一次方程应用题十大类型一:配套问题配套问题1. 某车间有52名工人生产甲、乙两种零件,每人每小时平均能生产15个甲种零件或18个乙种零件,1个甲种零件配4个乙种零件,则分配多少名工人生产甲种零件,多少名工人生产乙种零件,恰好使每小时生产的甲、乙两种零件零件配套?2. 加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人生产大小齿轮,才能每天加工的大小齿轮刚好配套?二.利润问题1.某商场购进一批服装,每件服装的进价为200元,由于换季,商城决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是多少?2.某商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则该商场总的盈亏情况()A.亏损20元B.盈利30元C. 亏损50元D.不赢不亏三. 比赛积分问题1.小明参加竞赛活动,试卷由50道选择题组成,评分标准规定:选对一题得3分,不选得0分,选错一题倒扣1分.已知小明有5题没选,得103分,则他选错了_______道题.趣味应用题 '五羊杯'竞赛题2. 50名学生中,会讲英语的有36人,会讲日语的有20人,即不会讲英语也不会讲日语的有8人,即会讲英语又会讲日语的有_______人.四工程问题1. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲乙合作,需要几小时完成?2. 某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件.五.行程问题1. 相遇问题例:A,B两地相距450km,甲乙两车分别从A,B两地同时出发,相向而行.已知甲车得速度为120km/h,乙车得速度为80km/h,经过t h两车相距50km,则t的值是____________.2.追及问题例:甲、乙两人练习跑步,甲每秒跑7m,乙每秒跑6.5m,甲让乙先跑5m.设 x s 后甲追上乙,则可列方程_________.3.小李骑自行车从甲地到乙地,出发40分钟后,小王骑自行车从甲地出发,两人同时到达乙地,已知小李骑自行车的速度是15千米/时,小王骑电动车的速度时小李骑自行车的速度的3倍.求甲乙两地的距离.4.小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8点同时出发,到上午10点两人相距36千米,到中午12时,两人又相距36千米,求A,B两地间的路程.5.甲乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依次顺时针方向环形,乙点依次逆时针环形,若乙的速度是甲的速度的4倍,则他们第2000次相遇在边()。

一元一次方程十六种常见题型

一元一次方程十六种常见题型

一元一次方程十六种常见题型一.和差倍分的问题问题的特点:已知两个量之间存在合倍差关系,可以求这两个量的多少。

基本方法:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。

1.一个数的2倍与10的和等于18,设这个数为x,可列方程_______。

一个数的二分之一与3的差等于2,设这个数为x,可列方程_______。

一个数的3倍比10大2,设这个数为x,可列方程_______。

2.一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台设去年一季度产量为x台,可列方程_______。

3.一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨4.某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元5.七年级二班有45人报名参加了文学社或字画社,已知参加文学社的人数比参加字画社的人数多5人,两个社都参加的有20人,问参加字画社的有多少人XXX.等积变形问题此类问题的关键在“等积”上,是等量干系的地点,必须掌握常见多少图形的面积、体积公式。

“等积变形”是以形状改变而体积不变成前提。

1.把内径为200mm,高为500mm的圆柱形铁桶,装满水后慢慢地向内径为160mm,高为400mm的空木桶装满水后,铁桶内水位下降了多少2.要锻造一个直径为8cm高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。

三.相遇问题(相向而行):1这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

对应公式:路程=速度×时间快者路程+慢者路程=总路程慢者速度+快者速度)×相遇时间=相遇路程1.甲、乙两车从相距264千米的A、B两地同时动身相向而行,甲速是乙速的倍,4小时相遇,求乙速2.甲、乙两站相距600千米,快车从甲地动身,每小时行40千米,快车从乙地动身,每小时行60千米,若快车先行50分钟,快车再开出,又行一段时间后碰到快车,求快车开出多少小时两车相遇3.A、B两地相距75千米,一辆汽车以50千米/时的速度从A地动身,另一辆汽车以40千米/时速度从B 地动身,两车同时动身,相向而行,经过几小时两车相距30千米四.追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

初中 一元一次方程应用考试题型大全

初中 一元一次方程应用考试题型大全

一元一次方程应用考试题型大全一、工程问题列方程解应用题是初中数学的重要内容之一,其核心思想就是将等量关系从情景中剥离出来,把实际问题转化成方程或方程组,从而解决问题。

列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)【典例探究】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。

二、比赛计分问题【典例探究】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。

一元一次方程常考练习题

一元一次方程常考练习题

一元一次方程常考练习题第一部分:基础题1. 解方程:3x 7 = 112. 解方程:5 2x = 33. 解方程:4x + 8 = 2x 44. 解方程:7x 15 = 2x + 185. 解方程:9 3x = 6x + 3第二部分:进阶题6. 解方程:2(x 3) = 3(x + 2)7. 解方程:5 2(x + 1) = 3x 18. 解方程:4(2x 3) + 7 = 3(3x + 2)9. 解方程:3(x 4) 2(x + 5) = 710. 解方程:6 2(3x 1) = 4(x + 2)第三部分:应用题11. 小明买了3本书和2支笔,共花费50元。

若每本书比每支笔贵5元,求每本书和每支笔的价格。

12. 甲、乙两地相距360公里,两辆汽车同时从甲、乙两地出发,相向而行,3小时后相遇。

若甲车速度比乙车速度快20公里/小时,求两车的速度。

13. 某商店举行打折活动,原价200元的商品打8折后,再减去20元。

求现价。

故障停留了1小时,然后以原速度继续行驶,又行驶了3小时。

求汽车总共行驶的路程。

15. 某班有男生和女生共60人,若男生人数是女生人数的2倍,求男生和女生各有多少人。

第四部分:挑战题16. 已知方程2x 3 = a(x + 1)的解为x = 3,求a的值。

17. 若方程3(x 2) + 4 = b(x + 1)的解为x = 4,求b的值。

18. 方程5 2(x 3) = c(2x + 1)的解为x = 2,求c的值。

19. 若方程4(x 1) 3 = 2(x + d)的解为x = 5,求d的值。

20. 方程k(x 3) + 7 = 2x的解为x = 4,求k的值。

第五部分:图形题21. 在直角坐标系中,点A(2, 3)和点B(x, 5)在同一直线上,求x的值。

22. 若直线y = 2x + b经过点(3, 8),求b的值。

23. 已知直线y = 4x 1与直线y = 2x + c平行,求c的值。

一元一次方程各种题型汇总

一元一次方程各种题型汇总

一元一次方程各种题型汇总前几期文章发了一元一次方程应用题的解法及一些常用的技巧,这一期分类汇总所有的题型,以习题为主,后附答案及较难题的点拨,不再写详细步骤,目的是让同学们自己思考,自己分析,从而真正掌握这部分知识的真谛.一.数字问题1.有一个两位数,它的十位上的数字比个位上的数字小3,十位上的数字与个位上的数字之和等于这个两位数的1/4,求这个两位数.2.一个四位数,其个位数字为2,若把末位数字移到首位,所得新数比原数小108,求这个四位数.二.年龄问题3.甲比乙大15岁,五年前甲年龄是乙年龄的2倍,现在甲、乙各多少岁?4.已知,阳阳和她妈妈今年共36岁,再过5年,阳阳妈妈的年龄是阳阳年龄的4倍还大1岁,当阳阳妈妈40岁时,阳阳几岁?三.和、差、倍、分问题5.甲、乙两人各有钱若干元,若甲得到乙所有钱的一半,则甲共有480元,若乙得到甲所有钱的2/3,则乙也共有480元,甲、乙两人原来各有多少钱?6.一艘轮船货仓容积2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨的体积为7立方米,乙种货物每吨体积为2立方米,两种货物各应装多少吨最合理?(不计货物之间的空隙).四.百分比问题7.某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?8.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%,问原计划完成这项工程用多少个月?五.表格问题9.某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,若两班都以班为单位单独购票,则一共支付1118元:若两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票比较,两个班各节约了多少钱?10.某校组织'大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售,所获利润全部捐给山区困难孩子,每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利1860元,求黑白两种文化衫各有多少件?六.产品配套问题11.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(每3个甲种零件和2个乙种零件配成一套)12.一张学生课桌由一个桌面和四条桌腿组成,若1立方木木料可制作桌面50个或桌腿300条,现有15立方米木枓,请你设计一下用多少木料制作桌面,用多少木料制作桌腿恰好配套.七.劳动力分配问题13.某工厂第一车间的人数比第二车间人数的4/5少30人,若从第二车间涸10人到第一车间,那么第一车间人数是第二车间人数的3/4,求原来每个车间的人数.14.某工厂男、女工人共70人,男工人调走10%,女工人调入6人,这时,男、女工人数正好相等,问:原来男、女工人各有多少人?八.工程问题15.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)工常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75℅,因别处有急事,必须调走1人,问:调走谁更合适些?为什么?16.某工程队承包了某段全长为1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲班组比乙班组平均每天多掘进0.6米,经过5天施工,两班组共掘进了45米,(1)求甲、乙两个班组平均每天各掘进多少米.(2)为加快速度,通过改进施工技术,在剩余的工程中,甲班组平均每天比原来多掘进0.2米,乙班组平均每天比原来多掘进0.3米,按此施工进度,能够比原来少用多少天完成任务?九.几何问题17.如图用10张相同的长方形纸条拼成一个大长方形,设长方形纸条的长为x厘米,求x的值.18.水平桌面上有高度相等的两个圓柱形容器,甲内部底面积为80平方厘米,乙内部底面积为100平方厘米,甲装满水,乙是空的,若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8厘米,求甲容器的容积.十.盈亏问题19.七年级(一)班学生去划船,若少租一条船,每条船正好坐9个学生,若多租一条船,每条船正好坐6个学生,七年级(一)班有多少个学生?20.通讯员要在规定时间内到达某地,他如果每小时走15千米,则可提前24分到达目的地;他如果每小时走12千米,则要迟到15分钟,求路程和原定时间.【答案】1.设+位数字为x,方程为:x+(x+3)=[10x+(x+3)]/4,x=3,这个两位数为36.2.用整体设未知数法,设去掉个位后的三位数为x,方程为:(10x+2)一(1000×2+x)=108,x=234,原来四位数为2342.3.甲35岁,乙20岁.4.12岁.5.设甲原有x元,方程为:2(480一x)=480一2x/3,x=360,甲:360元,乙240元.6.设装甲货物x吨,方程为:7x+2(500一x)=2000,x=200,甲:200吨,乙:300吨7.设去年计划生产玉木x吨,方程为:(1十5℅)x+(1十15℅)(200一x)=225,X=52.5,去年实际生产,玉米:52.5吨,小麦:172.5吨.8.设原计划完成这项工程用x个月,记原工作效率为1,方程为:1x=(1十12℅)(x一3),x=28.原计划完成这项工程用28个月.9.①设七年级(1)班有x名学生,则(2)班有(1118一12x)/10名学生,方程为:8[x+(1118一12x)/10]=816.x=49,七(1)班49名学生,七(2)班53名学生.②七(1)班:(12一8)×49=196(元);七(2)班:(10一8)×53=106(元).10.设黑色文化衫x件,方程为:(25一10)x+(20一8)(140一x)=1860.x=60,黑色文化衫60件,白色文化衫80件.11.设生产甲种零件x人,方程为:2×12x=3×23(62一x),x=46,甲:46人,乙:16人.12.设用x立方米制桌面,方程为:4×50x=300(15一x),x=9,用来制作桌面木料9立方米,制作桌腿木料6立方米.13.设二车间原有x人,方程为:4x/5一30+10=3(x一10)/4,x=250,一车间原有170人,二车间原有250人.14.设男工人x人,方程为x一10℅x=70一X十6,x=40,男工人40人,女工人30人.15.①设甲、乙合作x天完成,方程为:(1/30十1/20)x=1,x=12,12<15,能完成.②完成75℅工程需12×75%=9天,剩下某人完成效率必须为25%÷6=1><1><1>16.①设乙班组平均每天掘进x米,方程为:5x+5(x十0.6)=45,x=4.2,甲:4.2米,乙:4.8米.②改进技术后,甲每天掘进5米,乙每天掘进4.5米,完成余下工程需(1755一45)÷(5+4.5)=180(天),按原进度完成余下工程用时(1755一45)÷(4.8十4.2)=190天,少10天.17.2x/3十x=75,x=45.18.设容器高x厘米,方程为:80x=(x一8)100,x=40,甲容器容积为3200立方厘米.19.设七(一)班有x人,方程为:x/9+1=x/6一1,x=36,七(一)班有36人.20.设规定时间x小时,方程为:15(x一24/60)=12(x+15/60),x=3,规定时间3小时,路程9Km.感谢大家的关注、转发、点赞、交流!。

七年级数学上册一元一次方程的应用经典题型整理

七年级数学上册一元一次方程的应用经典题型整理

七年级数学上册一元一次方程的应用经典题型整理题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

一元一次方程的11种题型和动点旋转问题

一元一次方程的11种题型和动点旋转问题

一元一次方程的11种题型和动点旋转问题一元一次方程是初中阶段数学学习的重要内容之一,也是数学实际运用中常见的问题求解方法。

在数学学习中,学生往往会遇到各种不同类型的一元一次方程,针对这些题型的解题方法和技巧是非常重要的。

另外,动点旋转问题也是数学中常见的实际问题,需要通过方程的建立和求解来解决。

本文将对一元一次方程的11种题型和动点旋转问题进行详细介绍和解析。

一元一次方程的11种题型:1. 单一方程求解:这是最基本的一元一次方程题型,例如2x+3=5。

2. 两个方程求解:实际问题中往往会出现两个未知数的方程,需要通过联立方程求解。

3. 三个及以上方程求解:在一些复杂的实际问题中会出现多个未知数的方程,需要通过消元法等方法求解。

4. 带分数方程求解:方程中含有分数项,需要通过通分等方法解决。

5. 带参数方程求解:方程中含有参数,需要通过参数的取值范围求解。

6. 有根式的方程求解:方程中含有根式,需要通过化简和整理解决。

7. 绝对值方程求解:方程中含有绝对值,需要通过拆分绝对值的取值范围求解。

8. 含有分式方程求解:方程中含有分式项,需要通过通分等方法解决。

9. 复合方程求解:方程中含有两个或多个未知量,需要通过分步骤求解。

10. 问题应用方程求解:通过实际问题建立方程,再求解方程得出问题的答案。

11. 考点串讲方程求解:综合考点进行一元一次方程求解。

通过以上11种题型的讲解和解题方法的介绍,可以帮助学生掌握一元一次方程的解题技巧,提高数学解题的能力。

动点旋转问题:动点旋转问题是几何中的一个重要问题类型,通常涉及到几何图形的旋转、对称、坐标变换等内容。

通过建立方程和求解方程,可以解决动点旋转问题。

具体来说,动点旋转问题主要包括以下几个方面:1. 点绕另一点旋转问题:一个点绕另一个点旋转,求旋转后点的坐标。

2. 直线绕定点旋转问题:一条直线绕一个定点旋转,求旋转后直线的方程。

3. 图形绕定点旋转问题:一个图形绕一个定点旋转,求旋转后图形的位置和形状。

第09讲-用一元一次方程解决问题(12种题型)(解析版)精选全文

第09讲-用一元一次方程解决问题(12种题型)(解析版)精选全文

第09讲用一元一次方程解决问题(12种题型)一、配套问题配套问题在考试中十分常见,比如合理安排工人生产、按比例选取工程材料、调剂人数或货物等。

解决配套问题的关键是要认识清楚部分量、总量以及两者之间的关系。

每套所需各零件的比与生产各零件总数量成反比.二、工程问题工程问题的基本量有:工作量、工作效率、工作时间。

关系式为:①工作量=工作效率×工作时间;②工作时间=,③工作效率=。

工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t,则工作效率为。

还要注意有些问题中工作量给出了明确的数量,这时不能看作整体1,此时工作效率也即工作速度。

三. 销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。

(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打6折出售,即按原标价的60%出售.四、比赛积分问题①.获取信息(找出胜、平、负的场数和积分,胜、平、负1场的积分,该队的总积分)②.能用字母表示数(常设胜/平/负的场数为x)③.寻找等量关系胜场数×胜1场的积分+平局场数×平1场的积分+负场数×负1场的积分=这个队的总积分五、方案选择问题1.借助方程先求出相等的情况。

2.再考虑什么情况下一种方案比另一种方案好,从而进行决策。

六、数字问题1、多位数的表示方法:①若一个两位数的个位上的数字为a,十位上的数字为b,则这个两位数是10b+a②若一个三位数的个位上的数字为a,十位上的数字为b,百位上的数字为c,则这个三位数是100c+10b+a③四、五…位数依此类推。

2、连续数的表示方法:①三个连续整数为:n-1,n,n+1(n为整数)②三个连续偶数为:n-2,n,n+2(n为偶数)或2n-2,2n,2n+2(n为整数)③三个连续奇数为:n-2,n,n+2(n为奇数)或2n-1,2n+1,2n+3(n为整数)七、几何问题1.将几何图形赋予了代数元素,便产生了一类新问题,2.解决这类问题时,通常要用到图形的性质以及几何量之间的关系.八、和差倍分问题1.和、差关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.2.倍、分关系:通过关键词语“是几倍、增加几倍、增加到几倍、增加百分之几、增长率……”来体现.3.比例问题:全部数量=各种成分的数量之和.此类题目通常把一份设为x.解题的关键是弄清“倍、分”关系及“和、差”关系.九、分段计费问题分段计费问题解题思路1.明确分段区间2.明确不同区间的计费标准3.分区间讨论计算十. 行程问题1.行程问题中有三个基本量:路程、时间、速度。

一元一次方程应用16类分类

一元一次方程应用16类分类

一元一次方程应用16类列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。

因此我们要努力学好这部分知识。

一、列方程解应用题的主要步骤:1、认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系;2、用字母表示题目中的未知数,并用这个字母和已知数一起组成表示各数量关系的代数式;3、利用这些代数式列出反映某个等量关系的方程(注意所使用的单位一定要统一);4、求出所列方程的解;5、检验所求的解是否使方程成立,又能使应用题有意义,并写出答案。

二、对常见应用题的解法分析1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。

(1)倍数关系:通过关键词语"是几倍,增加几倍,增加到几倍,增加百分之几,增长率……"来体现。

(2)多少关系:通过关键词语"多、少、和、差、不足、剩余……"来体现。

例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?练习:1.小丽在水果店花18元,买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少千克?2、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的15多3吨,求甲、乙、丙三种货物各多少吨?3.某班女生人数比男生的23还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的79,那问男、女生各多少人?4、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,那么甲桶剩的水是乙桶所剩的4倍。

一元一次方程常见题型

一元一次方程常见题型

那么这个三角形是( )
3. A、B 两地相(距A)7直5角千三米角,形 一(辆B)汽锐车角以三角50形千(C米)/时钝角的三速角度形从(AD)地以出上发都,有另可能一辆汽车以 40 千米/
时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距 30 千 米?
四. 追及问题(同向而行):
1. 甲车在乙车前 500 后,乙车追上甲车?
(A)直角三角形 (B)锐角三角形(C)钝角三角形 (D)以上都有可能一、选择题
2.一个机床厂今年第一季度(A生)产CD(机垂1床直)1平如8分图0A台,B已,知比:去(,B年那)么同A(B期垂的)直平二分倍C多D 36台,去年一季度产量多少台? 3.一群老人去赶集(,2集)如上果买(三C了角)一形CD三堆与边梨A的B,互垂一相直垂人平直分1平个线分的多交一(点D个正),好以在一上三说人角法2形都个的正少一确2条个边,上几,位老人几个梨?
那么这个三角形是( )
4.某学校组(织A1)0直名角优三秀角学形生(春B)游锐,角预三计角费形(用C若)干钝角元三,角后形来(又D来)了以上2名都有同可学能,一原、选来择的题费用不变,这 样每人可以少摊3元,则原来每(人A)需C要D(垂付1直)费平如多分图A,少B已元知?:(,B那)么A(B垂)直平分CD
二. 等积变形问题
一、选择题
1. 把内径为 200mm,高为 500m(m1)的如圆图,柱已形知铁:桶,那,么装(满)水后慢慢地向内径为 160mm,高为
400mm 的空木桶装满水后,(铁A桶)内CD水垂位直平下分降A了B 多少(?B)AB垂直平分CD
(C)CD与AB互相垂直平分 (D)以上说法都正确
2. 要锻造一个直径(为2)8c如m果,三高角为形4三c边m的的那垂圆么直这柱平个形分三线毛角的坯形交是,点(至正少好)在应三截角取形直的一径条为边4上cm,的圆钢多少cm。

人教版七年级数学上册解一元一次方程应用题的十六种常见题型教案

人教版七年级数学上册解一元一次方程应用题的十六种常见题型教案
(3)运用比例分配问题解题方法:对于比例分配问题,学生需要理解比例关系,并能将其应用于解题。
举例:工资分配问题,理解按比例分配工资的方法,列出方程并求解。
(4)解决交叉相乘问题:对于一些涉及交叉相乘的题型,学生可能不熟悉这种解法。
举例:线性方程组的交叉相乘解法,如2x + 3y = 8,3x + 4y = 11,通过交叉相乘法求解。
人教版七年级数学上册解一元一次方程应用题的十六种常见题型教案
一、教学内容
本节课选自人教版七年级数学上册,针对解一元一次方程应用题的十六种常见题型进行教学。教学内容主要包括以下几种题型:
1.简单的线性方程应用题,如年龄问题、速度问题等。
2.比例分配问题,如物品分配、工资分配等。
3.水电费用问题,如单价、用量与总价的关系。
4.电话卡费用问题,如不同的通话套餐计算。
5.购物优惠问题,如打折、满减等。
6.数字问题,如数字间的和差倍分关系。
7.长度、面积、体积问题,如几何图形的计算。
8.时间和路程问题,如行程速度与时间的计算。
9.利润与百分比问题,如商品利润率的计算。
10.零件加工问题,如工作效率与工作总量的关系。
11.速度与路程问题,如不同速度下的行程计算。
5.培养学生的团队协作能力,通过小组讨论、合作解决应用题,让学生学会倾听、交流、分享,提高合作解决问题的能力。
三、教学难点与重点
1.教学重点
(1)掌握一元一次方程的解法:熟练运用等式性质、移项、合并同类项等方法解一元一次方程,特别是含未知数的表达式简化。
举例:解方程2x + 5 = 3x + 10,需将方程两边的x项移到一边,常数项移到另一边,然后合并同类项求解。

初中数学:一元一次方程13种应用题型附知识点

初中数学:一元一次方程13种应用题型附知识点

初中数学:一元一次方程13种应用题型附知识点(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如语文资料、数学资料、英语资料、物理资料、化学资料、地理资料、政治资料、历史资料、艺术资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of educational materials for everyone, such as language materials, mathematics materials, English materials, physical materials, chemical materials, geographic materials, political materials, historical materials, art materials, other materials, etc. Please pay attention to the data format and writing method!初中数学:一元一次方程13种应用题型附知识点一、知识框架二、方程的有关概念1.方程:含有未知数的等式就叫做方程。

七年级数学关于一元一次方程的各类题型

七年级数学关于一元一次方程的各类题型

1.2(x-2)-3(4x-1)=9(1-x)2.11x+64-2x=100-9x3.15-(8-5x)=7x+(4-3x)4.3(x-7)-2[9-4(2-x)]=225.3/2[2/3(1/4x-1)-2]-x=26.2(x-2)+2=x+17.0.4(x-0.2)+1.5=0.7x-0.388.30x-10(10-x)=1009.4(x+2)=5(x-2)10.120-4(x+5)=2511.15x+863-65x=5412.12.3(x-2)+1=x-(2x-1)13.11x+64-2x=100-9x14.14.59+x-25.31=015.x-48.32+78.51=8016.820-16x=45.5×817.(x-6)×7=2x18.3x+x=1819.0.8+3.2=7.220.12.5-3x=6.521.1.2(x-0.64)=0.5422.x+12.5=3.5x23.8x-22.8=1.224.1\ 50x+10=6025.2\ 60x-30=2026.3\ 3^20x+50=11027.4\ 2x=5x-328.5\ 90=10+x29.6\ 90+20x=3030.7\ 691+3x=700解一元一次方程练习一、填空题(3’×15=45’)1.使关于x的方程有解的m的值是2.已知是同类项,那么k= ,3.若x=3是方程2x-4a=8+6x的解,则a=____.若代数式2x-6的值与0.5互为倒数,则x=____.4.若5x-5的值与2x-9的值互为相反数,则x=_____5.已知3x2m-1y4与-2x3y2n-3是同类项,且丨a-2m丨+(0.5b-n)2=0,则m+n+a+b的值为______.6.方程丨x+1丨=3的解是x=_____或____7.已知(2a+b)x2-xa-3=4是关于x的一元一次方程,则a=_______,b=________,=____.8.已知关于的方程ax=3的解是自然数,则整数a的值是_______,相应的=____.9.若a、b互为相反数,c、d互为倒数,p的绝对值等于3,则关于x的方程(a+b)x2-3cd•x+p2=0的解为________.10.若关于x的方程ax+b=c的解为1,那么|c-a-b-1|=________.二、选择题(3’×4=12’)1.已知等式 ,则下列等式中不一定成立的是( )A.B.C.D.2.已知关于 的方程 的解满足方程 ,则 的值是( )A.\x09B.2 \x09\x09C.\x09\x09D.33.若k 为整数,则使得关于x 的方程(k -1999)x=111-2000x 的解也是整数的k 值有( )A 、2个 \x09\x09B 、4个 \x09\x09\x09C 、8个 \x09\x09\x09D 、16个4.已知关于x 的方程(2p+3q)x+5=0无解,则pq 是( )A.正数 \x09\x09B.非负数 \x09\x09C.负数 \x09\x09\x09D.非正数三、解方程(5’×6=30’)(3) \x09\x09\x09(4)四、解答题(5’+4’+4’)1.已知关于 的方程 和 有相同的解,求 的值2.若 是方程 的解,求 的值.3.解方程:一元一次方程试题一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是( )A.0127=+y B.082=+y x C 103=z D.0232=-+x x 2.已知ax = ay ,下列等式中成立的是( )A.x = yB.ax + 1 = ay - 1C. ax = - ayD.3 - ax = 3 - ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A.40%B.20% C 25% D.15%4.一列长a 米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是( )A .a 米B .(a +60)米C .60a米 D .(60+2a )米5.解方程20.250.1x 0.10.030.02x -+=时,把分母化为整数,得 ( )。

一元一次方程经典40题

一元一次方程经典40题

一元一次方程经典40题一、选择题(1 - 10题)1. 下列方程是一元一次方程的是()A. x^2 - 2x + 3 = 0B. 2x - 5y = 4C. x = 0D. (1)/(x)=3解析:一元一次方程是只含有一个未知数,并且未知数的次数都是1,等号两边都是整式的方程。

A选项未知数的最高次数是2;B选项有两个未知数x和y;D选项(1)/(x)不是整式。

只有C选项符合一元一次方程的定义,所以答案是C。

2. 方程3x + 6 = 0的解是()A. x = 2B. x=-2C. x = 3D. x=-3解析:对于方程3x+6 = 0,首先移项得到3x=-6,然后两边同时除以3,解得x=-2,所以答案是B。

3. 若x = 2是方程ax - 3 = 1的解,则a的值是()A. 2B. -2C. 1D. -1解析:因为x = 2是方程ax-3 = 1的解,将x = 2代入方程得2a-3 = 1,移项可得2a=1 + 3=4,两边同时除以2,解得a = 2,所以答案是A。

4. 方程2(x - 1)=x+2的解是()A. x = 4B. x=-4C. x = 0D. x = 1解析:先去括号得2x-2=x + 2,然后移项2x-x=2 + 2,即x = 4,所以答案是A。

5. 关于x的方程3x+2m = 5 - x的解为x = 1,则m的值为()A. (1)/(2)B. -(1)/(2)C. (3)/(2)D. -(3)/(2)解析:把x = 1代入方程3x+2m=5 - x,得到3×1+2m = 5-1,即3 + 2m=4,移项得2m=4 - 3 = 1,解得m=(1)/(2),所以答案是A。

6. 下列变形正确的是()A. 由3x+5 = 4x得3x - 4x=-5B. 由6x = 3得x = 2C. 由x-1 = 2x+3得x+2x = 3 - 1D. 由2x = 1得x = 2解析:A选项,移项正确,3x+5 = 4x移项后为3x-4x=-5;B选项,由6x = 3,两边同时除以6,得x=(1)/(2);C选项,x - 1=2x + 3移项应该是x-2x = 3+1;D选项,由2x = 1得x=(1)/(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程解应用题一.和差倍分的问题问题的特点:已知两个量之间存在合倍差关系,可以求这两个量的多少。

基本方法:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。

1. 一个数的 2 倍与10 的和等于 18,设这个数为x,可列方程_______分之一与 3 的差等于2,设这个数为x,可列方程_______2,设这个数为 x,可列方程_______ 。

一个数的。

一个数的二3 倍比10 大2.一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?设去年一季度产量为x台,可列方程_______ 。

3.一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?4.某学校组织10名优秀学生春游,预计费用若干元,后来又来了可以少摊 3元,则原来每人需要付费多少元?2名同学,原来的费用不变,这样每人5.七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?二.等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。

“等积变形”是以形状改变而体积不变为前提。

1. 把内径为 200mm,高为500mm的圆柱形铁桶,装满水后慢慢地向内径为160mm,高为400mm的空木桶装满水后,铁桶内水位下降了多少?2.要锻造一个直径为 8cm高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。

三.相遇问题(相向而行):这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

对应公式:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程1. 甲、乙两车从相距264 千米的A、B两地同时出发相向而行,甲速是乙速的 1.2 倍,4 小时相遇,求乙速?2. 甲、乙两站相距600 千米,慢车从甲地出发,每小时行40 千米,快车从乙地出发,每小时行60 千503.A 度从、B两地相距75 千米,一辆汽车以50 千米/时的速度从B 地出发,两车同时出发,相向而行,经过几小时两车相距A地出发,另一辆汽车以30 千米?40 千米/时速四.追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

①同时不同地:快者的时间=慢者的时间,快者走的路程-慢者走的路程=原来相距的路程1.甲车在乙车前500 千米,同时出发,速度分别是40 千米/小时和60 千米/小时,多少小时后,乙车追上甲车?2.A、B两地相距64千米,甲从A地出发,每小时行在前,乙在后,两人同时同向而行,则几小时后乙超过甲②同地不同时;先走者的时间=慢走者的时间+时间差14千米,乙从B地出发,每小时行18千米,若甲10千米?先走者的路程=慢走者的路程1.一列慢车从某站开出,每小时行驶48km,过了45分,一列快车从同站开出,与慢车同向而行,又经过1.5小时追上了慢车。

求快车的时速?2.一队学生去学校外进行军事训练,他们以每小时5千米的速度行进,走了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?五. 环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。

1.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们再相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们再相遇?2.甲,乙二人在400米的环形跑道上跑步,已知甲的速度比乙快,如果二人在同一地方出发,同向跑,则 3 分20秒,相遇一次,若反向跑,则40秒相遇,求甲跑步的速度每秒跑多少米?六.行船问题:顺流航速=船的静水速度 +水流速度逆流航速=船的静水速度 -水流速度顺流速度×顺流时间 =顺流路程逆流速度×逆流时间 =逆流路程顺程+逆程=总路程1. 船顺水航行 24千米,又返回共用2小时20分.如顺水航行8千米,逆水行18千米,则需要 1 小时20分. 问静水速度和水流速度 ?2.一艘船航行于A,B两个码头之间,顺水航行需要度是4千米/时,求这两个码头之间的距离。

2 个小时,逆水航行需要4 个小时,已知水流速七.飞机问题:顺风速=飞机无风速顺风速×顺风时间+风速=顺风路程逆风速=飞机无风速—风速逆风速×逆风时间 =逆风路程顺程+逆程=总路程1. 一架飞机在两地之间飞行风速为16 千米/时,顺飞飞行需要 3 小时,逆风飞行需要 5 小时,求无风时飞机的航速和两地之间的航程?八.比例分配问题:一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。

例:若甲:乙=2:3,可设甲为2x,乙为3x常用等量关系:全部数量 =各成分的数量之和1. 现有蔬菜地 975 公顷,种植白菜、西红柿和芹菜,期中种白菜和西红柿的面积比是3:2,种西红柿和芹菜的面积比是5:7,则三种蔬菜各种多少公顷?2.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680 名学生就餐;同时开放2 个大餐厅、1 个小餐厅,可供2280 名学生就餐.(1)求1 个大餐厅、1 个小餐厅分别可供多少名学生就餐;(2)若7 个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.3. 机械厂加工车间有85 名工人,平均每人每天加工大齿轮16 个或小齿轮 10 个,已知2 个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?九.工程问题:把工作总量设为 1 工作总量=工作效率×工作时间工作效率=工作量×工作时间合做的效率=各单独做的效率的和1. 有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙、丙三管齐开,需几分钟可注满空水池?2.一件工作,甲单独做6小时完成,乙单独做12小时完成,丙单独做18小时完成,若先由甲、乙合做3小时,然后由乙丙合做,问共需几小时完成?3.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?十.利润率问题:利润率=(利润÷进价)×100% 进价(成本价)﹢利润 =售价利润=进价(成本价)×利润率1. 某商品进价为500 元,按标价的9 折销售,利润率为15.2%,求商品的标价为多少元?2.某商品的进价是2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打几折出售此商品?3. 工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品8 件与将标价降低35 元销售该工艺品12 件所获利润相等 .该工艺品每件的进价、标价分别是多少元?4. 一家商店将某种服装按进价提高40%后标价,又以8 折优惠卖出,结果每件仍获利15 元,这种服装每件的进价是多少?5.某市为了鼓励市民节约用水规定自来水的收费标准如下表:每月每户用水量每吨价格(元)不超过十吨部分0.50超过十吨部分0.75(1)现已知李老师家三月份用水16吨,则应缴水费多少元?(2)如果李老师家四月份的水费为8元,则四月份用水多少吨?十一.数字问题设a,b 分别为一个两位数的个位上的数字与十位上的数字,则这两位数可表示为a+10b;若一个三位数,百位数字为 a,十位数字为 b,个位数字为c,则这三位数为: 100a 10b c1. 一个两位数,个位上的数是十位上的数的 2 倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大 36,求原来的两位数2. 一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数字与个位上的数字对调,那么所得的新两位数比原两位数的 2 倍少12,求原两位数?3.一个三位数三个数字之和是24,十位数字比百位数字少2,如果这个三位数减去两个数字都与百位数字相同的一个两位数所得的数也是三位数,而这三位数三个数字的顺序和原来三位数的数字的顺序恰好颠倒,求原来的三位数。

十二. 年龄问题其基本数量关系大小两个年龄差不会变:这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。

1. 现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,多少年后父亲的年龄是儿子年龄的3倍?。

2. 小明今年 13岁,他爸爸今年39岁,几年后小明的年龄将是爸爸年龄的一半?3、现在甲的年龄是乙的2倍,8年以后,两人年龄之和74,现在甲比乙大几岁?4.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要点燃了这两支蜡烛看书,若干分钟后来电了,小芳将两支蜡烛同时熄灭,问停电多少分钟?1小时.一天晚上停电,小芳同时发现粗蜡烛的长是细蜡烛的2倍,十三. 劳力调配问题:1.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?2.学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有乙处植树人数的2倍,需要从乙队调多少人到甲队?18人.如果要使在甲处植树的人数是3. 甲队人数是乙队人数的2倍,从甲队调12人到乙队,这时甲队人数比乙队人数的一半多3人,求甲队原来的人数。

4.甲、乙两车队共有汽车240辆,现从乙队调20辆车给甲队,这时甲队车辆正好是乙队车辆的3倍,则甲乙两队原有汽车多少辆?5. 甲队有工人 272 人,乙队有工人196人,如果要求乙队的人数是甲队人数的1,应从乙队调多少人到3甲队?十四. 储蓄问题:利息=本金×利率×期数本息和=本金+利息利息税=利息×税率年利率=月利率×12=日利率×3651. 某同学把 250 元钱存入银行,整存整取,存期为半年。

半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税)2.某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期,活期存款各是多少?十五.溶质,溶液=溶质浓度类问题:溶质=溶液浓度(浓度= ),溶液=溶质+溶剂溶液浓度1.有浓度为98%的硫酸溶液8千克,加入浓度为20%的硫酸溶液多少千克,可配制成浓度为60%的硫酸溶液2.某中学的实验室需含碘20%的碘液,现有25%的碘酒350克,应加纯酒精多少克?十六.探寻规律类这类方程的特点是,从给出的材料中找出规律,并利用这一规律找出解决问题的相等关系,列出方程。

相关文档
最新文档