关于光放大器的最新发展及应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年6月

第19卷第2期

山东师范大学学报(自然科学版)

Journal of Shandong Normal Universi ty(Natural Science)

Jun.2004

Vol.19No.2关于光放大器的最新发展及应用

辛化梅1)薛林2)

(1)山东师范大学物理与电子科学学院,250014,济南;2)海军工程大学信息与电气学院,433033,湖北武汉M第一作者32岁,女,讲师)

摘要介绍了国际上光放大器的最新发展及应用,主要包括掺铒光纤放大器、Er3+:Yb3+共掺玻璃波导放大器、掺铥光纤放大器、光纤拉曼放大器及半导体光放大器,并指出相关光放大器的发展趋势.

在光纤通信系统中,随着传输速率的增加,传统的O P E P O中继方式的成本迅速增加,于是,人们寻找用光放大的方法来代替传统的中继方式,并延长传输距离.光放大器能直接放大光信号,对信号的格式和速率具有高度的透明性,使得整个系统更加简单灵活,它的出现和实用化在光纤通信发展史上具有里程碑意义,使超高速、超大容量、超常距离的波分、密集波分、全光传输、光孤子传输等成为现实.

光放大器大致可分三种:¹稀土掺杂光放大器,如掺铒光纤放大器(EDFA)、掺铥光纤放大器(TDFA)、掺镨光纤放大器(PDFA),Er3+:Yb3+共掺玻璃波导放大器(EDW A)等;º非线性效应光放大器,如光纤拉曼放大器(FRA)等;»半导体光放大器(SOA).

目前,光纤通信的发展从电信光纤低损耗波长1550nm的C波段(1528~1565nm)向邻近波段L波段(1570~1610nm)、S波段(1450~1520nm)发展.可以说,随着光纤大容量、高速率传输技术的发展,对光放大器也提出了新的技术要求与挑战,促使其向高性能、宽带、多功能、智能化、标准化、低功耗、低价位发展.

1掺铒光纤放大器(EDFA)

EDFA是密集波分复用(DWDM)光纤传输系统的核心器件之一,是DWD M系统的传输链路的重要组成部分,其性能直接影响到系统的传输特性.EDFA以掺铒光纤为增益介质,利用980nm和1480nm泵浦作为泵浦光源,使铒离子Er3+粒子数反转,信号光入射使亚稳态Er3+粒子受激辐射,产生信号放大.

EDFA的结构如图1所示[1]

图1EDFA结构

由图1可见,EDFA主要由掺铒光纤、泵浦光源、光耦合器、光隔离器以及光滤波器组成,而其主体部件是泵浦光源和掺铒光纤.按照泵浦光源的泵浦方式不同,EDFA又有三种不同的结构方式,即同向泵浦结构、反向泵浦结构及双向泵浦结构.采用同向泵浦,可获得较好的噪声性能;采用反向泵浦,可获得较高的输出功率;采用双向泵浦,使EDFA的增益和噪声性能都优于单向泵浦,但增加一个泵浦源,成本也增加很多.

目前,对于常规通信段,多采用EDFA对光信号进行放大.EDFA具有饱和输出光功率高、信号增益大、工作带宽宽等特点,且在1520~1610nm都存在放大的可能性;缺点是带宽还不够大,在1530nm~1560nm波段才有较大且平坦的增益,这对WDM宽带宽传输系统放大有很大的限制,并且EDFA中光纤非线性限制入射功率,同时也限制信噪比的提高.在EDFA增益谱上还有潜在L波段的平坦增益谱,其波长范围为1570~1610nm,由于该波段远离铒离子的发射谱中心,增益明显低于C波段,因此其带宽资源一直没有被利用.目前,有以下几种光纤放大器来提高有用带宽[2]:碲化物EDFA、增益漂移碲化物EDFA、1580nm带宽EDFA、掺铥光纤放大器、Raman放大器,而对L波段的放大主要为以宽带放大特性见称的碲化物EDFA,碲化物EDFA是相干光放大器.在掺铒光纤放大器中,激励光和信号光的同向分量与正交分量受到同样程度的放

收稿日期:2003-02-15

大,影响了放大倍数的提高;而相干光放大器则让激励光与信号光的正交分量的相位不一致,使正交分量变弱,从而得到超低杂音的光放大器.碲化物EDFA 有50nm 增益带宽,增益光谱覆盖1550nm 和1580nm 两个增益波段区,能实现20dB 以上的均匀放大.目前,已用于C+L 波段的太比特传输实验系统放大.

EDFA 是目前及未来一段时间放大器的主要选择,在骨干网和城域网/接入网中发挥着关键性作用,其发展趋势应是宽带宽、高功率、高增益、增益平坦、低噪声、多功能、EDFA+FRA 混合放大以及小型化.

2 Er 3+:Yb 3+共掺玻璃波导放大器(EDWA)

与现在光通信系统中应用较多的E DFA 和其他集成放大器技术(如SOA)相比,EDW A 有其独特的优势:与EDFA 比,它有更好的性能价格比;而相对于SOA 来说,EDWA 有很小的极化相关性,且不存在通道间串

扰.总之,EDWA 既集中了EDFA 与SOA 的优点,又弥补了二者的缺陷,其结构如图2示[3]

.

图2 EDWA 结构示意图

基于光波导结构制作的EDW A 可成倍提高泵浦

光功率密度和有效作用长度,在大大降低放大器阈值

的同时提高单位长度的信号增益.EDWA 可非常容易

的与分插复用器、光开关、光交叉连接器等损耗器件集

成在同一基片上,从而制成多种光通信用集成有源器

件,且提高了器件的可靠性.相信,随着EDW A 的持续

发展,这种定位在城域网使用的光放大器会有更多的

应用.

3 掺铥光纤放大器(TDFA)

随着计算机网络及其它新的数据传输服务的飞速

发展,长距离光纤传输系统对通信容量和系统扩展的需求日益增长,原有的C 波段和L 波段已不能满足未来宽带网络的需求,而在S 波段,石英单模光纤色散和损耗小,光纤弯曲所引起的损耗也低于C 波段和L 波段,S 波段是潜在的通信资源带宽,开发适合于S 波段放大的掺铥光纤放大器成为目前光通信领域研究的热点之一.

TDFA 是通过在氟化物光纤的纤芯中掺铥(Tm 3+

)制成的,可采用单波长泵浦和双波长泵浦.采用单波长泵浦可在1450~1480nm 和1480~1510nm 实现增益放大,优点是光源单一,结构简单,缺点是功率转换效率低.OFC .2001中报导的TDFA [2],在1400nm 单泵浦下实现了对8@10Gb P s 的光信息流量中继放大,并使放大的光信号传输了120km;8个信道波段范围为1480~1510nm,增益大于26dB,能量转换效率为42%.采用双波长泵浦方式,一方面提高了功率转换效率,另一方面可获得增益谱线迁移,目前有四种双泵浦方式[4],即1.047L m P 1.55L m 、1.064L m P 1.117L m 、1.4L m P 1.56L m 、1.24L m P 1.4L m.Alcatel 公司报道采用1.24L m 和

1.4L m 双泵浦方式[5],信号光采用8信道,波长范围1470~1500nm,在总的泵浦功率为410mW 下,功率转换效率高达48%,但其结构复杂,成本较高.

目前,TDFA 的研究的主要问题是如何提高放大器的功率转换效率,实现增益迁移.相信随着信息技术和光通信技术的发展,作为宽带放大器重要组成部分的TDFA 必将有更为广阔的应用前景.4 光纤拉曼放大器(FRA)

随着IP 业务的爆炸式发展,对光纤通信系统的容量需求不断提高,10Gb P s 系统已成为主流,40Gb P s 系统正加速开发,光纤拉曼放大器由于可在任意波长上提供宽带、低噪声的光放大,在高速、长距离波分复用光通信系统中扮演着越来越重要的角色.与EDFA 利用掺铒光纤作为其增益介质不同,FRA 利用系统中的传输光纤作为它的增益介质.FRA 的工作原理基于非线性光学效应的原理,利用强泵浦光束通过光纤传输时产生受激拉曼散射(SRS).光纤中的拉曼效应很早就引起了人们的注意,但由于没有合适的高功率泵浦源,一直未能实用化,随着大功率激光器的出现,使在光纤中利用拉曼效应成为可能.FRA 的增益波长由泵浦波102山东师范大学学报(自然科学版) 第19卷

相关文档
最新文档