工程热力学与传热学9)_气体动力循环PPT课件

合集下载

工程热力学-09 气体动力循环

工程热力学-09 气体动力循环
第九章
气体动力循环
能源与动力工程学院 新能源科学与工程系
吉恒松
混和加热循环 活塞式内燃机 定容加热循环
定压加热循环
燃气轮机装置
定压加热燃气轮机循环 回热循环 采用多级压缩中间冷却的回热循环
目的
按照循环过程性质,确定参数间的关系 写出循环热效率关系式 分析参数变化对循环热效率的影响
能源与动力工程学院 新能源科学与工程系
T2

T1
(
v1 v2
) k 1
T1 k1
T3
T2
p3 p2
T2
T1 k1
T4

T3
v4 v3
T3
T1 k1
T5

T4
(
v4 v5
)k 1

T4
(
v3 v1
)k 1

T4
(

)k
1
T1 k
t

1


1
k 1
(
k 1 1) k(
3 Ws
汽轮机 4
燃气轮机装置示意图
闭式燃气轮机装置示意图
能源与动力工程学院 新能源科学与工程系
13
一、定压加热燃气轮机循环
2
1、循环的四个过程
①可逆绝热压缩过程1-2 (压气机) 压气机 ②可逆定压加热过程2-3 (燃烧室) ③可逆绝热膨胀过程3-4 (燃气轮机)1 ④可逆定压放热过程4-1 (大气中) 空气
能源与动力工程学院 新能源科学与工程系
20
1)
能源与动力工程学院 新能源科学与工程系
5
t
1
1
k 1
(

工程热力学.ppt课件

工程热力学.ppt课件
.
1.1 工质及热力系
工 质:实现热能和机械能相互转化的媒介物质
热源(高温热源) :工质从中吸取热能的物系
冷源(低温热源) :接受工质放出热能的物系
为了研究问题方便,热力学中常把分析对象从周围 物体中分割出来,研究它与周围物体之间的能量和物 质的传递。
.
热力系统(热力系):人为分割出来作为热 力学分析对象的有限物质系统。 外 界:热力系统以外的部分。 边 界:系统与外界之间的分界面。
四. 平衡状态
如果在不受外界影响的条件下,系统的状 态能够始终保持不变,则系统的这种状态称为 平衡状态。
.
实现平衡的充要条件: 系统内部及系统与外界之间的一切不平衡
势差(力差、温差、化学势差)消失是系统实 现热力平衡状态的充要条件。
.
热力平衡状态满足:
热平衡:组成热力系统的各部分之间没有热量的 传递。
由于压力计的测压元件处于某种环境压力 的作用下,因此压力计所测得的压力是工质的真 实压力 p (或称绝对压力)与环境压力 p b 之差,叫做表压力 p e斯卡(简称帕) 符
号: p a ,
1pa 1N/m2
工程单位:
标准大气压(atm , 也称物理大气压) 巴 (bar) 工程大气压(at) 毫米汞柱(mmHg) 毫米水柱(mmH2O)

气 燃机
燃 气 轮




.
压缩制冷装置系统简图
.
地源热泵
.
本课程的主要内容
基本概念 热力学第一定律 理想气体的性质 理想气体的热力过程 热力学第二定律 水蒸汽 湿空气 制冷循环
.
第一章 热力学基本概念 1.1 工质及热力系 1.2 热力系的宏观描述 1.3 基本状态参数 1.4 热力过程及热力循环

工程热力学-10气体动力循环

工程热力学-10气体动力循环

柴油机的实际示功图
实际循环:
0-1 进气过程 1-2 压缩过程 2-3-4 燃烧过程 4-5 膨源自(作功)过程 5-1 自由排气过程
+强制排气过程
2020年8月4日
第九章 气体动力循环
2
实际循环的理想化: 1. 把热力过程理想化→理论示功图 ①进气过程→0-1定压吸气 ②压缩过程→1-2定熵压缩 ③燃烧过程→2-3定容加热+3-4定压加热 ④膨胀过程→4-5定熵膨胀 ⑤排气过程→5-1定容排气+1-0定压排气
2020年8月4日
第九章 气体动力循环
6
w0 q23 34 q51
p1v1 { 1[( 1) ( 1)] ( 1)} 1
可见 , , w0
混合加热循环热效率 thermal efficiency
t
1
q2 q1
1
cp0 (T5 T1)
cV 0 (T3 T2 ) cp0 (T4 T3)
2020年8月4日
第九章 气体动力循环
3
2. 把工质看做理想气体 3. 把开口系统简化为闭口系统 (进排气功近似相等,相互抵消)
混合加热循环 (萨巴特循环)
混合加热循环的热效率:
t
1
q2 q1 q1
cV 0 (T3
cV 0 (T5 T1) T2 ) cp0 (T4
T3 )
2020年8月4日
ρ
T4 T3 T1k1
T5
T4
(
)k 1
T1
k1(
)k 1
T1 k
能量分析:
吸热量 q23 u23 cV 0(T3 T2) q34 h34 cp0(T4 T3)
q1 q23 q34
放热量 q2 q51 u51 cV 0(T1 T5)

《工程热力学》课件

《工程热力学》课件

理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。

工程热力学__第五章气体动力循环

工程热力学__第五章气体动力循环

k 1 k
p2 p1
k 1 k
T2 T1
T1 1 1 1 1 1 k 1 T2 T2 p2 k T1 p1
T
2 1
3
4
t,C
T1 1 T3
热效率表达式似乎与卡诺循环一样
s
勃雷登循环热效率的计算
热效率:
t 1
p
2 3 2 4 T 3
4
1 1
v s
定压加热循环的计算
吸热量
q1 cp T3 T2
放热量(取绝对值)
T 2
1
3
4
q2 cv T4 T1 热效率
w q1 q2 q2 t 1 q1 q1 q1
s
定压加热循环的计算
k 1 热效率 t 1 k 1 k ( 1) t
T1
s
燃气轮机的实际循环
压气机: 不可逆绝热压缩 燃气轮机:不可逆绝热膨胀 T
定义:
3 2 1
2’
4’
压气机绝热效率
h2 h1 c h2' h1
4
燃气轮机相对内效率
oi
h3 h4' h3 h4
s
燃气轮机的实际循环的净功
净功
' w净 h3 h4' h2' h1
oi h3 h4
h2 h1
T
2 1
2’
3
4’
c
' opt w净 oic
k 2 k 1
4
吸热量
q h3 h2' h3 h1
' 1

工程热力学与传热学 第十章 气体动力循环

工程热力学与传热学 第十章 气体动力循环

在斯特林循环中,在定容吸热过程2-3中工质从回热器中吸收的
热量正好等于定容放热过程4-1放给回热器的热量。经过一个循环
回热器恢复到初始状态。 可以证明:在相同的温度范围内,理想的定容回热循环(斯特 林循环)和卡诺循环,具有相同的热效率。
斯特林循环的突出优点是热效率高、污染少,对加热方式的适
应性强。随着科技的发展以及环境保护日益为人们所重视,斯特林
同样可以证明:在相同的温度范围内,理想的定压回热循环( 艾利克松循环)和卡诺循环,具有相同的热效率。 理想回热循环(斯特林循环和艾利克松循环)通常称为概括性 卡诺循环。实践证明,采用回热措施可以提高循环热效率,也是余 热回收的一种重要节能途径。
本章小结
1。气体动力循环的基本概念 1)内燃机的特性参数:
P 3 2 4
0-1:吸气过程。由于阀门的阻力,吸入气缸内
空气的压力略低于大气压力。
1-2:压缩过程 2-3-4-5:燃烧和膨胀过程
5 6
燃烧可分为定容过程和定压过 程
1
Pb
0
5-6-0:排气过程
V
P 3 2 4
简化原则为:(1)不计吸气和
排气过程,将内燃机的工作过程 看作是气缸内工质进行状态变化 的封闭循环。
3 - 4为定压加热过程:
T4 v4 T3 v3 T4 T3 T1 k 1;p4 p3 p1 k
v1 v2
p3 p2
v4 v3
4-5为定熵过程,5-1及2-3为定容过程,因此有:
T5 v 4 k 1 v 4 k 1 v 4 v 2 k 1 k 1 ( ) ( ) ( ) ( ) T4 v5 v1 v3 v1
2-3:定容吸热; 4-5:绝热膨胀;

2024年度-工程热力学全部课件pptx

2024年度-工程热力学全部课件pptx

理想气体混合物的热力学性质
具有加和性
20
理想气体基本过程
01
等温过程
温度保持不变的过程,如等温膨胀 和等温压缩
等容过程
体积保持不变的过程,如等容加热 和等容冷却
03
02
等压过程
压力保持不变的过程,如等压加热 和等压冷却
绝热过程
系统与外界没有热量交换的过程, 如绝热膨胀和绝热压缩
04
21
05 热力过程与循环 分析 22
与外界没有物质和能量交 换的系统。
孤立系统
封闭系统
开放系统
4
热力学基本定律
热力学第零定律
如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持 不变。
热力学第二定律
其中,Δ(mv^2)/2表示系 统动能的变化量;
开口系统能量方程可表示 为:Q = ΔU + Δ(mv^2)/2 + Δ(mgh) + Δ(mΦ)。
Δ(mgh)表示系统势能的 变化量;
11
03 热力学第二定律
12
热力学第二定律表述
不可能从单一热源取热,使之完全转 换为有用的功而不产生其他影响。
热力学系统内的不可逆过程总是朝着 熵增加的方向进行。
性能评价指标
介绍蒸汽轮机的功率、效率等 性能评价指标及其计算方法。
性能影响因素
分析影响蒸汽轮机性能的主要 因素,如蒸汽参数、汽轮机结 构等。
优化设计策略
探讨提高蒸汽轮机性能的优化 设计策略,如改进叶片形状、
提高蒸汽参数等。

《气体动力循环》ppt课件

《气体动力循环》ppt课件
任务过程: 喷气式发动机以一定飞行速度前进时,空气以一样速度进入。高 速气流在前端扩压管1中降速升压后进入压气机2,经绝热紧缩进一 步升压。紧缩空气在熄灭室3中和喷入的燃料一同进展定压熄灭。 产生的高温燃气先在燃气轮机4中绝热膨胀产生轴功用于带动压气 机,然后进入尾部喷管5中,在其中继续膨胀获得高速,最后从尾 部喷向大气。 喷气式发动机分量轻、体积小、功率大,其功率随本身运动速度 提高而增大,特别适宜用做航空发动机。
(4)定容回热过程 :动力活塞1 位于其下死点,配气活塞2从其下 死点上移。使膨胀腔内工质经连 通管流入紧缩腔。此时工质容积 不变,并在流过回热器3时向回热 器放热,降低温度。当配气活塞2 移至其上死点时,工质全部进入 紧缩腔,定容回热过程终了。
活塞式热气发动机的热力循环及热效率
活塞式热气发动机理想循环:
v1 v2
RgTmaxln
v4 v3
在活塞式热气发动机中,v1=v4,v2=v3,故可得到
t
1
Tmin Tmax
即在一样温度范围内,活塞式热气发动机理想循环热效率与卡诺循 环热效率一样。因此,该循环以及类似的与卡诺循环有一样热效率 的一类理想循环称为概括性卡诺循环。
压气机耗功: (w s)ch2h1cp0(T2T 1)
所以 w0(ws)T(ws)c
cp0 T3 1(1 1)/ T1
(1)/1
(1)/

maxw, 0
T1 T3
循环净功有极大值。
二、燃气轮机的实践循环
压气机耗功: 燃气轮机轴功:
(ws )c
h2 h1
c,s
(w s)TT(h3h4)
理想化: 1. 热力过程的理想化
①进气过程→0-1定压线 ②紧缩过程→1-2定熵紧缩 ③熄灭过程→2-3定容加热+3-4定压加热〔外热源加热〕 ④膨胀过程→4-5定熵膨胀 ⑤排气过程→5-1定容放热+1-0定压线 2. 工质以理想气体对待

工程热力学讲义第9章气体动力循环

工程热力学讲义第9章气体动力循环

• 优点: • 理论上工质可以完全膨胀; • 体积小,功率大; • 速度高,运转平稳,连续输出功 ; • 启动快,达满负荷快 ;
• 缺点: • 燃气轮的叶片长时间工作于高温 下要求用耐高温、高强度材料; • 压气机消耗了燃气轮机产生功 率的绝大部分,但重量功率比 (specific weight of engine)仍较大
1-2-3-4-1为定容加热理想循环; 1-2‘-3’-3-4-1为混合加热理想循环; 1-2“-3-4-1为定压加热理想循环。
•三种循环排出的热量都相同, •循环的热效率的比较
在相同的热强度和机械强度下,定压加热理想循环的 热效率最高,混合加热理想循环次之,而定容加热理 想循环最低。
9-4 燃气轮机装置循环 Gas turbine cycle
•预胀比 表示工质在燃烧过程中比容增长程度,决定于喷
油量。
机器负荷 喷油量
t,p
9.3.3混合加热理想循环(dual combustion cycle)
现代高速柴油机并非单纯的按定压加热循环工作,而是按照一 种既有定压加热又有定容加热的所谓混合加热循环工作。
定量分析 (空气为工质)
q 1cv(T 2 T 2) cp(T 3 T 2 )
具有相同压缩比和吸热量时的比较
1-2-3-4-1为定容加热理想循环; 1-2-2‘-3’-4‘-1为混合加热理想循环; 1-2-3“-4”-1为定压加热理想循环。
•各循环放热量的比较
•三种理想循环热效率比较
能否得出定容加热循环最好,定压加热循环 最差的结论?
活塞式内燃机理想循环的比较2
具有相同的最高压力和最高温度时的比较 •实际上是热强度和机械强度相同情况下的比较。
T1 T4

工程热力学第九章图文ppt课件

工程热力学第九章图文ppt课件

活塞式内燃机各种理想循环热力比较
Tmax 和 pmax 保持不变
T
3
q2 相等
2p
t
1
q2 q1
1 T2 T1
2m 2v
4
1
q1p q1m q1v
tp tm tv
s
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
分析循环的步骤:
将简化好的理想可逆循环表示在p-v、T-s图上
对理想循环进行分析计算
计算循环中有关状态点(如最高压力 点、最高温度点)的参数,与外界交换的 热量、功量以及循环热效率或工作系数。
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
研究目标:
分析以气体为工质的内燃机循环、 燃气轮机循环的热力性能,揭示能量利 用的完善程度与影响其性能的主要因素, 给出评价和改进这些装置热力性能的方 法与措施。
q2p q2m q2v
T
2p 2m 2v 1
3p 3m 3v 4v
4p4m
tp tm tv
s
q ??Tmax和 1相同,图示 tp ,tm ,t大v 小
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益

工程热力学六动力装置循环课件

工程热力学六动力装置循环课件

蒸汽机动力装置的应用
蒸汽机动力装置广泛应用于工业领域,如发电站、化工、造纸等,也可用于船舶 和铁路机车等交通运输工具。
随着技术的发展,蒸汽机逐渐被更高效的汽轮机和内燃机所取代,但在某些特定 领域仍有一定应用。
05
燃气-蒸汽联合循环
燃气-蒸汽联合循环工作原理
燃气-蒸汽联合循环是一种高效、清洁的能源利用方式,它结合了燃气轮机循环和蒸汽轮机循环的优点。在燃气-蒸汽联合循 环中,首先通过燃气轮机燃烧燃料产生高温高压气体,驱动涡轮机转动并输出机械功;然后,将部分或全部高温排气引入余 热锅炉中加热给水,产生高温高压蒸汽;最后,蒸汽轮机利用这些蒸汽转动涡轮机并输出机械功。
03
燃气轮机动力装置循环
布雷顿循环
总结词
基于等压加热的理想循环,适用于燃气轮机。
详细描述
布雷顿循环由吸气、压缩、燃烧、膨胀和排气五个过程组成。在等压加热过程中,工质吸收热量并对 外做功,实现热能向机械能的转化。
回流燃烧室循环
总结词
提高燃气轮机效率的循环方式。VS详细描述回流燃烧室循环通过在燃烧室内形成回流 ,增加燃料与空气的混合时间和燃烧程度 ,从而提高燃烧效率。同时,回流还使得 燃烧室内压力升高,提高了循环热效率。
回热循环通过将部分做功后的蒸汽抽 出,引入回热器加热锅炉中的给水, 提高给水温度,减少锅炉中燃料消耗 ,从而提高整个循环的热效率。
再热循环
总结词
再热循环是在朗肯循环基础上增加一个再热器,以提高再热率的改进型循环。
详细描述
再热循环中,汽轮机高压缸排出的蒸汽被引入再热器中再次加热,然后进入低 压缸继续做功。再热循环可以提高汽轮机的效率,并减小蒸汽在汽轮机内的温 差和压力降,从而提高整个循环的热效率。

《工程热力学》第九章 气体动力循环

《工程热力学》第九章  气体动力循环
按定值比热计算
c , s
分析热效率 提高途径!
t


( k 1) / k ( k 1) / k
T
1
1
c , s c , s
1
1
31
四.燃气轮机回热循环 (定压加热回热循环)
1、回热的概念: 利用废气高温余热对进入燃烧室前的空气进行预 热,以减少燃料消耗,提高热效率的措施 回热度μ :空气在回热器中实际得到的热量与理想 情况下得到热量之比为回热度,一般在0.5-0.8 之间 2、多级压缩、级间冷却回热循环
低 压 压 气 机
9
燃料
中间燃烧室
中间冷却器
37
P
2 8 7 6 3 9
T
6
3 9
3’
4
2
7 1
1
5
4
V
5 s
8
多级压缩级间冷却回热循环 P-V图、T-S图
38
ξ 8.3
增压机及其循环(略)
一、增压机概念及简单装置 二、增压机工作过程及简化
39
第九章
气体动力循环(3学时)
基本内容: 热效率法分析循环;活塞式内燃机工作原理及 热力学方法;内燃机理想循环;燃气轮机装置 循环及提高热效率的方法;增压器及其循环; 其他循环简介 基本要求: 掌握分析循环热效率的方法;理解实际工作循 环合理简化的方法;掌握内燃机理想循环及提 高热效率的方法掌握;燃气轮机装置循环及提 高热效率的方法;了解其他循环
t 1
1

k 1 k
以P-V图、T-S图 分析热效率提高途径!
26
4、轴功计算及其最大值与增温比关系
燃气轮机作功 压缩机耗功
( ws )T h3 h4 CP 0 (T3 T4 )

《工程热力学》第九章 气体动力循环

《工程热力学》第九章 气体动力循环

9-4 活塞式内燃机各种理想循环的热力学比较
一、压缩比相同、吸热量相同时的比较 压缩比相同,1-2重合
吸热量相同,q1v q1m q1p
q2v q2m q2 p
tv tm tp

T 2v T 2m T 2 p
T 1v T 1m T 1p
tv
tm
tp
二、循环最高压力和最高温度相同时的比较
放热量相同:
又称萨巴德循环 12 等熵压缩;23 等容吸热; 34 定压吸热;45 等熵膨胀; 51 定容放热
特性参数:
压缩比(compression ratio) v1
v2 定容增压比(pressure ratio) p3
p2
定压预胀比 (cutoff ratio) v4
v3
反映气缸容积 反映供油规律
热效率
t
wnet q1
t
1
1
1
1
1
(9 7)
讨论:
v1 p3
v2
p2
v4
v3
a)循环1-2’-3’-4’-5-1
压缩比
Tm1 t
b)循环1-2-3”-4”-5-1
定容增压比
Tm1 t
c)循环1-2-3’”-4’”-5-1
定压预胀比
Tm1 t
二、定压加热理想循环(狄塞尔循环) 柴油机定压加热过程
3-4 等熵膨胀(燃气轮机内) 4-1 定压放热(排气,假想换热器)
热效率ηt
q1 h3 h2
cpm
t3 t2
T3 T2
cp
T3 T2
q2
h4
h1
c pm
t4 t1
T4 T1
cp T4 T1

《工程热力学》热力学第五章气体动力循环gas power cycle

《工程热力学》热力学第五章气体动力循环gas power cycle

= T4 vv= 43 T3 ρλT1ε k−1
p4
3
v
5
2
s
1
s
第5 章
5-1 活塞式内燃机动力循环
P170~207
5.1.2 活塞式内燃机的理想循环
T

效 率
ηt =
1

T3

T5 T2 +
− T1
k (T4

T3
)
4
3s
5 2
= T5
v4 v5
k −1 = T4
pp= 15 T1 ρ k λT1
ε
第5 章
5-1 活塞式内燃机动力循环
P170~207
例题1(p178) OTTO CYCLE
p1 = 100kPa,t1 = 18 C,ε = 8.6,Vh′ = 1000cm3,Q1 = 135J / 缸
求:ηt ,T3, p3
p
3
ηt
=
1

ε
1
k −1
=
1

1 8.61.4−1
=
0.577
2
v cutoff ratio
v3
P170~207
反映 气缸 容积
反映 供油 规律
第5 章
5-1 活塞式内燃机动力循环
P170~207
5.1.2 活塞式内燃机的理想循环
T
热 效
ηt =
1

T3

T5 T2 +
− T1
k (T4

T3
)
k −1
率 = T2
T= 1 vv12
T1ε k −1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1压缩 2-3:定容吸热 3-4:定压吸热
4-5:绝热膨胀
5-1:定容放热
三、柴油机理想循环及其热效率
分析循环吸热量,放热量,热效率和功量
p
3
4
T
4 3
2
2
5
5
1 1
v
s
定义几个柴油机特性参数
p
3
2
压缩比 v1
反映 气缸
4
v2 容积
5
定容升压比
p3 p2
1 定压预胀比 v4
工程热力学研究方法,先对实际动力循 环进行抽象和理想化,形成各种理想循 环进行分析,最后进行修正。
§9-1 柴油机实际循环和理想循环
一、四冲程柴油机实际工作循环
进气
压缩 燃烧和膨胀
排气
温度370~400 K, 压力
0.07~0.09MPa
进气行程
排气门关闭
下止点 上止点
活塞
P
进气门开启
大气压力线 r a
下止点 上止点
活塞
Z P
c
大气压力线 r
作功终了:温度 1300~1600 K, 压 力0.3~0.5 MPa
示功图
b
a V
下止点 上止点
活塞
进气门关闭 排气行程
排气门打开
Z P
残余废气
c b
大气压力线 r
V 示功图
温度900~1200 K 压力 0.105~0.115 MPa
温度300-370K 压力0.0785~ 0.0932MPa
第九章 气体动力循环
动力循环研究目的和分类
动力循环:工质连续不断地将从高温热源取得的 热量的一部分转换成对外的净功
研究目的:合理安排循环,提高热效率和功率
气体动力循环:内燃机
按工质
空气为主的燃气 按理想气体处理
蒸汽动力循环:外燃机
水蒸气等 实际气体
热机的分类
内燃机 热机
外燃机
柴油机(压燃式) 汽油机(点燃式) 燃气轮机
0—1 吸入空气
p3
1—2’ 多变压缩:先吸后放热
一般n=1.34~1.37
2 2’
p2’=3~5MPa t2’=600~700℃
柴油自燃t=335℃ p0
2’ 喷柴油
0
1
2 开始燃烧
V
2—3 迅速燃烧,近似 V
p↑5~8MPa
四冲程柴油机工作过程
3—4 边喷油,边膨胀
p3 4
近似 p 膨胀
t4可达1400~1800℃
示功图:表示活塞在不同位置时气缸内气 体压力的变化情况。
示功图 V
进气门关闭
压缩行程
压缩比:
ε=Va/Vc
排气门关闭
下止点 上止点
活塞
温度600~700K, 压力0.6~1.5 MPa
P
c 大气压力线 r
a 示功图 V
作功行程
排气门关闭
进气门关闭
瞬时最高:温度 2200~2800 K, 压 力3~5MPa
二冲程与四冲程比较
1、 理论上同样发动机排量、同样工作转速的二冲程发动机其功率 应等于四冲程的二倍,实际上由于实际压缩比小于名义压缩比, 气缸内进气不足(进气时间短,存在给气和扫气损失),只等 于1.5~1.6倍。
2、 二冲程没有配气机构,结构简单,体积小,重量轻,容易维修。
3、 二冲程作功间隔短,发动机运转平稳,飞轮转动惯量小,容易 上高速。
蒸汽轮机 往复式蒸汽机 热气机(斯特林发动机)
燃 气 轮 机 装 置 系统

燃烧室

燃料泵
压 气 燃机 料
燃气轮机 空气
压气机
燃烧室 燃气轮机
空气 排气
发电机
余热锅炉
发电机
蒸汽轮机 凝汽器
给水泵
燃气 蒸汽 联合 循环
汽油机与柴油机比较
汽油机转速高, 质量小,噪音 小,起动容易, 制造成本低; 柴油机压缩比 大,热效率高, 经济性能和排 放性能都比汽 油机好。
v
v3
反映 供油 规律
柴油机特性参数的意义
(1)压缩比:压缩前的比体积与压缩后的比体积之比,绝热压 缩过程中工质被压缩的程度,内燃机工作体积大小的结构参数。
v1 v2
(2)定容升压比: 定容加热后的压力与加热前的压力之比,内 燃机定容加热量多少的特性参数。
p3 p2
(3)定压预胀比: 定压加热后的比体积与加热前的比体积之比,内 燃机定压加热量多少的特性参数。
2 2’
4 停止喷柴油
5
4—5 多变膨胀:先吸后放热p0
6
pt55=600.205~~700.04℃5MPna=1.2~1.38 0
1 V
5—6 开阀排气, V 降压
6—0 活塞推排气,完成循环
四冲程柴油机动化演示
二冲程柴油机工作原理
扫气泵
压缩
喷油器
排气
空 气
换气 排气门
燃烧
废 气
二、四冲程柴油机的理想化条件
4、二冲程燃油消耗率远较四冲程的燃油消耗率高,HC等排放严重。 5、 二冲程由于燃油消耗率高、HC等排放严重而逐渐淘汰出摩托
车用市场,但军用小型无人航空飞行器却因其体积小、重量 轻、单位气缸工作容积输出功率大而仍被看好,但要解决电 控汽油喷射技术甚至废气涡轮增压技术 。
动力循环研究方法
实际动力循环非常复杂 不可逆,多变指数变化,燃烧等
进气门
二、四冲程柴油机的工作原理
温度800-1000K
压力0.105-
温度750-1000K 压力3-5 MPa
0.125MPa 喷 油 器 终了:温度
纯空气
1200~1500k压 力0.2-0.4MPa
排气门
吸气行程
瞬时:温度20002500K压力6-9 MPa
压缩行程
作功行程
排气行程
四冲程柴油机工作过程
1. 工质 定比热理想气体
34 p
略去燃油质量,工质数量不变 2
P-V图p-v图
2’
2. 0-1和6 -0抵消 开口闭口循环
p0
3. 定容与定压燃烧外界加热
0
5 6
1
4. 排气向外界放热
5. 多变压缩及膨胀绝热
6. 不可逆可逆
柴油机混合加热理想循环的P-v图和T-s图
p
3
4
T
4
p
3
s
2
s
5
v
5
2
v
汽油机与柴油机比较
柴油机与汽油机比较,柴油机的压缩比 高,热效率高,燃油消耗率低,同时柴油价 格较低,因此,柴油机的燃料经济性能好, 而且柴油机的排气污染少,排放性能较好。 但它的主要缺点是转速低,质量大,噪声大, 振动大,制造和维修费用高。
二冲程与四冲程
曲轴转两圈(720°), 活塞在气缸内上下往 复运动四个行程,完 成一个工作循环的内 燃机称为四行程内燃 机;而把曲轴转一圈 (360°),活塞在气缸 内上下往复运动两个 行程,完成一个工作 循环的内燃机称为二 行程内燃机。汽车发 动机广泛使用四行程 内燃机。
v4 v3
理想混合加热循环的热效率计算
吸热量
T
q1 cv T3 T2 cp T4 T3
4 3
放热量(取绝对值)
2
5
q2 cv T5 T1
1
热效率
s
t
w
q1
q1 q2 q1
1 q2 q1
1
相关文档
最新文档