3第三章线性规划应用
第三章线性规讲义划模型
Min W= Yb
YA - YS= C Y,YS≥0
➢ 若两个互为对偶问题之一有最优解,则另一个必有最优解, 且目标函数值相等(Z*=W*),最优解满足CX*=Y*b。
第三章 线性规划模型
▪ 线性规划问题的提出 ▪ 线性规划问题的建模 ▪ 典型特征和基本条件 ▪ 一般模型和标准模型 ▪ 线性规划的图解方法 ▪ 影子价格与敏感分析 ▪ 线性规划模型的应用
第三章 线性规划模型
• 对偶问题的提出
某厂生产甲、乙两 种产品,消耗A、B两 种原材料 。生产一件 甲产品可获利2元,生 产乙产品获利3元。问 在 以 下条件下如何安 排生产?
设备 A 设备 B 设备 C 利润(元/件)
产品 产品 产品 产品 甲乙丙丁 1.5 1.0 2.4 1.0 1.0 5.0 1.0 3.5 1.5 3.0 3.5 1.0 5.24 7.30 8.34 4.18
设备能力 (小时)
2000 8000 5000
第三章 线性规划模型
▪ 建立的模型如下:
z=12737.06(元)
▪ 请注意最优解中利润率最高的产品丙在最优生产计 划中不安排生产。说明按产品利润率大小为优先次 序来安排生产计划的方法有很大局限性。尤其当产 品品种很多,设备类型很多的情况下,用手工方法 安排生产计划很难获得满意的结果。另外,变量是 否需要取整也是需要考虑的问题。
第三章 线性规划模型
用线性规划制订使总利润最大的生产计划。
每件产品占用的 产品 产品 产品 产品 设备能力
机时数(小时/件) 甲 乙 丙 丁 (小时)
设备 A
1.5 1.0 2.4 1.0
2000
设备 B
1.0 5.0 1.0 3.5
线性规划的应用
线性规划的应用一、引言线性规划是一种数学优化方法,广泛应用于各个领域,如经济学、管理学、工程学等。
本文将介绍线性规划的基本概念、模型建立以及应用案例。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为系数,x₁、x₂、...、xₙ为决策变量。
2. 约束条件:线性规划的约束条件是一组线性不等式或等式,用于限制决策变量的取值范围。
约束条件通常表示为a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,其中a₁、a₂、...、aₙ为系数,b为常数。
3. 决策变量:线性规划中的决策变量是需要确定的变量,其取值决定了目标函数的取值。
决策变量通常表示为非负数,即x₁, x₂, ..., xₙ ≥ 0。
三、线性规划模型建立线性规划的模型建立包括确定目标函数、约束条件以及决策变量的取值范围。
下面以一个生产计划问题为例,详细说明线性规划模型的建立过程。
假设某工厂生产两种产品A和B,每天可用的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
产品A每小时需要2人工时,产品B每小时需要3人工时。
工厂每天可用的人工时为20小时。
现在需要确定每天生产的产品数量,以最大化利润。
1. 确定目标函数:由于目标是最大化利润,因此目标函数为z = 100A + 150B,其中A为产品A的数量,B为产品B的数量。
2. 确定约束条件:根据生产时间和人工时的限制,可以得到以下约束条件:- 2A + 3B ≤ 20(人工时限制)- A, B ≥ 0(非负数限制)3. 确定决策变量的取值范围:由于产品数量不能为负数,因此决策变量的取值范围为A, B ≥ 0。
四、线性规划的应用案例线性规划在实际应用中有广泛的应用,下面以物流配送问题为例,介绍线性规划的应用案例。
某物流公司需要将货物从仓库分配到不同的配送中心,以满足客户的需求。
线性规划的应用
线性规划的应用一、引言线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性目标函数的最优解。
它在各个领域都有广泛的应用,如经济学、工程学、运筹学等。
本文将介绍线性规划的基本概念、模型建立和求解方法,并结合实际案例展示其应用。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
例如,最大化利润或最小化成本。
2. 约束条件:线性规划的解必须满足一系列线性不等式或等式,称为约束条件。
例如,资源限制、技术限制等。
3. 决策变量:线性规划中需要做出决策的变量,称为决策变量。
例如,生产数量、销售数量等。
三、模型建立线性规划的建模过程包括确定决策变量、目标函数和约束条件。
1. 决策变量的确定:根据实际问题确定需要做出决策的变量。
例如,假设某公司需要决定生产产品A和产品B的数量,可以设定决策变量为x和y,分别表示产品A和产品B的生产数量。
2. 目标函数的建立:根据实际问题确定需要最大化或最小化的目标函数。
例如,假设公司的目标是最大化利润,可以建立目标函数为Maximize 3x + 5y,其中3和5分别表示产品A和产品B的单位利润。
3. 约束条件的建立:根据实际问题确定约束条件。
例如,假设公司的资源限制为总生产时间不超过8小时和总材料消耗不超过100kg,可以建立约束条件为:- 2x + 3y ≤ 8(生产时间约束)- x + 2y ≤ 100(材料消耗约束)- x ≥ 0, y ≥ 0(非负约束)四、求解方法线性规划可以使用各种数学方法进行求解,其中最常用的方法是单纯形法。
单纯形法的基本思想是通过不断地移动解去改善目标函数的值,直到找到最优解。
具体步骤如下:1. 初始化:选择一个初始可行解。
2. 检验最优性:计算当前解的目标函数值,判断是否为最优解。
如果是最优解,则结束求解;否则,继续下一步。
3. 选择进入变量:选择一个非基变量作为进入变量,使目标函数值增加最快。
高中数学第三章不等式3.4简单线性规划3.4.3简单线性规划的应用课件北师大必修5
题型一 题型二
【变式训练1】 某公司的仓库A存有货物12 t,仓库B存有货物8 t. 现按7 t,8 t和5 t把货物分别调运给甲、乙、丙三个商店.从仓库A运 货物到商店甲、乙、丙,每吨货物的运费分别为8元、6元、9元;从 仓库B运货物到商店甲、乙、丙,每吨货物的运费分别为3元、4元、 5元.应如何安排调运方案,才能使得从两个仓库运货物到三个商店 的总运费最少?
题型一 题型二
解:设需A型、B型卡车分别为x辆和y辆,公司所花的成本费为z元. 列表分析数据如下:
A 型车
B 型车
限量
车辆数 x
y
10
运物吨数 24x
30y
180
费用
320x
504y
z
������ + ������ ≤ 10, 24������ + 30������ ≥ 180, 由表可知 x,y 满足的约束条件为 0 ≤ ������ ≤ 8,������∈N,
取得最小值,zmin=2.5×4+4×3=22.
因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可
满足要求,且所花的费用最少.
题型一 题型二
反思对于线性规划的实际应用问题,通过审题理解题意,找出各量 之间的关系.最好是列成表格,找出线性约束条件,写出所研究的目 标函数,通过数形结合解答问题.解线性规划应用题时,先转化为简 单的线性规划问题,再按如下步骤完成:
分析:本题考查了利用线性规划解决实际问题,将实际问题中的 数据转化为下表:
商店 每吨运费 仓库
甲
乙
丙
A
8
6
9
B
3
4
5
题型一 题型二
解:设仓库A运给甲、乙商店的货物分别为x t,y t,则仓库A运给丙 商店的货物为(12-x-y)t,仓库B运给甲、乙、丙商店的货物分别为
第三章 线性规划
定义3.2.3 设 X 1, X 2, , X k是 n 维欧氏空间 En 中的 k 个
点,若存在 1,2, ,k ,且 0 i 1i 1,2, ,k , i 1 ,使
凸组合 ,则称 是 的 X 1X 1 2 X 2 k X k
i
X X 1, X 2, , X k
.
由此可见,凸集与极点的定义都与两点的凸组合密 切相关.可以证明:有界凸集的任意一点都可以表示为 该集的极点的凸组合.
即可。
例6 将下列线性规划模型化为标准形式
min z x1 2x2 4x3
x1 x2 x3 4
s.t.
2x1 x2 3x3 5 x1 3x2 x3 6
3x1 x2 2x3 7
x1 0, x2 0, x3无约束
解:以 x2 代替 x2 ;令 x3 x4 x5 ,x4 0,x5 0 ;z z 上述线性规划模型可化为标准型:
s.t.
n j 1
aij x j
bi i
1,2,
,m
x j 0 j 1,2, , n
(2)向量表示的缩写
max z C T X
n
s.t. j1 Pj x j b X 0
其中
C c1, c2 , , cn T ; X x1, x2 , , xn T ;
Pj a1 j , a2 j , , amj T ;
线性关系:约束条件及目标函数均保持线性关系.
具有以上特点的决策问题,被称之为线性规划问题。
二、线性规划问题的数学模型
一般形式 标准形式 缩写形式
1、LP问题的一般形式
maxminz c1x1 c2 x2 cn xn
a11x1 a12x2 a1n xn , b1
最新-第三章线性规划数学模型课件-PPT
X1
18
例4、 maxZ=3X1+2X2
X2
-X1 -X2 1
X1 , X2 0
无解
无可行解
-1
0
X1
-1
19
总结
唯一解 有解
无穷多解 无解 无有限最优解
无可行解
20
单纯形法
• 单纯形法(Simplex Method)是美国数学 家但泽(Dantzig)于1947年提出的。基 本思想是通过有限次的换基迭代来求出 线性规划的最优解。
3
线性规划的特点
❖决策变量连续性:求解出的决策变量值 可以是整数、小数;
❖线性函数:目标函数方程和约束条件方 程都是线性方程;
❖单目标:目标函数是单目标,只有一个 极大值或一个极小值;
❖确定性:只能应用于确定型决策问题。
4
例1、生产计划问题
A B 备用资源
煤12
30
劳动日 3 2
60
仓库 0 2
• 利用单纯形法解决线性规划问题,实际上是从 线性规划问题的一个基本可行解转移到另一个 基本可行解,同时目标函数值不减少的过程。
• 对于两个变量的线性规划问题,就是从可行域 的一个端点转移到另一个端点,而使得目标函 数的值不减少。
25
线性规划的扩展
一、整数规划(整数线性规划):部分或 全部的决策变量只能取整数值。
8
一般式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 ……… am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)
线性规划的应用
线性规划的应用一、引言线性规划是一种数学优化方法,广泛应用于工程、经济、管理等领域。
本文将针对线性规划的应用进行详细介绍,包括定义、模型建立、解决方法以及实际案例分析。
二、定义线性规划是一种在给定约束条件下,通过最大化或者最小化线性目标函数来求解最优解的方法。
线性规划的数学模型可以表示为:最大化(或者最小化)目标函数:Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件: a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,x₁, x₂, ..., xₙ为决策变量,c₁, c₂, ..., cₙ为目标函数的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的常数。
三、模型建立1. 确定决策变量:根据实际问题确定需要优化的变量,例如生产数量、投资金额等。
2. 建立目标函数:根据问题要求,将目标转化为线性函数,确定目标函数的系数。
3. 设定约束条件:根据问题的限制条件,建立约束条件的线性不等式。
4. 确定变量的取值范围:根据实际情况确定变量的取值范围,通常为非负数。
四、解决方法线性规划问题可以通过多种方法求解,其中最常用的方法包括单纯形法和内点法。
1. 单纯形法:单纯形法是一种通过迭代计算来逐步接近最优解的方法。
它从初始基本可行解开始,通过交换基变量和非基变量来改进解的质量,直到找到最优解为止。
2. 内点法:内点法是一种通过寻觅目标函数的内部点来逼近最优解的方法。
它通过迭代计算来逐步接近最优解,相比于单纯形法,内点法在处理大规模问题时更为高效。
五、实际案例分析为了进一步说明线性规划的应用,我们以一个生产计划优化问题为例进行分析。
假设某公司生产两种产品A和B,每天可用的生产时间为8小时。
第三章 线性规划及其对偶问题
第三章 线性规划及其对偶问题线性规划是最优化问题的一种特殊情形,也是运筹学的一个重要分支,它的实质是从多个变量中选取一组适当的变量作为解,使这组变量满足一组确定的线性式,而且使一个线性目标函数达到最优(最大或最小).线性规划的应用极为广泛,自1949年美国数学家G. B. Dantzing 提出一般线性规划问题求解的方法——单纯形法之后,线性规划无论在理论上、计算方法和开拓新的应用领域中,都获得了长足的进步,线性规划从解决技术问题的最优化设计到工业、农业、商业、交通运输业、军事、经济计划和管理决策等领域都有广泛的发展和应用.本章主要从线性规划的基本概念、数学模型、单纯形法、对偶理论、灵敏度分析等方面进行介绍.§3.1 线性规划数学模型基本原理一、线性规划的数学模型满足以下三个条件的数学模型称为线性规划的数学模型:(1)每一个问题都用一组决策变量T n x x x ][21,,, 表示某一方案;每一组值就代表一个具体方案.(2)有一个目标函数,可用决策变量的线性函数来表示,按问题的不同,要求目标函数实现最大化或最小化.(3)有一组约束条件,可用一组线性等式或不等式来表示. 线性规划问题的一般形式为1211221111221121122222112212max(min)()()()..()0n n n n n n n m m mn n m n f x x x c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++≤=≥⎧⎪+++≤=≥⎪⎪⎨⎪+++≤=≥⎪⎪≥⎩,,,,,,,,,,,,,.这里,目标函数中的系数n c c c ,,, 21叫做目标函数系数或价值系数,约束条件中的常数m b b b ,,, 21叫做资源系数,约束条件中的系数;,,,m i a ij 21(= )21n j ,,, =叫做约束系数或技术系数.二、线性规划问题的标准形式所谓线性规划问题的标准形式,是指目标函数要求min ,所有约束条件都是等式约束,且所有决策定量都是非负的,即1211221111221121122222112212min ()..0n n n n n n n m m mn n mn f x x x c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩,,,,,,,,,,,或简写为11min ()12..012nj j j nij ji j jf X c x a x b i m s t x j n ===⎧==⎪⎨⎪≥=⎩∑∑,,,,,,,,,,. 可以规定各约束条件中的资源系数0(12)i b i n ≥=,,,,否则等式两端乘以“1-”.线性规划问题的矩阵表示为min ()..0f X CX AX b s t X ==⎧⎨≥⎩,,,其中12[]n C c c c =,,,,12[]T n X x x x =,,,,11121212221212n n n m m mn a a a a a a A P P P a a a ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦[,,,],12[]T n b b b b =,,,. 任意的线性规划模型都可以转化为标准形式:(1)若目标函数是求最大值的问题,这时只需将所有目标函数系数乘以“-1”,求最大值的问题就变成了求最小值的问题,即)](min[)(max X f X f --=.求其最优解后,把最优目标函数值反号即得原问题的目标函数值.(2)若约束条件为不等式,这里有两种情况:一种是“≤”不等式,则可在“≤”不等式的左端加入一个非负的新变量(叫松驰变量),把不等式变为等式;另一种是“≥”不等式,则可在“≥”不等式的左端减去一个非负松驰变量(也叫剩余变量),把不等式变为等式.松驰变量在目标函数中对应的系数为零.(3)若存在取值无约束的变量k x ,可令k k k x x x ''-'=,其中k x ',0≥''k x . 例3.1 将下列线性规划问题化为标准形式123123123123123max ()2372.3250f X x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≥⎪⎨-++=⎪⎪≥⎩,,,,,,为无约束. 解 将目标函数变为)](min[X f -,令543x x x -=,其中450x x ≥,,在第一个约束不等式中加入松驰变量6x ,在第二个约束不等式中减去剩余变量7x ,则可得标准形式12456712456124571245124567min[()]23()00()7()2.32()5,,,,,0f X x x x x x x x x x x x x x x x x s t x x x x x x x x x x -=-+--++++-+=⎧⎪-+--=⎪⎨-++-=⎪⎪≥⎩,,,,.三、线性规划的解的概念和基本定理 考虑线性规划标准形式的约束条件0AX b X =≥,,其中A 为n m ⨯矩阵,m n >,b 是m 维向量.假定增广矩阵,A b []的秩=矩阵A 的秩m =,把矩阵A 的列进行可能的重新排列,使,A B N =[].这里B 为m m ⨯矩阵,且有逆矩阵存在,即0||≠B ,称B 为该线性规划问题的一个基.不失一般性,设111211212,,,m m m m mm a a a B PP P a a a ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦[], 称(12)j P j m =,,,为基向量,与基向量对应的变量(12)j x j m =,,,称为基变量,记为12T B m X x x x =[,,,],其余的变量称为非基变量,记为12T N m m n X x x x ++=[,,,].令m n -个非基变量均为0,并用高斯消元法,可得一个解12[][00]T T T T B N m X X X x x x ==,,,,,,,,称X 为该约束方程组的基解,其中b B X B 1-=.满足非负约束条件0≥X (基解的非零分量都0≥)的基解称为基可行解.对应于基可行解的基称为可行基.基可行解的非零分量个数小于m 时,称为退化解.线性规划的解的基本定理:引理3.1 线性规划问题的可行解12[]T n X x x x =,,,为基可行解的充要条件是X 的正分量所对应的系数列向量是线性无关的.证 必要性由基可行解的定义可知.下证充分性若向量组k P P P ,,,21线性无关,则必有m k ≤;当m k =时,它们恰构成一个基,从而12[00]T k X x x x =,,,,,,为相应的基可行解.当m k <时,则一定可以从其余的列向量中取出k m -个与k P P P ,,,21构成最大的线性无关向量组,其对应的解恰为X ,所以它是基可行解. 定理3.1 线性规划问题的基可行解X 对应于可行域D 的顶点. 证 不失一般性,假设基可行解X 的前m 个分量为正,故∑==mj jj b xP 1.(3.1)现在分两步来讨论,分别用反证法.(1)若X 不是基可行解,则它一定不是可行域D 的顶点.根据引理3.1,若X 不是基可行解,则其正分量所对应的系数列向量m P P P ,,, 21线性相关,即存在一组不全为零的数12i i m α=,,,,,使得02211=+++m m P P P ααα (3.2)用一个0>μ的数乘式(3.2),再分别与式(3.1)相加和相减,得到111222()()()m m m x P x P x P b μαμαμα-+-++-=,111222()()()m m m x P x P x P b μαμαμα++++++=.现取11122[()()()00]T m m X x x x μαμαμα=---,,,,,,,21122[()()()00]T m m X x x x μαμαμα=+++,,,,,,,由21X X ,可得121122X X X =+,即X 是21X X ,连线的中点.另一方面,当μ充分小时,可保证012i i x i m μα±≥=,,,,,即21X X ,是可行解,这证明了X 不是可行域D 的顶点.(2)若X 不是可行域D 的顶点,则它一定不是基可行解.因为X 不是可行域D 的顶点,故在可行域D 中可找到不同的两点,(1)(1)(1)112[]T nX x x x =,,,,T nx x x X ][)2()2(2)2(12,,, =,使12(1)01X X X ααα=+-<<,.设X 是基可行解,对应向量组m P P P ,,, 21线性无关,当m j >时,有0)2()1(===j j j x x x ,由于21X X ,是可行域的两点,应满足∑∑====mj mj jj j j b xP b x P 11)2()1(,.将这两式相减,即得∑==-mj j j jx xP 1)2()1(0)(.因21X X ≠,所以上式系数)()2()1(j j x x -不全为零,故向量组m P P P ,,, 21线性相关,与假设矛盾,即X 不是基可行解.定理3.2 若可行域有界,线性规划问题的目标函数一定可以在其可行域的顶点上达到最优.证 设k X X X ,,, 21是可行域的顶点,若0X 不是顶点,且目标函数在0X 处达到最优*0()f X CX =(标准形式是*()min ()f X f X =).因0X 不是顶点,所以它可以用D 的顶点线性表示为01101kki i i i i i X X ααα===≥=∑∑,,.因此011k ki i i i i i CX C X CX αα====∑∑.(3.3)在所有的顶点中必然能找到某一个顶点m X ,使m CX 是所有i CX 中最小者,并且将m X 代替式(3.3)中的所有i X ,得到∑∑===≥ki ki m m i ii CX CX CX11αα,由此得到m CX CX ≥0.根据假设,0CX 是最小值,所以只能有m CX CX =0,即目标函数在顶点m X 处也达到最小值.§3.2 线性规划迭代算法单纯形法是求解线性规划问题的迭代算法.一、单纯形法的计算步骤单纯形法的基本思路是:从可行域中某个基可行解(一个顶点)开始,转换到另一个基可行解(顶点),直到目标函数达到最优时,基可行解即为最优解.单纯形法的基本过程如图3.1所示.为计算方便,通常借助于单纯形表来计算,从初始单纯形表3.1开始,每迭代一步构造一个新单纯形表.单纯型表中B X 列中填入基变量m x x x ,,, 21;B C 列中填入基变量的价值系数m c c c ,,, 21;b 列中填入约束方程组右端的常数;j θ列的数字是在确定换入变量后,按θ规则计算填入;最后一行称为检验数行,对应各非基变量j x 的检验数是∑=-=-=mi j j ij i j j z c a c c 1σ,1j m n =+,,(这里令∑==mi ijj j ac z 1).(1)找出初始可行基,确定初始基可行解,建立初始单纯形表. (2)检验各非基变量j x 的检验数∑=-=-=mi j j iji j j z c ac c 1σ(1j m n =+,,).若所有0≥j σ,则已得到最优解,停止计算.否则转入下一步.(3)在0(1)j j m n σ<=+,,,中,若所有0≤jk a ,则此问题无最优解,停止计算.否则转入下一步.(4)根据min{|0}j j k σσσ<=,确定k x 为换入变量.按θ规则计算min 0i l ik ik lkb ba a a θ⎧⎫=>=⎨⎬⎩⎭, 可确定l x 为换出变量,转入下一步.(5)以lk a 为主元素进行迭代(用高斯消元法),把k x 所对应的列向量120010k k k lk mk a a P l a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=−−−→⎢⎥⎢⎥←⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦变换成第行, 将B X 列中的l x 换为k x ,得到新的单纯形表,重复步骤(2)—步骤(5),直到终止.单纯形法的流程图如图3.2所示.若目标函数要求实现最大化,一方面可将最大化转换为最小化,另一方面也可在上述计算步骤中将判定最优解的0≥j σ改为0≤j σ,将换入变量的条件min{|0}j j k σσσ<=改为max{|0}j j k σσσ>=.二、初始可行基的确定 (1) 若线性规划问题是11min ()12..012nj j j nij ji j jf X c x a x b i m s t x j n ===⎧==⎪⎨⎪≥=⎩∑∑,,,,,,,,,,, 则从(12)j P j n =,,,中一般能直接观察到存在一个初始可行基12100010[,,,]001m B P P P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦.(2)对所有约束条件是“≤”形式的不等式,可以利用化标准形式的方法,在每个约束条件的左端加入一个松驰变量,经过整理重新对j x 及ij a 进行编号,可得下列方程组.,,m n mn m m m m n n m m n n m m b x a x a x b x a x a x b x a x a x =+++=+++=+++++++++ 11,2211,221111,11显然得到一个m m ⨯单位矩阵B 可作为初始可行基12100010[,,,]001m B P P P ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦. (3)对所有约束条件是“≥”形式的不等式及等式约束情况,若不存在单位矩阵时,可采用人工变量,即对不等式约束减去一个非负的剩余变量后,再加入一个非负的人工变量;对等式约束再加入一个非负的人工变量,总可得到一个单位矩阵作为初始可行基.例3.2 求解线性规划问题12121212max ()2328416..4120f X x x x x x s t x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩,,,,,. 解:将线性规划问题化为标准形式12345123142512345min[()]2300028416..4120f X x x x x x x x x x x s t x x x x x x x -=--+++++=⎧⎪+=⎪⎨+=⎪⎪≥⎩,,,,,,,,.作初始单纯形表,按单纯形法计算步骤进行迭代,结果如下(表3.2).表3.2最后一行的检验数均为正,这表示目标函数值已不可能再减小,于是得到最优解*42004T X =[,,,,],目标函数值14)(*=X f .三、单纯形法的有关说明对线性规划问题min ()..0f X CX AX b s t X ==⎧⎨≥⎩,,,(3.5) 若系数矩阵中不含单位矩阵,没有明显的基可行解时,常采用引入非负人工变量的方法来求初始基可行解.下面分别介绍常用的“大M 法”和“两阶段法”.(一)大M 法在约束条件式(3.5)中加入人工变量,人工变量在目标函数中的价值系数为M ,M 为一个很大的正数.在迭代过程中,将人工变量从基变量中逐个换出,如果在最终表中当所有检验数0≥j σ时,基变量中不再含有非零的人工变量,这表示原问题有解,否则无可行解.例3.3 求解线性规划问题12312312313123min ()3211423..210f X x x x x x x x x x s t x x x x x =-++-+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩,,,,,,. 解:将原问题化为标准形式并引入人工变量,得12345671234123561371234567min ()300211423..210f X x x x x x Mx Mx x x x x x x x x x s t x x x x x x x x x x =-++++++-++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩,,,,,,,,,,.用单纯形法计算,得表3.3.根据表 3.3的最后一行的检验数均0≥,得最优解*4190000T X =[,,,,,,],最优值2)(*-=X f ,由于人工变量的值均为零,故得原问题的最优解*419T X =[,,],最优值为2)(*-=X f .(二)两阶段法两阶段法是把线性规划问题的求解过程分为两个阶段:第一阶段,给原问题加入人工变量,构造仅含价值系数为1的人工变量的目标函数且要求实现最小化,其约束条件与原问题相同,即11111111211221112min ()00..0n n m n n n n nn n n m mn n n m m n m g X x x x x a x a x x b a x a x x b s t a x a x x b x x x ++++++=++++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩,,,,,,,. 然后用单纯形法求解上述问题,若得到0)(=X g ,这说明原问题存在基可行解,可进入第二阶段计算,否则原问题无可行解,停止计算.第二阶段,将第一阶段计算得到的最终表,除去人工变量,将目标函数行的系数换为原问题的目标函数系数,作为第二阶段计算的初始单纯形表进行计算.例3.4 用两阶段法求解线性规划问题12312312313123min ()3211423.210f X x x x x x x x x x s t x x x x x =-++-+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩,,,,,,. 解 第一阶段,标准化并引入人工变量,得如下的线性规划=)(min X g 76x x +,1234123561371234567211423.210x x x x x x x x x s t x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩,,,,,,,,,. 用单纯形法计算该线性规划(见表 3.4),最优解为*[011120000]T X =,,,,,,,,最优值0)(*=X g .表3.4由于人工变量076==X X ,所以得原问题的基可行解为[011120]T X =,,,,.于是进入第二阶段计算(见表3.5),最优解为*[41900]T X =,,,,,最优值2)(*-=X f ,于是原问题的最优解为*[419]T X =,,,最优值为2)(*-=X f .§3.3 对偶问题的基本原理一、对偶问题的提出对偶性是线性规划的重要内容之一,每一个线性规划问题必然有与之相伴而生的另一个线性规划问题,我们称一个叫原问题,另一个叫对偶问题,这两个问题有着非常密切的关系,让我们先分析一个实际的线性规划模型与其对偶线性规划问题的经济意义.例3.5 某工厂计划在下一生产周期生产3种产品1A ,2A ,3A ,这些产品都要在甲、乙、丙、丁4种设备上加工,根据设备性能和以往的生产情况知道单位产品的加工工时,各种设备的最大加工工时限制,以及每种产品的单位利润(单位:千元),如表3.6所示,问如何安排生产计划,才能使工厂得到最大利润?解 设321x x x ,,分别为产品321A A A ,,的产量,构造此问题的线性规划模型为1231231231312123max ()8102237042280..3152250,,0f X x x x x x x x x x s t x x x x x x x =++++≤⎧⎪++≤⎪⎪+≤⎨⎪+≤⎪⎪≥⎩,,,,,.现在从另一个角度来讨论该问题.假设工厂考虑不安排生产,而准备将所有设备出租,收取租费.于是,需要为每种设备的台时进行估价.设4321y y y y ,,,分别表示甲、乙、丙、丁4种设备的台时估价.由表3.6可知,生产一件产品1A 需用各设备台时分别为h h h h 2342,,,,如果将h h h h 2342,,,不用于生产产品1A ,而是用于出租,那么将得到租费43212342y y y y +++.当然,工厂为了不至于蚀本,在为设备定价时,保证用于生产产品1A 的各设备台时得到的租费,不能低于产品1A 的单位利润8千元,即823424321≥+++y y y y .按照同样分析,用于生产一件产品2A 的各设备台时h 1,h 2,0,h 2所得的租费,不能低于产品2A 的单位利润10千元,即1022421≥++y y y .同理,还有223321≥++y y y .另外,价格显然不能为负值,所以01234iy i ≥=,,,,. 企业现在设备的总以时数为70h ,80h ,15h ,50h ,如果将这些台时都用于出租,企业的总收入为422150158070)(y y y y Y g +++=.企业为了能够得到租用设备的用户,使出租设备的计划成交,在价格满足上述约束的条件下,应将设备价值定得尽可能低,因此取)(Y g 的最小值,综合上述分析,可得到一个与例3.5相对应的线性规划,即123412341231231234min ()70801550243282210..3220g Y y y y y y y y y y y y s t y y y y y y y =++++++≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩,,,,,,,.称后一个规划问题为前一个规划问题的对偶问题,反之,也称前一个规划问题是后一个规划问题的对偶问题.二、原问题与对偶问题的表达形式和关系在线性规划的对偶理论中,把如下线性规划形式称为原问题的标准形式11221111221121122222112212min ()..0n n n n n n m m mn n mn f X c x c x c x a x a x a x b a x a x a x b s t a x a x a x b x x x =++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪⎪≥⎩,,,,,,,. 而把如下线性规划形式称为对偶问题的标准形式11221111221121122222112212max ()..0n n m m m m n n mn m nm g Y b y b y b y a y a y a y c a y a y a y c s t a y a y a y c y y y =++++++≥⎧⎪+++≥⎪⎪⎨⎪+++≥⎪⎪≥⎩,,,,,,,. 若用矩阵形式表示,则原问题和对偶问题分别可写成如下形式:原问题min ()..0f X CX AX b s t X =≥⎧⎨≥⎩,,.(3.6)对偶问题max ()..0g Y Yb YA C s t Y =≤⎧⎨≥⎩,,.(3.7)原问题与对偶问题的关系见表3.7.例3.6 求下面线性规划问题的对偶问题123412341342341234min ()23535224..600f X x x x x x x x x x x x s t x x x x x x x =+-++-+≥⎧⎪+-≤⎪⎨++=⎪⎪≤≥⎩,,,,,,,无约束. 解:根据表3.7可直接写出上述问题的对偶问题12312131********max ()546223..325100g Y y y y y y y y s t y y y y y y y y y =+++≥⎧⎪+≤⎪⎪-++≤-⎨⎪-+=⎪⎪≥≤⎩,,,,,,,无约束. 三、对偶理论定理3.3(弱对偶定理) 对偶问题(max )的任何可行解︒Y ,其目标函数值总是不大于原问题(min )任何可行解︒X 的目标函数值.证 由定理所设及问题(3.6)和问题(3.7)容易看出︒︒︒︒≤≤CX AX Y b Y .定理3.4(对偶定理) 假如原问题或对偶问题之一具有有限的最优解,则另一问题也具有有限的最优解,且两者相应的目标函数值相等.假如一个问题的目标函数值是无界的,则另一问题没有可行解.证明从略.定理3.5(互补松驰定理) 假如︒X 和︒Y 分别是原问题(3.6)和对偶问题(3.7)的可行解,︒U 是原问题剩余变量的值,︒V 是对偶问题松驰变量的值,则︒X 、︒Y 分别是原问题和对偶问题最优解的充要条件是0=+︒︒︒︒X V U Y .证 由定理所设,可知有0AX U b X U ︒︒︒-=︒≥,,,(3.8) 0Y A V C Y V ︒︒︒︒︒+=≥,,.(3.9)分别以︒Y 左乘式(3.8),以︒X 右乘式(3.9),两式相减,得b Y CX X U U Y ︒︒︒︒︒︒-=+.若0=+︒︒︒︒X V U Y ,根据弱对偶定理知CX b Y CX Yb ≤=≤︒︒.这说明︒X ,︒Y 分别是原问题和对偶问题最优解,反之亦然.根据互补松驰定理和决策变量满足非负条件可知,在最优解时,︒︒U Y 和︒︒X V 同时等于0,所以有)21(000n j x v j j ,,, ==, )21(000m i u y i i ,,, ==. 于是,互补松驰定理也可以这样叙述:最优化时,假如一个问题的某个变量取正数,则相应的另一个问题的约束条件必取等式;或者一个问题中的约束条件不取等式,则相应于另一问题中的变量必为零.例3.7 已知线性规划问题123451234512445min ()23523234.2330125jf X x x x x x x x x x x s t x x x x x x j =++++⎧++++≥⎪-+++≥⎨⎪≥=⎩,,,,,,,.已知其对偶问题的最优解为5)(5/35/4**2*1===Y g y y ,,,试用对偶理论找出原问题的最优解.解:先写出它的对偶问题12121212121212max ()4322(1)3(2)235(3)..2(4)33(5)0g Y y y y y y y y y s t y y y y y y =++≤⎧⎪-≤⎪⎪+≤⎪⎨+≤⎪⎪+≤⎪≥⎪⎩,,,,,,,.将*2*1y y ,的值代入约束条件,得(2),(3),(4)为严格不等式,由互补松驰定理得***2340x x x ===,因021≥y y ,,原问题的两个约束条件应取等式,故有**1534x x +=, **1523x x +=.求解后得到**1511x x ==,,故原问题的最优解为 **10001()5TX f X ==[,,,,],.四、对偶问题的迭代算法对偶单纯形法是对偶问题的迭代算法,其基本思想是:从原问题的一个基本解出发,此基本解不一定是可行解,但它对应着对偶问题的一个可行解;然后检验原问题的基本解是否可行,即是否有负的分量.如果有小于零的分量,则进行迭代,求另一个基本解,此基本解对应着另一个对偶可行解.如果得到的基本解的分量皆非负,则该基本解为最优解.也就是说,对偶单纯形法在迭代过程中始终保持对偶解的可行解,使原问题的基本解由不可行逐步变为可行.当同时得到对偶问题与原问题的可行解时,便得到原问题的最优解.对线性规划问题的标准形式min ()..0f X CX AX b s t X =≥⎧⎨≥⎩,,.对偶单纯形法的计算步骤如下:(1)找出原问题的一个基,构成初始对偶基可行解,使所有检验数0≥j σ,构成初始对偶单纯形表.(2)若所有0≥i b ,则当前的解是最优解,停止计算,否则计算min{|0}l i i b b b =<,则l 行为主行,该行对应的基变量为换出变量.(3)若所有0≥lj a ,则对偶问题无界,原问题无解,停止计算,否则计算min |0j k lj lj lka a a σσθ⎧⎫⎪⎪=<=⎨⎬--⎪⎪⎩⎭,则k 列为主列,该列对应的基变量为换入变量.(4)以lk a 为主元素进行迭代,然后转回步骤(2). 对偶单纯形法的流程图如图3.3所示.例3.8 用对偶单纯形法求解下述线性规划问题123123123123min ()23423..2340f X x x x x x x s t x x x x x x =++++≥⎧⎪-+≥⎨⎪≥⎩,,,,,.解:首先将“≥”约束条件两边反号,再加入松驰变量,可得原问题的一个基123451234123512345min ()2340023..2340f X x x x x x x x x x s t x x x x x x x x x =++++---+=-⎧⎪-+-+=-⎨⎪≥⎩,,,,,,,.图3.3从表3.8看出,所有检验数0≥j σ,则对应对偶问题的解是可行的,因b 列数字为负,需进行迭代,计算min 344--=-{,}.所以5x 为换出变量.又因为24min 123θ⎧⎫=-=⎨⎬⎩⎭,,,所以1x 为换入变量,以换入、换出变量所在行列交叉处元素“-2”为主元素,按单纯形法计算步骤进行迭代,得表3.9.由表3.9的最后一行看出,所有检验数0≥j σ,故原问题的最优解为*[11/52/50]T X =,,.若对应两个约束条件对偶变量为1y ,2y ,则可得对偶问题的最优解为*[8/51/5]T Y =,.§3.4 线性规划问题灵敏度在建立实际的线性规划模型时,所收集到的数据不是很精确;另一方面在实际应用中,各种信息瞬息万变,已形成的数学模型中的某些数据需要随之而变.因此,对于一个线性规划问题,研究当数据发生变动时解的变化情况是很重要的.下面仅介绍两种数据变化而导致解的变化的情况,这就是灵敏度分析问题.一、价值系数的变化假设只有一个系数k C 变化,其它系数保持不变 ,k C 的变化只影响检验解而不影响解的非负定性,下面分别就k C 是非基变量系数和基变量系数两种情况进行讨论.(1)k C 是非基变量的系数由于B C 不变,因而j Z 对任何j 都不变.这时非基变量的系数k C 的变化只影响与k C 有关的一个检验数k σ的变化,而对其它j σ没有影响,设系数从k C 变化到k C ',这时检验数k k k Z C -=σ被k k kZ C -'='σ所代替,在当前解是原问题的最优解时,有0≥-=k k k Z C σ,假如()(k k k k k k C Z C Z C σ'''=-=-+)0k C -<,则k X 必须引进基,单纯形法继续进行,否则原解仍是k C 变化后的新问题的最优解,最优解不变相当于k C '变化的界限为)(k k k kZ C C C --≥'. (2)k C 为基变量的系数当k C 被k C '所代替时,j Z 变成j Z ',j j Z C '-可计算为kj k kj j j j a C C Z C Z C )(-'--='-. (3.10)特别是当k j =时,0=-k k Z C ,且1=kk a ,因此k k k k C C Z C -'='-,仍为零.由式(3.10)知,基变量k x 的价值系数k C 的变化会引起整个价值系数行的变化,变化值为)(k k C C -'-乘以最终表相应该基变量k x 所在的k 行的数值kj a .k 列本身则调整为0='-'k k Z C .由式(3.10)可看出,当对某个非基变量j x ,式(3.10)为负时会引起基的变化,若要保持最优解不变,分析变化值)(k k C C -'且大于或小于零以及kj a 值是正或负的情况,得出会保持最优解不变的k C '的变化界限为max 0min 0j j j j k kj k k kj j jkj kj C Z C Z C a C C a a a ⎧⎫⎧⎫--⎪⎪⎪⎪'+<≤≤+>⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭.例3.8 以例3.2的最终表为例,设基变量2x 的系数2C 变化2C ∆,在原最优解不变条件下,确定2C ∆的变化范围.解 此时例3.2的最终表便成为表3.10为了保持原最优解不变,则2x 的检验数应当为零,进行行初等变换,得表3.11.从表(3.11)可得02232≥∆-C 且08812≥∆+C . 由此可得2C ∆的变化范围为312≤∆≤-C ,即2x 的价值系数2C 可以在[0,4]之间变化,而不影响原最优解.二、资源系数的变化假设资源系数k b 变化为k b ',k b 的变化将会影响解的可行性,但不会引起检验数的符号变化.根据基可行解的矩阵表示可知,b B X B 1-=,所以只要k b 变化必定会导致最优解的数值发生变化,最优解的变化分为两类:一类是保持01≥-b B ,最优基B 不变;另一类是b B 1-中出现负分量,这将使最优基B 变化,若最优基不变,则只需将变化后的k b 代入B X 的表达式重新计算即可;若b B 1-中出现负分量,则要通过迭代求解新的最优基和最优解.设系数k b 变化到k k k b b b ∆+=',而其它系数都不变,这样使最终表中原问题的解相应变化为11111100k B k k k k m mk m b a b X B b b B b B b b b a b ---⎡⎤⎡⎤⎢⎥⎢⎥'⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'=+∆=+∆=+∆⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 其中B X 为原最优解,i b '为B X 的第i 个分量,ik a 为1-B 的第i 行第k 列元素,为了保持最优基不变,应使0≥'B X ,即110k k m mk a b b b a '⎡⎤⎡⎤⎢⎥⎢⎥+∆≥⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦. 由此可得到保持最优基不变时,资源系数的变化界限为max 0min 0i i k ik k k ik ik ik b b b a b b a a a ⎧⎫⎧⎫''--⎪⎪⎪⎪'+>≤≤+<⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭.例3.9 若例3.2的第二个约束条件中2b 变化为22b b ∆+,在最优解不变的条件下,求2b ∆的变化范围.解 计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡≥∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆+--000812141244002211b b B b B可得2224/(1/4)164/(1/2)82/(1/8)16b b b ∆≥-=-∆≥-=-∆≤--=,,.所以2b ∆的变化范围是(-8,16).显然2b 的变化范围是(8,32).。
高中数学第三章不等式3.4简单线性规划3.4.3简单线性规划的应用高一数学
x,y∈N,
利润 z=6x+8y.
(4 分)
12/13/2021
作出可行域如图阴影部分所示中的整点部分.
(8 分) 由图可知当直线 6x+8y=z 经过可行域内点 A 时 ,
12/13/2021
z 取最大值,由3xx++22y=y=2320,得xy==94,,(10 分) 此时 zmax=6×4+8×9=96(百元). 所以生产空调机 4 台,洗衣机 9 台时,可获最大利润 9 600 元.
12/13/2021
3.医院用甲、乙两种原料给手术后的病人配营养餐,甲种原 料每 10 g 含 5 单位蛋白质和 10 单位铁质,售价 3 元;乙种原 料每 10 g 含 7 单位蛋白质和 4 单位铁质,售价 2 元.若病人每 餐至少需要 35 单位蛋白质和 40 单位铁质,试问:应如何使用 甲、乙原料,才能既满足营养,又使费用最省?
12/13/2021
【解】 (1)由已知,x,y 满足的数学关系式为
70x+60y≤600, 7x+6y≤60,
5x+5y≥30, x+y≥6,
x≤2y,
即x-2y≤0,
x≥0,
x≥0,
y≥0,
y≥0,
12/13/2021
该二元一次不等式组所表示的平面区域为图①中的阴影部分:
12/13/2021
5
25
12/13/2021
已知电视台每周安排的甲、乙连续剧的总播放时间不多于 600 分钟,广告的总播放时间不少于 30 分钟,且甲连续剧播放的 次数不多于乙连续剧播放次数的 2 倍.分别用 x,y 表示每周计 划播出的甲、乙两套连续剧的次数. (1)用 x,y 列出满足题目条件的数学关系式,并画出相应的平 面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收 视人次最多?
线性规划的应用
线性规划的应用一、引言线性规划是一种数学优化方法,可用于解决各种实际问题。
本文将介绍线性规划的基本概念和应用领域,并通过具体案例展示其在实际问题中的应用。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。
目标函数通常表示为各个决策变量的线性组合。
2. 约束条件:线性规划问题必须满足一组线性不等式或等式的约束条件。
这些约束条件限制了决策变量的取值范围。
3. 决策变量:决策变量是问题中需要决策的变量,其取值对问题的解决方案产生影响。
4. 可行解:满足约束条件的决策变量取值称为可行解。
5. 最优解:在满足约束条件的可行解中,使目标函数达到最大或最小值的解称为最优解。
三、线性规划的应用领域线性规划广泛应用于各个领域,包括生产计划、资源分配、运输问题、投资组合、市场营销等。
下面将通过一个生产计划的案例来说明线性规划在实际问题中的应用。
案例:生产计划问题某公司生产两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。
公司有两个生产车间,生产车间1每天可生产产品A 4个单位或产品B 6个单位;生产车间2每天可生产产品A 6个单位或产品B 3个单位。
公司每天的生产时间为8小时。
假设公司希望最大化每天的利润,请问应该如何安排生产计划?解决方案:1. 确定决策变量:- x1:生产车间1生产的产品A的单位数- x2:生产车间1生产的产品B的单位数- x3:生产车间2生产的产品A的单位数- x4:生产车间2生产的产品B的单位数2. 建立目标函数和约束条件:目标函数:最大化利润- 目标函数:maximize 10x1 + 15x2 + 10x3 + 15x4约束条件:生产时间和生产能力的限制- 生产时间约束:4x1 + 6x2 + 6x3 + 3x4 <= 8- 生产能力约束:x1, x2, x3, x4 >= 03. 求解最优解:使用线性规划求解器,可以得到最优解,即每天生产2个单位的产品A和1个单位的产品B,每天的利润为40元。
线性规划的应用
线性规划的应用一、引言线性规划是一种数学优化方法,可以用于解决各种实际问题。
本文将介绍线性规划的基本概念和应用领域,并通过一个实例详细说明线性规划的应用过程。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数被称为目标函数。
2. 约束条件:线性规划的解必须满足一系列线性约束条件,这些条件可以用一组线性不等式或者等式表示。
3. 决策变量:线性规划中需要决策的变量被称为决策变量,它们的取值将影响目标函数的值。
三、线性规划的应用领域线性规划广泛应用于各个领域,包括生产计划、资源分配、运输问题、投资组合等。
以下是其中几个常见的应用领域:1. 生产计划:线性规划可以匡助企业确定最佳的生产计划,以最大化利润或者最小化成本。
通过考虑资源限制、销售需求和生产能力等因素,可以确定最优的生产数量和产品组合。
2. 资源分配:线性规划可以匡助机构或者组织合理分配有限的资源,以满足各种需求。
例如,一个学校可以使用线性规划确定最佳的课程安排,以最大化学生的满意度和资源利用率。
3. 运输问题:线性规划可以解决运输问题,如货物的最佳调度和运输路径的选择。
通过考虑运输成本、运输能力和需求量等因素,可以确定最优的运输方案,以降低成本并提高效率。
4. 投资组合:线性规划可以匡助投资者确定最佳的投资组合,以最大化回报并控制风险。
通过考虑不同投资资产的预期收益率、风险和相关性等因素,可以确定最优的投资权重。
四、线性规划应用实例:生产计划问题假设某公司有两种产品A和B,每一个产品的生产需要消耗不同的资源,并且有一定的市场需求和利润。
公司希翼确定每种产品的生产数量,以最大化总利润。
1. 建立数学模型设产品A的生产数量为x,产品B的生产数量为y。
根据题目描述,我们可以得到以下信息:目标函数:最大化总利润,即maximize Z = 3x + 5y。
约束条件:- 资源1的消耗:2x + 3y ≤ 10- 资源2的消耗:4x + y ≤ 8- 产品A的市场需求:x ≥ 0- 产品B的市场需求:y ≥ 02. 解决线性规划问题通过线性规划求解器或者图形法,我们可以找到最优解。
第三章 线性规划及图解法
max z=11x1+8x2+0 sl +0 s2 +0 s3; 约束条件: 例2中 10x1+ 2x2-sl=20, sl=0 3x1+3 x2-s2=18, s2=0 4x1+9x2-s3=36, s3=13 x1,x2,sl,s2,s3≥0
六、线性规划数学模型的标准形式
引入了松驰变量和剩余变量后,就可以 将线性规划数学模型用“≤”,“≥”和“=” 建立的一般形式化为统一用“=”的标准形式:
兰州大学管理学院
运筹学
-------数据、模型与决策
2010年用
运筹学
第三章
线性规划及图解法
第三章 线性规划及图解法
确定型决策 ——线性规划方法
线性规划 ——所有资源限制条件式和目标 式都是自变量的一次方关系。
描述的是在一定资源限制下(自然状态),给 出了很多个可以选择的不同方案(运行方案), 从这些方案中找到一个最好的方案来执行。
二、线性规划问题的解
1、在线性规划问题的解集合中,若约束条件能构成 一个封闭的可行域,则可行域的任意点都是问题的 一个可行解,这些可行解中必有最优解。 若最优解是可行域中一个点,则这个解是线性 规划的唯一最优解。唯一最优解都必落在可行域的 顶点上,可行域的所有顶点称为基本可行解; 对于求最大目标的线性规划问题,取Z值最小的 基本可行解为初始基本可行解,再依次迭代至最优 解。 求最小目标的情况,可选可行域中任意目标初函 数值较大的点为初始基本可行解,再依次迭代至最
蛋白质 钙
食用量不能为负
一般线性规划问题的建模过程
(1)理解要解决的问题。明确在什么条件下,要 追求什么目标。 (2)定义决策变量。每个问题都用一组决策变量 (x1, x2, …, xn)表示,当这组决策变量取具体值时就 代表一个具体方案,一般这些变量取值是非负的。 (3)用决策变量的线性函数形式写出所要追求的 目标,即目标函数,按问题的不同,要求目标函数 实现最大化或最小化。 (4)用一组决策变量的等式或不等式来表示在解 决问题过程中所必须遵循的约束条件(决策分析中 的自然状态)。
对偶理论(第三章线性规划3)
max f 5x1 4x2
x1 3x2 90
s .t
2x1x1x
x2 80 2 45
x1 , x2 0
其对偶问题的数学模型
设 y1, y2 , y3 分别表示设备甲、乙、丙每台时的价格(或 租金),则
min g 90y1 80y2 45y3
y1 2 y2 y3 5
4.对偶定理 若原问题和对偶问题之一有最优解,则另一个也有最优
解,且两者的最优目标函数值相等。
5.若原问题和对偶问题同时有可行解,则他们必都有最优解。
6.若原问题的最优解为 X B B 1b ,则对偶问题的最优解为 Y CB B 1 。
7.根据原问题最优单纯形表中的检验数可以读出对偶问题的最优解。
x1+ x2 + x3 = 5 2x2 + x3 5 4x2 +6x3 9
x1 , x2 , x3 0
max f =2x1 +x2
x1+ x2 + x3
=5
2x2 + x3 +x4 = 5
-4x2 –6x3 +x5 =-9
x1 … x5 0
xj 2 x1 0 x4 0 x5
-f
2 x1 0 x4 1 x2
-f
21 00 0 0
x1 x2 x3 x4 x5 B-1b 1110 0 5 0211 0 5 0 -4 -6 0 1 -9 0 -1 -2 0 0 -10 1 0 -1/2 0 1/4 11/4 0 0 -2 1 -1/2 1/2 0 1 3/2 0 -1/4 9/4 0 0 -1/2 0 -1/4 -31/4
-f
0 0 0 -1 -3 -215
线性规划应用课件
xxi323
≤ ≤
30 ( i=1,2,3,4 80,x24 线≤性规划1应0用0
),
25
投资问题
3)目标函数及模型:
2.线性规划应用
一、线性规划---
合理利用线材问题:如何下 料使用材最少。
配料问题:在原料供应量的 限制下如何获取最大利润。
投资问题:从投资项目中选 取方案,使投资回报最大。
线性规划应用
1
2.线性规划应用
产品生产计划:合理利用人 力、物力、财力等,使获利最 大。
劳动力安排:用最少的劳动 力来满足工作的需要。
上加工;数据如下表。问:为使该厂获得最
大利润,应如何制定产品加工方案?
线性规划应用
13
生产计划的问题
设备
A1 A2 B1 B2 B3 原料(元/件) 售价(元/件)
产品单件工时
ⅠⅡ Ⅲ
5 10
7
9
12
6
8
4
11
7
0.25 0.35 0.50
1.25 2.00 2.80
设备的 有效台时
6000 10000 4000 7000 4000
丙
不限
25
原材料名称
1 2 3
每天最多供应量
100 100 线性规划应6用0
单价(元/kg) 65 25 3157
配料问题
解:设 xij 表示第 i 种(甲、乙、丙) 产品中原料 j 的含量。这样我们建立数学
模型时,要考虑:
对于甲: x11,x12,x13; 对于乙: x21,x22,x23; 对于丙: x31,x32,x33; 对于原料1: x11,x21,x31; 对于原料2: x12,x22,x32; 对于原料线3性:规划应用x13,x23,x33; 18
线性规划应用
3 x 1 2 x 2 40 5 x 1 x 2 35 x1 0, x 2 0 .
21
5、混合配方问题
一家化工厂将四种原料A、B、C、D混合调 配出三种产品,三种产品的销售价格分别 为每公斤9元、8.5元和8元,各种原料A、 B、C、D的供应量分别是1000、1000, 750和800公斤;单价分别是每公斤5元、6 元、4元和4.5元。该厂应如何安排生产才 能使获得的利润最大?
40
周日报纸杂志 x4 2500 1000 4
60
电台新闻 x5
300 100 30
20
8
2、市场营销应用
问如何选择各个媒体的使用次数使宣传效 果最好 约束条件:
预算不超过3万美元 至少10部电视 受众至少5万人
9
2、市场营销应用
1、确定决策变量:各个媒体的使用次数是多少? 2、确定目标函数:
maxZ=65X1+90X2+40X3+60X4+20X5 3、确定约束条件:
非负性约束:xj ≥0,j=1,2,…6
29
若每时段的人员工资不同,我们还可建立最小费用模型
序号
1 2 3 4 5 6
时段
06:00——10:00 10:00——14:00 14:00——18:00 18:00——22:00 22:00——02:00 02:00——06:00
每4小时的工 资 3元 3元 3元 4元 4元 5元
25
5、混合配方问题
销售收入: 原料成本: 目标函数:
26
5、混合配方问题
第三章 线性规划及图解法
第三章线性规划及图解法3.1根据下面决策变量x l、x2的约束条件,各画一张图显示满足这个约束的非负解。
再将这些约束条件综合在一张图上,表示出在外在约束(函数约束)和简单约束(非负约束)下的可行域。
x l- x2≤2-3x l+6 x2≥34x l-3 x2≥1解:3.2 有下面决策变量x l、x2构成的目标函数:max Z=2x l+3 x21、在一张图上分别画出Z =6、Z =12、Z =18时相应的目标函数直线。
2、写出这三条直线方程的斜截式形式,比较三条直线的斜率以及在x2轴上的截距。
解:1、2、三个斜截式中斜率相同,都是 ,在 2轴上的截距分别为2、4、6。
3.3 将下列线性规划问题划为标准形式 1、 max Z=3x l +2 x 2+4 x 3-8 x 4 S.T. x l +2 x 2+5 x 3+6 x 4≥8 -2x l +5 x 2+3 x 3-5 x 4≤2 2x l +4 x 2+4 x 3-5 x 4=18x l 、x 2、x 3 ≥0 x 4无约束解: max Z=3x l +2 x 2+4 x 3-8 x 5+8x 6+0x 7+0x 8S.T. x l +2 x 2+5 x 3+6 x 5-6x 6-x 7=8-2x l +5 x 2+3 x 3-5 x 5+5x 6+x 8=2 2x l +4 x 2+4 x 3-5 x 5+5x 6=18x l 、x 2、x 3、x 4、x 5 、x 6、x 7 、x 8 ≥0 2、 min f=5x l -2 x 2+4 x 3-3 x 4 S.T. -x l +2 x 2- x 3+4 x 4=-2 -x l +3 x 2+ x 3+ x 4≤14 2x l - x 2+3 x 3- x 4≥2x l 符号不限,x 2≤0,x 3 、x 4≥0解: max f=5x 1-5x 2 +2 x 3+4 x 4-3 x 5+0x 6+0x 7S.T. x 1-x 2 +2 x 3+ x 4-4 x 5=2-x 1+x 2 -3 x 3+ x 4+ x 5+x 6=142x l -2x 2+ x 3+3 x 4- x 5-x 7=2x 1、x 2、x 3、x 4 、x 5、x 6 、x 7≥03.4 用图解法求解下列线性规划问题 1、max Z=x l +2 x 2S.T. 3x l +5 x 2≤15 6x l +2 x 2≤12 x l 、 x 2≥0解: 最优解为(0,3),最优值:6。
线性规划的应用
线性规划的应用一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,包括生产计划、资源分配、运输问题等。
本文将介绍线性规划的基本概念和应用实例。
二、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为系数,xi为变量。
2. 约束条件:线性规划的变量需要满足一系列线性约束条件,通常表示为a11x1 + a12x2 + ... + a1nxn ≤ b1,a21x1 + a22x2 + ... + a2nxn ≤ b2,...,am1x1 +am2x2 + ... + amnxn ≤ bm,其中aij为系数,bi为常数。
3. 变量的非负性:线性规划的变量通常要求非负,即xi ≥ 0。
三、线性规划的应用实例1. 生产计划问题假设一个工厂生产两种产品A和B,每单位产品A需要2小时的生产时间,每单位产品B需要3小时的生产时间。
工厂每天有10小时的生产时间可用。
产品A的利润为100元,产品B的利润为150元。
工厂的目标是最大化利润。
根据以上信息,我们可以建立线性规划模型:目标函数:Z = 100x1 + 150x2约束条件:2x1 + 3x2 ≤ 10变量的非负性:x1, x2 ≥ 0通过求解该线性规划模型,可以得到最优解,即生产产品A和产品B的数量,以达到最大利润。
2. 资源分配问题假设一个公司有两个项目,每个项目需要不同数量的人力资源和资金。
项目1需要3人力资源和5000元资金,项目2需要5人力资源和8000元资金。
公司的目标是最大化项目的总利润。
项目1的利润为20000元,项目2的利润为30000元。
公司的人力资源和资金有限,分别为10人和20000元。
根据以上信息,我们可以建立线性规划模型:目标函数:Z = 20000x1 + 30000x2约束条件:3x1 + 5x2 ≤ 105000x1 + 8000x2 ≤ 20000变量的非负性:x1, x2 ≥ 0通过求解该线性规划模型,可以得到最优解,即分配给项目1和项目2的人力资源和资金数量,以达到最大利润。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3x1 2x2 40 5x1 x2 35 x1 0, x2 0.
21
5、混合配方问题
一家化工厂将四种原料A、B、C、D混合调 配出三种产品,三种产品的销售价格分别 为每公斤9元、8.5元和8元,各种原料A、 B、C、D的供应量分别是1000、1000, 750和800公斤;单价分别是每公斤5元、6 元、4元和4.5元。该厂应如何安排生产才 能使获得的利润最大?
3元
60
3元
70
3元
60
4元
50
4元
20
5元
30
32
6、人员安排(选讲)
探讨1(如何作领导?)
序
时段
护士的最 方案 方案1 方案2 方案3 方案4
号
少人数
1 06:00——10:00 60
x1 50 60 60 40
2 10:00——14:00 70
x2 20 10 10 30
3 14:00——18:00 60
x3 50 50 50 30
4 18:00——22:00 50
x4 0 0
0 20
5 22:00——02:00 20
x5 20 20 30
0
6 02:00——06:00 30
x6 10 10
0
3330
6、人员安排(选讲)
探讨2:转换时间
34
6、人员安排(选讲)
序号 1 2 3 4 5 6
时段 06:00——10:00 10:00——14:00 14:00——18:00 18:00——22:00 22:00——02:00 02:00——06:00
产品1: XA1+XB1+XC1+XD1
产品2: XA2+XB2+XC2+XD2
产品3: XA3+XB3
+XD3
原料A: XA1+XA2+XA3
原料B: XB1+XB2+XB3
原料C: XC1+XC2
原料D: XD1+XD2+XD3
24
5、混合配方问题
规格: XB1≥0.25(XA1+XB1+XC1+XD1) XC1≤0.2(XA1+XB1+XC1+XD1) XA2≥0.5(XA2+XB2+XC2+XD2) XD2≤0.25(XA2+XB2+XC2+XD2) XA3≥0.25(XA3+XB3+XD3) XB3≥0.25(XA3+XB3+XD3) 供应量: 需求量:
家庭情况 日间(美元) 晚间(美元)
有儿童
20
无儿童
18
25 20
11
2、市场营销应用
要求: 至少1000次访问 至少访问400个有儿童的家庭 至少访问400个无儿童的家庭 晚间访问的家庭数量必须不少于日间访问的家庭数目 至少40%的有儿童家庭必须在晚上访问 至少40%的无儿童家庭必须在晚上访问
价格
2 749 5
18
4、混合问题
设抓取饲料1为x1kg;饲料2为x2kg;饲料3为 x3kg……
目标函数:最省钱 minZ=2x1+7x2+4x3+9x4+5x5
约束条件 营养要求: 3x2 +2x2 +x3+6x4 +18x5 ≥700
x1+0.5x2+0.2x3+2x4+0.5x5 ≥30 0.5x1 +x2+0.2x3+2x4+0.8x5 =200 用量要求:x1 ≤50,x2 ≤60,x3 ≤50,x4 ≤70,x5 ≤40 非负性要求:x1 ≥0,x2 ≥0,x3 ≥0,x4 ≥0,x5 ≥0
五种饲料可供选用,各种饲料每千克所含的营养 元素及单价如下表。
为了避免过多使用某种饲料,规定混合饲料中各 种饲料的最高含量分别为50、60、50、70、40千克。
要求确定满足动物需要而费用最低的饲料配方。
17
4、混合问题
饲料
1 2 3 4 5 需要
营养A(克) 3 2 1 6 18 700 营养B (克) 1 0.5 0.2 2 0.5 30 营养C (毫克) 0.5 1 0.2 2 0.8 200
资金 X1+X2+X3+X4+X5 ≤100,000 行业 X1+X2 ≤50,000
X3+X4 ≤50,000 债券 X5 ≥0.25(X3+X4) 太平洋石油 X2 ≤ 0.6(X1+X2) 非负性约束X1≥0 X2≥0 X3≥0 X4≥0 X5≥0
16
4、混合问题
某公司饲养试验用的动物,这些动物的生长对三 种营养元素特别敏感,我们分别称它们为营养元素A、 B、C。已知这些动物每天至少需要700克营养元素A, 30克营养元素B,而营养元素C的需要量刚好是200毫 克,不够和过量都是有害的。
全日制1 全日制2 需要兼职 方案
1
8
X1
1
8
X2
1
1
7
X3
1
1
1
X4
1
2
X5
1
1
1
X6
1
5
X7
1
1
10
X8
1
1
10
X9
1
6
X10
37
1
6
X11
6、人员安排(选讲)
人力资源分配的问题 福安商场是个中型的百货商场,它对售货员的需求经过统计
分析如右表: 为了保证售货人员充分休息,售货人员每周工作 5天,休息
护士的最少人数 60 70 60 50 20 30
28
6、人员安排
设第j时段开始上班的人数为Xj,j=1,2,…,6,
目标函数:min Z=x1+x2+x3+x4+x5+x6
约束条件: x1+x2 ≥70
x2+x3 ≥60
x3+x4 ≥ 50
x4+x5 ≥20
x5+x6 ≥30
x6+x1 ≥60
运筹学
Operations Research
1
第3章 线性规划应用
2
线性规划
在一定的约束条件(限制条件)下,使得 某一目标函数取得最大(或最小)值,当 规划问题的目标函数与约束条件都是线性 函数,便称为线性规划。
Linear programming (LP)
3
1、生产计划问题
某厂生产两种产品,需要三种资源,已知各 产品的利润、各资源的限量和各产品的资源 消耗系数如下表:
22
5、混合配方问题
产品 规格要求
最小需求(公 最大需求(公
斤)
斤)
1 含B不少于25%, 1000 C不多于20%
2500
2 含A不少于50%, 100 D不多于25%
不限
3 含A和B各不少于 不限 25%,不含C
不限
23
5、混合配方问题
解:令Xij表示用第j种产品中i种原料的数量(公斤), i=A、B、C、D;j=1,2,3。由于产品3不含有C, 故XC3=0,因此,共有11个变量……
设备约束 4X1+5X2 ≤200 原材料约束3X1+10X2 ≤300 非负性约束X1≥0 X2≥0
5
1、生产计划问题
多种产品?
6
1、生产计划问题
产品A 产品B 每天可用 能力
设备A
0
5
15
设备B
6
2
24
调试
1
1
5
单位产品利 2
1
润(元)
7
2、市场营销应用
广告媒体 白天电视
预计受 广告售 每月最多 宣传质
25
5、混合配方问题
销售收入: 原料成本: 目标函数:
26
5、混合配方问题
一般规格汽油的每种 石油成分的用量多少, 及特殊规格汽油的每 种石油成分的用量多 少
P119
27
6、人员安排
序号 1 2 3 4 5 6
时段 06:00——10:00 10:00——14:00 14:00——18:00 18:00——22:00 22:00——02:00 02:00——06:00
Minz=6 X1 +6 X2 +7 X3 +8 X4 +9 X5 +8 X6
31
若工资变了?
序号
1 2 3 4 5 6
时段
06:00——10:00 10:00——14:00 14:00——18:00 18:00——22:00 22:00——02:00 02:00——06:00
每小时的工资 护士的最 少人数
1000X1+2000X2+1500X3+2500X4+300X5≥50000
非负性约束 X1≥0 X2≥0 X3≥0 X4≥0 X5≥0 思考:电视费用不超过2万美元?
2、市场营销应用
问以最小访问成本满足合同要求的家庭-时间 访问计划是怎样的?
访问费用: 访问有儿童的家庭需要额外的访问时间 晚间访问费用高 如下表:
为了保证售货人员充分休息,售货人员 每周工作 5天,休息两天,并要求休息的两 天是连续的。问应该如何安排售货人员的作
家庭情况 有儿童 无儿童
日间(美元) 晚间(美元)
20
25
18
20
12