北师大版初中数学公式大全

合集下载

八年级上册数学北师大版公式总结

八年级上册数学北师大版公式总结

八年级上册数学北师大版公式总结一、勾股定理。

1. 定理内容。

- 在直角三角形中,两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。

2. 勾股定理的逆定理。

- 如果三角形的三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

二、实数。

1. 平方根。

- 如果x^2=a(a≥slant0),那么x叫做a的平方根,记作x = ±√(a)。

其中√(a)表示a的算术平方根(a≥slant0),即正数a的正的平方根。

2. 立方根。

- 如果x^3=a,那么x叫做a的立方根,记作x=sqrt[3]{a}。

三、位置与坐标。

1. 平面直角坐标系。

- 在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴与y轴统称坐标轴,它们的公共原点O称为直角坐标系的原点。

2. 两点间的距离公式。

- 在平面直角坐标系中,设A(x_1,y_1),B(x_2,y_2),则A和B两点间的距离d=√((x_2 - x_1)^2)+(y_2 - y_1)^{2}。

四、一次函数。

1. 一次函数的表达式。

- 形如y = kx + b(k,b为常数,k≠0)的函数叫做一次函数。

当b = 0时,y=kx(k≠0)叫做正比例函数。

2. 一次函数的性质。

- 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

五、二元一次方程组。

1. 二元一次方程的定义。

- 含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,一般形式为ax+by = c(a,b,c为常数,a≠0,b≠0)。

2. 二元一次方程组的解法。

- 代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

- 加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法。

北师大版初中公式

北师大版初中公式

1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc。

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括正整数、负整数)和分数(包括有限小数和无限循环小数)都是有理数,如:-3,1/2,0.231,0.…,无理数如π,√2等;无限不循环小数如0.xxxxxxxx01…(两个1之间依次多1个0)等。

有理数和无理数统称为实数。

2.数轴:规定了原点、正方向和单位长度的直线叫做数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.如:|-3|=3,|3.14-π|=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,-a的相反数是a。

5.有效数字:一个近似数,从左边第一个不是0的数字起,到最后一个数字止,所有的数字都叫做这个近似数的有效数字。

如:0.精确到0.001得0.060,结果有两个有效数字6、0.6.科学记数法:把一个数写成a×10^n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法。

如:=4.07×10^5,0.=4.3×10^-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫做乘方,乘方运算的结果叫做幂。

9.平方根:一般地,如果一个数x的平方等于a,即x^2=a,那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;只有一个平方根,它是本身;负数没有平方根。

10.开平方:求一个数a的平方根的运算,叫做开平方。

11.算术平方根:一般地,如果一个正数x的平方等于a,即x^2=a,那么这个正数x就叫做a的算术平方根,√a的算术平方根是正数。

12.立方根:一般地,如果一个数x的立方等于a,即x^3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数,负数的立方根是负数,0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方。

北师大初中数学公式整理大全

北师大初中数学公式整理大全

北师大初中数学公式整理大全数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。

下面是小编为大家整理的关于北师大初中数学公式大全,希望对您有所帮助!初中数学的公式把一元二次方程化成ax2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。

公式法公式:x=[-b±√(b2-4ac)]/2a当Δ=b2-4ac>0时,求根公式为x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(两个不相等的实数根)当Δ=b2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根)当Δ=b2-4ac<0时,求根公式为x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a例3.用公式法解方程 2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2, b=-8,c=5b2-4ac=(-8)2-4×2×5=64-40=24>0∴x= (4±√6)/2∴原方程的解为x?=(4+√6)/2,x?=(4-√6)/2.初中数学公式平方差公式:a^2;-b^2;=(a+b)(a-b);完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的.积的2倍。

立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;);完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;.其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca)例如:a^2; +4ab+4b^2; =(a+2b)^初中数学公式和规律口诀最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

(完整版)北师大版初中数学定理、公式汇编

(完整版)北师大版初中数学定理、公式汇编

(完整版)北师大版初中数学定理、公式汇编初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,等;无限不环循小数叫做无理数. 如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

如:丨-_丨=;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a 的相反数是-a,0的相反数是0。

5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x 的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)4的平方根是士2,误认为4平方根为士2,应知道4=2.15.二次根式:(1)定义:式子叫做二次根式.16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.22.有理数减法法则:减去一个数,等于加上这个数的相反数.23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.25.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.二.代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。

北师大版初一数学公式大全

北师大版初一数学公式大全

北师大版初一数学公式大全有理数-—比较:a=0,|a|=0 a>0,|a|=a a〈0,|a|=—a|a|〉|b|,a<0,b〈0,则a〈b加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法法则:a-b=a+(-b)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)除法法则:a÷b=a(1÷b)【b≠0】角与线—-对顶角相等同一平面内,有且只有一条直线与已知直线垂直。

同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。

如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

垂直于同一直线的两条直线互相平行。

同位角相等/内错角相等/同旁内角互补:两直线平行两直线平行:同位角相等/内错角相等/同旁内角互补。

直角=90°,180°〈优角〈360°,平角=180°,周角=360°90°<钝角〈180°,0°<锐角〈90°【初一下册】方程及不等式—-解方程的两种基本方法:1。

代入消元法2。

加减消元法如果a>b,则a+c〉b+c,a-c〉b—c如果a>b,c>0,则ac>bc如果a〉b,c〈0,则ac〈bc三角形及正多边形-—外角+相邻内角=180°1.三角形的一个外角等于与它不相邻的两个内角的和。

2.三角形的一个外角大于任何一个与它不相邻的内角.3.三角形具有稳定性。

4。

三角形任意两边之和大于第三边,两边之差小于第三边。

【n=多边形的边数】(n〉0)多边形的外角和:180°多边形的内角和:180°*(n-2)多边形的边数:n边多边形对角线的条数:n(n—3)÷2正多边形的各个内角:180°-360°÷n。

【助力中考】初中数学公式大全(北师大版)

【助力中考】初中数学公式大全(北师大版)

【助力中考】初中数学公式大全(北师大版)?过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连结的全部线段中,垂线段最短平行公义经过直线外一点,有且只有一条直线与这条直线平行假如两条直线都和第三条直线平行,这两条直线也相互平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理三角形两边的和大于第三边1推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°1 8推论1直角三角形的两个锐角互余1 9推论2三角形的一个外角等于和它不相邻的两个内角的和2 0推论3三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等边角边公义有两边和它们的夹角对应相等的两个三角形全等角边角公义有两角和它们的夹边对应相等的两个三角形全等推论有两角和此中一角的对边对应相等的两个三角形全等边边边公义有三边对应相等的两个三角形全等斜边、直角边公义有斜边和一条直角边对应相等的两个直角三角形全等定理1在角的均分线上的点到这个角的两边的距离相等定理2在角的内部,到一个角的两边的距离相等的点,在这个角的均分线上等腰三角形的性质定理等腰三角形的两个底角相等推论1等腰三角形顶角的均分线均分底边而且垂直于底边等腰三角形的顶角均分线、底边上的中线和高相互重合推论3等边三角形的各角都相等,而且每一个角都等于60°33等腰三角形的判断定理:假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角平等边)34推论1三个角都相等的三角形是等边三角形35推论2有一个角等于60°的等腰三角形是等边三角形36在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半定理线段垂直均分线上的点到这条线段两个端点的距离相等逆定理到一条线段两个端点距离相等的点,在这条线段的垂直均分线上定理1对于某条直线对称的两个图形是全等形定理2假如两个图形对于某直线对称,那么对称轴是对应点连线的垂直均分线定理3两个图形对于某直线对称,假如它们的对应线段或延伸线订交,那么交点在对称轴上逆定理假如两个图形的对应点连线被同一条直线垂直均分,那么这两个图形对于这条直线对称44勾股定理直角三角形两直角边a、b的平方和、等于斜边的平方45勾股定理的逆定理假如三角形的三边长a、b、c相关系,那么这个三角形是直角三角形46定理四边形的内角和等于360°47四边形的外角和等于360°48多边形内角和定理n边形的内角的和等于(n-2)×180°49推论随意多边的外角和等于360°50平行四边形性质定理1平行四边形的两组对角分别相等51平行四边形性质定理2平行四边形的两组对边分别相等推论夹在两条平行线间的平行线段相等平行四边形性质定理3平行四边形的对角线相互均分平行四边形判断定理1两组对边分别平行的四边形是平行四边形平行四边形判断定理2两组对边分别相等的四边形是平行四边形平行四边形判断定理3对角线相互均分的四边形是平行四边形平行四边形判断定理4一组对边平行相等的四边形是平行四边形矩形性质定理1矩形的四个角都是直角矩形性质定理2矩形的对角线相等52矩形判断定理1有三个角是直角的四边形是矩形61矩形判断定理2对角线相等的平行四边形是矩形62菱形性质定理1菱形的四条边都相等63菱形性质定理2菱形的对角线相互垂直,而且每一条对角线均分一组对角64菱形面积=对角线乘积的一半,即S=(a×b)÷265菱形判断定理1四边都相等的四边形是菱形66菱形判断定理2对角线相互垂直的平行四边形是菱形67正方形性质定理1正方形的四个角都是直角,四条边都相等68正方形性质定理2正方形的两条对角线相等,而且相互垂直均分,每条对角线均分一组对角69定理1对于中心对称的两个图形是全等的70定理2对于中心对称的两个图形,对称点连线都经过对称中心,而且被对称中心均分71逆定理假如两个图形的对应点连线都经过某一点,而且被这一点均分,那么这两个图形对于这一点对称等腰梯形性质定理等腰梯形在同一底上的两个角相等等腰梯形的两条对角线相等等腰梯形判断定理在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形(梯形知识点认识即可)72平行线均分线段定理假如一组平行线在一条直线上截得的线段相等,那么在其余直线上截得的线段也相等77推论1经过梯形一腰的中点与底平行的直线,必均分另一腰78推论2经过三角形一边的中点与另一边平行的直线,必均分第三边三角形中位线定理三角形的中位线平行于第三边,而且等于它的一半梯形中位线定理梯形的中位线平行于两底,而且等于两底和的一半L=(a+b)÷2S=L×h83(1)比率的基天性质如果a:b=c:d,那么ad=bc。

最新北师大版初中数学公式总结

最新北师大版初中数学公式总结

北师大版初中数学公式总结1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc。

(完整word)北师大版初中数学公式

(完整word)北师大版初中数学公式

北师大版初中数学公式1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a × b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc。

北师大版初中数学公式

北师大版初中数学公式

北师大版初中数学公式1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a × b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc。

北师大版初中数学公式大全

北师大版初中数学公式大全

1北师大版初中数学公式大全1过两点有且只有一条直线过两点有且只有一条直线2两点之间线段最短两点之间线段最短3同角或等角的补角相等同角或等角的补角相等4同角或等角的余角相等同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行如果两条直线都和第三条直线平行,这两条直线也互相平行 9同位角相等,两直线平行同位角相等,两直线平行10内错角相等,两直线平行内错角相等,两直线平行11同旁内角互补,两直线平行同旁内角互补,两直线平行12两直线平行,同位角相等两直线平行,同位角相等13两直线平行,内错角相等两直线平行,内错角相等 14两直线平行,同旁内角互补两直线平行,同旁内角互补15定理三角形两边的和大于第三边定理三角形两边的和大于第三边16推论三角形两边的差小于第三边推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°180°18推论1直角三角形的两个锐角互余直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等推论有两角和其中一角的对边对应相等的两个三角形全等 25边边边公理有三边对应相等的两个三角形全等边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27定理1在角的平分线上的点到这个角的两边的距离相等在角的平分线上的点到这个角的两边的距离相等28定理2在角的内部,到一个角的两边的距离相等的点,在这个角的平分线上在角的内部,到一个角的两边的距离相等的点,在这个角的平分线上 29等腰三角形的性质定理等腰三角形的两个底角相等等腰三角形的性质定理等腰三角形的两个底角相等30推论1等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形顶角的平分线平分底边并且垂直于底边31等腰三角形的顶角平分线、底边上的中线和高互相重合等腰三角形的顶角平分线、底边上的中线和高互相重合32推论3等边三角形的各角都相等,并且每一个角都等于60°60°33等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)角对等边)34推论1三个角都相等的三角形是等边三角形三个角都相等的三角形是等边三角形 35推论2有一个角等于60°的等腰三角形是等边三角形60°的等腰三角形是等边三角形36在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半30°那么它所对的直角边等于斜边的一半 37直角三角形斜边上的中线等于斜边上的一半直角三角形斜边上的中线等于斜边上的一半38定理线段垂直平分线上的点到这条线段两个端点的距离相等定理线段垂直平分线上的点到这条线段两个端点的距离相等39逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上 40定理1关于某条直线对称的两个图形是全等形关于某条直线对称的两个图形是全等形41定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线42定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上43逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称对称44勾股定理直角三角形两直角边a 、b 的平方和、等于斜边c 的平方的平方45勾股定理的逆定理如果三角形的三边长a 、b 、c 有关系,那么这个三角形是直角三角形有关系,那么这个三角形是直角三角形 46定理四边形的内角和等于360°360° 47四边形的外角和等于360°360°48多边形内角和定理n 边形的内角的和等于(边形的内角的和等于(n-2n-2n-2)×180°)×180°)×180°49推论任意多边的外角和等于360°360°50平行四边形性质定理1平行四边形的两组对角分别相等平行四边形的两组对角分别相等51平行四边形性质定理2平行四边形的两组对边分别相等平行四边形的两组对边分别相等52推论夹在两条平行线间的平行线段相等推论夹在两条平行线间的平行线段相等53平行四边形性质定理3平行四边形的对角线互相平分平行四边形的对角线互相平分54平行四边形判定定理1两组对边分别平行的四边形是平行四边形两组对边分别平行的四边形是平行四边形55平行四边形判定定理2两组对边分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形56平行四边形判定定理3对角线互相平分的四边形是平行四边形对角线互相平分的四边形是平行四边形57平行四边形判定定理4一组对边平行相等的四边形是平行四边形一组对边平行相等的四边形是平行四边形58矩形性质定理1矩形的四个角都是直角矩形的四个角都是直角59矩形性质定理2矩形的对角线相等矩形的对角线相等60矩形判定定理1有三个角是直角的四边形是矩形有三个角是直角的四边形是矩形61矩形判定定理2对角线相等的平行四边形是矩形对角线相等的平行四边形是矩形62菱形性质定理1菱形的四条边都相等菱形的四条边都相等 63菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形的对角线互相垂直,并且每一条对角线平分一组对角64菱形面积菱形面积==对角线乘积的一半,即S=S=(a×b)÷2(a×b)÷2(a×b)÷265菱形判定定理1四边都相等的四边形是菱形四边都相等的四边形是菱形66菱形判定定理2对角线互相垂直的平行四边形是菱形对角线互相垂直的平行四边形是菱形67正方形性质定理1正方形的四个角都是直角,四条边都相等正方形的四个角都是直角,四条边都相等68正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角69定理1关于中心对称的两个图形是全等的关于中心对称的两个图形是全等的70定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 71逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称于这一点对称 72等腰梯形性质定理等腰梯形在同一底上的两个角相等等腰梯形性质定理等腰梯形在同一底上的两个角相等73等腰梯形的两条对角线相等等腰梯形的两条对角线相等74等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形75对角线相等的梯形是等腰梯形(梯形知识点了解即可)对角线相等的梯形是等腰梯形(梯形知识点了解即可)76平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截那么在其他直线上截得的线段也相等得的线段也相等77推论1经过梯形一腰的中点与底平行的直线,必平分另一腰经过梯形一腰的中点与底平行的直线,必平分另一腰78推论2经过三角形一边的中点与另一边平行的直线,必平分第三边经过三角形一边的中点与另一边平行的直线,必平分第三边79三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半80梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b a+b))÷2S=L×h83(1)比例的基本性质如果a:b=c:d,a:b=c:d,那么那么ad=bc ad=bc。

北师大版初中数学公式.doc

北师大版初中数学公式.doc

北师大版初中数学公式1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a × b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc。

北师大版初中数学公式

北师大版初中数学公式

北师大版初中数学公式1.定义基本运算符号:-加法:a+b-减法:a-b-乘法:a×b-除法:a÷b2.负数的概念:-如果b>a,则a-b=-(b-a)-如果a>0,则-a<03.数的分类:-自然数:1,2,3,...-整数:...,-3,-2,-1,0,1,2,3,...-有理数:可以表示为两个整数的比例(如1/2,-3/4等)-实数:包括有理数和无理数(如π和√2)4.平方和平方根的概念:-平方:a²=a×a-平方根:√a表示满足a=b×b的数b,其中b为非负数5.代数式及其运算:-代数式:用字母和数字表示的一种数学式子-加法逆元:a+(-a)=0-乘法逆元:a×(1/a)=16.线性方程组的解和消元法:- 线性方程组:形如a₁x₁ + a₂x₂ + ... + anxn = b的方程组-消元法:通过加减乘除等操作,将线性方程组化为简化列阵,解得方程的解7.角的概念及其关系:-角:由两条射线构成的形状- 角的度量单位:度(°)和弧度(rad)-角的类型:锐角(0°<θ<90°),直角(θ=90°),钝角(θ>90°)8.三角函数的公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2abcosC- 三角函数的基本关系:sin²θ + cos²θ = 19.线性函数和二次函数:- 线性函数:y = kx + b,其中k是斜率,b是截距- 二次函数:y = ax² + bx + c,其中a、b、c是常数10.圆和圆的性质:-圆:由平面上与一个固定点的距离相等的点构成的图形-圆的周长:C=2πr-圆的面积:A=πr²11.概率:-随机事件:可能发生也可能不发生的事件-概率:表示一个随机事件发生可能性的大小(0≤P(A)≤1)-互斥事件:两个事件不可能同时发生-独立事件:一个事件的发生不会影响另一个事件的发生以上只是北师大版初中数学教材中的一小部分公式和概念,数学的知识点非常广泛且深入,需要通过不断学习和实践来巩固和深化了解。

北师大版初中数学定理、公式汇编

北师大版初中数学定理、公式汇编

初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,等;无限不环循小数叫做无理数. 如:π,,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣。

正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

如:丨-_丨=;丨3.14-π丨=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,0的相反数是0。

5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如6416.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(被开方数中不含有能开得尽的因数或因式.19.二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.8.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.9.对于化简求值的题型要注意解题格式,要先化简,第二节方程与不等式一、一元一次方程1.方程:含有未知数的等式叫方程.2.一元一次方程:只含有一个未知数,并且未知数的指数是1(次)系数不为0,这样的方程叫一元一次方程.一般形式:ax+b=0(a≠0)3.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,未知数系数化为一。

【助力中考】初中数学公式大全(北师大版)

【助力中考】初中数学公式大全(北师大版)

【助力中考】初中数学公式大全(北师大版)【助力中考】初中数学公式大全〔北师大版〕?1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 在角的内部,到一个角的两边的距离相等的点,在这个角的平分线上29 等腰三角形的性质定理等腰三角形的两个底角相等 30 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边31等腰三角形的顶角平分线、底边上的中线和高互相重合 32 推论3 等边三角形的各角都相等,并且每一个角都等于60°33 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等〔等角对等边〕 34 推论1 三个角都相等的三角形是等边三角形 35 推论 2 有一个角等于60°的等腰三角形是等边三角形 36 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半37 直角三角形斜边上的中线等于斜边上的一半38 定理线段垂直平分线上的点到这条线段两个端点的距离相等39 逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上40 定理1 关于某条直线对称的两个图形是全等形 41 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线42定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上43逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称44勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方45勾股定理的逆定理如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形 46定理四边形的内角和等于360° 47四边形的外角和等于360° 48多边形内角和定理 n边形的内角的和等于〔n-2〕×180° 49推论任意多边的外角和等于360°50平行四边形性质定理1 平行四边形的两组对角分别相等 51平行四边形性质定理2 平行四边形的两组对边分别相等 52推论夹在两条平行线间的平行线段相等53平行四边形性质定理3 平行四边形的对角线互相平分 54平行四边形判定定理1 两组对边分别平行的四边形是平行四边形55平行四边形判定定理2 两组对边分别相等的四边形是平行四边形56平行四边形判定定理3 对角线互相平分的四边形是平行四边形57平行四边形判定定理4 一组对边平行相等的四边形是平行四边形58矩形性质定理1 矩形的四个角都是直角 59矩形性质定理2 矩形的对角线相等60矩形判定定理1 有三个角是直角的四边形是矩形61矩形判定定理2 对角线相等的平行四边形是矩形 62菱形性质定理1 菱形的四条边都相等63菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 64菱形面积=对角线乘积的一半,即S=〔a×b〕÷2 65菱形判定定理1 四边都相等的四边形是菱形 66菱形判定定理2 对角线互相垂直的平行四边形是菱形 67正方形性质定理1 正方形的四个角都是直角,四条边都相等68正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角69定理1 关于中心对称的两个图形是全等的70定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分71逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称72等腰梯形性质定理等腰梯形在同一底上的两个角相等 73等腰梯形的两条对角线相等74等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形75对角线相等的梯形是等腰梯形〔梯形知识点了解即可〕 76平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 77 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰78 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边79 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半80 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=〔a+b〕÷2 S=L×h 83 (1)比例的根本性质如果a:b=c:d,那么ad=bc。

(完整版)北师大版初中数学定理、公式汇编

(完整版)北师大版初中数学定理、公式汇编

初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数 ( 包括: 正整数、 0、负整数 ) 和分数 ( 包括 : 有限小数和无量环循小数 ) 都是有理数 . 如: -3, ⋯ , , 等;无量不环循小数叫做无理数 . 如: π, ⋯ ( 两个 1之间依次多 1个 0) 等. 有理数和无理数统称为实数.2. 数轴:规定了原点、正方向和单位长度的直线叫数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数 a的点到原点的距离叫数 a的绝对值,记作∣ a∣。

正数的绝对值是它自己;负数的绝对值是它的相反数; 0的绝对值是 0。

如: 丨-_丨= ;丨-π丨 =π-3.14.4. 相反数:符号不相同、绝对值相等的两个数,叫做互为相反数。

a的相反数是 -a,0的相反数是 0。

5. 有效数字:一个近似数 , 从左边笫一个不是 0的数字起 , 到最末一个数字止 , 所有的数字 , 都叫做这个近似数的有效数字 . 如精确到得0.060,结果有两个有效数字 6,0.n的形式 ( 其中 1≤ a<10,n是整数 ),这种记数6. 科学记数法:把一个数写成 a×10法叫做科学记数法 . 如×10 5×10-5.7. 大小比较:正数大于 0,负数小于 0,两个负数,绝对值大的反而小。

8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

9 . 平方根:一般地,若是一个数 x 的平方等于 a,即 x2=a 那么这个数 a 就叫做 x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数; 0只有一个平方根,它是 0 自己;负数没有平方根.10.开平方:求一个数 a 的平方根的运算,叫做开平方.11.算术平方根:一般地,若是一个正数 x 的平方等于 a,即 x 2=a,那么这个正数x 就叫做 a的算术平方根, 0 的算术平方根是 0.12.立方根:一般地,若是一个数 x 的立方等于 a,即 x 3=a,那么这个数 x 就叫做a的立方根(也叫做三次方根) ,正数的立方根是正数 ;负数的立方根是负数; 0 的立方根是 0.13.开立方:求一个数 a 的立方根的运算叫做开立方.14.平方根易错点:(1)平方根与算术平方根不分,如 64 的平方根为士 8,易抛弃-8,而求为 64 的算术平方根;(2) 4 的平方根是士 2 ,误认为 4 平方根为士 2,应知道 4 =2.15. 二次根式:(1) 定义: 式子叫做二次根式 .16.二次根式的化简:17.最简二次根式应满足的条件:(1)被开方数的因式是整式或整数;(2)被开方数中不含有能开得尽的因数或因式.18.同类二次根式:几个二次根式化成最简二次根式今后,若是被开方数相同,这几个二次根式就叫做同类二次根式.19 .二次根式的乘法、除法公式20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防范:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果必然写成最简二次根式或整式.21.有理数加法法规:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同 0 相加,仍得这个数.22.有理数减法法规:减去一个数,等于加上这个数的相反数.23.有理数乘法法规:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与 0 相乘,积仍为 0.24.有理数除法法规:两个有理数相除,同号得正,异号得负,并把绝对值相除;0 除以任何非 0 的数都得 0;除以一个数等于乘以这个数的倒数.25.有理数的混淆运算法规:先算乘方,再算乘除,最后算加减;若是有括号,先算括号里面的.二. 代数式:(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。

北师大版初一数学公式总结计划大全

北师大版初一数学公式总结计划大全

北师大版本中学初一数学公式总结计划大全 1 / 1北师大版初一数学公式大全有理数——比较: a=0,|a|=0 a>0,|a|=a a<0,|a|=-a|a|>|b|,a<0,b<0, 则 a<b 加法互换律: a+b=b+a加法联合律: (a+b)+c=a+(b+c)减法法例: a-b=a+(-b)乘法互换律: ab=ba乘法联合律:( ab )c=a (bc )除法法例: a ÷b=a (1÷b )【 b ≠0】角与线——对顶角相等同一平面内,有且只有一条直线与已知直线垂直。

同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。

假如两条直线都与第三条直线平行,那么这两条直线也相互平行。

垂直于同向来线的两条直线相互平行。

同位角相等 / 内错角相等 / 同旁内角互补:两直线平行两直线平行:同位角相等 / 内错角相等 / 同旁内角互补。

直角 =90°, 180°<优角 <360°,平角 =180°,周角=360° 90°<钝角 <180°, 0°<锐角 <90° 【初一下册】 方程及不等式——解方程的两种基本方法: 1. 代入消元法 假如 a>b, 则 a+c>b+c,a-c>b-c假如 a>b,c>0, 则 ac>bc假如 a>b,c<0 ,则 ac<bc2. 加减消元法三角形及正多边形——外角 +相邻内角 =180°1. 三角形的一个外角等于与它不相邻的两个内角的和。

2. 三角形的一个外角大于任何一个与它不相邻的内角。

3. 三角形拥有稳固性。

4. 三角形随意两边之和大于第三边,两边之差小于第三边。

【 n=多边形的边数】 (n>0)多边形的外角和: 180°多边形的内角和: 180°* ( n-2 )多边形的边数: n 边多边形对角线的条数: n(n- 3) ÷2正多边形的各个内角: 180° - 360°÷n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初中数学公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2在角的内部,到一个角的两边的距离相等的点,在这个角的平分线上29等腰三角形的性质定理等腰三角形的两个底角相等30推论1等腰三角形顶角的平分线平分底边并且垂直于底边31等腰三角形的顶角平分线、底边上的中线和高互相重合32推论3等边三角形的各角都相等,并且每一个角都等于60°33等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)34推论1三个角都相等的三角形是等边三角形35推论2有一个角等于60°的等腰三角形是等边三角形36在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半37直角三角形斜边上的中线等于斜边上的一半38定理线段垂直平分线上的点到这条线段两个端点的距离相等39逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上40定理1关于某条直线对称的两个图形是全等形41定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线42定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上43逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称44勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方45勾股定理的逆定理如果三角形的三边长a、b、c有关系,那么这个三角形是直角三角形46定理四边形的内角和等于360°47四边形的外角和等于360°48多边形内角和定理n边形的内角的和等于(n-2)×180°49推论任意多边的外角和等于360°50平行四边形性质定理1平行四边形的两组对角分别相等51平行四边形性质定理2平行四边形的两组对边分别相等52推论夹在两条平行线间的平行线段相等53平行四边形性质定理3平行四边形的对角线互相平分54平行四边形判定定理1两组对边分别平行的四边形是平行四边形55平行四边形判定定理2两组对边分别相等的四边形是平行四边形56平行四边形判定定理3对角线互相平分的四边形是平行四边形57平行四边形判定定理4一组对边平行相等的四边形是平行四边形58矩形性质定理1矩形的四个角都是直角59矩形性质定理2矩形的对角线相等60矩形判定定理1有三个角是直角的四边形是矩形61矩形判定定理2对角线相等的平行四边形是矩形62菱形性质定理1菱形的四条边都相等63菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角64菱形面积=对角线乘积的一半,即S=(a×b)÷265菱形判定定理1四边都相等的四边形是菱形66菱形判定定理2对角线互相垂直的平行四边形是菱形67正方形性质定理1正方形的四个角都是直角,四条边都相等68正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角69定理1关于中心对称的两个图形是全等的70定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分71逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称72等腰梯形性质定理等腰梯形在同一底上的两个角相等73等腰梯形的两条对角线相等74等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形75对角线相等的梯形是等腰梯形(梯形知识点了解即可)76平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等77推论1经过梯形一腰的中点与底平行的直线,必平分另一腰78推论2经过三角形一边的中点与另一边平行的直线,必平分第三边79三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半80梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性质如果a:b=c:d,那么ad=bc。

如果ad=bc,那么a:b=c:d81合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d82等比性质如果a/b=c/d=…=m/n(其中,b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /b83平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例84推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例85定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边86平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例87定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似88相似三角形判定定理1两角对应相等,两三角形相似89直角三角形被斜边上的高分成的两个直角三角形和原三角形相似90判定定理2两边对应成比例且夹角相等,两三角形相似91判定定理3三边对应成比例,两三角形相似92定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似93性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比94性质定理3相似三角形面积的比等于相似比的平方95圆是定点的距离等于定长的点的集合96圆的内部可以看作是圆心的距离小于半径的点的集合97圆的外部可以看作是圆心的距离大于半径的点的集合98同圆或等圆的半径相等99到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆100和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线101到已知角的两边距离相等的点的轨迹,是这个角的平分线102到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线103定理两点确定一条直线104垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧105①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧106圆的两条平行弦所夹的弧相等107圆是以圆心为对称中心的中心对称图形108定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等109推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等110定理一条弧所对的圆周角等于它所对的圆心角的一半111推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等112推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径113推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形114定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角115①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r116切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线117切线的性质定理圆的切线垂直于经过切点的半径118推论1经过圆心且垂直于切线的直线必经过切点119推论2经过切点且垂直于切线的直线必经过圆心120切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角121圆的外切四边形的两组对边的和相等122如果两个圆相切,那么切点一定在连心线上123①两圆外离d>R+r②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R >r)⑤两圆内含d<R-r(R>r)124定理相交两圆的连心线垂直平分两圆的公共弦125定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆126正n边形的每个内角都等于(n-2)×180°/n127弧长计算公式:L=n兀R/180128扇形面积公式:S扇形=n兀R²/360=LR/2129完全平方公式:(a+b)=a²+2ab+b²(a-b)=a²-2ab+b²130平方差公式:(a+b)(a-b)=a²-b²131某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n²2+4+6+8+10+12+14+…+(2n)=n(n+1)1²+2²+3²+4²+5²+6²+7²+8²+…+n²=n(n+1)(2n+1)/61³+2³+3³+4³+5³+6³+…n³=n²(n+1)²/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3。

相关文档
最新文档