反激式开关电源变压器初级线圈电感量的计算
反激电源高频变压器参数计算方法
四、设计开关电源主要在变压器计算与画板高频变压器参数计算方法1﹚、磁通量与磁通密度相关公式:Ф = B * S⑴Ф----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:QL = 1/2 * I2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200--- 340 V输出直流电压:23.5V输出电流: 2.5A * 2输出总功率:117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高;匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。
反激式开关电源变压器是这么计算的
反激式开关电源变压器是这么计算的于法拉弟电磁感应定律,这个定律是在一个铁心中,当磁通变化的时候,其会产生一个感应电压,这个感应电压=磁通的变化量/时间T 再乘以匝数比,把磁通变化量换成磁感应强度的变化量乘以其面积就可以推出上式来,NP=90*4.7 微秒/32 平方毫米*0.15,得到88 匝0.15 是选取的值,算了匝数,再确定线径,一般来说电流越大线越热,所以需要的导线就越粗,需要的线径由有效值来确定,而不是平均值。
上面已经算得了有效值,所以就来选线,用0.25 的线就可以,用0.25 的线,其面积是0.049 平方毫米,电流是0.2 安,所以其电流密度是4.08,一般选定电流密度是4 到10 安第平方毫米。
若是电流很大,最好采用两股或是两股以上的线并绕,因为高频电流有趋效应,这样可以比较好。
第六步,确定次级绕组的参数、圈数和线径。
原边感应电压,就是一个放电电压,原边就是以这个电压放电给副边的,看上边的图,因为副边输出电太为5V,加上肖特基管的压降,就有5.6V,原边以80V 的电压放电,副边以5.6V 的电压放电,那么匝数是多少呢?当然其遵守变压器那个匝数和电压成正比的规律,所以副边电压=NS*(UO+UF)/VOR,其中UF 为肖特基管压降,这个副边匝数等于88*5.6/80,得6.16,整取6 匝,再算副边的线径,当然也就要算出副边的有效值电流,下图是副边电流的波形,有突起的时间是1-D,没有突起的是D,刚好和原边相反,但其KRP 的值和原边相同,这个峰值电流就是原边峰值电流乘以其匝数比,要比原边峰值电流大数倍。
第七步,确定反馈绕组的参数。
反馈是反激的电压,其电压是取自输出级的,所以反馈电压是稳定的,TOP。
开关电源反激式变压器计算公式与方法
开关电源反激式变压器计算公式与方法公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]原边电感量:Lp =(Dmax * Vindcmin)/ (fs * ΔIp)开关管耐压:Vmos =Vindcmax+开关管耐压裕量(一般用150V)+Vf*反激电压(Vf)的计算: Vindcmin * Dmax = Vf *(1- Dmax)原边与副边的匝比:Np / Ns = Vf / Vout原边与副边的匝比:Np / Ns = (Vdcmin * Dmax)/ [Vout * (1-Dmax)]原边电流:[1/2 * (Ip1 + Ip2)] * Dmax * Vindcmin = Pout / η磁芯:AwAe = (Lp * Ip2^2 * 10^4 / Bw * Ko * Kj) *原边匝数:Np = (Lp * Ip^2 * 10^4 )/ (Bw * Ae)气隙:lg = π * Np^2 * Ae * 10^-8 / LpLp:原边电感量, 单位:HVindcmin:输入直流最小电压,单位:VDmax:最大占空比: 取值~Fs:开关频率 (或周期T),单位:HzΔIp:原边电流变化量,单位:AVmos:开关管耐压,单位:VVf:反激电压:即副边反射电压,单位:VNp:原边匝数,单位:T)Ns:副边匝数,单位:T)Vout:副边输出电压,单位:Vη:变压器的工作效率Ae:磁芯截面积,单位:cm2Ip2:原边峰值电流,单位:ABw:磁芯工作磁感应强度,单位:T 取值~Ko:窗口有效用系数,根据安规的要求和输出路数决定,一般为~Kj:电流密度系数,一般取395A/ cm2(或取500A/cm2)Lg:气隙长度,单位:cm变压器的亿裕量一般取150V什么是反激电压假定原副边的匝比为n,在原边开关管截止时,开关管的高压端电压为Vin(dc)+nVo, nVo即为反激到原边的电压。
反激式开关电源变压器 计算
反激式开关电源变压器计算反激变换器的重要参数通常是由反激式变压器决定的,同时它也是反激开关电源的核心部分。
设计反激式变压器时,让反激式开关电源工作在一个合理的工作点上尤为重要,原因在于,这样不仅可以让其发热尽量减小,而且对器件的磨损也会相应减小。
也就是说,在芯片和磁芯等同的情况下,变压器如果设计不合理,则会导致整个开关电源的性能出现大幅度下降,比如如损耗的增加和最大输出功率的下降,那么,本文就将对如何计算出最合理的反激式变压器其方法进行详解。
计算变压器的最初,就要先选定一个工作点,这个点也就是最低的交流输入电压,对应于最大的输出功率。
输入85V到265V、输出5V、2A 的电源、开关频率是100KHZ:第一步,选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了电源的占空比。
可能朋友们不理解什么是原边感应电压,原边感应电压其实是一个典型的单端反激式开关电源,其工作周期可以理解为,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压、开关开通时间和原边电感量。
在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压(放电电压)、开关管关断时间和电感量。
在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的等于下降了的,上式中可以用D来代替TON,用1-D来代替TOOF,移项可得,D=VOR/(VOR+VS)。
此即是最大占空比了。
本文选定感应电压为80V、VS为90V ,则D=80/(*80+90)=0.47第二步,确定原边电流波形的参数原边电流波形有三个参数:平均电流、有效值电流、峰值电流。
首先要知道原边电流的波形,原边电流的波形如下图所示,这是一个梯形波横向表示时间,纵向表示电流大小,这个波形有三个值:一是平均值;二是有效值;三是其峰值,平均值就是把这个波形的面积再除以其时间,如下面那一条横线所示。
反激式开关电源变压器初级线圈电感量的计算
反激式开关电源变压器初级线圈电感量的计算反激式开关电源的变压器是一种特殊的变压器,它采用了非常规的工作方式,通过磁感耦合在不同线圈之间传输能量。
变压器的初级线圈电感量的计算主要涉及到变压器的工作频率、输入电压、输出电压以及材料的磁性能等因素。
首先,计算初级线圈的电压和电流。
根据反激式开关电源的设计要求,输入电压和输出电压是已知的。
假设输入电压为Vin,输出电压为Vout,变压器的变比为N:1、则初级线圈的电压可以计算为:Vp = Vin / N其中,Vp为初级线圈电压。
根据反激式开关电源的工作原理,变压器的输入电流和输出电流相等,即:Ip=Is其中,Ip为初级线圈电流,Is为次级线圈电流。
另外,根据变压器的恒压恒流特性,可以得到初级线圈的电流和电感的关系:Ip=Vp/Xp其中,Xp为初级线圈的电感。
根据反激式开关电源的工作频率和线圈的尺寸,可以计算出初级线圈的电感量。
初级线圈的电感可以由以下公式计算:Xp=2πfLp其中,Xp为初级线圈的电感,f为反激式开关电源的工作频率,Lp为初级线圈的电感量。
根据以上公式,可以得到初级线圈的电感量Lp的计算方法:L p=(Vp/(2πf))/Ip根据反激式开关电源的设计要求和材料的磁性能,选择合适的线圈材料和尺寸,通过上述公式计算出初级线圈的电感量。
需要注意的是,初级线圈的电感量一般应该在一定的范围内,以确保变压器在正常工作范围内,并且具有良好的能量转换效率。
总之,反激式开关电源的变压器初级线圈电感量的计算是设计反激式开关电源的关键步骤之一、通过考虑输入电压、输出电压、工作频率和线圈尺寸等因素,结合合适的材料选择,可以计算得到合适的初级线圈电感量,确保反激式开关电源的正常工作和高效能量转换。
反激式开关电源变压器的计算
反激式开关电源变压器的计算反激式开关电源的基本原理是通过开关管的开关动作,使得输入电压在变压器初级侧产生一个脉冲波,然后通过变压器将脉冲波变换到次级侧,最后通过滤波电路得到稳定的直流输出电压。
因此,反激式开关电源中的变压器扮演着非常重要的角色。
在进行反激式开关电源变压器的计算时,首先需要确定变压器的输入和输出电压。
输入电压通常是市电的交流电压,可以根据具体的应用要求来确定。
输出电压通常是设备所需的直流电压,也可以根据具体的应用要求来确定。
其次,需要确定变压器的变比。
变比是指变压器的初级侧和次级侧的匝数之比。
变比的选择需要考虑到输入输出电压的比例以及变压器的额定功率。
变比通常可以通过如下公式进行计算:变比=输出电压/输入电压变压器的额定功率可以通过如下公式进行计算:额定功率=输出电压×额定电流额定电流通常可以通过如下公式进行计算:额定电流=额定功率/输出电压确定了变压器的输入和输出电压、变比以及额定功率后,接下来需要计算变压器的匝数。
变压器的匝数需要满足输入输出电压的比例以及变比的条件。
变压器的匝数可以通过如下公式进行计算:Np/Ns=Vp/Vs=变比其中,Np表示变压器初级侧的匝数,Ns表示变压器次级侧的匝数,Vp表示变压器初级侧的电压,Vs表示变压器次级侧的电压。
在实际计算中,需要考虑变压器的磁通饱和以及线圈的电流。
变压器的磁通饱和会导致输出电压的不稳定,线圈的电流应该在变压器的额定电流范围内。
因此,需要根据具体的应用要求选择合适的变压器。
此外,还需要考虑变压器的损耗和效率。
变压器的损耗通常包括铜损和铁损两部分。
铜损是指线圈中的电流通过导线产生的电阻损耗,铁损是指磁芯中的磁通变化产生的涡流损耗和磁滞损耗。
效率是指输入功率和输出功率之间的比值,通常表达为百分比。
总结起来,反激式开关电源变压器的计算是一个复杂的过程,需要考虑输入输出电压、变比、功率、匝数、损耗和效率等因素。
通过合理的计算和选择,可以设计出稳定可靠的变压器,满足电子设备的电源要求。
反激式变压器开关电源电路参数计算
反激式变压器开关电源电路参数计算
1-7-3.反激式变压器开关电源电路参数计算
反激式变压器开关电源电路参数计算基本上与正激式变压器开关电源电路参数计算一样,主要对储能滤波电感、储能滤波电容,以及开关电源变压器的参数进行计算。
1-7-3-1.反激式变压器开关电源储能滤波电容参数的计算
前面已经详细分析,储能滤波电容进行充电时,电容两端的电压是按正弦曲线的速率变化,而储能滤波电容进行放电时,电容两端的电压是按指数曲线的速率变化,但由于电容充、放电的曲率都非常小,所以,把图1-19反激式变压器开关电源储能滤波电容两端电压的充、放电波形画成了锯齿波,这也相当于用曲率的平均值来取代曲线的曲率,如图1-26所示。
图1-26中,uo是变压器次级线圈输出波形,Up是变压器次级线圈输出电压正半周波形的峰值,Up-是变压器次级线圈输出电压负半周波形的峰值,Upa是变压器次级线圈输出电压波形的半波平均值,uc是储能滤波电容两端的电压波形,Uo是反激式变压器开关电源输出电压的平均值,i1是流过变压器初级线圈的电流,i2是流过变压器次级线圈的电流,Io是流过负载两端的平均电流。
从图1-26可以看出,反激式变压器开关电源储能滤波电容充、放电波形与图1-7反转式串联开关电源储能滤波电容充、放电波形(图1-8-b))基本相同,只是极性正好相反。
因此,图1-19反激式变压器开关电源储能滤波电容参数的计算方法与图1-7反转式串联开关电源储能滤波电容参数的计算方法完全相同。
反激式变压器开关电源储能滤波电容参数的计算,除了参考图1-7以外,还可以参考前面串联式开关电源或反转式串联开关电源中储能滤波电。
变压器电感量怎么算?变压器电感量计算公式深度讲解
变压器电感量怎么算?变压器电感量计算公式深度讲解为何两套变压器计算公式计算出来的电感量是不想同的?到底谁对谁错?(比如新手工程师张三对于开关电源变压器的计算还没有很好的理解,去请教李四和王五,然后李四给了一套计算公式给张三,王五也给了一套计算公式给张三。
然后张三分别按照两个人给的公式兴致勃勃的算了起来,算出来之后,发现两套公式计算出来的电感量根本不相同,且相差了不少,到底是李四对还是王五对?)我设计开关电源也有一些年份了,接触开关电源的新手也比较多,而新手问得最多的一个问题就是变压器怎么计算,而变压器计算中问得最多的一个问题就是,上面提到的感量不一样的问题。
我可以这么说,只要有这个疑问的电源工程师,那么一定说明你是新手,一定没有掌握变压器的设计方法。
其实两个工程师计算出来的电感量不相同是很正常的,我甚至可以说,同一个项目给两个不同的并且有经验的工程师来计算变压器的话,这两个工程师计算出来的电感量一定不一样。
为什么?其中有比较多的原因。
我们以反激为例,计算变压器得出来的感量大与小根本没有绝对的对与错,只要你的变压器在最低输入电压最大输出功率工作的时候,变压器磁芯不饱和,另外温度能过关,就不能说他的计算方法不对。
对于有经验的工程师算了那么多年的变压器了为何每接一个新的项目都会重新计算?为什么不直接用一个功率相当的变压器就直接用?实质上就是要从理论上保证磁芯不饱和(当然其中还有其他东西需要保证,但对于新手而言理解这一点就够了,请老手们包涵)。
下面我拿一套计算方法来说明一下电感量的计算:我们拿反激DCM的计算为例首先根据能量守恒,可得到其中Lp是变压器原边的电感量,Ip为原边电感量的峰值电流,P为开关电源输入功率,T 为开关电源的开关周期。
然后根据定义,如果在电感上加一个恒定电压,电感上的电流是随着时间线性上升的,可得到反激DCM计算时,我们在最低输入最大功率输出时保证工作在DCM的话,就可以保证整个输入电压范围及整个功率范围都为DCM。
反激式开关电源变压器初级线圈电感量的计算
反激式开关电源变压器初级线圈电感量的计算反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。
在控制开关接通期间反激式开关电源是通过流过变压器初级线圈的励磁电流产生的磁通来存储磁能量的。
根据(1-98)式和(1-102)式,当控制开关接通时,流过变压器初级线圈的最大励磁电流为:???(1-123)式就是计算反激式开关电源变压器初级线圈电感的公式。
式中,L1为变压器初级线圈的电感,P为变压器的输入功率,Ton为控制开关的接通时间;I1m为流过变压器初级线圈的最大励磁电流,I1m= 2I1,I1为流过变压器初级线圈的励磁电流(平均值,可用有效值代之)。
由此可知,在计算反激式开关电源变压器的参数时,不但要根据(1-120)式计算变压器初级线圈的最少匝数,还要计算变压器初级线圈的电感量。
当变压器初级线圈的最少匝数确定以后,变压器初级线圈的电感量就只能再由选择变压器铁心气隙的大小来决定,或由选择变压器铁心的导磁率来决定。
1-7-3-2-3.变压器初、次级线圈匝数比的计算图1-19,反激式开关电源在控制开关接通期间是不输出功率的,仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。
反激式开关电源变压器次级线圈输出端一般都接有一个整流二极管,和一个储能滤波电容。
由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。
由于反激式变压器开关电源的输出电压与控制开关的占空比有关,因此,在计算反激式开关电源变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D。
反激开关电源参数计算(EI28)
=
4 ������������������ √3.14������
=
0.616
∗
√4 3.14
∗
5
=
0.3������������2
RCD 吸收电路参数设计
① 选择钳位电容最小值������������������������������,当漏感能量完全释放后,钳位电容电压达到最 大值������������������������������,随后二极管关断,电容向电阻放电,当下一周期开关管导通时, 电容电压达到最小值������������������������������,������������������������������一般取0.85~0.95������������������������������。
输入功率������������������
=
������0 ������
=
43.75������
取电流纹波系数������������������ = 1
������������������ =
∆������������ ������������������
②
输入电流平均值������������������������������������
=
1.14������
电感量������������
=
������������������������������������∗������������������������ ������������������������ ∗������∗������������������
=
224∗0.35 1.14∗132
反激变压器参数设计
输入电压 180~264 VAC 输出电压±23V 输出功率������0 = 35W 效率η=80% 开关频率 f=132kHZ
反激式开关电源变压器计算
计算变压器1. 已知参数:最小输入电压VIN(min)=85V最大输入电压VIN(min)=264V输出电压VO=12V输出电流IO=2A输出功率PO=24W设定效率=0.8PFC开关频率=65KHZ开关周期T=15.3846154us2.计算初次侧电流设定反射电压VOR=85V 设定最低输入电压情况下最大占空比Dmax=0.41425021计算最大导通时间TON=6.37308011uS计算输入平均电流Iiav=0.24960479A设定KRP=0.67计算DeltaI=0.60707639计算输入端峰值电流Iipk=0.90608416A计算输入电流有效值Iirms=0.40388208A3.选择合适的磁芯:计算所需磁芯的窗口乘积-Aneed=2000mm^4选择磁芯EFD25电感系数AL=uH/N^2有效磁芯截面积Ae=58mm^2窗品面积Aw=67.89mm^2有效磁路长度Le=mm有效体积Ve=mm^3窗口乘积3937.62mm^4 4.计算初次级匝数计算导通时间Ton=6.37308011usToff=9.01153527us计算初级匝数np=66.0328016匝计算初次级匝比n=6.8计算次级匝数ns=9.71070612匝5.计算初级电感Lp计算初级电感量Ip=1261.75307uH6.计算初次级电流输出电流峰值Iopk=6.16137231A输出电流有效值Iorms=3.26578961A选取电流密度J=6A/mm^2计算初级线圈直径Di=0.29283086mm计算次级线圈直径Do=0.83269057mm7.验证BmaxBmax=0.29850746T提示:密码1111,请勿更改70V-120V之间Dmax=VOR/(VOR+1.414*VINMIN)Iiave=p0/效率/1.414/VinminKRP=DeltaI/IpkIrms=Iipk*((krp^2/3-krp+1)*D)^0.5PO=6500*PO/(DeltaB*J*F) DeltaB=0.2T;J=6A/MM^2;Ton=T*Dnp=1.414*Vinmin*Ton/DeltaB/Aens=np/nIp=1.414*VINmin*TON/DeltaIIopk=Iipk*nIrms=Iopk*((krp^2/3-krp+1)*(1-D))^0.5D=(4*Iirms/3.14/j)^0.5Bmax=L*Iipk/Ae/nPFC电感计算-CCM。
开关电源反激式变压器计算公式与办法
精心整理
原边电感量:Lp=(Dmax*Vindcmin)/(fs*ΔIp)
开关管耐压:Vmos=Vindcmax+开关管耐压裕量(一般用150V)+Vf
*反激电压(Vf)的计算:Vindcmin*Dmax=Vf*(1-Dmax )
原边与副边的匝比:Np/Ns=Vf/Vout
原边与副边的匝比:Np/Ns=(Vdcmin*Dmax)/[Vout*(1-Dmax)]
原边电流:[1/2*(Ip1+Ip2)]*Dmax*Vindcmin=Pout/η
磁芯:AwAe=(Lp*Ip2^2*10^4/Bw*Ko*Kj)*1.14
原边匝数:Np=(Lp*Ip^2*10^4)/(Bw*Ae)
即为反的电压,会“折射”到原边(用同名端对电位),叠加在开关管高压端。
同理当原边开关管导通时,次级二极管是截止的,二极管上的电压除了输出电压Vo,还有原边“折射”过来的电压Vin(dc)/n ,及Vo+[Vin(dc)/n,].。
所以,匝比的
设计,除了影响占空比,也影响着原边开关管及次级二极管的应力选择。
在变压器线圈匝数未知的情况下,如何计算磁芯工作时的磁感应强度Bw ?测量其电感量(可用压。
反激式电源变压器设计公式新解
反激式电源变压器设计公式新解反激式电源变压器设计公式新解固定周期电流控制型反激式开关电源中,控制电路能使电源能够稳定⼯作,⽽其中设计的关键是变压器。
设计开关电源变压器最主要的是考虑三⼤要素:⼀是完成电功率的传输;⼆是初级线圈电感量;三是次级与初级线圈的以Vor 为基准的⽐例关系。
已有的开关电源变压器的计算⼤多很复杂,然⽽在搞清楚电感充放电基本原理的基础上,紧紧抓住电感充电放电的本质,应⽤到功率传输等⽅⾯,得到⼀个新的能量传输关系函数表达式,最后设计出⼀款⽐较合理的反激式电源变压器。
⼀、动态深度和设计深度的关系CCM 模式与tor 关系图:1.动态深度在电流连续模式下Krp 的设置时,动态深度为,从CCM 模式tor ⽰意图的⼏何关系可以得到,,式中tor 为电感不受开关周期约束的最长放电时间,该式把电感放电时间与开关关闭时间和Krp 联系在⼀起,由于Krp 是随着输⼊电压的改变⽽变化的,所以Krp 称动态深度。
2.设计深度设计深度:Kt=tor/T ,即电感不受开关周期约束的最长放电时间与开关周期的⽐值。
此值由设计时确定,是⼀个固有参数,在运⾏过程中不会改变,所以Kt 称设计深度。
占空⽐:D=Ton/T=(T-Toff )/T 由此可得到Krp 、Kt 与占空⽐D 的关系:------------------------------(1)或假如tor=1.2T ,Krp=0.4 则表⼀:以D 为⾃变量,Kt 、D 与Krp 三者的关系列表: DKt 0.10.20.30.40.50.60.5 1.80 1.60 1.40 1.20 1.000.800.6 1.50 1.33 1.17 1.000.830.670.71.291.141.000.860.710.570.8 1.13 1.000.880.750.630.500.9 1.000.890.780.670.560.4410.900.800.700.600.500.401.10.820.730.640.550.450.361.20.750.670.580.500.420.331.30.690.620.540.460.380.311.40.640.570.500.430.360.291.50.600.530.470.400.330.27对于CCM模式,Kt越⼤,Krp就越⼩,相应的深度就越⾼。
开关电源课程设计:反激式开关电源变压器参数的计算
《开关电源设计》与《变压器工程与设计》课程期末考查报告报告名称:反激式开关电源变压器参数的计算学生姓名:学号:专业班级:指导教师:二0一七年十二月二十日反激式开关电源变压器参数的计算储能滤波电容进行充电时,电容两端的电压是按正弦曲线的速率变化,而储能滤波电容进行放电时,电容两端的电压是按指数曲线的速率变化,但由于电容充、放电的曲率都非常小,所以,把图1-19反激式变压器开关电源储能滤波电容两端电压的充、放电波形画成了锯齿波,这也相当于用曲率的平均值来取代曲线的曲率,如图1-26所示。
图1-26中,uo是变压器次级线圈输出波形,Up是变压器次级线圈输出电压正半周波形的峰值,Up-是变压器次级线圈输出电压负半周波形的峰值,Upa是变压器次级线圈输出电压波形的半波平均值,uc 是储能滤波电容两端的电压波形,Uo 是反激式变压器开关电源输出电压的平均值,i1是流过变压器初级线圈的电流,i2是流过变压器次级线圈的电流,Io是流过负载两端的平均电流。
电容参数的计算方法完全相同。
反激式变压器开关电源储能滤波电容参数的计算,除了参考图1-7以外,还可以参考前面串联式开关电源或反转式串联开关电源中储能滤波电容参数的计算方法,同时还可以参考图1-6中储能滤波电容C的充、放电过程。
从图1-26可以看出,反激式变压器开关电源储能滤波电容充、放电波形与图1-7反转式串联开关电源储能滤波电容充、放电波形(图1-8 -b))基本相同,只是极性正好相反。
因此,图1-19反激式变压器开关电源储能滤波电容参数的计算方法与图1-7反转式串联开关电源储能滤波图1-26从图1-26中可以看出,反激式变压器开关电源与反转式串联开关电源中的储能电感一样,仅在控制开关K关断期间才产生反电动势向负载提供能量,因此,即使是在占空比D等于0.5的情况下,储能滤波电容器充电的时间与放电的时间也不相等,电容器充电的时间小于半个工作周期,而电容器放电的时间则大于半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。
反激式变压器计算实例
1.8A充电器变压器计算实例所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。
高频变压器的关键是选定磁芯,常用的是AP法:(1)AP=Aw*Ae={(L p*Ip2*104)/(450*△B*K0)}1.143cm4或(2)AP=Aw*Ae=P*104/(K f*K u*B AC*F*J) cm4(1)中A w为窗口面积(单边),Ae为磁芯有效截面积(因为磁芯是不规则的),L p(H)是初级电感量,I P(A)是峰值电流,△B(T)是磁感应变化量(有些参考书以GS表示,1GS=10-4T),一般取≦0.3T(3000GS),或I sat/2此值过大,磁性损耗大,容易饱和,过小,磁芯体积会很大,功率小的电源可以取大一点,因为面积体积比大,散热条件好,反之则相反,频率高的取小一点,频率高了,磁芯损耗就大了,厂家给出的参考值是50mT-300mT,推荐值是100-200mT.K0是窗口利用率,取0.2—0.4,具体要看绕组结构,比如挡墙胶带会占用一部分空间,如果磁芯是矮型的,挡墙就占很大比例了,这时窗口利用率就很低了,而如果采用三层绝缘线,窗口利用率就提高了(可以不用挡墙),K0就可以取大一点,公式中的450是电流密度=450A/cm2常用电流密度为200A/cm2(2A/mm2),与400A/cm2(4A/mm2).或1000CM/A=200A/cm2 500CM/A=400A/cm200A/cm2(2)中,P(W)为总功率,K f为波形系数=0.4(CCM连续模式,CDM断续模式,CRM 临界模式可能不一样,但一般都以CCM计算,电流波形请看附图1),K u是窗口利用率,取0.2—0.4,B AC为工作磁芯密度(T),F(Hz),J为电流密度(A/cm2)。
反激式开关电源变压器设计步骤及公式
反激式开关电源变压器设计步骤及公式(4种计算方法比较)1.确定已知参数: (主要PWM方式)确定已知参数:(主要RCC方式)来自现代高频开关电源实用技术1,确定系统规格输出功率:输入功率: P୧=输入平均电流: Iୟ୴ൌሺౣሻ同左边占空比D୫ୟ୶=୲=0.5 f୫୧୬:25KHz输入直流电压Vୈେ=√2Vୟୡ在了解输出功率后确定所需磁芯A p=A e*A w(cm4)Ae:磁芯中心柱横截面积(cm2);A w:磁芯窗口面积(cm2)最小AC输入电压:V ACMIN,单位:V最大AC输入电压:V ACMAX,单位:V输入电压频率:f L,50Hz or 60Hz输出电压:V O,最大负载电流:I O输出功率:P O,单位:WIo:Po=Vo*Ioη:0.85P୧ൌP୭η2.峰值电流1T=10000G s输入峰值电流:Iൌכሺౣሻ对于BUCK(降压),推挽,全桥电路K=1.4对于半桥和正激K=2.8对于Boost,BUCK-Boost和反激K=5.5 I୮ൌ2כP୭כTηכV୧୬ሺ୫୧୬ሻכt୭୬A e*A w>כଵలଶככ౩כౣכஔכౣכౙ(cmସ) ;Ae是磁芯截面积(cm2),Aw是磁芯窗口面积(cm2);f的单位为Hz,Bm的单位为Gs,取(1500)不大于3000Gs,δ导线电流密度取:2~3A/mmଶ ,K୫窗口填充系数取0.2~0.4,Kc磁芯填充系数,对于铁氧体该值取1IୋൌP୧V୧୬୫୧୬IൌIୟ୴D୫ୟ୶כ2T୭୬ൌଵD୫ୟ୶(uint:µs)1S=106µsLൌౣכ୍ౌే(µH)3.计算初级电感因所以t୭୬ൌDכTൌଵଶכ若f取25KHz,则t୭୬为20μS选磁芯也可用公式Fosc<50KHz S=1.15*√Po(cmଶሻFosc<60KHz S=0.09*√Po(cmଶሻFosc>=60KHz S=0.075*√Po(cmଶሻNPൌౌכ୍ౌేככ10L P:mH; ΔB:260mT;A e:mm2NsൌሺV୭Vୈሻכሺ1െD୫ୟ୶ሻכNV୧୬୫୧୬כD୫ୟ୶NaൌሺVୟVୟୈሻכሺ1െD୫ୟ୶ሻכNV୧୬୫୧୬כD୫ୟ୶L =ሺౣሻכୈ୍ౌేכ౩ౙ其中L 单位:H f:Hz 电压:V, 电流:A匝比:n=ሺౣሻ=౩౦4. 计算初级匝数初级电感:L ୮ൌሺౣሻכ୲୍౦检验磁芯正规名牌磁性材料的Bm 不得大于3000Gs ,国产杂牌不大于2500Gs 更保险A 值是在磁芯上绕1000匝测得(美国)则N ൌ1000ටౌై此式中L 单位为mH变压器次级圈数:Ns>୬כ୍౦כ౦ୗכౣ*10其中S 为磁芯截面积,B୫值为3000Gs若A 值是用100匝测得且单位是nH/N ଶ,则N ൌ100ටౌై此式中L 单位为mH,A 单位为mH/N ଶ,在计算时要将A 的值由nH 转换为mH 后再代入式中计算;例如:某A 值为1300 nH/N ଶ, L 值为2.3mH,则A =1300nH/N ଶ=1.3 mH/N ଶ代入中计算得N 为133T 初级匝数为:Np=౩୬B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2 )B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以5. 匝比n=౩ౌ=ሺౣሻ晶体管的基极电流I =୍౦୦ూు6. 次级绕组匝数N ୱ=N *n N ୱଵ=౦כሺାౚሻכሺଵିୈౣ౮ሻሺౣሻכୈౣ౮多路输出时N ୱ୶=ሺ౮ାౚ౮ሻכ౩భభାౚభ其中x 代表几路I ୰୫ୱൌI √27. 原边供电绕组N ୟ=N ୱכ在多路输出时Vo 为主输出电压计算线径(包括初级次级)同左边8. 选择磁芯型号要满足,磁芯中心柱截面积S=0.09*√Po (cm ଶሻ或满足公式A=A ୣכA ୵ൌכଵలଶככ౩כౣכஔכౣכౙ(cm ସ ) ;Ae 是磁芯截面积(cm 2),Aw 是磁芯窗口面积(cm 2);f 的单位为Hz ,Bm 的单位为Gs ,取(1500)不大于3000Gs ,δ导线电流密度取:2~3A /mm ଶ ,K ୫窗口填充系数取0.2~0.4,Kc 磁芯填充系数,对于铁氧体该值取1做较大瓦数的 Power 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激式开关电源变压器初级线圈电感量的计算
反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。
在控制开关接通期间反激式开关电源是通过流过变压器初级线圈的励磁电流产生的磁通来存储磁能量的。
根据(1-98)式和(1-102)式,当控制开关接通时,流过变压器初级线圈的最大励磁电流为:
???
(1-123)式就是计算反激式开关电源变压器初级线圈电感的公式。
式中,L1为变压器初级线圈的电感,P为变压器的输入功率,Ton为控制开关的接通时间;I1m为流过变压器初级线圈的最大励磁电流,I1m= 2I1,I1为流过变压器初级线圈的励磁电流(平均值,可用有效值代之)。
由此可知,在计算反激式开关电源变压器的参数时,不但要根据(1-120)式计算变压器初级线圈的最少匝数,还要计算变压器初级线圈的电感量。
当变压器初级线圈的最少匝数确定以后,变压器初级线圈的电感量就只能再由选择变压器铁心气隙的大小来决定,或由选择变压器铁心的导磁率来决定。
1-7-3-2-3.变压器初、次级线圈匝数比的计算
图1-19,反激式开关电源在控制开关接通期间是不输出功率的,仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。
反激式开关电源变压器次级线圈输出端一般都接有一个整流二极管,和一个储能滤波电容。
由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,被限幅后的剩余电压幅值正好等
于输出电压Uo的最大值Up,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。
由于反激式变压器开关电源的输出电压与控制开关的占空比有关,因此,在计算反激式开关电源变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D。
把占空比D确定之后,根据(1-110)式就可以计算出反激式开关电源变压器的初、次级线圈的匝数比。
根据(1-110)式
??
(1-110)式和(1-124)式中,Uo为反激式变压器开关电源的输出电压,Ui变压器初级线圈输入电压,D为控制开关的占空比,n = N2/N1为变压器次级线圈与初级线圈的匝数比。
在正常输出负载的情况下,考虑到电源开关管的耐压问题,反激式开关电源控制开关的占空比D的最大值一般都小于0.5。
因此,反激式变压器开关电源变压器次级线圈大部分时间都是工作在断流状态,如图1-21。
当开关电源变压器次级线圈出现断流时,流过负载电流将全部由储能滤波电容来提供,电容两端产生的电压纹波会增大很多,并且输出电压也会降低。
因此,在考虑变压器次级线圈与初级线圈的匝数比的时候,也要把这个因数一同进行考虑,最好在变压器次级线圈与初级线圈的匝数比n的基础上再乘一个略大于1的系数K。
系数K一般取1.1~1.3,与占空比的取值有关,当占空比很小时,K值可取大一些。
这里顺便提一下,变压器线圈漆包线的电流密度一般取每平方毫米为2~3安培比较合适。
当开关电源的工作频率取得很高时,电流密度最好取得小一些,或者用多股线代替单股线,以免电流在导体中产生趋肤效应,增大损耗使导线发热。
另外,目前绕制变压器使用的漆包线大部分都不是纯铜线,因此电阻率相对比较大,把这些因素一起考虑,电流密度更不能取高。
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den persönlichen für Studien, Forschung, zu kommerziel len Zwecken verwendet werden.
Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文。