数学建模论文.doc

合集下载

数学建模优秀论文范文

数学建模优秀论文范文

数学建模优秀论文范文数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。

强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。

数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。

本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。

数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。

这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。

第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。

是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。

往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。

必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。

因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。

根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题审题题设条件代入数学模型求解选定可直接运用的数学模型第二层次:直接建模。

可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

数学模型方面的论文

数学模型方面的论文

数学模型方面的论文数学模型方面的论文数学模型方面的论文一摘要:有一句话说得好“生活处处有数学”,其实数学并不只是书本中的公式计算,也是联系实际生活的重要桥梁。

而如何用数学的数据来表达现实生活中的实际问题,“数学建模”解决了这个问题。

如今,“数学建模”被社会上各个领域所使用,体现了它的重要价值。

关键词:实际问题;数学建模;教学模式;探索这几年来,社会经济飞速发展,高新技术产业在社会上占领主导地位,而数学也成为了推动高新技术发展强有力的推手。

而数学建模是数学解决实际问题的关键,所以,在社会各个领域,都对数学建模加以高度重视。

数学人才的培养依赖于高校的教育,于是乎高校便开始开展数学建模教学,为国家培养应用型数学人才。

1数学建模概述通过运用数学的数据,公式,思维等方法,将现实生活中的实际问题笼统话,简单化,将问题转化成数学语言,建立数学模型,来解决实际问题,这就是数学建模的构建。

虽然在国外数学建模炙手可热,但是在中国依旧是个新型学科。

在20世纪八十年代,中国才渐渐开始开展数学建模课堂。

现在由于高等教育的普遍化,数学建模教学渐渐出现在人们视野中,开始大热。

2高校对于数学建模教学的探索因为数学建模课程是一个非常抽象的课程[1],对于非专业的学生来说难度很大,不是那么容易被理解的。

同样,对于老师的标准也严苛了许多。

因为要用语言去描述抽象的理论课程,对老师的语言表达能力是个挑战。

而且在课堂上老师不能像传统教学那样一味教理论,应该将数学和实际生活有机结合起来,所以增大了老师授课难度。

在对数学建模教学的探索上,学校同样下了不少的功夫。

一方面加大对数学建模教学的宣传力度,鼓励学生们利用自己的数学思维和建模思想来进行实际问题的解决,例如,学校举办讲座可以让学生更好的了解建模的重要性,举办一些数学建模大赛,通过激烈的赛制和诱惑性的奖品,最大程度地激发学生的无限潜能。

又或者带领学生到高新技术产业基地进行参观,让学生更加切身的体会到数学建模的对社会,对于高新技术的重要性。

数学建模论文 (贷款问题)

数学建模论文 (贷款问题)

数学建模论文银行贷款问题模型姓名 1:学号:姓名 2:学号:姓名 3:学号:班级:指导教师:2014年 5 月 24 日目录摘要----------------------------------------- 2一、问题叙述------------------------------------- 2二、问题分析------------------------------------- 2三、基本假定--------------------------------------5四、模型的建立及求解1、等额本金还款法2、等额本息还款法五、模型的进一步分析六、模型的评价及推广七、参考文献附:等额本息还款法和等额本金还款法的比较--------------------------------------5摘要随着社会的不断发展,人们日益增长的物质需求也不断升高,可是对于大部分人来说,要想完成一些经济活动,需要向银行贷款,目前商业银行已经加大了个人贷款的力度,“门槛”也一降再降,申请个人贷款已经不是件难事。

对于贷款,大多数银行主要采用两种还贷方式:等额本息还款法和等额本金还款法。

若我们根据已知年利率,针对每月还款额和个月限满后的最后一月付款后本利和为零,推导出等额本金还款法和等额本息还款法的还款总额、利息负担总和、月供的公式。

合理假设的前提下,运用等差数列求和设计等额本金还款法偿还贷款本息和每月还款额的模型,运用迭代和等比数列求和两种不同方法从不同角度推导等额本息还款法偿还贷款本息和每月还款额的模型,通过计算讨论比较偿还贷款本息的多少。

关键词:贷款利率还款总额等额本金还款等额本息还款一、问题叙述某家庭贷款30万元购买一套房子,贷款(年)利率为7%,用15年的时间还清贷款。

不同的贷款方案将会产生不同的效益,根据问题的要求,建立相应的数学模型解答出不同情况下每月还款额以及利息、还款的时间。

对不同方法进行比较,并选出最优方案。

数学建模论文(最新9篇)

数学建模论文(最新9篇)

数学建模论文(最新9篇)大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。

数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。

因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。

一般来说",数学建模"包含五个阶段。

1、准备阶段主要分析问题背景,已知条件,建模目的等问题。

2、假设阶段做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3、建立阶段从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4、求解阶段对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5、验证阶段用实际数据检验模型,如果偏差较大,就要分析假设中一些因素的合理性,修改模型,直至吻合或接近现实。

如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

数学建模——优秀论文

数学建模——优秀论文

鲈鱼质量分析模型摘要本文讨论了鲈鱼的质量和其身长,胸围的关系。

首先我们假设鲈鱼的体重和其身长呈正相关,利用题目中所给出的数据进行拟合,并计算出鲈鱼体重和身长的函数关系以及鲈鱼实际体重和估算值之间的相对误差,验证假设成立。

通过多次拟合,得出最佳函数关系:3726230088023-+-=L L L W ,其相对误差如下:从表中的数据,我们可以得出鲈鱼体重的实际值与估计值的相对误差较小,说明用二次函数拟合鲈鱼身长与体重的关系式可行的。

然后,我们利用同样的思想分析鲈鱼体重与胸围的关系,其结果如下:从表中的数据,我们可以看出方法二的相对误差小于方法一的相对误差,所以方法二的结果更贴近实际。

在原有的基础上,我们进而提出,鲈鱼的体重与其身长和胸围都有关系,其结果如下:平均相对误差为: 4.0375%根据表三的数据,可以知道模型三的拟合程度也较好,相对于模型一、二,此模型充分考虑到了身长、胸围对体重的相互影响,用此模型估计鲈鱼的体重可能会更符合实际,更合适推广。

一.问题重述1.1.基本内容垂钓的乐趣在于修心,放生的乐趣在于养性。

一垂钓俱乐部为鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的质量给予奖励。

由于俱乐部只准备了一把用于鱼的身长和胸围的软尺,于是众垂钓者开始考虑根据测量的长度估计鱼的质量的方法,希望体味到垂钓的更大乐趣。

因此,利用应用软件以及相应的知识找到所测长度与鱼的质量的变化规律,显得尤为重要。

1.2.拟解决的问题试从鲈鱼的实际质量和身长体重的变化特点出发,利用题中所给数据,建立鲈鱼质量分析的数学模型,并指出最佳模型及模型中存在的优缺点。

二.问题的分析我们都知道鲈鱼的体重主要由鱼的身长、胸围决定。

一般来说,鲈鱼的胸围越大,鱼的体重会越重,身长越长,体重也越重。

但影响鲈鱼体重的因素并不唯一,我们要考虑单一变量对鱼体重的影响,即身体长度与体重的关系和胸围与体重的关系,我们要根据已知数据,利用相关软件进行模拟,来确定鲈鱼体重与身长、胸围之间的数量规律。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

数学建模优秀论文.doc

数学建模优秀论文.doc

一.摘要:“温室中的绿色生态臭氧病虫害防治”数学模型是通过臭氧来探讨如何有效地利用温室效应造福人类,减少其对人类的负面影响。

由于臭氧对植物生长具有保护与破坏双重影响,利用数学知识联系实际问题,作出相应的解答和处理。

问题一:根据所掌握的人口模型,将生长作物与虫害的关系类似于人口模型的指数函数,对题目给定的表1和表2通过数据拟合,在自然条件下,建立病虫害与生长作物之间相互影响的数学模型。

因为在数据拟合前,假设病虫害密度与水稻产量成线性关系,然而,我们知道,当病虫害密度趋于无穷大时,水稻产量不可能为负值,所以该假设不成立。

从人口模型中,受到启发,也许病虫害密度与水稻产量的关系可能为指数函数,当拟合完毕后,惊奇地发现,数据非常接近,而且比较符合实际。

接下来,关于模型求解问题,顺理成章。

问题二,在杀虫剂作用下,要建立生长作物、病虫害和杀虫剂之间作用的数学模型,必须在问题一的条件下作出合理假设,同时运用数学软件得出该模型,最后结合已知数据可算出每亩地的水稻利润。

对于农药锐劲特使用方案,必须考虑到锐劲特的使用量和使用频率,结合表3,农药锐劲特在水稻中的残留量随时间的变化,可确定使用频率,又由于锐劲特的浓度密切关系水稻等作物的生长情况,利用农业原理找出最适合的浓度。

问题三,在温室中引入O3型杀虫剂,和问题二相似,不同的是,问题三加入了O3的作用时间,当O3的作用时间大于某一值时才会起作用,而又必须小于某一值时,才不会对作物造成伤害,建O3对温室植物与病虫害作用的数学模型,也需用到数学建模相关知识。

问题四,和实际联系最大,因为只有在了解O3的温室动态分布图的基础上,才能更好地利用O3。

而该题的关键是,建立稳定性模型,利用微分方程稳定性理论,研究系统平衡状态的稳定性,以及系统在相关因素增加或减少后的动态变化,最后。

通过数值模拟给出臭氧的动态分布图。

问题五,作出农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析。

全国数学建模大赛获奖优秀论文.doc

全国数学建模大赛获奖优秀论文.doc

全国数学建模大赛获奖优秀论文者T.L.Satty于代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,简称AHP。

传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。

本文利用微软的Excel电子表格的强大的函数运算功能,设置了简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。

关键词:Excel 层次分析法模型一、层次分析法的基本原理层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。

它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。

层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。

用AHP分析问题大体要经过以下七个步骤:⑴建立层次结构模型;首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。

对于决策问题,通常可以将其划分成层次结构模型,如图1所示。

其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。

中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。

最低层:表示解决问题的措施或政策(即方案)。

⑵构造判断矩阵;设有某层有n个元素,X={Xx1,x2,x3xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。

(即把n个因素对上层某一目标的影响程度排序。

上述比较是两两因素之间进行的比较,比较时取1~9尺度。

用表示第i个因素相对于第j个因素的比较结果,则A则称为成对比较矩阵比较尺度:(1~9尺度的含义)如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。

全国大学生数学建模竞赛论文范例

全国大学生数学建模竞赛论文范例

全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。

文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。

一、问题重述在当今社会,具体问题背景。

本次数学建模竞赛的问题是:详细描述问题。

需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。

二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。

从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。

进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。

基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。

三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。

四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。

详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。

详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。

优秀数学建模论文(全国一等奖)

优秀数学建模论文(全国一等奖)

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题:出版社的资源配置摘要本文根据题目的要求建立了合理的有限资源分配优化模型,我们借助多种数学软件的优势挖掘出大量数据潜在的信息,并将其合理运用,在此基础上,以利润最大为目标,长远发展为原则,制定出信息不足条件下的量化综合评价体系,并为出版社在2006年如何合理有效地分配有限的书号资源提供了最佳的分配方案。

在本文所建立的模型中,我们采取了层次分析法(AHP)、数据统计拟合以及整数线性规划相结合的手段,这样既借鉴了层次分析法综合评价的优势,又克服了该法中主观因素的不确定性,使模型更具有科学性,作出了出版社2006年的分配方案,如下表经过对模型的检验,单从生产计划准确度一项来看,模型所得出的结果就比以往的高,这样就首先保证了出版社获得年度稳定利润的前提,其他几个评价指标也都可以得出相似的结论。

以2006年与2005年生产计划的准确度为例,作比较:2005年的各分社平均生产计划的准确度为0.702006年的各分社平均生产计划的准确度为0.85平均准确度提高约21%从数据的对比中,我们很容易看出本模型具有较高的有效性和合理性。

数学建模论文范文

数学建模论文范文

数学建模论文范文
《数学建模在环境保护中的应用》
数学建模是一种将实际问题转化为数学模型,并通过数学方法进行分析和求解的技术手段。

在环境保护领域,数学建模可以应用于大气污染预测、水质监测、垃圾处理等方面,为环保工作提供科学依据和技术支持。

在大气污染预测中,数学建模可以利用数学模型对大气污染物的扩散和转化过程进行模拟,并通过数值模拟预测污染物在空气中的浓度分布,为环保部门提供及时的预警和应对措施。

此外,数学建模还可以分析大气污染物的来源和传输路径,帮助政府和企业针对污染源采取有效的控制措施。

在水质监测方面,数学建模可以应用于水体富营养化、生物降解等问题的研究。

通过建立数学模型,可以分析水体中营养物质的分布及其对水质的影响,为环保部门提供优化水质监测方案和有效的水质改善措施。

在垃圾处理方面,数学建模可以用于垃圾填埋场的设计和管理。

通过数学模型和计算方法,可以优化填埋场的布局和运营方案,减少垃圾处理过程中的环境污染和资源浪费。

总的来说,数学建模在环境保护中起着重要的作用,可以帮助环保部门应对环境问题,提高环境管理水平。

随着数学建模技术的不断发展和完善,相信其在环境保护领域的应用将会更加广泛和深入。

数学建模论文模板(10篇)

数学建模论文模板(10篇)

数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。

2.数学教学中渗透数学建模思想是大学数学教学的必然要求。

目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。

为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。

3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。

数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。

另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。

二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。

1.从教学内容上改进以促进数学建模思想的普及和深入。

科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。

为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。

(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。

数学建模论文六篇

数学建模论文六篇

数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。

题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。

本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。

(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。

(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。

本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。

同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。

有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021

数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。

通过收集历史空气质量数据,构建空气质量预测模型。

运用机器学习算法对模型进行训练和优化,提高预测精度。

通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。

二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。

建立物流配送模型,考虑配送成本、时间、距离等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。

三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。

构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。

运用风险度量方法对模型进行评估。

通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。

四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。

建立能源消耗模型,考虑设备运行、生产计划等因素。

运用优化算法对模型进行求解。

通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。

五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。

收集历史交通流量数据,构建交通流量预测模型。

运用时间序列分析方法对模型进行训练和优化。

通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。

数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。

建立医疗资源需求模型,考虑人口分布、疾病类型等因素。

运用线性规划、遗传算法等优化算法对模型进行求解。

通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。

数学建模优秀论文

数学建模优秀论文

题目:烟雾污染问题的模型构建与量化分析目录一、摘要 (1)二、问题提出 (2)三、问题分析……………………………………………………(2-3)四、模型的建立与求解…………………………………………(3-17)五、对模型的评价与改进………………………………………(17-18)六、参考文献 (18)一.摘要烟雾扩散模型是通过研究焦油和一氧化碳等化学物质的浓度分布来探讨如何有效的防止二手烟对人们健康造成的负面影响。

利用数学知识联系实际问题,作出合理的解答和处理。

问题一中,由于吸烟者吸烟是一个过程,并缓慢放出烟雾,所以采取高斯扩散模型计算空间各点浓度分布,烟雾分布呈正态分布,然后计算通风后烟雾消散干净的时间,由于,室内烟雾与室外空气交换速度缓慢,所以如果要是室内烟雾完全消散,需要时间很长;问题二中密闭空间烟雾浓度分布问题利用问题一的结论得到吸2到10支烟后烟雾扩散的浓度分布,虽然香烟数量增加,但其扩散过程不变,改变的只有烟雾质量;问题三中,虽然环境变为楼道,但与问题一中密闭房间时原理类似,由于烟雾温度高于空气,所以烟雾先向上扩散,最后充满整个楼道;问题四是和实际关联很大,类比烟雾扩散模型和雾霾的扩散,得到雾霾的扩散浓度,通过查找资料发现,室内的雾霾基本以湍流形式存在,问题四采用湍流模型对室内雾霾的三维不可压缩湍流流动进行数值分析,从严格意义上来说,室内气流运动都是非稳态的,但是我们最关心的是室内雾霾在达到稳定状态后的气流组织形式,为了简化问题,假设雾霾做定常流动,即本问题采用稳态条件进行流动分析。

故建立数学模型,包括:连续性方程、动量方程、能量方程及ε-K方程。

而本问题的关键是,建立稳定性模型,利用微分方程求解,得到雾霾在40平米的封闭房间内的浓度分布。

二.问题提出:空气污染是现如今社会所面临的重要问题,其中吸烟后所产生的烟雾也是导致空气污染的重要因素,香烟燃烧后所产生的气体主要有焦油和一氧化碳,所以需要建立模型分析点燃一支以及二到十支香烟后分别在密闭以及通风的情况下烟雾在房间中不同位置的浓度,但是现实问题是假设一个人吸过烟后,烟雾会扩散到整个立体空间,所以需要再次建立模型分析一位在三楼的住户吸过烟后,整栋楼内烟雾浓度的分布情况;建立和完善模型后,分析它是否同样适用于雾霾问题的研究,如果适用,就用它研究在不同污染程度下密闭空间中污染物的浓度,如果不适用,就立新的模型分析上述问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模论文的实施意义十分巨大。

数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。

本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。

数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。

这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。

第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。

是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。

往往是一种新颖的实际背景,难于进行题型模式训练,用题海战术无法解决变化多端的实际问题。

必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。

因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。

根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题审题题设条件代入数学模型求解选定可直接运用的数学模型第二层次:直接建模。

可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

第三层次:多重建模。

对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。

第四层次:假设建模。

要进行分析、加工和作出假设,然后才能建立数学模型。

如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。

3.1提高分析、理解、阅读能力。

阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。

如1999年高考题第22题给出冷轧钢带的过程叙述,给出了减薄率这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

3.2强化将文字语言叙述转译成数学符号语言的能力。

将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。

例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。

选择数学模型是数学能力的反映。

数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。

建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。

结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型实际问题一次函数成本、利润、销售收入等二次函数优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数细胞分裂、生物繁殖等三角函数测量、交流量、力学问题等3.4加强数学运算能力。

数学应用题一般运算量较大、较复杂,且有近似计算。

有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。

所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。

同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

数学建模论文篇2浅谈高职数学与数学建模相结合的应用1 数学建模与数学教学模型分析目前已经在学术界引起越来越多的关注,在高职院校的数学教学中,它的作用也越来越明显。

数学模型它能够将繁杂的事物或现象用一个简单的方式表达出来,让人们可以通过数据量化来处理实际问题。

在高职教学中,学生往往会认为数学是一门枯燥的学科,只是无聊的数字游戏,没有任何实际效用。

但数学建模的产生让我们能够以一种比较积极的心态来面对数学学习。

我们通过建模这一行为可以将数学与日常生活紧密地联系在一起,让学生能够提高学习的动力。

2 数学建模的效用分析2.1 锻炼学生的实际应用能力目前在几乎所有的领域都能看到数学模型的存在,人们在分析问题时已经摒弃了抽象的比较方法,逐渐采用了模型量化的模式。

通过模型分析,我们可以看到事物的各个方面对事物产生的影响,进而针对性地进行改进,这种模式在项目研发或者流程改进方面作用尤其明显。

高职教学的目的就是培养应用型人才,我们的学生离开学校后要参与到一线生产过程中,要亲身体验各项操作流程。

因此,我们要求学生在学校掌握一定的建模能力,提高对时代潮流的适应性。

2.2 培养学生学习积极性高职院校的学生学习能力普遍较差,尤其是数学学习能力,对于数学这门学科普遍存在厌学心态。

传统数学教学的模式下,都是纯理论学习,理论性极强,对于知识的系统性要求比较严。

在学生的眼里,这门学科没有任何实用性,因此加剧了对其的厌恶。

如果采用数学建模进行教学,我们可以通过以学生熟悉的案例为对象,通过建立数学模型来进行求解。

学生关注的复杂现象通过数学模型来进行分析,能够吸引学生的注意力,提高其参与学习的热情,学生也会有着自己建立模型,用以解释周边的各种奇异的现象。

2.3 激发学生创新思想传统教学课堂注重的从上而下的理论灌输,高职学生由于基础差,根本无法自由发挥,只能惯性接受,长期下来学生的思维会被固化。

而在数学建模中,对于特定事物或者现象而言,建立的模型不存在绝对性,大量的不同模型可以解决同一个问题或者事物。

有趣的案例能够激发学生的学习热情,多样性地答案能够让学生自由发挥想象,摆脱各种思维的束缚,自由进行建模,够激发自身的创新精神。

3 建模教学存在的问题我们分别从教学的两个主体入手,分别分析建模教学在高职数学教育中存在的问题。

长期以来,数学老师都将数学看成是一门比较机械的课程,强调数量之间的逻辑关系,追求数据的准确性。

采取的教学方法以填鸭式为主,课堂全程由老师主导,无视对学生兴趣的培养,老师与学生之间缺乏互动,缺乏创新教学方式的观念。

从学生角度来看,课程学习中面临的各种方法都强调答案的唯一性。

学生面对的数学题目都有各种各样的条件将其设定成了理想化的状态,不需要学生考虑过多的条件,而且往往多想意味着错误。

在这种情况下,学生的思维就被限定在既定的公式定理之中,缺乏对既有模型公式进行改进的动力。

同时,模型教育需要一定的理论基础,并且往往会涉及到一些非数学的知识,给学生带来一定的压力。

4 建模在高职数学教学中应用策略分析4.1 改变教学观念如前文所述,老师教学观念的落后是造成建模教学在高职数学教学中难以展开的首要原因。

高职数学教学与普通高校教学的目的是有区别的,它重在将本学科与应用实际联系起来,而不是深入地进行理论研究。

我们没有必要对数学解题技巧做过多的学习,让学生掌握基本的理论知识即可。

随着数理模型在各个行业的广泛应用,我们应当将课程定位于学生未来的一个求职工具。

当然,在这转变过程中,老师需要付出巨大的努力。

在传统教学中,老师只需要按照教材讲解,做练习题即可,但建模教学还需要老师学习相关的建模分析,并且了解学生关注的重点事情,以学生熟悉的事项作为建模的对象。

在课堂中,尽量与学生进行沟通,激发学生参与课堂的积极性。

4.2 注重建模技巧,选取合适的建模对象由于高职院校的学生基础较差,我们在教学过程重要考虑到这一个因素,在建模的时候应当选择与学生的知识和技能水平相一致。

建模难度过高会打击学生的自信心。

我在教学过程中经常用到以下事例来进行建模分析:假定有一个水池,原有水一万吨清水,清水不含任何杂质。

假定从时间t = 0时刻起开始有含杂质的水流入,杂质的含量为5%,水流的速度为每分钟两吨,求何时能够水池里的水杂质含量达到4%。

这个是一个中学生都能解答的问题,这里我主要想锻炼学生将现实中面临的问题转换为数学模型来处理,能够运用所学的数学知识通过建立数学模型。

在建立数学模型之后,通过求解一阶线性微分来的到问题的答案。

这种简单的建模能够建立起学生学习的兴趣和信心,在入门之后,我们可以逐渐提高建模的难度要求,放宽问题条件,让学生考虑多种情况下的处理方式。

4.3 建模要与学生专业紧密相连在教学过程中,我们应当考虑到学生毕业后的就业方向,要将数学建模与他们的专业课程相联系起来。

对于不同的专业,我们需要建立不同的模型来进行学习分析,让学生能在自己专业领域更能自如的运用数理模型。

笔者曾经教过一个城市规划专业的班级,在这个课堂上,我曾经用过如下的实例来进行建模:有一条直线延长的铁轨,该线路的一端有附近有一个A城市,在该线路的一个范围内,有一个工厂B,为了使工厂B的产品以最短的距离运送到城市A去,我们应当选取什么点修建两条轨道,让运费最少。

本案例考察的内容是函数的单调性和极值。

这也与城市规划学院学生的学习专业相类似,对他们专业的学习有一定的帮助。

4.4 利用计算机系统提高建模效果在建模过程中,我们会需要大量的计算过程,通过计算机我们可以节省大量的经历。

目前存在大量可供使用的数学软件包可以帮助我们提高学习的效率,通过计算机模拟操作,学生会进一步体验建模的乐趣,并且能够让学生感受到建模并没有想象中的困难,每个人都能够建立一个个完整地模型,并且用于实际应用,在我们日常生活中发挥作用。

数学建模教学是一个有效的提高数学教学效果的方式,但在实施中我们却面临着诸多的困难,我们有必要不断探索,能够让这种教学方法在高职数学课堂中得到普遍应用。

参考文献[1] 宫华.高职教学改革中的数学建模教育的发展. 职业教育研究,数学建模论文。

相关文档
最新文档