蛋白质生物合成翻译及翻译后过程

合集下载

蛋白质的合成与翻译

蛋白质的合成与翻译

起始tRNA 延长tRNA
起始密码只能辨认甲硫氨(Met)
Met-tRNAimet
延长识别Met时为Met-
tRNAemet
14
三、 肽链合成的“装配机”---核糖体
核糖体结构 由大小二亚基组成
给位(P位,肽位): 起始时, tRNAimet结合于核糖体的肽位 延长成肽后,肽链转到此位。
27
SD序列
起始密码
28
70s起始复合物形成
1.IF3脱落
70s起始复合物组成
1.大小亚基
2.50S大亚基结合
2.mRNA
3.GTP GDP+Pi 4.IF2、IF1脱落
3. fmet-tRNAimet (结合于核糖体的
给位<肽位>)
29
30S 50S
三.肽链的延长(进位、成肽、移位)
线粒体
成系统
44
第三节 翻译后加工
一级结构的修饰: N-端Met(fMet)去
除 二硫键的形成 个别氨基酸的修饰
羟化作用:羟脯氨酸 羟赖氨酸
酶活性中心的磷酸化
分泌性蛋白
蛋白质前体中不必要
肽段的切除
一条合成后的多肽链经加工产
多蛋白的加工
生多种不同活性的蛋白质/多肽
17
四、可溶性蛋白质因子
起始因子 延长因子 释放因子
initiation factors IF eukaryote initiation factors eIF elongation factors EF eukaryote elongation factors eEF release factors RF

蛋白质翻译及翻译后修饰课件.ppt

蛋白质翻译及翻译后修饰课件.ppt

1.3 核糖体(ribosome)与核糖体rRNA
核糖体是rRNA 与几十种蛋白质的复合体,有大、小两个亚基构成。含有 合成蛋白质多肽链所必需的酶、起始因子(IF)、延伸因子(EF)、释放 因子(RF)等。
原核的核糖体(70S)= 30S小亚基 + 50S大亚基 30S小亚基: 16S rRNA + 21种蛋白质 50S大亚基: 23S,5SrRNA + 34种蛋白质
蛋白质翻译及翻译后修饰课件
tRNA的结构—“四环一臂”
倒L形的三级结构
蛋白质翻译及翻译后修饰课件
tRNA的功能是解读mRNA上的密码子和搬运氨基酸。 tRNA上至少有4 个位点与多肽链合成有关:即3’CCA氨基酸接受位
点、氨基酰-tRNA合成酶识别位点、核糖体识别位点和反密码子位点。 每一个氨基酸有其相应的tRNA携带, 氨基酸的羧基与tRNA的 3’
反应如下:
A A t R N A A T P 氨 酰 基 - t R N A 合 成 酶 A A - t R N A A M P P P i
氨基酸的羧基与tRNA 的3’端CCA-OH 以酯键相连,因此其氨基是自 由的。
蛋白质翻译及翻译后修饰课件
tRNAfmet fMet-tRNA合成酶
蛋白质翻译及翻译后修饰课件
分泌型蛋白质在翻译过程中通过信号肽协助转入内质网的机制
信号肽(signal peptide)是在新生的多肽链中,可被细胞识别系统识别的 特征性氨基酸序列,在蛋白质翻译过程中或翻译后的定位发挥引导的作用。
蛋白质翻译及翻译后修饰课件
本章结束
蛋白质翻译及翻译后修饰课件
氨酰基tRNA进入A位
新的氨基酸-tRNA的进位依赖Tu-Ts因子和GTP的协助

蛋白质合成和翻译过程

蛋白质合成和翻译过程

蛋白质合成和翻译过程蛋白质合成和翻译是细胞中一系列重要的生物化学过程,它们对于维持生命活动和遗传信息的传递起着至关重要的作用。

本文将介绍蛋白质的合成和翻译过程,并探讨其中的关键步骤和调控机制。

一、蛋白质合成的概述蛋白质合成是指通过翻译过程将基因中的密码子信息转化为氨基酸序列的过程。

这一过程发生在细胞的核糖体中,需要参与的重要组分包括核糖体RNA(rRNA)、转运RNA(tRNA)和核糖体蛋白(r-protein)。

蛋白质的合成过程主要包括以下几个步骤:转录前改造、基因表达和剪接、mRNA的运输和翻译。

二、蛋白质合成的关键步骤1. 转录前改造:在真核生物中,基因中的DNA序列首先被转录为一段称为前体mRNA(pre-mRNA)的分子。

pre-mRNA在细胞核中经历剪接、加工修饰等一系列修饰过程,形成成熟mRNA,然后被送到细胞质中进行蛋白质的合成。

2. 基因表达和剪接:基因中的DNA序列会被RNA聚合酶复制为pre-mRNA分子,pre-mRNA中的外显子和内含子序列通过剪接机制的作用而被正确拼接,生成成熟mRNA。

剪接是蛋白质合成的一个重要调控途径,可以产生多个不同的成熟mRNA,从而扩大蛋白质的功能多样性。

3. mRNA的运输和翻译:成熟的mRNA被转运至细胞质,与核糖体结合,开始翻译过程。

核糖体是含有rRNA和r-protein的颗粒状结构,其功能是识别mRNA上的密码子并配对tRNA上的氨基酸。

4. 翻译过程:翻译过程包括起始、延伸和终止三个主要阶段。

起始阶段是核糖体识别mRNA上的起始密码子AUG,并结合甲硫氨酸(methionine)氨基酸。

延伸阶段是核糖体识别并匹配mRNA上的密码子,通过tRNA上的氨基酸与新到的氨基酰-tRNA结合,形成肽键,扩大多肽链。

终止阶段是核糖体识别到终止密码子,结束翻译,完成多肽链的合成。

三、蛋白质合成的调控机制蛋白质合成过程中存在着复杂的调控机制,包括转录调控、翻译调控和蛋白质降解等。

蛋白质合成和翻译的机制

蛋白质合成和翻译的机制

蛋白质合成和翻译的机制蛋白质合成(protein synthesis)是细胞中的一项重要生物过程,它涉及蛋白质的合成和翻译。

蛋白质是生命的基础组成单位,对于维持细胞结构、调节代谢和参与信号传导等功能至关重要。

本文将介绍蛋白质合成和翻译的机制,并探讨其在细胞中的作用。

一、蛋白质合成的步骤蛋白质合成经过两个主要的步骤:转录(transcription)和翻译(translation)。

转录发生在细胞核中,将DNA的信息转录成RNA;而翻译则发生在细胞质的核糖体中,将RNA的信息翻译成氨基酸序列形成蛋白质。

(一)转录转录是DNA模板信息的复制过程,将DNA的信息转录成RNA。

转录分为三个主要步骤:起始、延伸和终止。

1. 起始起始是由RNA聚合酶(RNA polymerase)在DNA上找到具有启动子序列的基因的起始点,并与之结合的过程。

启动子序列一般位于基因的上游区,其中较为重要的是TATA盒子,它在真核生物中是转录起始的信号。

2. 延伸延伸是RNA聚合酶沿DNA模板链上的读取和合成RNA的过程。

在延伸过程中,RNA聚合酶将模板链的碱基与互补的核苷酸三磷酸二核苷酸(NTP)结合,形成RNA链。

这一步骤一直持续到到达终止信号。

3. 终止终止是转录过程的最后一步,当RNA聚合酶到达基因的终止信号时,它将停止合成RNA链,并与DNA分离。

(二)翻译翻译是将RNA的信息翻译成氨基酸序列,形成蛋白质的过程。

翻译包含三个主要步骤:起始、延伸和终止。

1. 起始起始是由核糖体锚定在起始密码子(AUG)上的过程。

起始密码子一般编码甲硫氨酸(methionine),它指示翻译的起始点。

2. 延伸延伸是通过核糖体沿mRNA链读取信息和合成多肽链的过程。

核糖体将每个三联密码子与互补的tRNA分子配对,tRNA上的氨基酸逐渐连在一起形成多肽链。

3. 终止终止是翻译过程中的最后一步,当核糖体到达终止密码子时,它会释放合成的多肽链,并停止翻译过程。

蛋白质合成中的翻译过程

蛋白质合成中的翻译过程

蛋白质合成中的翻译过程蛋白质合成的翻译过程是生物学研究中的一个重要方向,它涉及到许多蛋白质的结构和功能。

该过程从DNA模板开始,经过转录过程产生mRNA,并通过翻译过程将mRNA转化成蛋白质。

本文将对蛋白质合成中的翻译过程进行探讨。

1. 转录过程在蛋白质合成中,翻译过程之前的步骤是转录。

转录是将DNA模板信息转录成mRNA信息的过程。

mRNA是一种包含了蛋白质编码信息的核酸分子,它将信息从细胞核传递到细胞质中的核糖体。

在转录过程中,DNA双链的一条链作为模板被转录成RNA,这个转录过程是由RNA聚合酶完成的。

RNA聚合酶在DNA双链上的寻找起始点时,先绑定到RNA起始序列,然后扫描DNA链,找到物理上相邻的核苷酸,并根据它们的互补碱基配对合成RNA链。

2. 翻译过程翻译是将mRNA上的核苷酸序列翻译成氨基酸序列的过程。

该过程中需要多种蛋白质和RNA分子的协同作用,其中最关键的是tRNA 和核糖体。

2.1 tRNAtRNA是一种能够转运氨基酸到核糖体的RNA分子。

它是一个小分子,大约有74到95个核苷酸。

每个tRNA分子能够识别并携带一个特定的氨基酸,并通过反式转录把mRNA上的信息转化为氨基酸序列。

tRNA的结构很特殊,它的一端是氨基酸接收位点(A位点),另一端是抗密码位点(E位点)。

在tRNA的主干上还有一个反向回路区域,这个区域上通常有一个反向转录被称为“抗密码环”。

2.2 核糖体核糖体是进行翻译的主要基因组结构,它由大量蛋白质和RNA分子组成。

核糖体可以辨识mRNA上特定的核苷酸序列,并通过tRNA 上的氨基酸匹配这些核苷酸。

核糖体的核心是由两份RNA组成的,这种RNA被称为核糖体RNA(rRNA)。

rRNA具有催化酶活性,可以协助在核糖体内形成肽键。

3. 翻译过程的步骤翻译过程主要包含了三个步骤:tRNA的激活、互补匹配和肽键形成。

3.1 tRNA的激活tRNA的激活是指把氨基酸与tRNA连接起来的过程,这需要一种叫做tRNA合成酶的酶来完成。

蛋白质的翻译过程

蛋白质的翻译过程

起始密码
➢肽链合成的起始
❖30s起始复合物形成
1.核糖体亚基的拆离
2.mRNA在小亚基上就位 3.fmet-tRNAfmet的结合
起始序列(SD 序列)
30S小亚基与mRNA识别、结 合
IF1、IF3协助 fmet-tRNAfmet -IF2-GTP 通 过
其反密码与mRNA上的起始密

AUG相配对
蛋白质的生物合成-翻译
分子生物学的中心法则(central dogma)
复制 DNA
RNA复制
转录
RNA
翻译
蛋白质
逆转录
2
翻译(蛋白质的生物合成)
蛋白质生物合成体系
➢以氨基酸为原料
➢以mRNA为模板 ➢以tRNA为运载工具 ➢以核糖体为合成场所
➢起始、延长、终止各阶段蛋白因子 参与合成后加工成为有活性蛋白质
❖氨基酰tRNA合成 酶
❖催化反应
❖氨基酰tRNA
氨基酰tRNA合成酶
A.A+特异tRNA
氨基酰tRNA
ATP AMP+PPi
氨基酸 பைடு நூலகம் ATP-E 氨基酰-AMP-E + PPi
氨基酰-AMP-E+tRNA 氨基酰tRNA+AMP+E (-COOH) (3’-CCA-OH)
16
2 、氨基酰tRNA合成酶 的高度专一性
➢核糖体与特异蛋白质、mRNA、tRNA的反应 部位
➢新技术 低温电子显微镜技术 中子散射技术
14
第二节 蛋白质合成的过程
原核生物 氨基酸的活化与转运 肽链合成的起始 肽链的延长 “核糖体循环” 肽链合成的终止 蛋白质的加工、修饰

蛋白质合成过程四个步骤

蛋白质合成过程四个步骤

蛋白质合成是生物体内一项非常重要的生物化学过程,也被称为蛋白质生物合成。

该过程包括转录和翻译两个主要阶段,涉及到DNA、RNA和蛋白质等多种生物分子的参与。

下面我将详细介绍蛋白质合成的四个步骤,以便更好地理解这一复杂而精密的生物学过程。

步骤一:转录(Transcription)转录是蛋白质合成的第一步,它发生在细胞核内。

在这一过程中,DNA的信息将被复制到一种名为mRNA(信使RNA)的分子上。

具体来说,转录的步骤包括:1. 启动子结合:转录过程开始于启动子,启动子是DNA上的一个特定区域,其特殊序列能够与RNA聚合酶结合,从而启动转录。

2. RNA聚合酶合成mRNA:一旦启动子与RNA聚合酶结合,RNA 聚合酶将会沿着DNA模板链合成mRNA,这一过程包括RNA的合成和剪切修饰等步骤。

3. 终止:当RNA聚合酶到达终止子时,转录过程将结束,mRNA 分子从DNA模板上分离出来。

步骤二:前期mRNA处理(Pre-mRNA Processing)在转录完成后,产生的mRNA并不是立即可以被翻译成蛋白质的成熟mRNA,还需要经过一系列的前期处理。

这些处理包括:1. 剪接(Splicing):mRNA中会存在一些被称为内含子的非编码序列,而真正编码蛋白质的序列被称为外显子。

剪接过程将内含子从mRNA中切除,将外显子连接起来,形成成熟的mRNA。

2. 5'端盖(5' Cap)的添加:在mRNA的5'端,会添加一种名为7-甲基鸟苷酸(m7G)的化合物,用于保护mRNA不受降解,同时有助于mRNA与核糖体的结合。

3. 3'端聚腺苷酸(Polyadenylation)的添加:在mRNA的3'端,会添加一系列腺苷酸,形成所谓的聚腺苷酸尾巴,同样用于保护mRNA不受降解。

步骤三:翻译(Translation)翻译是蛋白质合成的第二个主要步骤,它发生在细胞质中的核糖体内。

在翻译过程中,mRNA上携带的遗传密码将被翻译成氨基酸序列,从而合成特定的蛋白质。

蛋白质的生物合成(翻译)

蛋白质的生物合成(翻译)
新生多肽链需要酶和其他蛋白质辅助,经过 折叠、修饰等加工才能转变为天然构象的功能蛋 白质。 1. 分子伴侣
(1)热休克蛋白(HSP): HSP70、HSP40和GreE族
(2)伴侣素(chaperonins): GroEL和GroES家族
2. 蛋白二硫键异构酶 (PDI)
3. 肽-脯氨酰顺反异构酶 (PPI)
(二) 抗生素对蛋白质合成的影响
1.抗生素类是微生 物产生的能够杀灭 或抑制细菌的一类 药物。
抑制蛋白质生物合成的原理
抗生素 四环素族(金霉素 新霉素、土霉素) 链霉素、卡那霉素、 新霉素 氯霉素、林可霉素 红霉素 梭链孢酸 放线菌酮 嘌呤霉素 作用点 原核核蛋白 体小亚基 原核核蛋白 体小亚基 原核核蛋白 体大亚基 原核核蛋白 体大亚基 原核核蛋白 体大亚基 真核核蛋白 体大亚基 真核、原核 核蛋白体 作用原理 应用 抑制氨基酰-tRNA与小亚基 抗菌药 结合 改变构象引起读码错误、抑 抗菌药 制起始 抑制转肽酶、阻断延长 抗菌药 抑制转肽酶、妨碍转位 与EFG-GTP结合,抑制肽 链延长 抑制转肽酶、阻断延长 氨基酰-tRNA类似物,进位 后引起未成熟肽链脱落 抗菌药 抗菌药 医学研究 抗肿瘤药
5'
UAG
3'
二、真核生物翻译过程
(一)起始
1. 核糖体大小亚基分离; 2. 起始氨基酰-tRNA结合; 3. mRNA在核糖体小亚基就位; 4. 核糖体大亚基结合。
原核先 就位,后 结合;真核 先结合, 后就位
(二) 延长
与原核生物相比,真核生物肽链延长过程有 不同的反应体系和延长因子。真核细胞核糖体没 有E位,转位时卸载的tRNA直接从P位脱落。
2
4 2 3
Thr

蛋白质翻译从mRNA到蛋白质的精密过程

蛋白质翻译从mRNA到蛋白质的精密过程

蛋白质翻译从mRNA到蛋白质的精密过程蛋白质是构成生物体的基本组成部分,扮演着许多重要功能的角色。

蛋白质的合成过程被称为翻译,它从mRNA(信使RNA)到蛋白质的转换是一个极其精密的过程。

本文将详细介绍蛋白质翻译过程的各个步骤。

1. 信使RNA合成蛋白质翻译过程的第一步是合成mRNA。

在细胞核内,DNA的一个片段被转录成一条对应的mRNA分子。

这个过程称为转录。

mRNA由核糖核酸(RNA)构成,它的结构与DNA类似,但含有尿嘧啶(U)代替胸腺嘧啶(T)。

转录是由RNA聚合酶酶催化的。

2. 剪切和修饰新合成的mRNA分子并不是马上可以进行蛋白质翻译的,它还需要经过一系列的修饰。

这些修饰包括剪切和3'端聚腺苷酸(poly A)尾加工。

剪切是指将mRNA分子中一些无用的片段剪掉,只保留编码蛋白质所需的有效信息。

而3'端聚腺苷酸尾加工是在mRNA的末端附加一串腺苷酸,这个尾部结构有助于mRNA的稳定和翻译的开始。

3. 核外运输修饰完成的mRNA会离开细胞核,通过核孔进入到细胞质中。

这个过程是由核糖体蛋白复合物协助的。

核糖体蛋白复合物将mRNA的运输与mRNA袋装蛋白质的合成进行联系,确保mRNA在核内合成的蛋白质能够顺利地到达其目的地。

4. 蛋白质合成蛋白质的翻译是在细胞质中进行的。

这个过程需要依靠核糖体,核糖体是由核糖体RNA(rRNA)和蛋白质组成的。

核糖体通过识别mRNA上的起始密码子,导致tRNA(转运RNA)结合到起始密码子上。

tRNA上携带着相应的氨基酸,它们会根据密码子对tRNA的互补性配对进行连接。

蛋白质的合成是根据mRNA上的一系列密码子和相应的氨基酸序列进行的。

5. 翻译终止当核糖体到达mRNA上的终止密码子时,翻译会终止,并释放新合成的蛋白质。

终止密码子不编码任何氨基酸,而是指示核糖体停止翻译,并释放蛋白质。

通过这些精密的过程,细胞能够根据基因的指示合成特定的蛋白质。

蛋白质合成和翻译过程

蛋白质合成和翻译过程

蛋白质合成和翻译过程蛋白质合成和翻译是生物体内基本的生化过程之一。

它们是细胞通过转录和翻译DNA的遗传信息,合成蛋白质的过程。

蛋白质作为细胞的结构组分和功能分子,对维持生物体的正常生理功能起着关键的作用。

本文将详细介绍蛋白质合成和翻译的过程及相关机制。

一、蛋白质合成过程蛋白质合成是指通过将氨基酸链合成成特定的肽链,最终形成功能完整的蛋白质的过程。

它包括转录和翻译两个主要的步骤。

1. 转录转录是指从DNA模板上合成RNA的过程。

转录的主要特点是DNA的一个酸性链作为模板,通过RNA聚合酶的催化作用,将其转录成相应的RNA分子。

这一过程发生在细胞核中。

在转录过程中,RNA聚合酶根据DNA模板的碱基序列合成RNA 链,其中腺嘌呤(A)对应DNA的胸腺嘧啶(T),胸腺嘧啶(T)对应DNA的腺嘌呤(A),鸟嘌呤(G)对应DNA的钴嘌呤(C),钴嘌呤(C)对应DNA的鸟嘌呤(G)。

转录过程通过三个主要的步骤:启动、延伸和终止来完成。

2. 翻译翻译是指将RNA的信息转化为氨基酸序列的过程。

它发生在细胞质内的核糖体中。

在翻译过程中,RNA通过核糖体将其信息转化为氨基酸序列,形成肽链,进而形成蛋白质。

翻译是以密码子为基本单位进行的,每个密码子由三个核苷酸组成。

在翻译的开始,核糖体会与mRNA上的起始密码子结合,将与之匹配的启动tRNA携带的氨基酸搬移到核糖体上,从而形成蛋白质的第一个氨基酸。

接下来,核糖体将移动到下一个密码子,再次与匹配的tRNA配对,并再次将其携带的氨基酸搬移到核糖体上。

这一过程不断重复,直到遇到终止密码子,翻译过程结束,蛋白质合成完成。

二、蛋白质合成机制蛋白质合成是一个复杂的过程,涉及到许多分子和细胞器的参与。

下面将介绍蛋白质合成过程中的几个关键环节。

1. 激活氨基酸在蛋白质合成的开始阶段,氨基酸需要被激活,即与特定的载体分子tRNA结合,形成活化的tRNA。

这一过程由氨基酸激活酶完成。

激活的tRNA负载着特定的氨基酸,随后与核糖体结合,参与翻译过程。

蛋白质合成过程中的转录和翻译机制

蛋白质合成过程中的转录和翻译机制

蛋白质合成过程中的转录和翻译机制蛋白质是组成生物体的重要基本分子,它们在维持细胞结构和功能、调控代谢和参与信号传导等方面起着关键作用。

蛋白质的合成包括两个主要的过程:转录和翻译。

转录是指将DNA模板上的遗传信息转录成mRNA分子的过程,而翻译则是指将mRNA上的遗传信息翻译成蛋白质的过程。

转录是蛋白质合成的第一步,它在细胞核内进行。

转录的主要参与者是RNA聚合酶,它能够识别DNA上的启动子区域,并开始合成mRNA链。

在DNA的双链解旋后,RNA聚合酶开始合成mRNA的链。

转录过程中的模板链是DNA的一个链,它被称为编码链,而非模板链则被称为非编码链。

在DNA上,编码链上的碱基按照与mRNA序列一一对应的方式进行配对。

这里有个重要的概念叫RNA剪接,它指的是转录过程中被剪接的不连续的mRNA小片段的组合。

这些小片段包含了外显子和内含子,而外显子会被剪接连接而形成成熟的mRNA分子。

在转录完成后,生成的mRNA分子通过核孔进入到细胞质中,以便进行下一步的翻译过程。

翻译是蛋白质合成的第二步,它在细胞质的核糖体中进行。

翻译的主要参与者是核糖体,它能够识别mRNA上的起始密码子,并开始对mRNA进行翻译。

每个起始密码子编码一个氨基酸,而每个氨基酸由一个或者多个密码子编码。

在翻译过程中,tRNA起着至关重要的作用,它能够携带特定的氨基酸并与mRNA上的密码子进行配对。

当tRNA配对到到mRNA上的密码子时,它释放出携带的氨基酸,并与正在合成的蛋白质链上的氨基酸进行连接。

这样,蛋白质链就在不断地延伸。

当翻译过程达到终止密码子时,核糖体停止合成蛋白质,蛋白质链被释放出来。

此时,转录和翻译过程都已经完成。

生成的蛋白质可能需要经过后续的修饰,例如糖基化、磷酸化等才能够发挥其功能。

在此过程中,其他细胞器和蛋白质也可能参与其中,以确保蛋白质的正确折叠和定位。

总结来说,蛋白质合成的转录和翻译机制是一系列复杂的分子事件,它们严格遵循一套细致的步骤和规则。

蛋白质的翻译和翻译后修饰

蛋白质的翻译和翻译后修饰

蛋白质的翻译和翻译后修饰蛋白质是细胞中最基本的生物大分子,参与了生物体内几乎所有的生命活动。

蛋白质的合成涉及到翻译过程和翻译后修饰两个主要步骤。

一、蛋白质的翻译蛋白质的翻译是指将mRNA上的遗传信息转化为氨基酸序列的过程。

这一过程主要发生在细胞质中的核糖体上。

1. 启动子与小核仁RNA(rRNA)的结合:翻译开始前,mRNA的5'端结合到核糖体小亚基上的小核仁RNA,形成启动复合体。

这一步骤确保正确的起始点和适当的翻译框架。

2. 外显子剪接和核糖体扫描:mRNA经过剪接后,转录内含子被去除,形成成熟的mRNA转录本。

核糖体扫描该mRNA,寻找起始密码子(AUG),确定翻译开始位置。

3. 起始复合物形成:核糖体识别起始密码子并与亚单位Met-tRNAiMet结合,形成起始复合物。

这一复合物包含大、小核糖体亚基以及tRNAiMet。

4. 转移rna(tRNA)结合:核糖体在mRNA上滑动,直到识别到一个新的密码子。

合适的tRNA通过抗密码子与mRNA上的密码子配对,保证正确的氨基酸被加入到蛋白质链上。

5. 肽键形成和elongation:肽键的形成是翻译的关键步骤,它由蛋白合成酶催化,将新到达的氨基酸与蛋白质链上的上一氨基酸连接起来。

步骤重复进行,直到到达终止密码子。

6. 翻译终止:终止密码子标志着蛋白质链的结束。

在终止密码子到达时,核糖体与复合物解离,蛋白质链被释放,并经过后续的修饰和折叠。

二、蛋白质的翻译后修饰蛋白质翻译后经历一系列修饰过程,使其成为活性蛋白质并能够履行其功能。

1. 氨基酸修饰:氨基酸修饰包括磷酸化、甲基化和乙酰化等。

这些修饰可以改变蛋白质的稳定性、活性以及与其他分子的相互作用。

2. 糖基化修饰:糖基化修饰是将糖基添加到蛋白质上,形成糖蛋白。

糖蛋白在细胞识别、细胞黏附和信号传导等过程中起着重要作用。

3. 蛋白质折叠:翻译后的蛋白质链通常处于未折叠的状态,需要经过蛋白质折叠过程才能形成稳定的三维结构。

蛋白质合成与翻译

蛋白质合成与翻译

蛋白质合成与翻译蛋白质是生物体内多种重要分子的基础,它们在细胞结构和功能上起着关键作用。

在细胞内,蛋白质的合成和翻译过程是非常重要的,它们决定了蛋白质的结构和功能。

本文将深入探讨蛋白质的合成和翻译过程,并介绍相关的细胞器和分子机制。

一、蛋白质合成的基本过程蛋白质的合成包括两个主要阶段:转录和翻译。

在转录过程中,DNA信息被转录成RNA,然后在翻译过程中,RNA被翻译成氨基酸序列,最终形成蛋白质。

1. 转录:转录是指通过RNA聚合酶将DNA信息转录成RNA的过程。

在细胞核内,RNA聚合酶会结合到DNA上,按照DNA模板合成一条互补的RNA链,这条RNA链称为mRNA(信使RNA)。

mRNA 是蛋白质合成的模板,它携带着从DNA中复制下来的基因信息,包括蛋白质的氨基酸序列。

2. 翻译:翻译是通过核糖体将mRNA转化为蛋白质的过程。

在翻译开始之前,mRNA先与核糖体结合,随后tRNA(转运RNA)带着特定的氨基酸进入核糖体,通过互补配对原则将氨基酸逐渐加入正在合成的蛋白质链中。

当mRNA上的信息被完全翻译后,生成的蛋白质链被释放出来。

二、蛋白质的合成机制蛋白质合成过程涉及到许多细胞器和分子机制,它们密切配合,确保蛋白质的正确合成。

1. 核糖体:核糖体是蛋白质翻译的主要场所。

核糖体由rRNA(核糖体RNA)和蛋白质组成,它们形成一个复杂的结构,在这个结构中,rRNA发挥着对mRNA和tRNA的识别和定位的作用,使得氨基酸按照正确的顺序加入正在合成的蛋白质链中。

2. tRNA:tRNA是转运RNA的简称,它是连接氨基酸和mRNA的桥梁。

每种tRNA携带着一种特定的氨基酸,并且具有反向的互补配对能力。

在翻译过程中,tRNA根据mRNA的密码子选择性地结合到核糖体上,将正确的氨基酸加入即将形成的蛋白质链中。

3. 蛋白质折叠:蛋白质在合成过程中通常会经历折叠的过程,这是为了使蛋白质链在三维空间中形成特定的结构并具有功能。

简述蛋白质生物合成过程

简述蛋白质生物合成过程

简述蛋白质生物合成过程
蛋白质生物合成是指细胞内通过基因表达和翻译过程来合成蛋
白质的过程。

它通常包括两个主要阶段:转录和翻译。

在转录阶段,DNA上的信息被复制到RNA上。

具体来说,由于RNA 聚合酶的作用,在DNA模板链上,一个RNA链从5'端向3'端延伸,并且与DNA模板链的碱基配对形成一个RNA-DNA杂交双链,最终形成一份RNA分子。

这个RNA分子就是信使RNA(mRNA)。

mRNA带有从DNA 中复制的信息,指示如何合成特定的蛋白质。

在翻译阶段,mRNA被送往细胞质中的核糖体,核糖体扫描mRNA 上的密码子,将tRNA上的氨基酸逐个加入到正在合成的多肽链上。

具体来说,tRNA上的抗密码子序列与mRNA的密码子序列互补配对,确定了相应氨基酸的位置顺序。

之后,第一个氨基酸与第二个氨基酸之间的肽键形成,tRNA释放并离开核糖体,第二个tRNA进入并重复上述过程。

这样,多个氨基酸通过肽键连接形成一个长链的蛋白质。

整个生物合成蛋白质的过程是高度有序的,需要大量参与其中的各种物质和分子机器的协调作用,如RNA聚合酶、核糖体、tRNA等。

此外,还需要遵循一系列严格的调节机制,如基因表达调控、蛋白后转录修饰等,以确保蛋白质能够按照正确的结构和功能被合成出来。

蛋白质生物合成的过程

蛋白质生物合成的过程

蛋白质生物合成的过程蛋白质是构成生命体的重要组成部分,其生物合成过程也是生命活动的重要环节之一。

蛋白质生物合成包含了两个主要的过程:转录和翻译。

在这两个过程中,多种分子和酶的参与,共同完成了蛋白质的合成。

转录是蛋白质生物合成的第一步,它发生在细胞核内。

在这一过程中,DNA的信息被转录成RNA分子,这个过程由RNA聚合酶完成。

RNA聚合酶可以识别DNA链上的启动子区域,并沿着DNA链逐渐合成RNA分子。

RNA分子的合成是由核苷酸单元的连接而成的,这些核苷酸单元包括腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和尿嘧啶(U)。

RNA分子的合成是由DNA模板的编码信息决定的,这也就是RNA分子与DNA分子之间的信息转换。

在翻译过程中,RNA分子将信息转化为蛋白质的氨基酸序列。

这个过程发生在细胞质中,由核糖体完成。

核糖体是由RNA和蛋白质组成的复合物,其中RNA分子起到了信息传递的作用,而蛋白质则提供了支持和催化的功能。

在翻译过程中,RNA分子的信息被翻译成一系列的氨基酸,这些氨基酸按照特定的顺序连接在一起,形成了蛋白质分子。

蛋白质的生物合成过程是一个高度协调的过程,多种分子和酶在其中发挥了重要的作用。

在转录过程中,RNA聚合酶需要与其他蛋白质组成复合物,才能识别启动子区域并完成RNA分子的合成。

在翻译过程中,核糖体需要与多种因子协同作用,才能完成氨基酸的连接和蛋白质的合成。

此外,蛋白酶和蛋白质折叠酶等分子也参与了蛋白质的后续加工过程,保证了蛋白质的正确折叠和功能发挥。

总的来说,蛋白质生物合成是一个复杂而精细的过程,其中涉及到多种分子和酶的协同作用。

这个过程不仅是生命活动的基础,也具有重要的生物学意义。

通过对蛋白质生物合成过程的研究,人们可以更好地理解生命的本质和机制,同时也可以为生物医学研究和药物研发提供有力的支持。

第5章 翻译

第5章 翻译

一、 mRNA是蛋白质生物合成的直接模板 (一)mRNA结构
• 不同生物mRNA序列,都具有5-端非翻译 区、开放阅读框架区和3-端非翻译区。 • 真核生物mRNA的5-端有帽子结构, 3-端 有多聚腺苷酸(polyA)尾。 1961年,Nirenberg 证明 了mRNA的模板作用。
5'
一、原核生物的肽链合成过程
(一)肽链合成的起始
• 指 mRNA 和起始氨基酰-tRNA分别与核糖体结合 而形成翻译起始复合物 (translational initiation complex)的过程。 • 参与起始物质:30S小亚基、50S大亚基、mRNA、 fMet-tRNAfMet、起始因子、GTP和Mg2+。
摆动配对
密码子、反密码子摆动配对
tRNA反密码 子第1位碱基
U
I
U
G
A C
mRNA密码 子第3位碱基
C,A,U A,G C,U U G
二、核糖体是蛋白质生物合成的场所
核糖 体的 组成
核糖体的组成
核蛋 白体 原核生物 蛋白质 S值 真核生物
rRNA 蛋白质
S值
rRNA
小亚基
大亚基
核蛋白体
21种
36种
同义密码子
为同一种氨基酸编码的各密码子,亦称简并性密码子。 • 前两个碱基均相同,只是第三个碱基不同。 • 若头两个碱基发生点突变,可译出不同氨基酸,而第 三个碱基的突变,不会影响氨基酸的翻译。 •遗传密码的特异性主要取决于前两位碱基。 密码子简并性的生物学意义:减少基因突变对蛋白质功 能的影响。 GCU ACU
ORF 编码区
AUG UAA
3'
m7Gppp
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②mRNA 在小亚基定位结合 —通过5' 端S-D序列(AGGA) 配对结合到核蛋白体小亚基上的 16S-rRNA 近3' -末端处 (UCCU)
③起始氨基酰 -tRNA 的结合—fMet-tRNAi fMet和IF-2 及 GTP 形成复合物
④核蛋白体大亚基结合 —70S起始复合物形成
起始氨基酰tRNA(fMet-tRNA fmet)结合 到小亚基上
ATP
mRNA

elF4E, elF4G, elF4A, elF4B,PAB
ADP+Pi
60S

eIF-2B 、eIF-3 、 eIF-6
40S
60S
Met
elF-5

各种elF释放 GDP+Pi
真核生物翻译起始复
Met
合物形成过程
二、肽链合成延长
根据mRNA 密码序列的指导,顺序 添加的氨基酸从N端向C端延伸肽链,
直到合成终止的过程
肽链延长在核蛋白体上连续性循环式进行, 又称为核蛋白体循环(ribosomal cycle) ,每 次循环增加一个氨基酸
? 进位(entrance)/ 注册(registration ) ? 成肽(peptide bond formation) ? 转位(translocation)
蛋白质
rpS 21 种 rpL 34 种
rpS 33 种 rpL 49 种
小亚基与 mRNA的结合
大亚基
P位
A位
P位(peptidyl site) :结合肽酰tRNA的部位 A位(aminoacyl site) :结合氨基酰tRNA 的部位 E位(exit site) :排出位
三、氨基酸的活化与转运 —tRNA
碱基配对规律的情况,称为遗传密码的摆动现象 3. 通用性:除个别细胞器的特殊密码子外,蛋白质生物
合成的整套密码,从简单生物到人类都通用 4. 连续性:mRNA 的读码方向从 5‘→3,' 两个密码子之
间无任何核苷酸隔开 5. 偏爱性:密码子使用频率的差异
ห้องสมุดไป่ตู้
阅读框架(reading frames)
开放阅读框 (open reading frame, ORF): 从起始密码 AUG 到终止密码处的正确可阅读序列
密码子
mRNA 分子上从 5′→ 3′方向,由 起始密码子 AUG开始,每 3个核苷酸 组成的三联体,决定肽链上某一个 氨基酸或蛋白质合成的起始、终止 信号,称为三联体密码。
起始密码: AUG 终止密码: UAA、UAG、UGA
遗传密码的性质
1. 简并性:指一个氨基酸具有 2个或2个以上的密码子 2. 摆动性:密码子与反密码子配对,有时会出现不遵从
蛋白质生物合成
— 翻译及翻译后过程
翻译(Translation )
将存在于 mRNA 上代表一个多肽的核苷酸残基序列转换 为多肽链氨基酸残基序列的过程
n 氨基酸
mRNA 、tRNA 、rRNA
蛋白质
酶、蛋白质因子、 ATP 、GTP
参与蛋白质生物合成的物质
1. 三种RNA—mRNA 、rRNA 、tRNA 2. 20种氨基酸( AA)作为原料 3. 酶及众多蛋白因子,如 IF 、eIF 4. ATP 、GTP 、无机离子
核蛋白体大亚基结合
起始因子IF 和eIF
原核:起始因子 —— 三种; IF-l 、2和3 真核:起始因子 —— 十种; eIF 翻译起始: 1)IF-3 —结合核蛋白体 30S亚基,使大、小亚基拆离 2)IF-1 协助IF-3 结合和亚基拆离 3)单独的 30S亚基易于与 mRNA 及起始tRNA 结合 4)IF-2 促进fMet-tRNA 结合mRNA 及核蛋白体
延伸过程所需蛋白因子——延长因子 (elongation factor, EF)
蛋白质的生物合成的过程
1. 氨基酸的活化 2. 多肽链合成的起始 3. 肽链的延长 4. 肽链的终止和释放 5. 蛋白质合成后的加工修饰
一、肽链合成起始(initiation)
甲硫氨酰 tRNA 与mRNA 结合到核蛋白体上, 生成翻译起始复合物
(一)原核生物翻译起始
①核蛋白体大小亚基分离 —起始因子 IF3 、IF1 介导,利 于小亚基与 mRNA ,fMet-tRNA fMet结合
A C C
氨基酸臂
反密码环
氨基酸的活化
氨基酰-tRNA 合成酶(aminoacyl-tRNA synthetase)
氨基酸 + tRNA
氨基酰-tRNA 合成酶 氨基酰- tRNA
ATP
AMP +PPi
氨基酸 +ATP- E → 氨基酰-AMP-E + PPi 氨基酰-AMP-E + tRNA → 氨基酰-tRNA + AMP + E
原核生物mRNA 的特点
S-D序列:原核生物 mRNA 起始密码 AUG 上游8~13核苷酸 处,存在一段 5′-UAAGGAGG- 3′的保守序列,称为 S-D 序列。是 mRNA 与核蛋白体识别、结合的位点
真核生物 mRNA的特点
真核生物没有 S-D序列, 靠帽子结构识别核糖体 真核生物的起始密码位 于Kozak 序列 (CCACC AUGG)中, 增加翻译起始的效率
二、生物合成的场所 — 核蛋白体 (Ribosomes)
核蛋白体蛋白及 rRNA的组成特点
原核生物
真核生物
核蛋 白体
小亚基
大亚基
核蛋 白体
小亚基
大亚基
S 70S 30S
50S
80S 40S
60S
rRNA
16S-rRNA
5S-rRNA 23S-rRNA
18SrRNA
28S-rRNA 5S-rRNA 5.8S-rRNA
(二)真核生物翻译起始复合物形成
1. 起始因子eIF3 结合到核糖体(80S) 的小亚基(40S)上,使大亚基 (60S)与小亚基解离
2. 甲硫酰tRNA( Met-tRNAi met )结 合
3. mRNA 结合(需帽结合蛋白CBP )
40S
elF-3
② met
Met Met-tRNAiMet -elF-2 -GTP
一、生物合成的模板 —mRNA
5′
CAA CUG CAG ACA UAU AUG AUA CAA UUU GAU CAG UAU
3′
-Gln -Leu- Gln -Thr- Tyr -Met- Ile -Gln- Phe -Asp- Gln -Tyr-
遗传密码 (genetic code) ——能编码蛋白质氨基酸序列的 基因中的核苷酸体系
相关文档
最新文档