几种特殊类型行列式及其计算
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中非常重要的概念,它可以帮助我们理解矩阵的性质和求解线性方程组。
行列式的计算方法有多种,下面将详细介绍几种常用的计算方法。
一、按定义式计算行列式:按照定义式计算行列式是最基本的一种方法。
对于一个n阶矩阵A,其行列式记作det(A),可以按照以下公式进行计算:det(A) = Σ(−1)^σ(π_1,π_2,…,π_n)a_{1π_1}a_{2π_2}⋯a_{nπ_n}σ(π_1,π_2,…,π_n)是排列(π_1,π_2,…,π_n)的符号,a_{iπ_i}表示矩阵A的第i行第π_i列的元素,Σ表示对所有可能的排列进行求和。
按照定义式计算行列式需要对所有可能的排列进行求和,计算量较大,对于较大阶的矩阵来说并不实用。
我们通常会采用其他方法来计算行列式。
计算行列式时,我们可以利用其性质来简化计算过程。
行列式有一些基本的性质,如行列式中某一行(列)所有元素都乘以一个数k,行列式的值也要乘以k;行列式中某一行(列)元素乘以某个数加到另一行(列)上去后,行列式的值不变等。
利用这些性质,我们可以通过变换行列式中的元素或行列式本身,从而简化计算过程。
对于一个3阶矩阵A,我们可以利用做行列变换将其变换为上三角矩阵,这样计算其行列式就会变得非常简单。
具体地,我们可以通过交换行或列,将矩阵A变换为上三角矩阵,然后利用上三角矩阵的行列式的性质求解行列式的值。
三、按矩阵的余子式和代数余子式计算行列式:对于一个n阶矩阵A,其(i,j)位置的余子式M_{ij}定义为将A的第i行第j列划去后,剩下的元素按原来的次序组成的(n-1)阶行列式。
即M_{ij} = (-1)^{i+j} \cdot \det(A_{ij})其中A_{ij}是将矩阵A的第i行第j列元素划掉后得到的(n-1)阶子式矩阵。
矩阵的代数余子式A_{ij}定义为A_{ij} = (-1)^{i+j} \cdot M_{ij}。
行列式的多种计算方法
例文一:行列式的计算方法介绍7种常用方法1 三角化方法:通过行列初等变换将行列式化为三角型行列式. 例1 计算n+1阶行列式xa a a a a x a a a a x D nnn32121211=+2 把某一行(列)尽可能化为零 例2 计算:yy x x D -+-+=222222222222222243 递归法(数学归纳法):设法找出D n 和低级行列式间的关系,然后进行递归.例4 证明:βαβαβαβααββααββα--=++++=++1110000010001000n n n D例5 证明范德蒙行列式(n ≥2)∏≤<≤-----==nj i jin nn n n n nn x x x x x x x x x x x x x x V 111312112232221321)(11114 加边法:对行列式D n 添上一适当行和列,构成行列式D n+1,且D n+1=D n 例6 证明:)11(11111111111111111111121321∑=+=++++=ni in nn a a a a a a a a D5 拆分法:将行列式表为行列式的和的方法.即如果行列式的某行(或列)元素均为两项和,则可拆分为两个行列式之和 例7 设abcd=1,求证:011111111111122222222=++++ddd d c c c c b b b b a a a a6 利用行列式的乘积:为求一个行列式D 的值,有时可再乘上一个适当的行列式∆;或把D 拆分为两个行列式的积. 例8(1)1)cos()cos()cos()cos(1)cos()cos()cos()cos(1)cos()cos()cos()cos(1121332312322113121n n n n n n D αααααααααααααααααααααααα------------=(2)设S k =λ1k +λ2k +⋯+λn k (k =1,2…),求证:∏≤<≤-+-+--=nj i j in n n n n nn s s s s s s s s s s s s s s s n 1222111432321121)(λλ7 利用拉普拉斯定理求行列式的值.拉普拉斯定理是行列式按某一行(或列)展开定理的推广.定义(1) 在n 阶行列式D 中,任取k 行k 列(1≤k ≤n),位于这k 行k 列交叉处的k 2个元素按原来的相对位置组成的k 阶行列式S ,称为D 的一个k 阶子式.如:D=3751485210744621则D 的一个2阶子式为:S=8261在一个n 阶行列式中,任取k 行,由此产生的k 阶子式有C kn 个.(2) 设S 为D 的一个k 阶子式,划去S 所在的k 行k 列,余下的元素按原来的相对位置组成的n-k 阶行列式M 称为S 的余子式.又设S 的各行位于D 中的第i 1,i 2…i k 行,S 的各列位于D 中的第j 1,j 2…j k 列,称A=(-1)(i1+i2+…+ik)+(j1+j2+…+jk)M.如:3751485210744621则D 的一个2阶子式为:S=8261M=3517为S 的2阶子式 M=(-1)(1+3)+(1+3)3517为S 的代数余子式.拉普拉斯定理:若在行列式D 中任取k 行 (1≤k ≤n-1),则由这k 行所对应的所有k 阶子式与它们的代数余子式的乘积等于D. 例9 计算2112100012100012100012=D 例10 块三角行列式的计算 设:⎪⎪⎭⎫ ⎝⎛=⨯⨯n n m m C B A *0或 ⎪⎪⎭⎫⎝⎛=⨯⨯n n m m C B A 0* 则:detA=(detB)(detC).特别地:若A=diag(A 1,A 2,…,A t ),则DetA=(detA 1)(detA 2)…(detA t ).例11 设分块矩阵⎪⎪⎭⎫⎝⎛=D C B A 0,其中0为零阵,B 和D 可逆,求A -1.例12 计算nn b b b a a a D 101000102121=例13 设:⎪⎪⎭⎫⎝⎛=C B A , BC T =0. 证明:|AA T|=|BB T||CC T |.例文2:行列式的多种计算方法行列式是线性代数的一个重要组成部分,行列式的计算方法多种多样,常见的几种行列式的方法有:定义法、三角化法、降阶法、升阶法、递推法、归纳法、利用范德蒙德行列式法、变换元素法、拆项法、分解乘积法等,可根据行列式选择相应的计算方法,从而减轻计算量.1定义法:n 阶行列式等于所有取自不同列的n 个元素的乘积的代数和.例1:nn n n n D ⨯-=000100002000010解:在n !项中只有一项1n ),n 3,2(,11342312-=+-a a a a a a nn n n π且不为零 !n )1(n 1n 21)1()1(D 1n 1n 1123121n n ⋅-=⋅-⋅-=-=∴--+-- nn n n a a a a2 三角化法:通过变换将行列式变换成三角行列式,再利用形式求出行列式的值. 2.1特殊行列式n21nn n 21nn n 21nn n 210*00000000*0000000)1(λλλλλλλλλλλλ===⨯⨯⨯下三角行列式上三角行列式对角行列式n212)1(nn n 21nn n 21nn n n 21)1(000000000000000)2(λλλλλλλλλλλλλ-⨯⨯⨯-===n n 次下三角行列式次上三角行列式次对角行列式2.2 箭形行列式例2 nn n n D ⨯=001030100211111解:)11(!0000300002011111221,3,21∑∑==⨯=-=-=-nj nn nj C jC nj njn n j D j2.3 可化为箭形的行列式∏∑∏∑=∏===+===⨯--+=---+⨯------=------==≠=n 1i i i n1k 222n1k i iC C n,2j n 333222111n1i i i n 1133112211321r -r n 2,i n 321321321321)x ()1(10101)(x101-0101-0011-)(x x 00x 0x 0x 00x x x D :,,2,1,j11i a a x a a x a a x a a x a a a x a a x a a x a a x x a a a a a a a a a a ni a x x a a a a x a a a a x a a a a x D k k kkk n kk knn n n i i nn nn n n n解3 降阶法 降阶法是利用行列式按其行(列)展开的性质,将高阶行列 式转化为低阶行列式进行计算)!1()1(21)1(00000000000)1(00000000000000000000004111+-=-++-+=-++=n b a ba b b b b ab a a b a a a b b a b a b a D n n n n n按第一列展开例4 升阶法 将原行列式增加一行一列,而保持原行列式值不变或与原行列式有某种巧妙的关系,且便于后面的计算)()1(00000001c c c c 010010011r r r r ,r r 00011n nax 112ax 11nn 1n 1312==-⋅-+=---+++---------=≠=-⨯---⨯n n nn ax a n n D a x a x ax naa x a x a x a a aa x a x a x a a a xa a a x aa a x aa a D a x xaa a a x a a a a x a a a a x D 时当时当5 递推法:利用行列式的性质,找出所求行列式与其相应的n-1,n ,2-阶行列式之间的递推关系,再根据次递推关系式求出所给行列式的值:,)()(:,)()(0000000)(000000000611111得由此递推下去得递推公式由此例----⨯-⨯⨯⨯⨯-+-=-+-=---+-=+-=+-+++==n n n n n nn n n n nn nn nn n a x a D a x D a x a D a x a aa x a a x a a x D a x a a a a a x a a a a x a a a a x a x a a a x a a a x a a a x a a x a a a x aa a x a a a x x a a a a x a a a a x a a a a x D])1([)()()1()()(])())[((1111122a n x a x a x a n D a x a x a a x a D a x a x D n n n n n n n -+-=--+-=-+-+--=------6数学归纳法:先利用不完全归纳法寻找行列式之间的规律,得出一般性结论,再用数学归纳法证明其正确性,从而得出所给行列式的值)1(1n .)1)(11()11(1111)11(101111111111117111211121212121211112121∑∑∑-=--==+=-≥+=+⋅=++=+=+=≠+++=n i in n ni in n i in nn a a a a a D n a a a a D a a a a a D a a a D a a a a a a D的情形猜测正确,即设对假确的下面证明这一猜测是正于是可猜测解其中例1121121212111110000000011111111111111111111---+=+=+++++=n n n n n nn D a a a a D a a a a a a a a D于是又归纳假设得:)11()11(12111121121∑∑=-=--+=++=ni in n i i n n n n a a a a a a a a a a a a D故对一切自然数n 猜得正确,即1),11(121≥+=∑=n a a a a D ni in n7 利用范德蒙行列式的结果计算:是将原行列式利用性质化成范德蒙行列式,再利用范德蒙行列式的结果计算出原行列式 例8nnn n nn nn n n n n x x x x x x x x x x x x D32122322213211111----=n 阶范德蒙行列式为∏≤<≤-----=nj i i jn nn n n nna aa a a a a a a a a a a a 111312112232221321)(1111解 构造n+1阶范德蒙行列式=)(x f 1,11,11,221,21,1)1()1(123211213231222112132111111+++-+--+++⨯+----------+++=n n n n n n n n n n n n n n n n nnn n nn n n nn n n n n n n A x A x A x xA A x x xx x x x x x xx xx xx xx x x x∏≤<≤-⋅---=ni j j in x xx x x x x x 121)()())((1,1,++-==n n n n n A M D 由f(x)的表达式知,1-n x 的系数为∏∏≤<≤≤<≤+-+++=∴-+++-=ni j j in n ni j j in n n x xx x x D x xx x x A 1211211,)()()()(8 拆项法:当行列式中的元素有两数相加时将原行列式拆成n 个简单的行列式加以计算例9 设nnn na a a a D1111=nnn n n nn n n n x a x a x a x a x a x a D ++++++=221122221211212111解n nn n n nn n n n x a x a a x a x a a x a x a a D ++++++=221222221121211nnn n nn n n x a x a x x a x a x x a x a x +++++++2212222112121∑=+++++++=ni i nnn n n nn n n A x x a x a a x a x a a x a x a a 111221222221121211∑∑∑∑====+=+++==ni ij nj j ni i ni in n A x D A x A x D 1111119 变换元素法:变换所给行列式中元素的形式,再利用已知行列式的结果,最终得到所求行列式的结果 例10211121112a a aa a a D n ------=解令a x -=1,由(拆项法例题结果)知∑∑==-++++=-++-+-+-+-++-+-+-+-++=ni nj ijn A a aa a a a aaa a a a a a a a D 11)1(10010001111010101110101011因为)]1()1[()1(0)1(11n a n a D j i j i a A n n n ij -+++=∴≠= ⎝⎛-=-- 10 分解乘积法:根据所给行列式的特点利用行列式的乘法公式,把所给行列式分解成两个易求解的行列式之积,通过对这两个行列式的计算,从而得到所给行列式之值 例11nn nn n n n nn b a b a b a b a b a b a D ⨯++++++=212221212111解213))((0000001111001001001001122111321321==≥⎪⎩⎪⎨⎧--+=⋅=n n n b b a a b a b b b b a a a a D nn n例题。
行列式的计算方法及一些特殊行列式的计算
~
D
x 一1 … 0
0
一
●
O D= 0
l O
O … 0 1 … 0
一
●
0
O …
_ .
。 2
■■
加
行 列 式 的 计 算 方 法 及 一 些 特 殊 行 列 式 的 计 算
陈 洁
( 湖北 工 业 大 学 理 学 院 , 湖北 武汉 摘
一
4 3 0 0 6 8 )
1 +a
引 I 1
1 l +a 2
● ● ●
0
1 1
● ● ●
递 推 法 是 根 据 行 列 式 的性 质 , 建 立 阶行 列 式 和 阶 行 列 式 的关 系.
4 3
●墨
1 2 3 … n
2
1
0 … 0 l … O
例5 . 计 算 行 列 式
X
O 例7 . 计算D = 3 n
一
要: 行 列 式 的 计 算 是 线 性 代 数 的 基 础 和 重要 内容 之
本 文 通过 一 些 具 体 的 例 子 , 介 绍 了 计 算 行 列 式 的 一般 方 法 7 2 . 一 些特 殊行 列 式 的计 算.
.
例3 . 计算行列式D =
●
1
● ●
关键 词 : 行 列式 降 阶 法 升 阶 法
一
1
1
、
1 . 化为“ 三 角形 ”
I
化为 “ 三角形 ” 是利 用行列式 的性质 , 把 所 求 行 列 式 的 主
对 角 线 下 方 的 元 素 全化 为零 .
3
八大类型行列式及其解法
八大类型行列式及其解法一、行列式的定义行列式是一个重要的线性代数概念,用于刻画矩阵的性质和求解线性方程组。
对于一个n阶方阵A,其行列式记作det(A)或|A|。
行列式的定义如下:对于2阶方阵A = [a11 a12] ,其行列式定义为det(A) = a11 * a22 - a12 * a21。
对于3阶及以上的方阵,行列式的定义并不直观,可以通过划线法、拉普拉斯展开等方法进行计算。
接下来,我们将介绍八大类型的行列式及其解法。
二、二阶行列式二阶行列式的计算非常简单,直接应用行列式的定义即可。
对于2阶方阵A =[a11 a12;a21 a22] ,其行列式计算公式为:det(A) = a11 * a22 - a12 * a21。
三、对角行列式对角行列式是指所有非对角元素都为0的行列式。
对于n阶对角行列式A =diag(a1, a2, …, an),其行列式计算公式为:det(A) = a1 * a2 * … * an。
四、三角行列式三角行列式是指所有主对角线以下元素为0的行列式。
对于n阶上三角行列式A,其行列式计算公式为:de t(A) = a11 * a22 * … * ann。
五、上三角行列式上三角行列式是指所有主对角线及以上元素为0的行列式。
对于n阶上三角行列式A,其行列式计算公式为:det(A) = a11 * a22 * … * ann。
六、下三角行列式下三角行列式是指所有主对角线及以下元素为0的行列式。
对于n阶下三角行列式A,其行列式计算公式为:det(A) = a11 * a22 * … * ann。
七、轮换行列式轮换行列式的计算是一种常用的方法,可以通过对行列式中元素的位置进行变换,从而简化计算过程。
对于n阶轮换行列式A,其行列式计算公式为:det(A) = a1 * a2 * … * an。
八、范德蒙行列式范德蒙行列式是一类特殊的行列式,可以应用于插值、多项式拟合等问题中。
对于n阶范德蒙行列式A,其行列式计算公式为:det(A) = Π i<j (xi - xj)。
几种特殊类型行列式及其计算
几种特殊类型行列式及其计算特殊类型行列式是指其中元素满足一定的特殊规律或形式的行列式。
下面将介绍几种常见的特殊类型行列式及其计算方法。
1.对角行列式:对角行列式是指除了主对角线上的元素外,其余元素都为0的行列式。
对角行列式的计算非常简单,只需将主对角线上的元素相乘即可。
例如,行列式a00b00的值为a*b*c。
2.上三角行列式:上三角行列式是指除了主对角线及其上方的元素外,其余元素都为0的行列式。
上三角行列式的计算方法是将主对角线上的元素相乘。
例如,行列式120400的值为1*4*6=243.下三角行列式:下三角行列式是指除了主对角线及其下方的元素外,其余元素都为0的行列式。
下三角行列式的计算方法与上三角行列式相同,将主对角线上的元素相乘。
例如行列式708910111的值为7*9*12=7564.三角行列式:三角行列式是指一个矩阵的主对角线两侧的元素相同。
例如,行列式122334的值可以通过利用矩阵的对称性进行计算。
首先,将第二行减去第一行得到121134然后,再将第三行减去第一行的三倍得到12110-2-然后,再将第三行减去第二行的两倍得到121100-最后,将主对角线上的元素相乘,即1*1*(-2)=-2,即该行列式的值为-25.雅可比行列式:雅可比行列式是指一种特殊的三阶行列式形式。
∂(f1,f2,f3)---------∂(x,y,z)表示函数f1,f2,f3关于x,y,z的偏导数。
以上介绍了几种特殊类型的行列式及其计算方法。
了解不同类型的行列式有助于我们更好地理解和应用线性代数的相关理论和方法。
一类特殊行列式的计算公式
一类特殊行列式的计算公式在矩阵与行列式的计算中,常常会遇到一类特殊的行列式形式,它们有一些特殊的性质和计算公式。
在本篇文章中,我将介绍几种常见的特殊行列式,并给出它们的计算公式。
1.对称行列式对称行列式指的是行列式中的每一行都与其对应的列完全相同。
例如,以下是一个对称行列式的例子:```abcbcdcde```对称行列式有一个非常重要的性质,即它的值等于其中任意一个元素与该元素所在的余子式的乘积之和。
余子式是指将该元素所在的行列删去后的行列式。
以前述的对称行列式为例,假设我们要计算元素a的余子式:```deef```则根据上述性质,对称行列式的值可以表示为:abcbcdcde=a*,de,+b*,ef,+c*,dfef,,gh,,g```2.三角行列式三角行列式指的是行列式中的元素有一定的规律,每个元素下方都有一个或多个为0的元素。
以下是一个三角行列式的例子:```ab0c0000d```三角行列式的值等于对角线上的元素的乘积。
以前述的三角行列式为例,其计算公式为:```ab000d=a*0*0+0*0*0+0*b*0+0*0*d+c*0*0+0*0*d=0+0+0+0+0+0=0```3.对角行列式对角行列式指的是行列式中的非对角线上的元素全部为0,只有对角线上的元素不为0。
以下是一个对角行列式的例子:```a000b000c```对角行列式的值等于对角线上的元素的乘积。
以前述的对角行列式为例,其计算公式为:```a000b0=a*b*c```4.上三角行列式与下三角行列式上三角行列式指的是行列式中的非对角线上的元素全部为0,并且对角线以下的元素全为0。
以下是一个上三角行列式的例子:```abc0de00f```类似地,下三角行列式指的是行列式中的非对角线上的元素全部为0,并且对角线以上的元素全为0。
以下是一个下三角行列式的例子:```a00bc0def```对于上三角行列式和下三角行列式,它们的值等于对角线上的元素的乘积。
行列式的计算方法-计算行列式的格式
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载行列式的计算方法-计算行列式的格式地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容行列式的计算方法摘要:线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组, 行列式的计算是一个重要的问题。
本文依据行列式的繁杂程度,以及行列式中字母和数字的特征,给出了计算行列式的几种常用方法:利用行列式的定义直接计算、化为三角形法、降阶法、镶边法、递推法,并总结了几种较为简便的特殊方法:矩阵法、分离线性因子法、借用“第三者”法、利用范德蒙德行列式法、利用拉普拉斯定理法,而且对这些方法进行了详细的分析,并辅以例题。
关键词:行列式矩阵降阶The Methods of Determinant CalculationAbstract:Solving multiple linear equations is the main content of the linear algebra, determinants produced in solving linear equations, determinant calculation is an important issue.This article is based on the complexity degree of the determinant, and the characteristics of letters and numbers of the determinant ,and then gives several commonly used methods to calculate the determinant: direct calculation using the definition of determinant, into the triangle, reduction method, edging method , recursion, and summarizes several relatively simple and specific methods: matrix, linear separation factor method, to borrow "the third party" method, using Vandermonde determinant method, using Laplace theorem,also analyze these methods in detail,and supported by examples.Keywords: determinant matrix reduction.1.引言线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,然而它除了用于研究线性方程组、矩阵、特征多项式等代数问题外,还在各种工程领域有着广泛的应用,是一种不可缺少的运算工具,所以说行列式的计算是一个重要的问题。
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中的重要知识点,它广泛应用于数学、物理等领域。
行列式的计算有多种方法,每种方法都有其特点和适用的场合。
下面我们就来介绍一下几种行列式的计算方法。
一、拉普拉斯展开法拉普拉斯展开法是一种矩阵求解行列式的方法,通过选取某一行或某一列的元素展开,将行列式转化为较小规模的行列式相乘的和的形式。
具体步骤如下:1. 选择任意一行或一列,假设选择第i行,i列的元素进行展开。
2. 对于第i行第j列的元素A[i,j],计算其代数余子式M[i,j]。
这种方法的优点是可以将较大的行列式转化为多个规模较小的行列式相乘的形式,简化了计算的难度。
但是这种方法并不适合于计算较大规模的行列式,因为会产生大量的中间结果需要计算。
二、按行(列)展开法按行(列)展开法的计算比较直观,适合用于小规模行列式的计算。
但是对于较大规模的行列式,计算量会相当大,不够高效。
三、三角形式计算法1. 利用初等变换将方阵化为上三角形或下三角形形式。
2. 上三角形形式的行列式等于对角线元素的乘积。
比较适用于计算较大规模行列式,但是需要进行大量的初等变换操作,计算复杂度较高。
四、行列式性质法行列式性质法是一种基于行列式性质推导的计算方法,通过运用多项式代数的性质,将行列式转化为一些易于计算的形式。
行列式性质包括奇偶性、行列式的性质、对称性质等。
具体步骤如下:1. 利用行列式性质将行列式进行转化,使其具有更加易于计算的形式。
2. 依次计算每一项的值,得出行列式的结果。
行列式性质法适用于各种规模的行列式,但需要熟练掌握行列式的性质和多项式代数的运算规则。
行列式的计算有多种方法,每种方法都有其适用的场合。
选择合适的计算方法可以提高计算效率,简化计算流程。
在实际运用中,根据行列式的规模和具体情况选择合适的计算方法是非常重要的。
希望本文介绍的几种行列式的计算方法能够帮助大家更好地理解和运用行列式知识。
常见行列式
常见行列式常见行列式是指在线性代数中常出现的一些具有特定形式的行列式。
行列式是一个矩阵的一个重要性质,它代表了该矩阵的某些特征。
接下来我将介绍一些常见的行列式,并解释它们的特点和应用。
首先,最常见的行列式就是二阶和三阶行列式。
二阶行列式是一个2×2的矩阵,记作|A|=ad-bc。
其中,a、b、c和d为矩阵A的元素。
二阶行列式的求解方法是将对角线上的乘积相加,并减去非对角线上的乘积。
二阶行列式常用于计算平面上两个向量的行列式,从而判断它们的线性相关性。
三阶行列式是一个3×3的矩阵,记作|A|=a(ei-fh)-b(di-fg)+c(dh-eg)。
三阶行列式的求解方法是将每个元素与与其对应的代数余子式相乘,然后按正负号相加。
三阶行列式广泛应用于三维几何体的体积计算和解线性方程组等问题。
其次,特殊的行列式包括单位矩阵和零矩阵的行列式。
单位矩阵是一个n×n的矩阵,主对角线上的元素均为1,其他元素均为0。
单位矩阵的行列式为1,它表示了一个矩阵在相似变换下的不变性。
零矩阵是一个所有元素都为0的矩阵,它的行列式为0。
此外,对角矩阵和上三角矩阵的行列式也具有一定的特殊性质。
对角矩阵是一个所有非对角元素都为0的矩阵,对角元素可以相同也可以不同。
对角矩阵的行列式等于对角元素的乘积。
上三角矩阵是一个除了主对角线以下的元素都为0的矩阵,它的行列式等于主对角线上的元素的乘积。
对角矩阵和上三角矩阵的行列式的计算相对简单,这使得它们在实际问题中的应用更加方便。
另外,行列式的特征值和特征向量是线性代数中的重要概念。
特征值是一个矩阵的一个标量,特征向量是对应于特征值的一个向量。
行列式的特征值和特征向量有着丰富的几何意义和应用。
特征值和特征向量可以用于求解线性方程组、矩阵的对角化和求取矩阵的幂等等问题。
最后,通过行列式的定义和性质,我们可以推导出一些行列式的重要公式,如拉普拉斯展开公式和克拉默法则等。
几种不同类型行列式的计算
几种不同类型行列式的计算摘要:行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,懂得如何计算行列式显得尤为重要。
本文先阐述行列式的基本性质,然后介绍各种具体的方法,最后由行列式与其它知识的联系介绍其它几种方法。
通过这一系列的方法进一步提高我们对行列式的认识,对我们以后的学习带来十分有益的帮助。
关键字:排列;行列式;范德蒙行列式;拉普拉斯定理;加边法(升阶法);数学归纳法。
The calculation method of N determinantAbstract: Determinant is an basic and important subject in advanced algebra ,it is very useful in mathematic. It is very important to know how to calculate determinant. The paper first introduced the basic nature of determinant,then introduced some methods, Finally,with the other determinant of knowledge on the links in several other ways.,through this series of methods will futher enhance our understanding o the determinat,on our learning will bring very useful help.Keywords: Determinant; Vandermonde Determinant;Matrix; Eigenvalue; Laplace theorem;Factorial;Auxiliary determinant method前言行列式在高等代数课程中的重要性以及在考研中的重要地位使我们有必要对行列式进行较深入的认识,本文对行列式的解题方法进行总结归纳。
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中一种重要的概念,它可以通过不同的计算方法来求解。
下面将介绍几种常用的行列式计算方法。
1. 代数余子式展开法代数余子式展开法是求解行列式的一种常用方法。
对于一个n阶行列式A,可以选择任意一行或一列展开,然后按照一定的规律计算各个元素的代数余子式,并与原矩阵对应元素相乘再求和,得到最终的行列式的值。
假设我们选择第i行展开,则有:det(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + … + a_{in}A_{in}a_{ij}表示矩阵A的第i行第j列的元素,A_{ij}表示矩阵A的第i行第j列元素的代数余子式。
2. 公式法对于2阶和3阶的行列式,可以直接使用公式来计算。
对于2阶行列式A,有:对于3阶行列式A,有:det(A) = a_{11}·a_{22}·a_{33} + a_{12}·a_{23}·a_{31} +a_{13}·a_{21}·a_{32} - a_{13}·a_{22}·a_{31} - a_{11}·a_{23}·a_{32} -a_{12}·a_{21}·a_{33}3. 初等变换法对于某些特殊形式的矩阵,可以通过初等变换将其转化为简单的行阶梯形或对角形矩阵,从而方便计算行列式的值。
一般来说,可以通过初等行变换将矩阵A转化为行阶梯形矩阵U,即U =E_k·E_{k-1}·…·E_2·E_1·A,其中E_i是一个初等矩阵。
然后,行列式的值可以通过计算行阶梯形矩阵的对角线元素的乘积得到,即det(A) = u_{11}·u_{22}·…·u_{nn},其中u_{ii}是U的第i行第i列元素。
4. 递推关系法递推关系法是一种递归地求解行列式的方法。
线性代数特殊行列式及行列式计算方法总结
线性代数特殊行列式及行列式计算方法总结线性代数是现代数学的一个分支,研究向量、向量空间和线性变换等代数结构的性质与特征。
行列式是线性代数中的一个重要概念,它在解线性方程组、求逆矩阵以及描述线性变换的性质等方面起到了关键作用。
在这篇文章中,我将总结特殊行列式的特点以及行列式的计算方法。
一、特殊行列式1.恒等行列式:表示为,I,其中I是一个n阶单位矩阵。
恒等行列式的值始终为12.零行列式:当矩阵的其中一行(列)全为0时,行列式的值为0。
3.对角行列式:当一个矩阵只有两条对角线上的元素不为0,其他元素都为0时,该行列式称为对角行列式。
对角行列式的值等于对角线上的数的乘积。
4.正交行列式:当一个矩阵的行(列)两两正交时,该行列式称为正交行列式。
正交行列式的值为1或-15.上三角行列式和下三角行列式:当一个矩阵上方(下方)所有元素都为0时,该行列式称为上三角行列式(下三角行列式)。
上三角行列式和下三角行列式的值等于对角线上的数的乘积。
二、行列式的计算方法1.全选定理:对于一个n阶行列式,可以通过全选定理将其划分为n 个部分,每个部分都取自不同行不同列的元素。
根据全选定理,行列式的值等于每个部分的和。
2.代数余子式法:通过将行列式的每个元素都与其代数余子式相乘,并加减得到行列式的值。
代数余子式是从行列式中划去一行一列后剩下的(n-1)阶行列式。
3.列展开法:选择行或列展开,将行列式的展开式记作以第i行(列)展开为Ai,行列式的值可以表示为Ai与其对应的元素的代数余子式的乘积的和。
4.递推关系式:行列式有一个重要的性质,即当对调行(列)的位置时,行列式的值相反。
利用这一性质,可以通过多次对调行(列)将矩阵化简为上三角行列式或下三角行列式,进而求解行列式的值。
5.三角行列式:对于上三角行列式和下三角行列式,可以直接用对角线上的元素的乘积得到行列式的值。
总结:线性代数中的特殊行列式具有一些独特的特点,包括恒等行列式、零行列式、对角行列式、正交行列式以及上三角行列式和下三角行列式。
线性代数---特殊行列式及行列式计算方法汇总
线性代数---特殊行列式及行列式计算方法汇总————————————————————————————————作者:————————————————————————————————日期:特殊行列式及行列式计算方法总结一、 几类特殊行列式1. 上(下)三角行列式、对角行列式(教材P7例5、例6)2. 以副对角线为标准的行列式11112112,1221222,11,21,11,112,1(1)212,1100000000000000(1)n n n n n n n n n n n nnn n n n n nnn n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L LL L MM M M M M M M M NL LLL 3. 分块行列式(教材P14例10)一般化结果:00n n m n n m n m m n m m nmA C A AB BC B ⨯⨯⨯⨯==⋅0(1)0n m n n m nmn n m mm nmm nA C A AB BC B ⨯⨯⨯⨯==-⋅4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记!以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】1) 利用行列式定义直接计算特殊行列式;2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)【常见的化简行列式的方法】1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题)0001000200019990002000000002001D =L LM M M M M M L L L分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中的重要概念,它是一个方阵所具有的一个标量值。
计算行列式的过程中,可以使用几种不同的方法。
一种常见的计算行列式的方法是拉普拉斯展开法。
该方法通过选择一个行或列,将原始矩阵划分为较小的子矩阵,并依次计算这些子矩阵的行列式,然后将它们乘以适当的符号和系数进行求和。
该方法可以分为横向展开和纵向展开两种方式。
对于一个3阶矩阵,横向展开可以选择第一行进行展开,计算公式为:detA = a11 * det(A11) - a12 * det(A12) + a13 * det(A13)其中det(A11)、det(A12)和det(A13)分别表示A11、A12和A13的行列式,也是较小子矩阵的行列式。
另一种常见的计算行列式的方法是行变换。
行变换可以通过对矩阵进行一系列的操作来简化计算。
常见的行变换包括交换两行、将某一行乘以一个非零常数、将某一行的倍数加到另一行上。
通过行变换可以将矩阵转换为上三角矩阵,从而简化计算行列式的过程。
对于一个n阶矩阵,行变换的过程可以表示为:其中s表示进行了多少次行交换。
还可以使用行列式的性质和定义来计算行列式。
行列式的定义是一个递归的过程,对于一个2阶矩阵,它的行列式公式为:对于一个n阶矩阵,可以使用行列式的性质,如行列式的相加性和相差性、行列式的倍数以及行列式的性质和定义来计算行列式。
这种方法适用于较小的矩阵,对于较大的矩阵可能计算量较大。
还存在其他一些特殊的方法来计算特定类型的矩阵的行列式,如对称矩阵的特征值法、三对角矩阵的递推法等,这些方法在特定情况下可以更加高效地计算行列式。
计算行列式的方法有拉普拉斯展开法、行变换、行列式的性质和定义,以及特定类型矩阵的特殊方法,根据实际需求选择合适的计算方法可以更加高效地计算行列式。
几类特殊N阶行列式的计算
几类特殊N阶行列式的计算在线性代数中,N阶行列式是一个非常重要的概念。
行列式可以看作是一个矩阵的一种特殊性质,它在很多数学和应用问题中都有广泛的应用。
在这篇文章中,我们将讨论一些特殊的N阶行列式的计算方法。
一、对称行列式对称行列式是指行列式中的每个元素都关于主对角线镜像对称。
例如,一个3阶对称行列式可以写成如下形式:$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$$对称行列式的计算方法有很多,以下是其中几种常用的方法。
1.代数余子式法代数余子式法是一种常用的计算对称行列式的方法。
首先,我们可以按照主对角线元素展开行列式,得到:$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}=a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33}\end{vmatrix} - a_{12}\begin{vmatrix} a_{12} & a_{23} \\ a_{13}& a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{12} & a_{22}\\ a_{13} & a_{23} \end{vmatrix}$$然后,继续按照代数余子式展开行列式,直到得到一个2阶行列式。
最后,根据2阶行列式的计算公式计算出最终的结果。
2.克拉默法则克拉默法则是一种利用行列式计算方程组的方法。
行列式的计算方法
行列式的计算方法1 引言行列式的计算是《线性代数》和《高等代数》的一个重要内容.同时也是工程应用中具有很高价值的数学工具,本文针对几种常见的类型给出了计算行列式的几种典型的方法.2 一般行列式的计算方法2.1 三角化法利用行列式的性质把原来的行列式化为上(下)三角行列式,那么,上(下)三角行列式的值就是对角线各项的积.例 1 计算行列式12311212332125113311231 ------=n n n n n nn n n n D对这个行列式的计算可以用三角化方法将第1行乘以(-1)加到第2,3,n 行,得0001002000200010001231 ---=n n n n D再将其第1,2,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得102001321)1(2)1(--=-n n D n n=)!1()1(2)1(---n n n2.2 加边法有时为了便于计算行列式,特意把行列式加边升阶进行计算,这种方法称之为升阶法.它的一般方法是:nn n n n n n n n a a a a a a a a a a a a a a a a D 321333323122322211131211==nnn n n n na a ab a a a b a a a b 212222121121110001(n b b b ,,21任意数)例如下面的例题: 例2 计算行列式nn a a a a D ++++=11111111111111111111321现将行列式n D 加边升阶,得na a a D +++=111011101110111121第1行乘以(-1)加到第1,3,2+n 行,得na a a D10001001001111121----=第2列乘以11a 加到第1列,第3列乘以21a 加到第1列,依次下去直到第1+n 列乘以n a 1加到第1列,得)11(00011111121211∑∑==+=+=ni in nni ia a a a a a a a D2.3 降阶法利用按一行(列)展开定理或Laplace 展开定理将n 阶行列式降为阶较小且容易计算的行列式来计算行列式的方法称为降阶法. 例 3 计算nD 222232222222221=解 首先我们应考虑D 能不能化为上(下)三角形式,若将第一行乘以(-2)加到第n ,3,2 行,数字反而复杂了,要使行列式出现更多的“0”,将D 的第一行乘以(-1)加到第第n ,3,2 行,得2001010100012221-=n D这样仍然不是上(下)三角行列式,我们注意到,第二行除了第一项是1,后面的项全是0,这样我们按第二行展开,降阶得到:201222)1(21--=+n D)!2(2--=n2.4 对于所谓二条线的行列式,可直接展开降阶,再利用三角或次三角行列式的结果直接计算. 例4 计算行列式nnn n n a b b a b a b a D 112211--=解 按第1列展开,得11221111221)1(--+---+=n n n n nn n n b a b ab b a b a b a a Dn n n b b b a a a 21121)1(+-+=2.5 递推法通过降阶等途径,建立所求n 阶行列式n D 和比它低阶的但是结构相同的行列式之间的关系,并求得n D 的方法叫递推法.当n D 与1-n D 是同型的行列式,可考虑用递推法.例 5 计算n 级行列式 2112000002100012100012------=n D 对于形如这样的三角或次三角行列式,按第1行(列)或第n 行(列)展开得到两项的递推关系式,再利用变形递推的技巧求解.解 按第1行展开,得210120000012000011)1)(1(2211-------+=+-n n D D212---=n n D D 直接递推不易得到结果,变形得1221121232211=---=-==-=-=------D D D D D D D D n n n n n n于是 1)1(2)1(21121+=-+=-+==+=+=--n n n D D D D n n n例6 计算n 2级行列式nnn n n n nnn d c d c d c b a b a b a D 111111112----=对于形如这样的所谓两条线行列式,可直接展开得到递推公式. 解 按第1行展开,得)1(1111111121111111112nn n n n nn n n n n nn c d c d c b a b a b d c d c b a b a a D ----+-----+=1111111111111111---------=n n n n nn n n n n nn d c d c b a b a c b d c d c b a b a d a)1(2)(--=n n n n n D c b d a)1(22)(--=n n n n n n D c b d a D)2(21111))((-------=n n n n n n n n n D c b d a c b d a)())((11111111c b d a c b d a c b d a n n n n n n n n ---=----2.6 连加法 例 7 计算mx x x x m x x x x m x D n n n n ---=212121这种行列式的特点是:各行元素之和都相等.先把第2列到第n 列元素同时加到第1列,并提出公因式,得mx x x m x x x m x D n n n ni i n ---=∑=2221111)(然后将第1行乘以(-1)加到第n ,3,2行,得mm x x m x D n ni i n ---=∑=001)(21)()(11m x m ni i n --=∑=-2.7 乘积法根据拉普拉斯定理,所得行列式乘法运算规则如下:nnn nnn n n nn n n c c c c b b b b a a a a 111111111111=⋅ (其中tj ni it ij b a c ∑==1)两个行列式的乘积可以像矩阵的乘法一样来计算,假若两个行列式的阶数不同,只要把它们的阶数化为相同就可以应用上面的公式了.这种方法的关键是寻找有特殊结构的已知行列式去乘原行列式,从而简化原行列式的计算,这也是较为常用的方法.例 8 计算行列式 ab c db a dc cd a bd c b aD =解 取行列式 1111111111111111------=H显然 0≠H ,由行列式的乘法规则:=DH ⋅ab c d ba d c c d a bd c b a 1111111111111111------ H d c b a d c b a d c b a d c b a d c b a ))()()()((+---+--++--++++=等式两边消去,H 得=D ))()()()((d c b a d c b a d c b a d c b a d c b a +---+--++--++++2.8 对称法这是解决具有对称关系的数学问题的常用方法. 例 9 计算n 阶行列式βαβααββααββα++++=1010001000 n D解 按第1行展开,得21)(---+=n n n D D D αββα即 )(211----=-n n n n D D D D αβα由此递推,即得 nn n D D βα=--1因为n D 中αβ与对称,又有 nn n D D αβ=--1当 βα≠ 时,从上两式中消去1-n D ,得 11n n n D αβαβ++-=-当 βα= 时,1-+=n nn D D ββ)(21--++=n n n D ββββ 222-+=n n D ββ11)1(D n n n-+-=ββ )()1(1βαββ++-=-n n nnn β)1(+= 2.9 数学归纳法当n D 与1-n D 是同型的行列式,可考虑用数学归纳法. 例 10 计算n 级行列式ααααcos 2100cos 210001cos 210001cos =n D解 当2=n 时,ααcos 211cos 2=D αα2cos 1cos 22=-=结论成立,假设对级数小于n 的行列式结论成立,则n D 按第n 行展开,得21cos 2---=n n n D D D α由假设αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n代入前一式,得]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D nαααααn n n cos sin )1sin(cos )1cos(=---=故对一切自然数n ,结论成立.2.10 拆项法这是计算行列式常用的方法.一般地,当行列式的一列(行)或一列(行)以上的元素能有规律地表示为两项或多项和的形式,就可以考虑用拆为和的方法来进行计算.例 11 在平面上,以点),(),(),(233332332232222221311211x x x x M x x x x M x x x x M ------,,为顶点的三角形面积D S =,其中11121323233322222321212131x x x x x x x x x x x x D ------= )1()1()1()1()1()1(11121323222121332211------=x x x x x x x x x x x x )1()1()1()1()1()1()1()1()1(21323222121332211332211------+--+--+--=x x x x x x x x x x x x x x x x x x解 第1行拆为)1()1()1(11111121111)1)(1)(1(21332211321321232221321321------+----=x x x x x x x x x x x x x x x x x x x x x D32112132332121))()()(1)(1)(1(21x x x x x x x x x x x x +-------=232221321111x x x x x x )]1)(1)(1([))()((21321321121323----⋅---=x x x x x x x x x x x x 3 分块矩阵行列式的计算方法我们学习了矩阵的分块,知道一个矩阵⎥⎦⎤⎢⎣⎡B A 00通过分块若能转化成对角矩阵或上(下)三角矩阵⎥⎦⎤⎢⎣⎡B C A 0,那么行列式B A B C A B A ⋅==000,其中B A ,分别是r s ,阶可逆矩阵,C 是s r ⨯阶矩阵,0是n s ⨯阶矩阵.可以看出,这样可以把r s +阶行列式的计算问题通过矩阵分块转化为较低阶的s 阶和r 阶行列式计算问题,下面先根据上面的途径给出计算公式.设矩阵 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B C D A b b c c b b c c d d a a d d a a G rr r rsr r s sr s ss s r s 1111111111111111其中B A ,分别是s 阶和r 阶的可逆矩阵,C 是s r ⨯阶矩阵,D 是r s ⨯阶矩阵,则有下面公式成立. C DB A B BCD A G 1--⋅==或C DA B A BCD A G 1--⋅==下面推导公式,事实上,当0≠A 时,有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---D BCA D A B C D A E CA E 1100 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---B C C DB A B C D A E DB E 0011 上面两式两边同取行列式即可得出上面的公式.例 12 计算 8710650143102101=D这道题的常规解法是将其化为上三角行列式进行计算,若用前面介绍的公式则可以直接得出结果.令 ⎥⎦⎤⎢⎣⎡=1001A ,⎥⎦⎤⎢⎣⎡=8765B , ⎥⎦⎤⎢⎣⎡=1001C , ⎥⎦⎤⎢⎣⎡=4321D 则 ⎥⎦⎤⎢⎣⎡=1001'A ,由公式(1) 知原行列式D CA B A BCD A 1--⋅==⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=43211001100187651001 ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=432187651 4444==0这个题还有个特点,那就是C A =,如果我们把公式变形,即D CA B A BCD A 1--⋅=D ACA AB D CA B A 11)(---=-=当C A =时,D ACA AB 1--CD AB D CAA AB -=-=-1,所以当C A =时,我们有CD AB BCD A -=,这样例题就可以直接写出答案了.参考文献:[1] 北京大学数学系,高等代数[M] (第三版).北京:高等教育出版社,2003,9.[2] 张禾瑞,高等代数[M] (第四版).北京:高等教育出版社,1997.[3] 丘维生,高等代数[M].北京:高等教育出版社,1996,12.[4] 杨子胥,高等代数[M].山东:山东科学技术出版社,2001,9.[5] 王萼芳,高等代数题解[M].北京:北京大学出版社,1983,10.[6] Gelfand I M, Kapranov M M and Celvinskij A V. Discriminaants, redultants,and multidimensional determinants[M].Mathematics: Theory&Applications,Birkhauser Verlag,1994.[7] 徐仲,陆全等.高等代数导教·导学·导考.西安::西北工业大学出版社,2004.[8] 陈黎钦.福建:福建商业高等专科学校学报,2007年2月第1期.11。
特殊行列式的计算方法总结
特殊行列式的计算方法总结一、引言在线性代数中,行列式是一个非常重要的概念。
它不仅有着广泛的应用,还是解线性方程组、计算矩阵的逆、求特征值等问题的基础。
然而,在实际计算中,我们经常会遇到一些特殊的行列式,它们的计算方法与普通行列式略有不同。
本文将总结并介绍这些特殊行列式的计算方法。
二、对称行列式对称行列式是指行列式的元素满足某种对称关系的行列式。
例如,当行列式的第i行和第j列元素相等时,这个行列式就是对称行列式。
对称行列式的计算方法相对简化,可以通过选取对称元素,对其余元素进行变换,从而减少计算量。
具体步骤如下:步骤1:选取对称元素,即第i行第j列与第j行第i列元素相等的元素;步骤2:对除选取元素外的其余元素进行行变换或列变换,使其变为下三角行列式或上三角行列式;步骤3:计算下三角行列式或上三角行列式的值;步骤4:根据选取元素的个数确定行列式的正负号,将计算结果乘以(-1)的对应次方。
三、三角行列式三角行列式是指行列式的元素满足某种三角关系的行列式。
例如,当行列式的下三角元素或上三角元素都为0时,这个行列式就是三角行列式。
三角行列式的计算方法相对简单,可以通过按行或按列展开,逐步计算得到。
具体步骤如下:步骤1:选择按行展开还是按列展开;步骤2:选取第i行或第j列的一个元素,将行列式分解为两个较小的行列式;步骤3:递归计算较小的行列式的值;步骤4:根据选取元素的位置确定行列式的正负号,将计算结果乘以(-1)的对应次方;步骤5:将所有较小行列式的计算结果相加,得到最终行列式的值。
四、Vandermonde行列式Vandermonde行列式是一种特殊的行列式形式,它的元素由一组数的幂组成。
Vandermonde行列式的计算方法相对复杂,需要利用数学归纳法和代数运算来完成。
具体步骤如下:步骤1:根据Vandermonde行列式的定义,将其展开为一组幂函数的乘积;步骤2:利用数学归纳法证明Vandermonde行列式的递推关系;步骤3:利用递推关系计算Vandermonde行列式的值。
行列式的计算方法总结
行列式的计算方法总结行列式是一种矩阵数学表示,用于显示方阵(行数等于列数)中元素的等式关系。
行列式的计算是一个非常重要的研究内容,它的计算方法很多,下面就来总结几种常见的计算方法。
一、基本定义行列式的基本定义是由一个n阶行列式的n阶子式构成的,比如有一个3阶的行列式:a11 a12 a13a21 a22 a23a31 a32 a33它的子式就是第1行的3个元素的乘积(a11*a22*a33),第2行的3个元素的乘积(a12*a23*a31),第3行的3个元素的乘积(a13*a21*a32),这三项之和就是该行列式的值。
二、Cauchy-Binet公式Cauchy-Binet公式是一种由刘易斯凯西(LouisCauchy)和梅勒尔比乃(MerilBinet)发现的用于计算行列式的公式,它可以将一个行列式分解成几个较小的行列式之积,具体的计算方法如下:(1)计算矩阵A中行组合及列组合的元素,如a12、a13等;(2)用这些元素构成新的矩阵,如A12、A13等;(3)对于新构成的矩阵,计算它们各自的行列式,将此行列式相乘,就是原矩阵A的行列式。
三、分块计算分块计算,也叫做分解计算,可利用小行列式的特性,将大行列式逐块分解成一系列的小行列式,由于小行列式的简单性,可以简单地计算出它们的值,然后将各个小行列式值相乘,就可以求出大行列式的值。
四、Schur补充定理Schur补充定理是由Issai Schur在1903年提出的行列式计算方法,它可以从一个行列式中减去部分行或部分列,把一个大的行列式分解成几个小的行列式的乘积,这样可以大大简化计算过程:(1)从一个行列式中去掉一行(或一列);(2)对每一行(或列)的元素算出相应的行列式;(3)将各行列式的值乘起来,即可求出原行列式的值。
五、拆式法拆式法是一种将行列式分解为更小行列式之积的方法,它以行列式中每一行(或列)元素的乘积作为一个原子子式,把一个大行列式拆分为一系列小行列式。
特殊行列式及行列式计算方法总结
特殊行列式及行列式计算方法总结一、 几类特殊行列式1. 上(下)三角行列式、对角行列式(教材P7例5、例6)2. 以副对角线为标准的行列式11112112,1221222,11,21,11,112,1(1)212,1100000000000000000(1)n n n n nn n n n n n nnn n n n n nnn n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===- 3. 分块行列式(教材P14例10)一般化结果:00n n m n n m n m m n m m nmA C A AB BC B ⨯⨯⨯⨯==⋅0(1)0n m n n m nmn n m mm nmm nA C A AB BC B ⨯⨯⨯⨯==-⋅4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记!以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】1) 利用行列式定义直接计算特殊行列式;2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)【常见的化简行列式的方法】1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题)0001000200019990002000000002001D=分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。
解法一:定义法(1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-=解法二:行列式性质法利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1行列式的定义及性质1.1定义[3]n级行列式a11 a12 (1)a 21I-a22…aa2naa n1 a n2…a nnn元素的乘积的屜…a% (1)的代数和,这里jj…j n是1,2/ ,n的一个排列,每一项(1)都按下列规则带有符号:当jj…j n是偶排列时,⑴带正号,当j l j2…j n 是奇排列时,(1)带有负号.这一定义可写成an a12 a1na21 a22 (2)I-a=无(-1F 山压)?…a njj1 j2…j nan1 an2ann这里V 表示对所有n级排列求和.j1 j2 ■ j n1.2性质[4]性质1.2.1行列互换,行列式的值不变.性质1.2.2某行(列)的公因子可以提到行列式的符号外.性质1.2.3如果某行(列)的所有元素都可以写成两项的和,则该行列式可以写成两行列式的和;这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)与原行列式相同.性质1.2.4两行(列)对应元素相同,行列式的值为零.性质1.2.5两行(列)对应元素成比例,行列式的值为零.性质1.2.6某行(列)的倍数加到另一行(列)对应的元素上,行列式的值不变.性质1.2.7交换两行(列)的位置,行列式的值变号.等于所有取自不同行不同列的个2行列式的分类及其计算方法2.1箭形(爪形)行列式这类行列式的特征是除了第1行(列)或第n 行(列)及主(次)对角线上元素外的其他元素均 为零,对这类行列式可以直接利用行列式性质将其化为上(下)三角形行列式来计算•即利用对 角元素或次对角元素将一条边消为零.例1计算n 阶行列式a 1 1 ■ ■ .L11a 2 0 0D n = 10 a 3… 0 (&2&3…a n 式0)10 …a n2.2两三角型行列式这类行列式的特征是对角线上方的元素都是 c,对角线下方的元素都是b 的行列式,初看, 这一类型似乎并不具普遍性,但很多行列式均是由这类行列式变换而来,对这类行列式,当b 二c 时可以化为上面列举的爪形来计算,当 b = c 时则用拆行例)法[9]来计算.例2计算行列式将第一列减去第二列的 丄倍,第三列的丄倍…第n 列的 a 2a3倍,得1a i -a 21 1 a 20 a 3 00 a nn=''a ii =2n*1 ' ■-i=2 丄ai丿a i c c … cb a 2c … c Dn = bba3… cb b b …a n解当b=c 时a ib b …bb a 2b … bD n = b ba s …b .b b b …a n将第2行到第行n 都减去第i 行,则D n 化为以上所述的爪形:即a ib b半・・bb — a 〔 a ? — b 0 …0 D n = b _ a 〔0 a s - b * ■b - a 〔用上述特征1的方法,则有°…a n —bD n a - b i b - a〔i._1=2 a -bb _ a ib _ a iia0 °…°a2-b ° 00 a3 - b 0■< .■ <■■. Ji A ■. ■ <■■ A0 0 …a n- bb 4 b i i a b 〒a. b i =1 i d当b=c时,用拆行例)法[9],贝uX i a a a X i a a… a + 0b X2 a a b X2 a… a + 0Dn = b b X3… a = b b X3… a + 0b b b…X n b b b… b + 人-b有一些行列式虽然不是两三角型的行列式,但是可以通过适当变换转化成两三角型行列 式进行计算•例3计算行列式d b b ・・•.bc X a■ - ■■aDn = ca Xa (n >2)c aa---X第一列尼得ca 2daaabcbe a X a■■ '■ '■aDn =2■a aa Xaa aa■--X解将第一行b ,化简得X 1 a a … aX a a … 0 b X 2 a … abX 2 a …0 b b X3 …a +b b X 3… 0 bbb … bbbb …X n -X1 - a0 …・・ ab 一 a x? — a-・a-■--■… -----a + ( X n -b )D n/b 一a b — aX n 4 -a a0 …bD n = b i X-a 2XiT X _b 1 D而若一开始将X n 拆为a • X n - a , 则得D n = a i x-2X3iD由 1& -b - 2XnT ,得D n 1-a _b |[ 如(X -b )-b n (X j — a ] i 经b即化为上2 一 1情形,计算得n A.D n =d x -a i 亠〔n -1 ad -be x -a而对于一些每行(列)上有公共因子但不能像上面一样在保持行列式不变的基础上提出公 共因子的,则用升阶法来简化.例4计算行列式解将行列式升阶,得1 X 1 X 2…X n1+X 12X 1X 2X 1X nD n = 0X 2X11 + x 22 …X 2Xn0 X n X 1 X n X 2…1+X n 2将第i 行减去第一行的人i =2,…,n 倍,得一 X n这就化为了爪形,按上述特征1的方法计算可得2.3两条线型行列式这类行列式的特征是除了主(次)对角线或与其相邻的一条斜线所组成的任两条线加四个1 X 12 X ! X 2 X 1Xnx 2X 21 X 2X 2XnX n XX n X 21X2D nn _2_X 1D n 二 -X X 2 0 1D nn1 亠一 X ii经X 1 X n顶点中的某个点外,其他元素都为零,这类行列式可直接展开降阶,对两条线中某一条线元 素全为0的,自然也直接展开降阶计算•例5计算行列式D na n Jb n Jb n解按第一行展开可得1 -n+ 0(/)a n J a n J例6计算行列式b nb nidn -1d n解方法1直接展开可得an 4+a i C it ) d i+bn」 0 , ‘ i七n+ 0(")0 a n/+aC ibd i+b n 」On 4dzC nXdz 0d nC nD 2n - ana 2b 2D n=a ia n二 a 〔a 2 n-4a n 亠[1b b 2 b n •a ibi d ian A.+4b n 」an A+b n 」a n d na. ba .bi G d i +- 001 (-1 $ 『c .d .+01 A.d n 」Ad n 」—a n d n - b n CnD 2 n 二 .D2n = an dn _ b n cn .1D 2 n J=a ndn_ b n c ^ .>an J.d n J _ b n J c n J D2n _2=a id _ b i ci.方法2 (拉普拉斯定理法⑶)按第一行和第2n 行展开得an Adnj_(a n d n -b n Cn)D 2(nJj其余的同法1.2.4 Hessenberg 型行列式这类行列式的特征是除主(次)对角线及与其相邻的斜线,再加上第1或第n 行外,其他元 素均为零,这类行列式都用累加消点法,即通常将第一行 (列)元素化简到只有一个非零元素, 以便于这一行或列的展开降阶计算例7计算行列式23 … nT nT0 … 0 0 02-2 0・- -■-……… …-・・・■・・■n -2 2 — n 0 0 00 … nT —n解将各列加到第一列得D 2na nb n d^2n+-2n(一1)a .b . G d .2.5三对角型行列式a b cab++形如 Dn = C+*c他元素均为零,这是一递推结构的行列式,所有主子式都有同样的结构,从而以最后一列展 开,将所得的n-1阶行列式再展开即得递推公式.对这类行列式用递推法⑸ 例8计算行列式a b cab+ +Dn = C+ +b c a解按第一列展开有D n 二 aD n 4 - bcD n 2解特征方程x 2 -ax • be =0得n (n +1 )2 3 …2-1 0 … Dn = 02_2 …・・•…… n _20 00 …n —1 n 0 0 0 0 2—nn —1 1—n按第一列展开得D n0 n —11 一 nn」(n+1 )! 十1)的行列式,这类行列式的特征是除这三条斜线上元素外,其2n (n+1 2a+J a -4bc a _J a -4bcxi 2 ,X2 2 .则n 1 n 1(X i -X2 )D n , X i = x2 |.X r _X2例9计算行列式59匕D n+ +匕9 54 9解按第一行展开得D n -9D n」20 = 0.解特征方程得X i — 4, X^ — 5.则nd n』D n 二a4 b5 .分别使n =1,2得 a - -16,b =25,则D n=5n 1—4n 1.2.6各行(列)元素和相等的行列式这类行列式的特征是其所有行(列)对应元素相加后相等,对这类行列式,将其所有行(列)加到第一行(列)或第n行例),提取公因式后,再把每一行都减去第一行例),即可使行列式中出现大量的零元素.例10计算行列式1 a1 a1a2 1 a2a na1 a21 a n解将第2行到第n行都加到第1行,得=1 ai -a n=1 a「a n .2.7相邻两行(列)对应元素相差1的行列式列式,自第一行(列)开始,前行例)减去后行(列),或自第行n(列)开始,后行例)减去前行(列),则前(后)行(列)减去后(前)行(列)的-k倍,可使行列式出现大量的零元素.例11计算行列式0 1 2…n _ 2n —1 0 1 ・・n _ 3n-2 1 0 …n _ 4 n —D n =a an —2 n - 3 n_ 4…0 1n T n - 2 3 … 1 0依次用前行减去后行,可得-1 1 1 … 1 1-1 -1 1 … 1 1-1 -1 -1 … 1 1 D n —■-1S a.-1 -1 -1 …-1 1n T n —2 n_3… 1 0解123D n1 a1■ - - ana21 ■ a^- a n1 a2a2anan1 an=1 a1■■■ a na21 -1 a2a2anan1 - a n这类行列式的特征是大部分以数字为元素且相邻两行(列)元素相差1的行列式,对这类行即可出现大量元素为1或-1的行列式, 再进一步化简即出现大量的零元素若相邻两行(列)元素相差倍数现将第1列加到第2列至第n列,得例11计算阶n 行列式4a nn . . 1a2.8范德蒙德型行列式德行列式来计算.例12计算行列式解将第i 行提出a i n ,得-1 0 0 … 0 0 -1-2 0 … 0 0 -1a-2 - _2…a0 - 0 -1 -2 _2 …-2 0 n —1 2n -32n_4 …nn -1n-1^2nD n1 a2an 」 1aan_2 nA1D n =a aaa 234a a a23aaan_2 n Aaa n d a解这是相邻两行(列)相差倍数a , 可采用前行减去后行的-a 倍的方法化简得D nn1 - a 00 0 n1-a0 0 n1a这类行列式的特征是有逐行 (列)元素按方幕递增或递减,对这类行列式可以转化为范德蒙 nq na2n -4.a b a 2 b 21a 1b 1 n 4a 2b 2b;b n n anan 1nd…an 1bn 1an 1 bn 1bh nb n1nn 〉 n _2 a a n _4n _3a a呻VIVI VI L•( ©q—「q &)匚 丰+ueII UQ。