第8章图论及其应用

合集下载

运筹学8图与网络分析

运筹学8图与网络分析

e3 。在剩下的图中,再取一个圈
定理8.7充分性的证明,提供了一个 寻找连通图支撑树的方法叫做“破圈法”。 就是从图中任取一个圈,去掉一条边。再 对剩下的图重复以上步骤,直到不含圈时 为止,这样就得到一个支撑树。
例8.4 用破圈法求出图8-11的一个支
撑树。
v2
e1
e7 e4
v1
e3 v4
e8
v5
e2
e5
v3
e6
图8-11
取一个圈(v1,v2,v3,v1),在一个圈中去掉边
3
4
初等链:链中所含的 点均不相同, 也称通 路;
5
6
为闭链或回路或圈;
简单圈:如果在一个圈中所含的边均不相同 初等圈:除起点和终点外链中所含的点 均
不相同的圈;
连通图:图中任意两点之间均
至少有一条通路,否则 v1
v4 v5 v8
称为不连通图。
v2
初等链: (v1 , v2 , v3 , v6 ,
图的连通性:
简单链:链中所含的 边均不相同;
圈:若 v0 ≠ vn 则称该链为开链,否 则称
1
2
链:由两两相邻的点及其相 关联的边构成的点边序列。 如:v0 ,e1 ,v1 ,e2 ,v2,e3 ,v3 ,…,vn1 , en , vn ; v0 ,vn 分别为链的起点和终点 。记 作( v0 ,v1 , v2, ,v3 , …, vn-1 , vn )
v5
v7
(v5
,v1v6),(v6
(v4 ,v6),(v5 ,v7)}
,v3),(v5
v6
,v4),
v2
v4
图8.5
下面介绍一些常用的名词:

图论及其应用

图论及其应用
0 .6 0.4 x 0 .2
图可以用图形表示:V中的元素用平面上一个黑点表示,E
中的元素用一条连接V中相应点对的任意形状的线表示。
例1、设图G=<V,E>。这里V={v1,v2,v3,v4} E={e1,e2,e3,e4,e5,e6},
e1=(v1,v2),e2=(v1,v3),e3=(v1,v4), e4=(v2,v3),e5=(v3,v2),e6=(v3,v3)。
2、图论模型
为了抽象和简化现实世界,常建立数学模型。图是关系的 数学表示,为了深刻理解事物之间的联系,图是常用的数学 模型。
(1) 化学中的图论模型
19世纪,化学家凯莱用图论研究简单烃——即碳氢化合物
实用文档
12
1
0 .5 n 0
0 .5
1 2 1 .5 t1 0 .5 00
1 0 .8
0 .6 0.4 x 0 .2
20世纪30年代出版第一本图论著作.
实用文档
7
1
0 .5 n 0
0 .5
1 2 1 .5 t1 0 .5 00
1 0 .8
0 .6 0.4 x 0 .2
目前,图论已形成很多分支:如随机图论、 网络图论、代数图论、拓扑图论、极值图论等。
3、应用状况
图论的应用已经涵盖了人类学、计算机科学、 化学、环境保护、非线性物理、心理学、社会学、
1
0 .5 n 0
0 .5
1 2 1 .5 t1 0 .5 00
1 0 .8
0 .6 0.4 x 0 .2
图论及其应用
任课教师:杨春 数学科学学院
实用文档
1
1
0 .5 n 0
0 .5
1 2 1 .5 t1 0 .5 00

图论及其应用PPT课件

图论及其应用PPT课件
-28-
图论及其应用第一章
1.2 图的同构
由前已知,同一个图有不同形状的图示。反过来, 两个不同的图也可以有形状相同的图示。比如:
u2
u3
可见 G1 和 G2 的顶点及边之间都一一对应,且连
接关系完全相同,只是顶点和边的名称不同而已。这
样的两个图称为是同构的(isomorphic)。
-29-
图论及其应用第一章
v1
(i=1,2,3,4,5,6)下是同构的。
x1
y1
v6
y3
x2
v2
x3
y2
v4
v3
-31-v5
图论及其应用第一章 画出所有的阶数不大于4,大小为3的所有非同构 简单图:
-32-
图论及其应用第一章 画出阶数为5大小为3的所有非同构简单图
G1
G2
G3
G4
-33-
图论及其应用第一章
无标号的图 注:判断两个图是否同构目前没有好算法。
图论起源于18世纪的一个游戏----俄罗斯的哥尼斯堡七桥问 题。
(1736年 瑞士数学家欧拉——图论之父)
-2-
图论及其应用第一章
七桥问题
C
A
D
B
包含两个要素:对象(陆 地)及对象间的二元关系 (是否有桥连接)
转化
Euler 1736年
C
A
D
B 图论中讨论的图
问题:是否能从A,B,C,D 转化 中的任一个开始走,通过每 座桥恰好一次再回到起点?
从数学上看,同构的两个图,其顶点间可建立一 一对应,边之间也能建立一一对应,且若一图的两点 间有边,则在另一图中对应的两点间有对应的边。严 格的数学定义如下。
定义: 两个图G = (V (G), E(G)) 与H = (V (H), E(H)) , 如果存在两个一一映射:

第八章 图论8.4树及其应用.ppt

第八章 图论8.4树及其应用.ppt

⑥ G中每一对结点之间有惟一一条基本通路。(n≥2)
2017/10/10 82-9
定理4.2.1 分析
直接证明这 6 个命题两两等价工作量太大,一 般采用循环论证的方法,即证明
(1) (2) (3) (4) (5) (6) (1) 然后利用传递行,得到结论。
2017/10/10
证明 TG = <VT, ET> 是 G = <V, E> 的生 分析 必要性:假设 必要性由树的定义即得,充分性利用构造性 成树,由定义 4.2.1 , TG 是连通的,于是 G 也是连通的。 方法,具体找出一颗生成树即可
充分性:假设G = <V, E>是连通的。如果G中无回 路, G 本身就是生成树。如果 G 中存在回路 C1 ,可删除 C1中一条边得到图G1,它仍连通且与G有相同的结点集。 如果G1中无回路,G1就是生成树。如果G1仍存在回路C2, 可删除 C2 中一条边,如此继续,直到得到一个无回路 的连通图H为止。因此,H是G的生成树。
2017/10/10 82-22
思考题
1、一个图的生成树是不是唯一的呢?
2、如果不是唯一的,3个顶点的无向完全图有几棵 生成树?4个顶点的无向完全图又有几棵生成树?n 个顶点的无向完全图又有几棵生成树?
完全图是边数最 多的简单无向图
2017/10/10
82-23
定理4.2.3
一个图G = <V, E>存在生成树TG = <VT, ET>的充分 必要条件是G是连通的。
由定理4.2.1(4) 在结点给定的无向图中, 由定理4.2.1(5) 树是边数最多的无回路图 树是边数最少的连通图 由此可知,在无向图G = (n, m)中, 若m<n-1,则G是不连通的 若m>n-1,则G必含回路

DM-专题8:带权图及其应用

DM-专题8:带权图及其应用
∑ 边的权和 w(H ) = w(e) 为H的权. 类似地,若 e∈E(H )
∑ 若P(u,v)是赋权图G中从u到v的路,称 w(P) = w(e) e∈E ( P )
称为路P的权.
2) 在赋权图G中,从顶点u到顶点v的具有最小权
的路P*(u,v),称为u到v的最短路.
固定起点的最短路
最短路是一条路径,且最短路的任一段也是最短路. 假设在u0-ui的最短路中只取一条,则从u0到其 余顶点的最短路将构成一棵以u0为根的树.
u1
u4
u6
u8
u3
u7
中国邮递员问题 (Chinese Postman Problem)
求邮递员走遍管区所有街道的最短回路
B5 C
3
5
A 8 14 10
D
4
9
F6 E
管梅谷(Guan Mei-gu), 1962, 中国
15
2013/4/25
是欧拉图吗?
B5 C
3
5
A 8 14 10
D
4
9
F6 E
26
2013/4/25
有效(efficient)算法
复杂度是多项式函数的算法 易解(tractable)问题: 有多项式复杂度算法的问题,如欧拉回
路,匹配,中国邮递员问题等
难解(intractable)问题: 没有多项式复杂度算法的问题, 如哈 密顿回路, 着色, 货郎问题等(目前还是猜想)
27
2013/4/25
16
2013/4/25
能变成欧拉图吗?
B5 C
3
5
A 8 14 10
D
4
9
F6 E
B5 C
3

图论习题

图论习题

《图论及其应用》习题课教材杨春编电子科技大学应用数学学院内容提要本书主要对张先迪等编的研究生《图论及其应用》教材的习题进行解答。

该书可作为研究生图论教学的参考教材。

前言现实生活中,许多问题都可归结为一个由点和线组成的图形的问题。

例如,由点代表车站,线代表铁路线的铁路网络图;点代表路口,线代表街道的城市交通图;点代表管道接头,线代表管道的自来水供水系统;点代表电路的结点,线代表结点间的电气元件的电网络图;点代表网络的结点,线代表通讯线的通讯网络、计算机网络等等。

图论正是研究这些由点和线组成的“图形”问题的一门学科。

图论起源于18世纪,其第一篇论文是由欧拉(Euler,1707—1782)于1736年所完成。

这篇论文解决了一个当时还没有解决的著名问题—哥尼斯堡(Königsberg)七桥问题(见第四章)。

这篇论文也使欧拉成为了图论和拓扑学的创始人。

图论诞生后,特别是近三十年来发展十分迅速,应用也十分广泛。

其应用已涉及物理学、化学、运筹学、计算机科学、信息论、控制论、网络理论、社会科学、以及管理科学等诸多领域。

由于图论与计算机科学紧密相联系,近若干年来,在计算机科学、计算机网络的迅猛发展下,更拓展了图论的应用发展空间。

在计算机的许多领域内,它都占有一席之地。

图论在矩阵论、群论等其它一些数学分支中,也有其重要的应用。

张先迪等编的《图论及其应用》一书精选了内容广泛、难度各易的习题,其中的大多数习题都是对图论的进一步学习是应当掌握的。

本书依序将该书的重要内容摘要列出,并将全部习题给出了详细解答。

本书所涉及到的术语、符号与该书一致。

有些习题存在多种解法,在一般情况下,只给出一种解法供参考。

由于编者水平有限及编写时间的匆忙,书中难免出现一些缺点和错误,恳请同行专家及读者提出宝贵意见和建议,以使本书得以不断改进和完善。

编者2004.7目录第一章图的基本概念1.1 图和简单图1.2 子图与图的运算1.3 路与图的连通性1.4 最短路及其算法1.5 图的代数表示及其特征1.6 极图1.7 交图与团图习题1第二章树2.1 树的概念与性质2.2 树的中心与形心2.3 生成树2.4 最小生成树习题2第三章图的连通度3.1 割边、割点和块3.2 连通度3.3 应用3.4 图的宽距离和宽直径习题3第四章欧拉图与哈密尔顿图4.1 欧拉图4.2 高效率计算机鼓轮的设计4.3 中国邮路问题4.4 哈密尔顿图4.5 度极大非哈密尔顿图4.6 旅行售货员问题4.7 超哈密尔顿图4.8 E图和H图的联系4.9 无限图中的欧拉,哈密尔顿问题习题4第五章匹配与因子分解5.1 匹配5.2 偶图的匹配与覆盖5.3 Tutte定理与完美匹配5.4 因子分解5.5 最优匹配与匈牙利算法5.6 匹配在矩阵理论中的应用习题5第六章平面图6.1 平面图6.2 一些特殊平面图及平面图的对偶图6.3 平面图的判定及涉及平面性的不变量6.4 平面性算法习题6第七章图的着色7.1 图的边着色7.2 顶点着色7.3 与色数有关的几类图7.4 完美图7.5 着色的计数,色多项式习题27.6 List着色7.7 全着色7.8 着色的应用习题7第八章Ramsey定理8.1 独立集和覆盖8.2 Ramsey定理8.3 广义Ramsey数8.4 应用习题8第一章 图的基本概念§1.1 图和简单图定义1 一个图G 定义为一个有序对(V , E ),记为G = (V , E ),其中 (1)V 是一个非空集合,称为顶点集或边集,其元素称为顶点或点;(2)E 是由V 中的点组成的无序点对构成的集合,称为边集,其元素称为边,且同一 点对在E 中可出现多次。

图论的发展及其在现实生活中的几个应用资料

图论的发展及其在现实生活中的几个应用资料

图论的发展及其在生活中的应用数学与应用数学张佳丽指导教师刘秀丽摘要主要介绍了图论的起源与发展及其生活中的若干应用,如:渡河问题、旅游推销员问题、最小生成树问题、四色问题、安排问题、中国邮递员问题。

同时也涉及到了几种在图论中应用比较广泛的方法,如:最邻近法、求最小生成树的方法、求最优路线的方法等。

关键词图论生活问题应用Graph Theory Development and the Application in LifeMathematics and applied mathematics Zhang JialiTutor Liu XiuliAbstract This paper mainly introduces the origin and development of graph theory and its several applications in our life, such as: crossing river problem, traveling salesman problem, minimum spanning tree problem, four color problem,arrangement problem,Chinese postman problem.It also researches several methods that are more widely applied in graph theory, for example: the method of most neighboring, the method of solving the minimum spanning tree,the method of the best route,and so on.Key words graph theory life problem application引言图论是一门古老的学科,是数学中有广泛应用的一个分支,与其他的数学分支,如群论、矩阵论、概率论、拓扑学、数分析等有着密切的联系.图论中以图为研究对象,图形中我们用点表示对象,两点之间的连线表示对象之间的某种特定的关系.事实上,任何一个包含了二元关系的系统都可以用图论来模拟.而且,图论能把纷杂的信息变的有序、直观、清晰.由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点间连接与否尤为重要,而图形的位置、大小、形状及连接线的曲直长短则无关紧要.图论在自然科学、社会科学等各个领域都有广泛的应用.随着科学的发展,以及生产管理、军事、交通运输等方面提出了大量实际的需要,图论的理论及其应用研究得到飞速发展。

第8章_有向图

第8章_有向图


图论及其应用
5
8.1 有向图——习题




10.1.1. 一个简单图有多少个定向图? 10.1.2. 证明: = = 。 10.1.3. 设有向图D中无有向圈,则 d (v ) d (v ) v V v (a) = 0V; (b) 存在一个顶点排序v1,……,v ,使对1 i ,每条 以vi为 头的弧其尾都在{v1,……,vi-1} 中。 10.1.4. 证明:D是双向连通的 D是连通的,且D的每个块 是双向连通的。 10.1.5. D的逆图 是把D中每弧的方向都改为其反向所得的 有向图。试用逆图慨念及习题10.1.3.(a) 来证明: 若有向图D中 无有向圈,则+ = D 。 0 10.1.6. 证明:严格有向图包含长 max{ ,+}的有向路。 10.1.7. 证明:严格有向图中若max{ ,+} = k 1,则 D包含长 k+1 的有向圈。
图论及其应用
第8章 有向图
8.1 有向图
有向图(directed graph;digraph) D =(V,A) V(D) —— 顶点集。 a u v A(D) —— 弧集。 弧a = (u,v):其头为v,其尾为u; 弧a从u连到(join to)v。 有向子图(subdigraph) 有向图D的基础图(underlying graph) 对应于D的无向图G(称D为G的一个定向 (orientation)图)
8.1 有向图


易见,有向图D = (V, A)中顶点间的双向连通性是V上 的一个等价关系,它的等价类确定了V的一个划分 (V1,……,Vm), 使顶点u与v双向连通 u与v 同属某等价类Vi 。 称每个导出子图D[V1],……,D[Vm]为有向图D的一 个双向分支(dicomponent;strong component)。 当D只有一个双向分支时,称D为双向连通的。 易见,D的任二双向分支之间的弧都是同一个方向的。 例

第8章 有向图

第8章 有向图

有向图 D
D 的双向分支
图论及其应用 4
8.1 有向图
− 入度(indegree)d D (v ) 。 入度 d+ 出度(outdegree) D (v ) 。 出度 记号 δ+,δ− :最小出、入度; ∆+ , ∆- :最大出、入度。 称有向图D为严格的 严格的(strict) 严格的 ⇔ 无环、且不存在两弧其端点及方向相同。
定理10.1 (Roy,1967; Gallai,1968) 有向图 包含一 有向图D包含一 定理 长为 χ - 1 的有向路。 的有向路
证明:令D’ 为D的极大 极大无有向圈、有向生成子图(注:D’ 可由空生成子 极大 图作为开始,在保持无有向圈的条件下,通过逐步加弧而得) 。令k为D’ 中最长有向路的长。今用色1,2,……,k+1对D’ 进行顶点着色如下: 将v着以色i ⇔ D’ 中以v为起点的最长有向路的长为i 1。 来证这是D的正常(k+1)-顶点着色: 先证,D’ 中任一有向(u,v)-路P的起、终点u与v一定不同色:设v被着以色 i 。则由着色法知,在 D’ 中以v为起点的一最长有向路,设为,Q的长为i - 1 。由于D’ 中无有向圈,PQ为一有向路,起点为u,长 ≥ i 。从而u上的 色j > i。 只要再证,D中任一弧(u,v)的两端一定不同色:当 (u,v)为D’ 中的弧时, 它就是D’ 中的一有向(u,v)-路,从而u与v不同色。 9 图论及其应用
10.2 有向路
当 (u,v)不是D’ 中的弧时,由D′ 之极大性知 D’ + (u,v) 包含一有向圈C。于是, C - (u,v) 是 D’ 中的有向(v,u)-路,从而u与v也不同色。 由上述知,D为(k+1)-可着色的,因此 χ ≤ k+1 ,得k ≥ χ - 1 , 故D中有长为χ - 1 的有向路。 #

电子科技大学《图论及其应用》复习总结--第一章图的基本概念

电子科技大学《图论及其应用》复习总结--第一章图的基本概念

电⼦科技⼤学《图论及其应⽤》复习总结--第⼀章图的基本概念⼀、重要概念图、简单图、图的同构、度序列与图序列、偶图、补图与⾃补图、两个图的联图、两个图的积图1.1 图⼀个图G定义为⼀个有序对(V, E),记为G = (V, E),其中(1)V是⼀个有限⾮空集合,称为顶点集或边集,其元素称为顶点或点;(2)E是由V中的点组成的⽆序点对构成的集合,称为边集,其元素称为边,且同⼀点对在E中可出现多次。

注:图G的顶点数(或阶数)和边数可分别⽤符号n(G) 和m(G)表⽰。

连接两个相同顶点的边的条数,叫做边的重数。

重数⼤于1的边称为重边。

端点重合为⼀点的边称为环。

1.2 简单图⽆环⽆重边的图称为简单图。

(除此之外全部都是复合图)注: 1.顶点集和边集都有限的图称为有限图。

只有⼀个顶点⽽⽆边的图称为平凡图。

其他所有的图都称为⾮平凡图。

边集为空的图称为空图。

2.n阶图:顶点数为n的图,称为n阶图。

3.(n, m) 图:顶点数为n的图,边数为m的图称为(n, m) 图1.3 邻接与关联:顶点u与v相邻接:顶点u与v间有边相连接(u adj v);其中u与v称为该边的两个端点。

注:1.规定⼀个顶点与⾃⾝是邻接的。

2.顶点u与边e相关联:顶点u是边e的端点。

3.边e1与边e2相邻接:边e1与边e2有公共端点。

1.4 图的同构设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点集合间存在双射,使得边之间存在如下关系:u1,v1∈V1,u2,v2∈ V2 ,设u1↔u2,v1↔v2,; u1v1∈E1 当且仅当u2v2∈E2,且u1v1与u2v2的重数相同。

称G1与G2同构,记为:G1≌G2注:1、图同构的两个必要条件: (1) 顶点数相同;(2) 边数相同。

2、⾃⼰空间的理解:通过空间的旋转折叠可以进⾏形态转换1.5 完全图、偶图1、在图论中,完全图是⼀个简单图,且任意⼀个顶点都与其它每个顶点有且只有⼀条边相连接。

图论的发展及其在现实生活中的几个应用论文

图论的发展及其在现实生活中的几个应用论文

图论的发展及其在生活中的应用摘要主要介绍了图论的起源与发展及其生活中的若干应用,如:渡河问题、旅游推销员问题、最小生成树问题、四色问题、安排问题、中国邮递员问题。

同时也涉及到了几种在图论中应用比较广泛的方法,如:最邻近法、求最小生成树的方法、求最优路线的方法等。

关键词图论生活问题应用Graph Theory Development and the Application in Life Mathematics and applied mathematics Zhang JialiTutor Liu XiuliAbstract This paper mainly introduces the origin and development of graph theory and its several applications in our life, such as: crossing river problem, traveling salesman problem, minimum spanning tree problem, four color problem,arrangement problem,Chinese postman problem.It also researches several methods that are more widely applied in graph theory, for example: the method of most neighboring,the method of solving the minimum spanning tree,the method of the best route,and so on.Key words graph theory life problem application引言图论是一门古老的学科,是数学中有广泛应用的一个分支,与其他的数学分支,如群论、矩阵论、概率论、拓扑学、数分析等有着密切的联系.图论中以图为研究对象,图形中我们用点表示对象,两点之间的连线表示对象之间的某种特定的关系.事实上,任何一个包含了二元关系的系统都可以用图论来模拟.而且,图论能把纷杂的信息变的有序、直观、清晰.由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点间连接与否尤为重要,而图形的位置、大小、形状及连接线的曲直长短则无关紧要.图论在自然科学、社会科学等各个领域都有广泛的应用.随着科学的发展,以及生产管理、军事、交通运输等方面提出了大量实际的需要,图论的理论及其应用研究得到飞速发展。

第8章几种特殊的图

第8章几种特殊的图
35
实例
例 求图的一棵最小生成树
W(T)=1+2+3+3+4+7+18=38
36
例 求图的一棵最小生成树T及其权W(T)
a
5
5
1 b5 5e
f
3 6 42
c6 d (1)
W(T1)=15
a
5
5
1 b5 5e
f
3 6 42
c6 d (1)
W(T2)=15
G的最小生成树可能不唯一, 但G的不同最小生成树权的值一样.
G1
G G2
32
生成树的存在性
定理8.7 任何无向连通图都有生成树. 证 用破圈法. 若图中无圈, 则图本身就是自己的生成树. 否则删去圈上的任一条边, 不破坏连通性, 重复进行直到 无圈为止, 得到图的一棵生成树.
ae
u
v
b d
c
推论 设n阶无向连通图有m条边, 则mn1.
33
最小生成树
图G的每一条边e附加一个实数w(e), 称作边e的权. 图G连 同附加在边上的权称作带权图, 记作G=<V,E,W>. 设H是G 的子图, H所有边的权的和称作H的权, 记作1)(2), 任意2个不相邻的顶点之间有一条惟 一的路径, 故在这2个顶点之间添加一条新边, 必得到一条 惟一的初级回路.
(5)(6) 首先, 任意2个不相邻的顶点之间都有一条通路, 否则在它们之间添加一条新边不可能构成回路, 故G连通. 其次, 若删去一条边G仍是连通的, 这条边必在一条回路
解 设有x片树叶, 树的顶点数为1+2+x=3+x, 树的边数为(3+x)-1=2+x, 2(2+x)=13+22+x 解得x=3, 故T有3片树叶.

图论

图论
G
其中V(G) 是非空的顶点集, E(G)是不与V(G)相交的边集,
而Ψ 是关联函数,它使G的每条边对应于G 的无序顶点对。 若e是一条边,而u和v是使得 G (e ) uv 的顶点,则称 e 连接 u 和 v ;顶点 u 和 v 称为 e 的端点。
图graph, 顶点vertex,边edge
-23-
图论及其应用第一章
例1
G {V (G ), E (G ), G )
e7
此时,V (G ) {v1 , v2 , v3 , v4 }
E (G ) {e1 , e2 , e3 , e4 , e5 , e6 , e7 }
v2
e1
v1
e2
G 定义为
e3
e4 e5
v3
e6
G (e1 ) v1v2 , G (e2 ) v2v3
-13-
图论及其应用第一章
-14-
图论及其应用第一章
Ramsey理论的哲理意义
-15-
图论及其应用第一章 婚姻匹配
某村里有n 个男士与n 个女士,每个男士恰 好认识 r 个女士,每个女士也恰好认识 r 个男士, 问:在这个村中,能否做到:每个男士与其 认识的女士结婚,每个女士也恰好与其 认识的男士结婚。
端点处相交, 这样画出的平面图形称为图的图形表示。
-25-
图论及其应用第一章
例2
G = (V, E) ,其中 V (G ) {v1 , v2 , v3 , v4 , v5 }
E (G ) {(v1 , v2 ), (v2 , v3 ), (v3 , v4 ), (v3 , v5 ), (v1 , v5 ), (v1 , v5 ), (v5 , v5 )}

图论及其应用ch1-2详解

图论及其应用ch1-2详解
11/19/2018 10:03 PM Li-Li Zhang 6
几个有趣的图论问题
Kö nigsberg七桥背后的故事
Graph Theory
/图论
Kö nigsberg七桥位于前苏联的加里宁格勒,历史上 曾是德国东普鲁士省的省会,霹雷格尔横 穿城堡,河中有两个小岛B与C,并有七座桥连接岛与 河岸及岛与岛(见图)。是否存在一种走发,从四块 陆地中的任意一块开始,通过每一座桥恰好一次再回 到起点。这就是著名的Kö nigsberg七桥问题,即一笔 画问题;也是图论的起源。
Graph Theory
/图论
在一个图G (V (G ), E (G ), G )中, 如果 G (e ) uv , 则说边e 连接 顶点u, v , 称u, v为e的端点 ,称u和v是 相邻的,而称u(或v )与e 关联。 与同一个顶点关联的若 干条边称为相邻的 。 两个端点重合为一个顶 点的边称为环; 关联于同一对顶点的两 条或以上的边称为 多重边 。

实际上,有向图即将无向图中的无序对看成有序对. 其中有向图对应的无向图称为有向图的基础图。 其中V(G)称为顶点集,E(G)称为边集(A(D)又称为 弧集).令p(G)=|V(G)|,q(G)=|E(G)|, 分别称为图的 阶和边数。举例说明。
11/19/2018 10:03 PM Li-Li Zhang 14
11/19/2018 10:03 PM Li-Li Zhang 12
1.2 图的定义
Graph Theory
/图论
生活中,人们常常需要考虑一些对象之间的某种特定 的关系 . 如某区域内,两城市之间有无交通线;一群 人中,两个人之间相识或不相识等等 . 这种关系是对 称的,即如果甲对于乙有某种关系,则乙对于甲也有 这种关系 . 可以用一个图形来描述给定对象之间的某 个关系:我们用平面上的点分别表示这些对象,若 对象甲和乙有关系,就用一条线连接表示甲和乙的 两个点 . 这种由一些点与连接其中某些点对的线所构 成的图形就是图论中所研究的图. 图/Graph:可直观地表示离散对象之间的相互关系, 研究它们的共性和特性,以便解决具体问题。

图论及其应用复习

图论及其应用复习
0.5
00
1 0.8
0.6 0.4 x 0.2
一、重要概念
1、图、简单图、图的同构、度序列与图序列、补图与自补 图、两个图的联图、两个图的积图、偶图;
(1) 图:一个图是一个序偶<V,E>,记为G=(V,E),其中: 1) V是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。
用|V|表示顶点数;
注:要求掌握自补图的性质。
5
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(7) 联图
设G1,G2是两个不相交的图,作G1+G2,并且将G1中每个顶点和G2 中的每个顶点连接,这样得到的新图称为G1与G2的联图。记为 :
G1 G2
(8) 积图
设 G1 (V1, E1), G2 (V2 , E2 ), 是两个图。对点集 V V1 V2
2) E是由V中的点组成的无序对构成的集合,称为边集,其元素称 为边,且同一点对在E中可以重复出现多次。用|E|表示边数。
(2) 简单图:无环无重边的图称为简单图。
2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(3) 图的度序列:
一个图G的各个点的度d1, d2,…, dn构成的非负整数组(d1, d2,…, dn) 称为G的度序列 。
1 0.8
0.6 0.4 x 0.2
(4) 因子分解
所谓一个图G的因子分解,是指把图G分解为若干个边不重的因子 之并。
注:要弄清楚因子分解和完美匹配之间的联系与区别。

数学建模案例分析第八章离散模型

数学建模案例分析第八章离散模型

数学建模案例分析第八章离散模型第八章"离散模型"主要介绍了离散数学在数学建模中的应用。

离散数学是指研究离散对象和离散结构的数学学科,与连续数学相对应。

在数学建模中,离散模型常用于描述离散化的问题,如网络优化、排队论、图论等。

本章讨论了三个离散模型的案例分析。

第一个案例是关于动态规划的问题。

动态规划是一种解决优化问题的动态模型,通过将问题划分为多个阶段,每个阶段可存在多个状态,根据转移方程进行状态转移和决策,最终得到最优解。

本案例中,讨论了一个旅行商问题(Traveling Salesman Problem,TSP),即如何找到一条路径,使得旅行商能够访问给定的一组城市且总路径最短。

通过动态规划的方法,可以列出状态转移方程,并利用递推关系计算最优解。

第二个案例是关于网络优化的问题。

网络优化是指在给定的网络结构上,通过合理的设计和调整网络的参数、算法等,以提高网络的性能和效率。

本案例中,以网络中的流最大问题(Maximum Flow Problem)为例,介绍了如何通过建立网络模型、定义网络容量等参数,以及应用最小割定理和残余网络的概念来解决流最大问题。

第三个案例是关于排队论的问题。

排队论是研究排队系统中等待时间、服务时间等性能指标的数学理论。

本案例中,以排队模型中的M/M/1排队系统为例,介绍了如何通过排队模型来估计顾客等待时间、系统繁忙程度等指标,并通过参数调整和优化来改善排队系统的性能。

以上三个案例分析都是基于离散模型的,通过合理的数学建模和求解方法,解决了实际问题中的离散化问题。

通过学习这些案例,我们可以更好地理解离散模型的应用和原理,并将其运用到实际问题中,提高问题求解的效率和准确性。

总结起来,离散模型在数学建模中扮演着重要的角色。

通过离散化的方式,将实际问题抽象成离散对象和结构,可以更好地进行问题求解和优化。

离散模型的应用领域广泛,涉及到网络优化、排队论、图论等多个领域,因此在实际问题中,我们需要根据具体情况选择合适的离散模型,并运用适当的数学建模和求解方法来解决问题。

《应用数学基础》(陈冲)教学课件 第八章 图 论

《应用数学基础》(陈冲)教学课件 第八章  图  论
应用数学基础
第八章 图 论
目录
ONTENTS
1 图的基本概念 2 图的矩阵表示 3 图的连通性
01 图的基本 概念
1.1 图的定义
在某计算机网络中,两台计算机之间通过网络线连接起来,如图 8-1 所示.顶点表示每台计 算机的位置,边表示网络连线.这类图在绘制时,可用圆圈(或实心点)来表示顶点,对图的 所有顶点标以名称:v1 ,v2 ,v3 ,v4 ;用直线或曲线来表示边,同时对图的所有边标以名称:e1 , e2 , e3 , e4 , e5 ,如图 8-2 所示.
该定理之所以称为握手定理,因为它有非常直观而形象的解释:假定有若干个人握手,每握
一次手,需要 2 只手来完成.此时有人用自己的右手握自己的左手,也算一次握手.参加握手的 手的总数目(包含重复的)恰好等于握手次数的 2 倍.这里用到了图论模型解决实际问题:把每 个人看成一个顶点,某两人握一次手,则在相应顶点之间连上一条边;如果某人与自己握手,则
设 G (V ,E) 是有向图, v V ,称以 v 为终点的边数为 v 的入度,记为 d (v) ;称以 v 为起 点的边数为 v 的出度,记为 d (v) .
若 d(v) 是奇数,就称 v 为奇点;若 d(v) 是偶数,就称 v 为偶点.度为 1 的点称为悬和是边数的 2 倍,这是图的一般性质.下面给出的定理是 Euler 在 1936 年提出 的,常称为握手定理,是图论中的基本定理.
定理 1(握手定理) 设 G (V ,E) 是图,G 中所有顶点度数之和 d (v) 等于 G 中边数 m 的 vV
两倍,即
d(v) 2m .
vV
1.2 顶点的度
在图 8-3 中,由于 e3 (v2 ,v3 ) ,则点 v2 与点 v3 邻接,点 v2 与边 e3 关联,点 v3 与边 e3 关联; 由于边 e1 和边 e3 有共同的顶点 v2 ,则边 e1 和边 e3 邻接; v5 为孤立点.

图论及其应用ppt22

图论及其应用ppt22

(一)、平面图的判定 (二)、涉及平面性的不变量
2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(一)、平面图的判定
在本章第一次课中,我们已经明确:对于3阶以上的 具有m条边的单图G来说,如果G满足如下条件之一: (1)m>3n-6; (2) K5是G的一个子图;(3) K3,3是G的一个 子图,那么,G是非可平面图。
7
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
定理1 (库拉托斯基定理) 图G是可平面的,当且仅当 它不含K5或K3,3同胚的子图。
例1 求证:下面两图均是非平面图。
图 G1
图 G2
证明:对于G1来说,按G1在2度顶点内收缩后,可得 到K5。所以,由库拉托斯基定理知G1是非可平面图。
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
图论及其应用
任课教师:杨春 Email: yc517922@
数学科学学院
1
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
本次课主要内容
平面图的判定与涉及平面性的不变量
17
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
注:该定理是由数学家巴特尔、哈拉里和科达马首先 得到。然后由托特(1963)给出了一个不太笨拙的证明,他 采用枚举法进行验证。还不知道有简洁证明,也没有得 到推理方法证明。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求x34的检验数z34 -c34 闭回路法
b2=-2 c12=6 b1=5 1 c13=3 3 c35=2 5 b5=-6 2 c34=4 b4=3 4 c46=1 b6=-5 6 c56=4
b3=5 z34 -c34 =(-c46+c56+c35)-c34=(-1+4+2)-4=+1,x34进基
南京工业大学经济与管理学院 潘郁教授
2013-9-2
8.2 最小树问题



无圈的连通无向图称之为树 赋权无向图G=(V,E)上连接所有节点的各 边其权总和为最小的部分树称为最小支撑树 (最小树) 性质1:加边成圈。如果在一棵树中,两个不 相邻节点之间加上一条边,就会出现一个且仅 一个圈。 性质2:破圈成树。如果把上述圈中另一任意 边去掉,则可得到另一棵树。
2013-9-2
习题:p312-8.4,求最大流

给出任意可行流 找到一条增广链 调整可行流 注:’=1,#=1,$=2,*=1 v2 v1 (1,1)
(3,2)’ v 3 (4,3)’ 2 vt vs (3,2)# 2 (0,+∞) (5,3)#* (8,3)#$* (10,4)$* (3,2)* , ) (4,3)’ (7,6)’ (
南京工业大学经济与管理学院 潘郁教授
2013-9-2
图的基本概念(续)

由点和边组成的图叫做无向图,记为G=(V,E) 由点和弧组成的图叫做有向图,记为D=(V,A) 例1. e1 v3 a8 v5 v1 e2 v2 v7 a1 a10 a4 a6 a9 e 3 e 4 a11 e5 v1 a3 v6 a2 a7 v4 e6 v3 v2 a5 v4
1600
4
1600
5
1600
6
2350 3100 4550
2013-9-2
南京工业大学经济与管理学院 潘郁教授
习题8-1

求最小树
2013-9-2
南京工业大学经济与管理学院 潘郁教授
习题8-2

求A到各点的最短路
2013-9-2
南京工业大学经济与管理学院 潘郁教授
8.4 最大流问题

引例:如下输水网络,南水北调工程, 从vs到vt送水,弧旁数字前者为管道容 量,后者为现行流量,如何调整输水最 多? v2 v4 (4,3)
南京工业大学经济与管理学院 潘郁教授
2013-9-2
解水网最大流问题
. V2 (-v1,1) (3,3) vs (0, +∞) (5,1) V1 (vs,4)
2013-9-2 南京工业大学经济与管理学院 潘郁教授
(4,3)
V4 (v2,1) (5,3)
(1,1)
(1,1)
(3,0) (2,1)
Vt (v3,1)
变量x34进基,确定离基变量
b2=-2 x12=2 b1=5 1 x13=3 3 x35=8 5 b5=-6 2 x34=0 b4=3 4 x46=3 b6=-5 6 x56=2
b3=5 min{x56,x35}=min{2,8}=2, x56离基,调整流量,进行基变换
确定非基变量x24和x56
南京工业大学经济与管理学院 潘郁教授
8.1 图的基本概念


图是由点和线构成的。 点的集合V表示,V={vi} 不带箭头的连线叫做边(edge),边的集 合记为E= { ej } ,一条边可以用两点 [ vi,vj ]表示,ej= [ vi,vj ]. 带箭头的连线叫做弧(arc),弧的集合记为 A,A= { ak },一条弧也是用两点表示, ak= [ vi,vj ],弧有方向:vi为始点,vj为终 点
1
2 4 3
■圈(Cycle)
起点和终点重合的链称为圈 ρ ={(1,2),(2,4),(3,4),(1,3)} 圈中各条边方向不一定相同
1
2 4 3
■连通图
任意两个节点之间至少有一条 链的图称为连通图
■树(Tree)
无圈的连通图称为树 树中只与一条边关联的节点称 为悬挂节点
1
2
3 5 4
树的性质
南京工业大学经济与管理学院 潘郁教授
2013-9-2
破圈法

从圈上去掉一条最大权的边(无圈)
v2 6 v1 1 3 2 v3 2 v4 10 v6 1 6 v5 6 4 4 3 v8 4 v7
2013-9-2
南京工业大学经济与管理学院 潘郁教授
加边法

由短到长(最小)
v2 6 v1 1 3 2 v3 2 v4 10 v6 1 6 v5 6 4 4 3 v8 4 v7
2013-9-2
南京工业大学经济与管理学院 潘郁教授
(vs,3)
v4
(4,2)$
v5
第五章 网络优化
网络的基本概念 网络最小费用流问题 网络最大流问题 最短路径问题
网络的基本概念
■网络由节点和边组成

2 1 3 4
节点与(有向)边
每一条边和两个节点关联,一条 边可以用两个节点的标号表示 (i,j)
e7 无向图:点集、边集
2013-9-2点集、弧集
图的基本概念(续)


以点u为端点的边的条数,叫做点u的次 次为1的点叫做悬挂点;次为0的点叫做 孤立点;次为奇数则称奇点;次为偶数 则称偶点。 点弧交替序列称为链;闭合的链称为圈 首尾相接的链称为路;闭合的路称回路 任意两点之间都有边相连,称为连通图
第八章 图论及其应用

引论
哥尼斯堡七桥问题
A C B D
简捷表示事物之间的 本质联系,归纳事物 之间的一般规律
A D B
C
2013-9-2
南京工业大学经济与管理学院 潘郁教授
引论 图的用处
A、B、C、D、E 五支球队进行循环赛

A
总公司 C
某公司的 组织机构设置图 工厂或
分公司 办事处
B
D
E
2013-9-2
b2=-2 x12=2 b1=5 1 x13=3 3 b3=5 x35=6 5 b5=-6 2 x34=2 b4=3 4 x46=5 b6=-5 6
计算x24和x56的检验数z24 -c24 、z56-c56
b2=-2 c12=6 b1=5 1 c13=3 3 b3=5 c35=2 5 b5=-6 2 c24=5 b4=3 4 c46=1 b6=-5 6 c56=4
南京工业大学经济与管理学院 潘郁教授
2013-9-2
求最大流的方法


方法很简单:首先找到一条增广链,沿 此进行最大可能调整,再找增广链,再 调整,直到没有增广链。 寻找增广链的标号法:先给vs标号(0, +∞),而后依次审查各条弧(vi,vj):对 前向弧,饱和否?不饱和,给vj点标号 (vi,l(vj));对后向弧,可否减少?可, 给vj标号(-vi, l(vj) ),直到给vt标上号, 就得到了增广链。
1 2 使用年数 年末的残值(万 1000 750 元) 年度操作费用(万元) 100 500
2013-9-2
3 500 1000
4 250 1200
5 0 1300
南京工业大学经济与管理学院 潘郁教授
例:设备更新问题
4550 3100 1850 2350 3600
6100
1
1100
2
1100
3
1850
v2 6 v1 1 3 2 v3 2 v4 10 v6 1 6 v5 6 4 10 4 3 v8 4 v7
2013-9-2
南京工业大学经济与管理学院 潘郁教授
破圈法(适用于无回路的有向网络)

从指定始点开始,逐步找圈、破圈直至 指定终点为止。(站在终点的立场上, 破圈)
v2 2 v3 2 v4 10 v6 1 6 v5 6 v1 1 3 6 4 4 3 v8 4 v7
(3,3) vs (5,1) v1 (2,2) v3 (1,1) (1,1) (3,0) (5,3)
vt
(2,1)
2013-9-2
南京工业大学经济与管理学院 潘郁教授
最大流问题的相关概念



网络:给定了弧的容量C(vi,vj)的有向图D= (V,A,C)叫做一个网络。 可行流:各点流入量=流出量,且vs的流出量 =vt的流入量,这样的流称之为可行流 截集:分离始点vs和终点vt的弧的集合,叫做 截集 截量:截集的容量叫做截量 增广链:一条从始点到终点的链,前向弧上可 增加,后向弧上可减少,则称此链为增广链
i j
2
■路径(Path)
前后相继并且方向相同的边序列
1 3
4
P={(1,2),(2,3),(3,4)}
■链(Chain)
前后相继并且方向不一定相同的边 序列称为链 C={(1,2),(3,2),(3,4)}
1
2 4 3
■回路(Circuit)
起点和终点重合的路径称为回路 μ={(1,2),(2,4),(4,1)} 回路中各条边方向相同
(2,2) V3 (-v2,1)
此题最大流图

沿增广链进行调整,前向弧增加l(vj),后 向弧减少l(vj)
V2 (3,3) vs (0,+∞) (5,2) (1,0) (1,0) (3,0) (2,2) (2,2) V1南京工业大学经济与管理学院 V3 潘郁教授 (vs,3) (4,3) V4 (5,3) Vt
2013-9-2
南京工业大学经济与管理学院 潘郁教授
树逐步生长法

最短+无圈(连通)
v2 6 v1 1 3 2 v3 2 v4 10 v6 1 6 v5 6 4 4 3 v8 4 v7
相关文档
最新文档