三角函数微分积分关系简表

合集下载

微积分公式手册

微积分公式手册

导数公式:(tgx)f = sec2 % (ctgx)f = -CSC2X (SeCXy = SeC X ∙%gx (CSCXy =-cscx∙ CtgX (a x), = a x lna(Ioga X)' = -γ-xlna (arcsin x)' = / 1Nl-X2 / V 1 (arccosx)=——1=/ 、, 1 {arctgx)=-―-1 + x, 、, 1 {arcctgx)= -------- --1 + x 微积分公式基本积分表:^tgxdx = - ln∣cosx∣ + Cdx = ln∣sin x∣ + Cʃsee xdx = ln∣sec x + ⅛Λ∣+C ʃese xdx = ln∣csc x -c⅛x∣ + C P ax f 2 j ∕-ι---- -= sec xdx = tgx j cos X Jr ax f 2 j「-= esc xdx = -ctgx + C J sin x JJsecx√gΛzZx= SeCX +Cdx2a +x'dx2 x -a,2∣∙ dxJ -2 2J a -xdx2 -X2Leg-a a1 1x — a C —— ----- +C 2a x + a1 1 a + x C —— ----- + C 2a a-x•X C =arcsin—+ C2a ʃese x ∙ ctgxdx = - esc x + C∖a x dx = ———I-CJ InQ^shxdx = chx +Cfc/zxt/x = ShX +Cπ2^ π2^I n= ∫sinπXdX= ∫cos n xdx =F1n-2n_________ ____________________ 2 __________ JJ/ + 〃2 dχ = — NX2+ ɑ` + In(X + Jx.+ a?) + CI_________ U I __________________ C 2 I _________JJχ2 —a1dx = jʌ/ɪɪJΛ∕G,2 -X2dx= ɪvɑɪ三角函数的有理式积分:2_____ 22 a . 工 .-x H ----- arcsin—+ C. 2ιι 1 — U2 smx = ------ -, cos% =------- y1 + 〃 1 + w7 2duax = ---- -I + /l-x2和差角公式: •和差化积公式:sin(a ± /?) = SinaCOs 〃 ± cos a sin β COS(O ±β) = cos a cos β μsina sin βfg(a±0 =产吗 lμtga -tgβ ct g (a±^=ctga -ctgβμi ctgβ±ctgasin a + sin 尸=2 sin ,+ 2 cos —~~—2 2• ∙ n ɔ a-∖-β . a -βsin a-smp =2 cos ------- - sin ....... -2 2 o C CC + βCC- β cos a + cos p = 2 cos --- - cos ....... -2 2 .a-∖- β . a — βcos a - cos p = 2 sin ------ sin -------2 2一些初等函数: 两个重要极限:双曲正弦:MX=e 1 2 双曲余弦:MX= e'+e '2 r/y Y PX -f> ~x双曲正切:防X =更竺=chx e x +e xarshx = ln(x + √x 2 +1) archx = ±ln(x + √x 2 -1) Iim x→0sιnx =1lim(l + ⅛ = e = 2.718281828459045 (x)→∞ x三角函数公式:•诱导公式:•倍角公式:Jl•反三角函数性质: arcsinx = ------ a rccosx2高阶导数公式——莱布尼兹(LeibniZ)公式:(MV )⑺=£c ;a (T )v ⑹ k=0=+ + 〃(〃 T )M ("-2)V 〃 +A + 〃(〃 T )A (〃T +1) Ii fG ) +A+uv wk ∖中值定理与导数应用:拉格朗日中值定理:/(⅛)-∕(α) = ∕W(⅛-α) 柯西中值定理:‘3卜=/地F(b)-F(a) Pe)当F(X) = X 时,柯西中值定理就是拉格朗日中值定理。

三角函数的积分与定积分

三角函数的积分与定积分

三角函数的积分与定积分在微积分学中,三角函数的积分和定积分是非常重要的概念。

通过对三角函数的积分和定积分的学习,我们可以更深入地理解三角函数和积分的关系,以及应用它们解决实际问题的方法。

下面我们将详细介绍三角函数的积分和定积分的相关内容。

一、三角函数的积分三角函数是我们在学习数学时最常见的函数之一。

在积分中,我们可以对三角函数进行积分,得到它们的原函数。

以下是常见的三角函数及其积分的表达式:1. 正弦函数(sin(x))的积分:∫sin(x)dx = -cos(x) + C其中C表示常数。

2. 余弦函数(cos(x))的积分:∫cos(x)dx = sin(x) + C3. 正切函数(tan(x))的积分:∫tan(x)dx = -ln|cos(x)| + C其中ln表示自然对数。

需要注意的是,在某些情况下,三角函数的积分无法直接表示为初等函数,需要通过换元法或其他积分技巧进行求解。

二、三角函数的定积分除了计算三角函数的原函数外,我们还可以通过定积分求解三角函数在某个区间上的面积。

以下是常见的三角函数的定积分表达式:1. 正弦函数(sin(x))在区间[a, b]上的定积分:∫[a,b]sin(x)dx = -cos(x)|[a,b] = -cos(b) + cos(a)2. 余弦函数(cos(x))在区间[a, b]上的定积分:∫[a,b]cos(x)dx = sin(x)|[a,b] = sin(b) - sin(a)3. 正切函数(tan(x))在区间[a, b]上的定积分:∫[a,b]tan(x)dx = -ln|cos(x)||[a,b] = -ln|cos(b)| + ln|cos(a)|需要注意的是,三角函数在某些点上可能无定义或者无界,这时定积分的计算需要考虑函数的特性和区间的选择。

三、三角函数的积分和定积分的应用三角函数的积分和定积分在实际问题中有着广泛的应用。

以下是一些常见的应用场景:1. 物体运动的位移和速度分析:通过对速度或加速度函数进行积分,可以得到物体的位移函数,从而分析物体在不同时间点的位置。

(完整word)高数微积分公式+三角函数公式考研

(完整word)高数微积分公式+三角函数公式考研

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

整理高数微积分公式+三角函数公式考研

整理高数微积分公式+三角函数公式考研

高数微积分公式三角函数公式考研整理表姓名:职业工种:申请级别:受理机构:填报日期:A4打印/ 修订/ 内容可编辑高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:文件编号:F8-65-23-08-CC 多元函数微分法及应用微分法在几何上的应用:文件编号:F8-65-23-08-CC 方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程整理丨尼克本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。

三角函数、导数、微分、积分

三角函数、导数、微分、积分
csc(a) =
万能公式 a 1 (tan ) 2 2 cosa= a 2 1 (tan ) 2 其他非重点三角函数 sec(a) =
a 2 tana= a 1 (tan ) 2 2 2 tan 1 cos a 1 cos 2 a sinh( a ) cosh(a )
1 in a
cot 2 a 1 csc 2 a
sin a tgA=tanA = cos a sin( a ) sin a
cos(-a) = cosa sin(

2
-a) = cosa
sin(

2
+a) = cosa
sin(π-a) = sina
sin(π+a) = -sina
cos(

2
-a) = sina
cos(

2
+a) = -sina
'
1 d (arctan x) dx 1 x2 d (arc cot) 1 dx 1 x 2

1 dx arctan x C 1 x2
(arc cot x) '
1 1 x2
dx C
( shx) ' chx (chx) ' shx
1 (thx) 2 ch x
'
shxdx chx C chxdx shx C 1 1 x dx arctan C 2 a a a x
2
(arshx) '
1 1 x 1 x 1
2 2

1 1 xa dx ln C 2 2a x a x a
2
(archx ) '

三角函数微分公式

三角函数微分公式

三角函数微分公式(转载)V重恒收录于2011-02-24 阅读数:公众公开原文来源tags:三角函数微分我也要收藏基本函数函数英语简写关系正弦Sine sin余弦Cosine cos正切Tangent tan(或tg)余切Cotangent cot(或ctg、ctn)正割Secant sec余割Cosecant csc(或cosec)[编辑] 少用函数除六个基本函数,历史上还有下面六个函数:∙正矢∙余矢∙半正矢∙半余矢∙外正割∙外余割[编辑] 历史随着认识到相似三角形在它们的边之间保持相同的比率,就有了在三角形的边的长度和三角形的角之间应当有某种标准的对应的想法。

就是说对于任何相似三角形,(比如)斜边和剩下的两个边的比率都是相同的。

如果斜边变为两倍长,其它边也要变为两倍长。

三角函数表达的就是这些比率。

研究三角函数的有尼西亚的喜帕恰斯(公元前180-125年)、埃及的托勒密(公元90-180年)、Aryabhata (公元476-550年),Varahamihira、婆罗摩笈多、花拉子密、Abū al-Wafā' al-Būzjānī、欧玛尔·海亚姆、婆什迦罗第二、Nasir al-Din al-Tusi、Ghiyath al-Kashi(14世纪)、Ulugh Beg(14世纪)、约翰·缪勒(1464)、Rheticus 和Rheticus 的学生Valentin Otho。

Madhava of Sangamagramma(约1400年)以无穷级数的方式做了三角函数的分析的早期研究。

欧拉的《无穷微量解析入门》(Introductio in Analysin Infinitorum)(1748年)对建立三角函数在欧洲的分析处理做了最主要的贡献,他定义三角函数为无穷级数,并表述了欧拉公式,还有使用接近现代的简写sin.、cos.、tang.、cot.、sec.和cosec.。

高等数学公式(定积分微积分三角函数导函数等等应有尽有)值得搜藏

高等数学公式(定积分微积分三角函数导函数等等应有尽有)值得搜藏

高等数学公式基本积分表(1) kdx = kx ∙ C (k 是常数)1dx =In |x| C XCOSXdX =SinX CSin XdX = -cosx C厂 dx = ta n x C cos XSeCX tan xdx =SeCX C CSCXCotXdX = -CSCX C e x dx =eX CXa x dx — C , (a 0,且 a = 1)ln a ShXdX = ChX C ChXdX = ShX C1 1 X 22 dx = arc tan Ca X aaJ 2dx =丄ln I X a | C x 2 -a 2 2a X a(2)(3) (4) (5)(6)(7) (8)(9) (10) (11) (⑵(13) (14) (15)(16)(17) (18)dx .a -X=arc sin — Ca -a 21x 2 dx = ln( x、a 2 x 2) C-1X d Xm C,(Uj)dx1 x 2=arl tan x C 1 .2Sindx = - CotX C X(21) tan XdX = _ln ∣cosx ∣ C (22) cot xdx = In ∣ sin x ∣ C (23) SeCXdX=In ∣ SeCX tanx ∣ C (24)CSCXdX = In ∣ cscx - cotx ∣ C注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证 2、以上公式把X 换成U 仍成立,U 是以X 为自变量的函数3、复习三角函数公式: 221 cos2x= SeCX ,sin 2^2sinXCosX ,CosX厂注:由.f["x)]"(x)dx= . f[「(x)]d 「(x),此步为凑微分过程,所以第一类换元法也叫凑微分法。

此方法是非常重要的一种积分法,要运用自如, 务必熟记基本 积分表,并掌握常见的凑微分形式及“凑”的技巧。

微积分公式大全

微积分公式大全

微积分公式大全导数公式:基本积分表:三角函数的有理式积分:22221sin cos 11u u x x u u -==++, ,一些初等函数:两个重要极限:22(tan )sec (cot )csc (sec )sec tan (csc )csc cot ()ln ()(ln 1)1(log )ln x x x x a x x x x x x x x x x a a a x x x x x a '='=-'=⋅'=-⋅'='=+'=222(arcsin )(arccos )1(arctan )11(arc cot )11()x x x x x x thx ch '='='=+'=-+'=2222sec tan cos csc cot sin sec tan sec csc cot csc ln ln(x xdx xdx x C x dx xdx x Cx x xdx x C x xdx x Ca a dx Ca shxdx chx C chxdx shx C x C==+==-+⋅=+⋅=-+=+=+=+=++⎰⎰⎰⎰⎰⎰⎰⎰⎰222222tan ln cos cot ln sin sec ln sec tan csc ln csc cot 1arctan 1ln 21ln 2arcsin xdx x C xdx x Cxdx x x C xdx x x Cdx xC a x a a dx x aC x a a x a dx a xC a x a a x xC a=-+=+=++=-+=++-=+-++=+--=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x三角函数公式:·和差化积公式:·积化和差公式:·和差角公式: ·万能公式、正切代换、其他公式:·倍角公式:·半角公式:sin cos 221cos sin 1cos sin tancot 2sin 1cos 2sin 1cos αααααααααααα==-+=====+-[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ= ++-=+--=++-=-+--sin sin 2sin22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=-222222sin 22sin cos cos 22cos 112sin cos sin cot 1cot 22cot 2tan tan 21tan αααααααααααα==-=-=--==-2222222222222tan1tan 22sin cos 1tan 1tan 221tan cos sin 1tan 1tan tan sec 1cot csc 1|sin ||||tan |x xx x x xx x x x xx x x x x x x -==++==++=-=-<<, , , sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot αβαβαβαβαβαβαβαβαβαβαββα±=±±=±±=⋅⋅±=·正弦定理:R C cB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcsin arccos arctan arccot 2 2x x x xππ=-=-高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑值定理与导数应用:拉格朗日值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档