广东省中考数学分析

合集下载

2021年广东省中考数学试卷分析报告

2021年广东省中考数学试卷分析报告

2021年广东省中考数学试卷分析报告2021年广东省初中学业水平考试数学试卷分析一、重点难点详解今年的数学试卷总体难度比去年增加了许多。

选择题考察基础知识,部分题目更加灵活。

例如,第9题考察海伦公式背景下的二次函数最值问题,难度中等;第10题则考查二次函数图像中的动点问题,难度较高。

与2020年相比,选择题难度有所提高。

填空题共有7道,其中第14题为开放性试题,第15、16题难度中等,第17题仍考查动点产生的线段最值问题,难度有所上升。

考生在复时要特别注意这一点。

解答题分为三个部分。

第一部分包含三道典型题目,分别是解不等式组、数据分析与统计、三角形计算,均为基础题;第二部分包含三道题目,分别是一次函数与反比例函数综合、应用题、正方形几何题,前两题难度中等,第23题难度较大,可以采用建系处理;第三部分则包含两道压轴综合题,第24题考查梯形综合,第25题考查二次函数与平行四边形存在性问题。

梯形是一个常见的模型,而第25题第(1)问考察数形结合,需要学生注重适当刷题。

二、试卷总体评价1.全面考查基础,难度提升今年的数学试卷在知识内容、题型、题量等方面总体保持稳定,考查内容依然包括“数与式”、“方程与不等式”、“函数”、“图形的性质”、“图形的变化”、“统计与概率”这六大基本板块。

虽然考点有一定的变化,但考法相对以往有所创新,中等难度题目增多,试卷难度总体提高,对学生的综合能力要求也提高了,预估平均分会回落不少。

2.关注变化与不变选择题中对数与式的考查出现了变化,如幂运算、绝对值和二次根式的非负性、整数部分和小数部分的考查,题型较新颖,要求对初一初二的基础及拓展知识掌握扎实。

选择题压轴中一改以往对二次函数参数符号多结论判断的考查,变为最值问题,与填空题压轴一起呼应,延续并增加去年对最值问题的考查。

解答题(二)总体均较为综合,对学生的综合能力要求较高,尤其是最后一题,难点侧重于求解解析式,而最后一问的存在性问题反而较为常规,而第一问求解解析式的思路涉及初高衔接和创新题型,这是较往年最大的变化。

2023年广东省中考数学真题(答案解析)

2023年广东省中考数学真题(答案解析)

2023年广东省初中学业水平考试数学一、选择题1.【答案】A【解析】解:由把收入5元记作5+元,可知支出5元记作5-元;故选A .2.【答案】A【解析】解:符合轴对称图形的只有A 选项,而B 、C 、D 选项找不到一条直线能使直线两旁部分能够完全重合;故选A .3.【答案】B【解析】解:将数据186000用科学记数法表示为51.8610⨯;故选B4.【答案】D【解析】解:∵AB CD ,137ABC ∠=︒,∴137BCD ABC ∠=∠=︒;故选D .5.【答案】C 【解析】解:原式5a =;故选C .6.【答案】A【解析】解:0.618为黄金分割比,所以优选法中有一种0.618法应用了黄金分割数;故选A .7.【答案】C 【解析】解:由题意可知小明恰好选中“烹饪”的概率为14;故选C .8.【答案】D【解析】解:214x x ->⎧⎨<⎩①②解不等式①得:3x >结合②得:不等式组的解集是34x <<,故选:D .9.【答案】B【解析】解:∵AB 是O 的直径,∴90ACB ∠=︒,∵50BAC ∠=︒,∴9040ABC BAC ∠=︒-∠=︒,∵ AC AC=,∴40D ABC ∠=∠=︒;故选B .10.【答案】B【解析】解:连接AC ,交y 轴于点D ,如图所示:当0x =时,则y c =,即OB c =,∵四边形OABC 是正方形,∴22AC OB AD OD c ====,AC OB ⊥,∴点,22c c A ⎛⎫ ⎪⎝⎭,∴224c c a c =⨯+,解得:2ac =-,故选B .二、填空题11.【答案】()()11x x +-【解析】解:()()2111x x x -=+-,故答案为:()()11x x +-.12.【答案】66==.故答案为:6.13.【答案】4【解析】解:∵12R =Ω,∴4848412I R ===()A 故答案为:4.14.【答案】9.2【解析】解:设打x 折,由题意得5141010x ⎛⎫-≥⨯ ⎪⎝⎭%,解得:9.2x ≤;故答案为9.2.15.【答案】15【解析】解:如图,由题意可知10,6,90AD DC CG CE GF CEF EFG =====∠=∠=︒,4GH =,∴10CH AD ==,∵90,D DCH AJD HJC ∠=∠=︒∠=∠,∴()AAS ADJ HCJ ≌,∴5CJ DJ ==,∴1EJ =,∵GI CJ ∥,∴HGI HCJ ∽,∴25GI GH CJ CH ==,∴2GI =,∴4FI =,∴()1152EJIF S EJ FI EF =+⋅=梯形;故答案为15.三、解答题16.【答案】(1)6;(2)21y x =+【解析】解:(1)2023|5|(1)-+-251=+-6=;(2)∵一次函数y kx b =+的图象经过点(0,1)与点(2,5),∴代入解析式得:152b k b =⎧⎨=+⎩,解得:12b k =⎧⎨=⎩,∴一次函数的解析式为:21y x =+.17.【答案】乙同学骑自行车的速度为0.2千米/分钟.【解析】解:设乙同学骑自行车的速度为x 千米/分钟,则甲同学骑自行车的速度为1.2x 千米/分钟,根据题意得:1212101.2x x-=,解得:0.2x =.经检验,0.2x =是原方程的解,且符合题意,答:乙同学骑自行车的速度为0.2千米/分钟.18.【答案】15.3m【解析】解:连接AB ,作CD AB ⊥于D ,∵AC BC =,CD AB ⊥,∴CD 是边AB 边上的中线,也是ACB ∠的角平分线,∴2AB AD =,1502ACD ACB ∠=∠=︒,在Rt ACD △中,10m AC =,50ACD ∠=︒,sin AD ACD AC ∠=∴sin 5010AD ︒=,∴10sin 50100.7667.66AD =︒≈⨯=∴()227.6615.3215.3m AB AD =≈⨯=≈答:A ,B 两点间的距离为15.3m .四、解答题(二)19.【答案】(1)见解析(2)63-【解析】(1)解:依题意作图如下,则DE 即为所求作的高:(2)∵4=AD ,30DAB ∠=︒,DE 是AB 边上的高,∴cos AE DAB AD ∠=,即3cos3042AE =︒=,∴34232AE =⨯=又∵6AB =,∴63BE AB AE =-=-,即BE 的长为63-.20.【答案】(1)111ABC A B C ∠=∠(2)证明见解析.【解析】(1)解:111ABC A B C ∠=∠(2)解:证明:连接AC ,设小正方形边长为1,则AC BC ===AB ==,22255AC BC AB +=+=Q ,ABC ∴ 为等腰直角三角形,∵111111111A C B C A C B C ==⊥,,∴111A B C 为等腰直角三角形,11145A B BC C A ∠∠=︒∴=,故111ABC A B C ∠=∠21.【答案】(1)19,26.8,25(2)见解析【解析】(1)解:将A 线路所用时间按从小到大顺序排列得:14,15,15,16,18,20,21,32,34,35,中间两个数是18,20,∴A 线路所用时间的中位数为:1820192a +==,由题意可知B 线路所用时间得平均数为:2529232527263128302426.810b +++++++++==,∵B 线路所用时间中,出现次数最多的数据是25,有两次,其他数据都是一次,∴A 线路所用时间的众数为:25c =故答案为:19,26.8,25;(2)根据统计量上来分析可知,A 线路所用时间平均数小于B 线路所用时间平均数线路,A 线路所用时间中位数也小于B 线路所用时间中位数,但A 线路所用时间的方差比较大,说明A 线路比较短,但容易出现拥堵情况,B 线路比较长,但交通畅通,总体上来讲A 路线优于B 路线.因此,我的建议是:根据上学到校剩余时间而定,如果上学到校剩余时间比较短,比如剩余时间是21分钟,则选择A 路线,因为A 路线的时间不大于21分钟的次数有7次,而B 路线的时间都大于21分钟;如果剩余时间不短也不长,比如剩余时间是31分钟,则选择B 路线,因为B 路线的时间都不大于31分钟,而A 路线的时间大于31分钟有3次,选择B 路线可以确保不迟到;如果剩余时间足够长,比如剩余时间是36分钟,则选择A 路线,在保证不迟到的情况,选择平均时间更少,中位数更小的路线.五、解答题(三)22.【答案】(1)见解析(2)①见解析;②24π+【解析】(1)∵点A 关于BD 的对称点为A ',∴点E 是AA '的中点,90AEO ∠=︒,又∵四边形ABCD 是矩形,∴O 是AC 的中点,∴OE 是ACA ' 的中位线,∴OE A C'∥∴90AA C AEO ∠'=∠=︒,∴AA CA '⊥'(2)①过点O 作OF AB ⊥于点F ,延长FO 交CD 于点G ,则90OFA ∠=︒,∵四边形ABCD 是矩形,∴AB CD ,AO BO CO DO ===,∴OCG OAF ∠=∠,90OGC OFA ∠=∠=︒.∵OCG OAF ∠=∠,90OGC OFA ∠=∠=︒,AO CO =,∴()AAS OCG OAF ≌,∴OG OF =.∵O 与CD 相切,OE 为半径,90OGC ∠=︒,∴OG OE =,∴OE OF=又∵90AEO ∠=︒即OE AE ⊥,OF AB ⊥,∴AO 是EAF ∠的角平分线,即OAE OAF ∠=∠,设OAE OAF x ∠=∠=,则OCG OAF x ∠=∠=,又∵CO DO=∴OCG ODG x∠=∠=∴2AOE OCG ODG x∠=∠+∠=又∵90AEO ∠=︒,即AEO △是直角三角形,∴90AOE OAE ∠+∠=︒,即290x x +=︒解得:30x =︒,∴30OAE ∠=︒,即30A AC '∠=︒,在Rt A AC '△中,30A AC '∠=︒,90AA C '∠=︒,∴2AC CA '=,∴AA '===';②过点O 作OH A C '⊥于点H ,∵O 与CA '相切,∴OE OH =,90A HO '∠=︒∵90AA C AEO A EO A HO ''∠'=∠=∠=∠=︒∴四边形A EOH '是矩形,又∵OE OH =,∴四边形A EOH '是正方形,∴OE OH A H '==,又∵OE 是ACA ' 的中位线,∴12OE A C '=∴12A H CH A C ''==∴OH CH =又∵90A HO '∠=︒,∴45OCH ∠=︒又∵OE A C '∥,∴45AOE ∠=︒又∵90AEO ∠=︒,∴AEO △是等腰直角三角形,AE OE =,设AE OE r ==,则AO DO ===∴)1DE DO OE r r =-=-=在Rt ADE △中,222AE DE AD +=,1AD =即)222211r r +=∴()2212411r +===+-∴O 的面积为:2224S r π==23.【答案】(1)22.5︒(2)154FC =(3)212S n =【解析】(1)解:∵正方形OABC ,∴OA OC =,∵OE OF =,∴Rt Rt (HL)OCF OAE ≌ ,∴COF AOE ∠∠=,∵COF AOG ∠∠=,∴AOG AOE ∠∠=,∵AB 交直线y x =于点E ,∴45EOG ∠=︒,∴22.5AOG AOE ∠∠==︒,即22.5COF ∠=︒;(2)过点A 作AP x ⊥轴,如图所示:∵(4,3)A ,∴3,4AP OP ==,∴5OA =,∵正方形OABC ,∴5OC OA ==,90C ∠=︒,∴90C APO ∠∠==︒,∵AOP COF ∠∠=,∴OCF OPA ∽ ,∴OC FC OP AP =即543FC =,∴154FC =;(3)∵正方形OABC ,∴45BCA OCA ∠∠==︒,∵直线y x =,∴45FON ∠=︒,∴45BCA FON ∠∠==︒,∴O 、C 、F 、N 四点共圆,∴45OCN FON ∠∠==︒,∴45OFN FON ∠∠==︒,∴FON ∆为等腰直角三角形,∴FN ON =,90FNO ∠=︒,过点N 作GQ BC ⊥于点G ,交OA 于点Q ,∵BC OA ∥,∴GQ OA ⊥,∵90FNO ∠=︒,∴1290∠∠+=︒,∵1390∠∠+=︒,∴23∠∠=,∴(AAS)FGN NQO ≌ ∴,GN OQ FG QN ==,∵GQ BC ⊥,90FCO COQ ∠∠==︒,∴四边形COQG 为矩形,∴,CG OQ CO QG ==,∴()()222222************OFN S S ON OQ NQ GN NQ GN NQ ∆===+=+=+,()()()222221*********COF S S CF CO GC FG GN NQ GN NQ GN NQ ∆==⋅=-+=-=-,∴212S S S NQ =-=,∵45OAC ∠=︒,∴AQN △为等腰直角三角形,∴22NQ AN n ==,∴2222122S NQ n ⎛⎫=== ⎪ ⎪⎝⎭。

广东今年中考数学试题及答案分析

广东今年中考数学试题及答案分析

广东今年中考数学试题及答案分析今年广东的中考数学试题如火如荼地进行着,考生们紧张而期待着自己的成绩。

本文将对今年广东中考数学试题进行分析,帮助考生对试题有更全面的认识。

一、选择题分析选择题是中考数学试题中的常见题型,本次广东中考选择题分为单选题和多选题。

试题涵盖了各个知识点和难度层次,考查了学生对基础知识的掌握和运用能力。

以第一题为例,该题为单选题,涉及到图形的几何变换和角度概念。

考生需要通过观察图形并分析其性质,选择正确的答案。

这类题型注重对图像的理解和观察力,同时也考察了对几何概念的掌握程度。

第二题是一道多选题,考察了学生对平方和立方几何体的了解。

这种题型对学生的记忆和综合运用能力有一定要求,需要学生结合几何体的性质和特点,选出符合题意的选项。

综合来看,选择题在广东中考数学试题中占比较大,考察面较广,题目设计比较贴合实际生活和学习。

考生在做这类题目时需要细心观察、准确把握题意,同时巩固好基础知识,培养良好的逻辑思维和推理能力。

二、填空题分析填空题是中考数学试题中常见的题型之一,考查了学生对知识点的理解和灵活运用能力。

以第三题为例,该题为一道填空题,考察了学生对函数概念和函数表达式的理解。

学生需要根据已知条件构建函数表达式,并计算出对应结果。

这类题型对学生的数学思维能力和应用能力有一定要求,需要进行合理的分析和推断。

第四题也是一道填空题,考察了学生对代数式的处理和求解能力。

学生需要根据给定条件,列出代数方程,并解出未知数。

这种题型对学生的代数方程应用和计算能力提出了一定的要求,需要灵活运用代数知识进行求解。

填空题在广东中考数学试题中占比较小,但考察深度相对较高,需要学生对知识点的理解和灵活应用。

考生在做这类题型时需要注重理解题意,合理运用所学的知识,进行适当的计算和推理。

三、解答题分析解答题是中考数学试题中的主要题型之一,考查了学生的数学思维能力、问题分析和解决问题的能力。

以第五题为例,该题为一道解答题,考查了学生对百分数的理解和应用。

2024年广东省中考数学真题卷含答案解析

2024年广东省中考数学真题卷含答案解析

机密★启用前2024年广东省初中学业水平考试数学满分120分 考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是( )A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D.538.410⨯4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是().A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a -=--_______.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233-⨯-+-.17. 如图,ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879在B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】的步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.的【23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.机密★启用前2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D. 538.410⨯【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =, ∴384000用科学记数法表示为53.8410⨯,故选:B .4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒【答案】C【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =【答案】D【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A. 14 B. 13 C. 12 D. 34【答案】A【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 20【答案】B【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴5=,故选:B .8. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>【答案】A【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.【答案】B【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x≤【解析】【分析】本题主要考查了求不等式组解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14. 计算:333a a a -=--_______.【答案】1【解析】的【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BF CF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCD BF h S S BC h ⋅=⋅菱形 ,即18224BF BC=,∴23BF BC =,∴2BF CF=,∴12212ABF CDF BF h S BF S CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+-.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+-111233⨯+-=11233=+-2=.17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,的GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m(2)66.7m【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到AQ =,接着解直角三角形得到BC =,进而求出AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴sin AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴tan CE BC CBE ==∠,∴AD =;∵180309060PAD =︒-︒-︒=︒∠,∴cos AP AD PAD =⋅=∠,∴ 6.1m PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CE BE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B 景区去游玩(2)王先生会选择A 景区去游玩(3)最合适的景区是B 景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.小问1详解】解:A 景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B 景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%815%640%615%6.9⨯+⨯+⨯+⨯=分,∵6.97.157.4<<,∴王先生会选择B 景区去游玩;【小问2详解】的【解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+的25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(23cm 【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180n ππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DF A DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F ,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O DO F DF DB DE BE ==,11O DDBDE O F =.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,216482563.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x=验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE=,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m , ∴将k y m =代入y ax =中得:k m ax =得,∴k x am=,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DHHEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =,∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴tan 30AP OP PD =︒⨯===,2AC BD AP ===,∴AB AD ===,OD BP PD =+=+, ∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-=,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。

精品解析:2024年广东省深圳市中考数学试题(解析版)

精品解析:2024年广东省深圳市中考数学试题(解析版)
2024 年深圳市初中学业水平测试
数学学科试卷
说明:
1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡定的位置
上,并将条形码粘贴好.
2.全卷共 6 页.考试时间 90 分钟,满分 100 分.
3.作答选择题 1-8,选出每题答案后,用 2B 铅笔把答题卡上对应题目答案标号的信息点框
涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题 9—20,用黑色字迹的
钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答
案一律无效.
4.考试结束后,请将答题卡交回.
第一部分 选择题
.一、选择题(本大题共 8 小题,每小题 3 分,共 24 分,每小题有四个选项,其中只有一个是
B、 m2n m = m3n ,故该选项符合题意; C、 3mn − m 3n ,故该选项不符合题意;
D、 (m −1)2 = m2 − 2m +1 m2 −1,故该选项不符合题意;
故选:B. 4. 二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律, 二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、 小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大 寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )
∴扇形 EOF 的面积为 90 42 = 4 , 360
故答案为: 4 .
12. 如图,在平面直角坐标系中,四边形 AOCB 为菱形,tan AOC = 4 ,且点 A 落在反比例函数 y = 3 上,
3
x
点 B 落在反比例函数 y = k (k 0) 上,则 k = ________.

2023年广东省中考数学真题(精品解析)【可编辑可打印】

2023年广东省中考数学真题(精品解析)【可编辑可打印】

7
8.
一元一次不等式组x
2>
1
的解集为(
)
x 4
A. - 1 < x < 4
B. x < 4
C. x < 3
D. 3 < x < 4
【答案】D 【解析】
【分析】第一个不等式解与第二个不等式的解,取公共部分即可.
x - 2 > 1①
【详解】解: x < 4②
解不等式① 得: x > 3 结合② 得:不等式组的解集是3 < x < 4 , 故选: D.
∴ ÐBCD = ÐABC = 137。; 故选 D . 【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键.
4
5. 计算 3 + 2 的结果为( )


A. 1

B.
6
2

C. 5

6
D. “
【答案】C 【解析】
【分析】根据分式的加法运算可进行求解. 【详解】解:原式= ; 故选 C . 【点睛】本题主要考查分式的运算,熟练掌握分式的运算是解题的关键.

∴ D = ABC = 40 ; 故选 B .
【点睛】本题主要考查圆周角的相关性质, 熟练掌握直径所对圆周角为直角是解题的关键.
9
10. 如图,抛物线y = ax2 + c 经过正方形OABC 的三个顶点A ,B ,C,点 B 在y 轴上,则ac 的值为( )
A. -1 【答案】B
【解析】
B. -2
故选 A . 【点睛】本题主要考查轴对称图形的识别, 熟练掌握轴对称图形的概念是解题的关键.
2
3. 2023 年 5 月 28 日,我国自主研发的 C919 国产大飞机商业首航取得圆满成功, C919 可储存约 186000 升燃油,将数据 186000 用科学记数法表示为( )

2023年广东省初中学业水平考试数学质量分析

2023年广东省初中学业水平考试数学质量分析

2023年广东省初中学业水平考试数学质量分析一、前言本报告对2023年广东省初中学业水平考试(以下简称“中考”)数学试卷的质量进行了全面、深入的分析。

分析旨在评估试卷的难度、区分度、信度以及效度,并为今后的数学教学提供有益的参考和建议。

二、试卷概况试卷结构2023年广东省中考数学试卷共有20道题目,包括选择题、填空题、解答题三个部分,满分150分。

其中:- 选择题:共10题,每题3分,总计30分。

- 填空题:共5题,每题3分,总计15分。

- 解答题:共5题,总计105分。

试题内容试卷内容涵盖了初中数学的全部知识点,包括:- 概念理解:考查学生对数学基本概念、公式的理解与应用。

- 计算能力:考查学生的数学运算、代数计算、几何计算等能力。

- 逻辑推理:考查学生的数学逻辑思维、证明与反驳能力。

- 应用题:考查学生运用数学知识解决实际问题的能力。

三、质量分析难度分析试卷整体难度适中,平均难度系数约为0.65。

其中,选择题难度较低,填空题和解答题难度逐渐提高。

区分度分析试卷的区分度较好,高分段学生和低分段学生的得分差距较大。

特别是在解答题部分,难度较高的题目能够有效区分学生的数学水平。

信度分析试卷信度较高,各题型之间的得分相关性较好,表明试卷具有良好的稳定性。

效度分析试卷效度较好,能够较好地反映学生的数学学习状况。

但部分题目在考查学生能力方面仍有待提高。

四、教学建议提高学生基本能力教师应注重学生数学基本概念、公式的理解和运用,加强计算能力和逻辑推理能力的训练。

注重应用题教学在教学中,教师应注重培养学生的实际问题解决能力,提高学生运用数学知识解决实际问题的能力。

因材施教针对不同学生的数学水平,教师应采取不同的教学策略,提高教学质量。

五、总结2023年广东省中考数学试卷总体质量较好,但在部分题目的考查学生能力方面仍有待提高。

希望通过本报告的分析,能为今后的数学教学提供有益的参考和建议。

2020年广东省中考数学试卷分析

2020年广东省中考数学试卷分析

2020年广东省中考数学试卷分析2020年广东中考数学试卷分析一、试卷分析2020年广东中考数学已经结束,本次考试紧扣热点、重视基础、难度适中、稳中有“新”、区分度明显。

其中,题目的载体和背景结合时事民生,将2019-2020的一些热点元素融入其中。

同前几年广东省中考题型和考点分布基本一致,基础知识部分占全卷较大比重。

全卷在注重基础知识考察的同时,重点突出函数、基本图形性质、图形间的基本关系等核心内容的考察。

二、考点分析试卷涵盖了绝对值、数据的分析、直角坐标和对称轴、二次根式、平行线的判定、三角形的中线、二次函数和平移、解不等式组、正方形对折全等、二次函数、因式分解、整式等知识点。

难度适中,分值合理。

三、中考备考建议考生在备考过程中,应注重基础知识的掌握和理解,加强练,提高解题能力。

同时,关注时事热点,了解相关知识,提高综合分析能力。

在解题过程中,应注重思维的灵活运用,善于归纳总结,加强数形结合思考,提高解题效率。

2020年广东中考数学命题按照新课标要求进行,基础题的难度与题型设计相对较大。

这种灵活的命题方式对于2021年备考具有重要启示。

为了备考成功,学生需要认真研读课标和考试说明,深入理解变化的内容。

在教学和总复中,要注重夯实基础知识和基本技能,形成基本思想和方法。

通过复,学生可以将零散的知识联系起来,形成知识体系。

在复过程中,要注重通性通法的复和掌握,避免过多纠缠于特殊技巧。

复进度应根据学生情况进行适当调整,给学生留下思考的空间。

数学思想方法是数学基础知识的重要组成部分,教材没有专门的章节介绍它,而是伴随着基础知识的研究而展开。

常用的数学思想方法包括分类思想、整体思想、化归思想、特殊与一般、数形结合思想。

解题方法包括配方法、换元法、待定系数法、割补法、方程、函数、基本图形等。

在问题思考中,要让学生真正理解数学知识,抓住知识的本质特征,让学生不仅知其然,还要知其所以然。

总的来说,广东中考数学命题的灵活性将对2021年备考起到重要的启示。

2024年广东中考数学分析范文

2024年广东中考数学分析范文

数学是一门非常重要的学科,也是广东中考的一项重要科目。

数学分析是数学中的一个重要分支,是用数学方法研究函数和序列的性质、变化以及发展规律的一门学科。

下面是对2024年广东中考数学分析题的分析。

2024年广东中考数学分析部分由三个大题构成,分别是解答题、选择题和填空题。

首先是解答题。

解答题是考查学生对数学知识点的理解与运用能力的题目。

难度有一定的挑战性,需要学生灵活运用所学知识。

例如,2024年广东中考数学分析题中的一道解答题是关于函数的单调性和最值的问题。

这道题通过给出一个函数的定义域和函数值的范围,要求学生判断函数的单调性,并找出函数的最小值和最大值。

这道题不仅考查了学生对函数单调性和最值的掌握程度,还要求学生运用函数的定义和运算性质去解答问题。

接下来是选择题。

选择题是一种较为简单但需要迅速准确判断的题目。

广东中考数学分析中的选择题主要考查学生对基本概念和方法的理解和运用能力。

例如,一道选择题是给出一个函数的图像和函数的定义域,要求学生判断该函数的单调性。

这道题通过给出函数的图像,引导学生观察函数变化的趋势,然后再根据定义域和函数值之间的关系,判断函数的单调性。

这道题考察了学生对函数图像的理解和观察能力,以及对函数的定义域和值域的掌握能力。

最后是填空题。

填空题是一种针对具体问题的题目,需要学生根据所给信息和条件,填写出相应的答案。

填空题考查学生对数学知识的灵活运用能力和解题思路的构建能力。

例如,一道填空题是给出一个方程组和一个关于函数的不等式,要求学生求解该方程组,同时满足不等式条件。

这道题要求学生灵活运用线性方程组的求解方法,并将解代入不等式中验证答案。

这道题考察了学生对方程组解法和不等式条件的理解能力。

综上所述,2024年广东中考数学分析部分的题目分为解答题、选择题和填空题三种题型。

这些题目不仅考查了学生的基本概念和方法的掌握能力,还要求学生能够运用所学知识解决实际问题。

通过解答这些题目,学生可以提高自己的数学思维和分析能力,为将来的学习和工作打下坚实的数学基础。

2024年广东省深圳市中考数学试卷正式版含答案解析

2024年广东省深圳市中考数学试卷正式版含答案解析

绝密★启用前2024年广东省深圳市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列用七巧板拼成的图案中,为中心对称图形的是( )A. B. C. D.2.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为( )A. aB. bC. cD. d3.下列运算正确的是( )A. (−m3)2=−m5B. m2n⋅m=m3nC. 3mn−m=3nD. (m−1)2=m2−14.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )A. 124B. 112C. 16D. 145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角∠1=50°,则反射光线与平面镜夹角∠4的度数为( )A. 40°B. 50°C. 60°D. 70°6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A. ①②B. ①③C. ②③D. 只有①7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为( ) A. {7x +7=y 9(x −1)=yB. {7x +7=y 9(x +1)=yC. {7x −7=y 9(x −1)=yD. {7x −7=y 9(x +1)=y8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为( ) (参考数据:sin53°≈45,cos53°≈35,tan53°≈43)A. 22.7mB. 22.4mC. 21.2mD. 23.0m第II 卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。

(精品中考卷)广东省中考数学真题(解析版)

(精品中考卷)广东省中考数学真题(解析版)

2022年广东省初中学业水平考试数学本试卷共4页,23小题,满分120分.考试用时90分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号.将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 2-的值等于()A. 2B.12- C. 12D. ﹣2【答案】A【解析】【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A.2. 计算22的结果是()A. 1B.C. 2D. 4【答案】D【解析】【分析】利用乘方的意义计算即可.【详解】解:22224=⨯=故选:D .【点睛】本题考查有理数的乘方,熟练掌握乘方的意义是解答本题的关键.3. 下列图形中具有稳定性的是( )A. 平行四边形B. 三角形C. 长方形D. 正方形【答案】B【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性可得结论. 详解】解:三角形具有稳定性;故选:B .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,比较简单.4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=40°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°【答案】B【解析】 【分析】两条平行线被第三条直线所截,同位角相等.即:两直线平行,同位角相等.【详解】 //a b ,140∠=︒,∴240∠=︒.故选B .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 5. 如图,在ABC 中,4BC =,点D ,E 分别为AB ,AC 的中点,则DE =( )A. 14B. 12 C. 1 D. 2【答案】D【解析】【【分析】利用中位线的性质即可求解.【详解】∵D 、E 分比为AB 、AC 的中点,∴DE 为△ABC 的中位线, ∴12DE BC =, ∵BC =4,∴DE =2,故选:D .【点睛】本题考查了中位线的判定与性质,掌握中位线的判定与性质是解答本题的关键. 6. 在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A. ()3,1B. ()1,1-C. ()1,3D. ()1,1- 【答案】A【解析】【分析】把点()1,1的横坐标加2,纵坐标不变,得到()3,1,就是平移后的对应点的坐标.【详解】解:点()1,1向右平移2个单位长度后得到的点的坐标为()3,1.故选A .【点睛】本题考查了坐标与图形变化﹣平移.掌握平移的规律是解答本题的关键. 7. 书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( ) A. 14 B. 13 C. 12 D. 23【答案】B【解析】【分析】根据概率公式直接求概率即可;【详解】解:一共有3本书,从中任取1本书共有3种结果,选中的书是物理书的结果有1种,∴从中任取1本书是物理书的概率=13, 故选: B .【点睛】本题考查了概率的计算,掌握概率=所求事件的结果数÷总的结果数是解题关键. 8. 如图,在ABCD 中,一定正确的是( )A. AD CD =B. AC BD =C. AB CD =D. CD BC =【答案】C【解析】【分析】根据平行四边形的性质:平行四边形的对边相等,然后对各选项进行判断即可.【详解】解:∵四边形ABCD 是平行四边形∴AB =CD ,AD =BC故选C .【点睛】本题考查了平行四边形的性质.解题的关键在于熟练掌握平行四边形的性质. 9. 点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A. 1yB. 2yC. 3yD. 4y 【答案】D【解析】【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>, ∴在每个象限内,y 随x 的增大而减小, ∵点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x =图象上, ∴1234y y y y >>>,故选D .【点睛】本题主要考查反比例函数的性质,熟练掌握反比例函数的性质是解题的关键. 10. 水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为2πC r =.下列判断正确的是( )A. 2是变量B. π是变量C. r 是变量D. C 是常量【答案】C【解析】【分析】根据变量与常量的定义分别判断,并选择正确的选项即可.【详解】解:2与π为常量,C 与r 为变量,故选C .【点睛】本题考查变量与常量概念,能够熟练掌握变量与常量的概念为解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11. sin30°的值为_____. 【答案】12【解析】【详解】试题分析:根据特殊角的三角函数值计算即可:sin30°=12.12. 单项式3xy 的系数为___________.【答案】3【解析】【分析】单项式中数字因数叫做单项式的系数,从而可得出答案.【详解】3xy 的系数是3,故答案为:3.【点睛】此题考查了单项式的知识,解答本题的关键是掌握单项式系数的定义. 13. 菱形的边长为5,则它的周长为____________.【答案】20【解析】【分析】根据菱形的四条边相等,即可求出.【详解】∵菱形的四条边相等.∴周长:5420⨯=,故答案为:20.【点睛】本题考查菱形的性质;熟练掌握菱形的性质是本题解题关键.14. 若1x =是方程220x x a -+=的根,则=a ____________.【答案】1【解析】【分析】本题根据一元二次方程的根的定义,把x =1代入方程得到a 的值.【详解】把x =1代入方程220x x a -+=,得1−2+a =0,解得a =1,故答案:1. 的为【点睛】本题考查的是一元二次方程的根即方程的解的定义,一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.15. 扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________.【答案】π【解析】【分析】根据扇形面积公式可直接进行求解. 【详解】解:由题意得:该扇形的面积为2902360ππ⨯⨯=; 故答案为π.【点睛】本题主要考查扇形面积公式,熟练掌握扇形的面积公式是解题的关键.三、解答题(一):本大题共3小题,每小题8分,共24分.16. 解不等式组:32113x x ->⎧⎨+<⎩. 【答案】12x <<【解析】【分析】分别解出两个不等式,根据求不等式组解集的口诀得到解集.【详解】解:32113x x ->⎧⎨+<⎩①②解①得:1x >,解②得:2x <,∴不等式组的解集是12x <<.【点睛】本题考查求不等式组的解集,掌握求不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解题关键.17. 先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【解析】【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式化简求值,掌握平方差公式是解题关键.18. 如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为的D ,E .求证:OPD OPE ≌V V .【答案】见解析【解析】【分析】根据角平分线的性质得PD PE =,再用HL 证明OPD OPE ≌V V .【详解】证明:∵AOC BOC ∠=∠,∴OC 为AOB ∠的角平分线,又∵点P 在OC 上,PD OA ⊥,PE OB ⊥,∴PD PE =,90PDO PEO ∠=∠=︒,又∵PO PO =(公共边),∴()HL OPD OPE ≌.【点睛】本题考查角平分线的性质,全等三角形的判定,利用合适的条件证明三角形全等是本题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【答案】学生人数为7人,该书的单价为53元.【解析】【分析】设学生人数为x 人,然后根据题意可得8374x x -=+,进而问题可求解.【详解】解:设学生人数为x 人,由题意得:8374x x -=+,解得:7x =,∴该书的单价为77453⨯+=(元),答:学生人数为7人,该书的单价为53元.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.20. 物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足函数关系15y kx =+.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5y 15 19 25(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量.【答案】(1)215y x =+(2)所挂物体的质量为2.5kg【解析】【分析】(1)由表格可代入x =2,y =19进行求解函数解析式;(2)由(1)可把y =20代入函数解析式进行求解即可.【小问1详解】解:由表格可把x =2,y =19代入解析式得: 21519k +=,解得:2k =,∴y 与x 的函数关系式为215y x =+;【小问2详解】解:把y =20代入(1)中函数解析式得:21520x +=,解得: 2.5x =,即所挂物体的质量为2.5kg .【点睛】本题主要考查一次函数的应用,解题的关键是得出一次函数解析式. 21. 为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?【答案】(1)作图见解析;(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;(3)月销售额定为7万元合适,【解析】【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;(2)根据众数、中位数及平均数的计算方法求解即可;(3)根据题意,将月销售额定为7万元合适.【小问1详解】解:根据数据可得:销售额为4万元的人数为4人;销售额为8万元的人数为2人;补全统计图如图所示:【小问2详解】由条形统计图可得:月销售额在4万元的人数最多;将数据按照从小到大排序后,中间的月销售额为第8名销售员的销售额为5万元; 平均数为:3144537182103181715⨯+⨯+⨯+⨯+⨯+⨯+⨯=万元; 小问3详解】月销售额定为7万元合适,给予奖励,可以激发销售员的积极性,振兴乡村经济.【点睛】题目主要考查条形统计图及相关统计数据的计算方法,包括,众数、中位数、平均数,以及利用平均数做决策等,理解题意,综合运用这些知识点是解题关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22. 如图,四边形ABCD 内接于O ,AC 为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明;(2)若AB =,1AD =,求CD 的长度.【答案】(1)△ABC 是等腰直角三角形;证明见解析;(2【解析】【分析】(1)根据圆周角定理可得∠ABC =90°,由∠ADB =∠CDB 根据等弧对等角可得∠ACB =∠CAB ,即可证明;(2)Rt △ABC 中由勾股定理可得AC ,Rt △ADC 中由勾股定理求得CD 即可;【【小问1详解】证明:∵AC 是圆的直径,则∠ABC =∠ADC =90°,∵∠ADB =∠CDB ,∠ADB =∠ACB ,∠CDB =∠CAB ,∴∠ACB =∠CAB ,∴△ABC 是等腰直角三角形;【小问2详解】解:∵△ABC 是等腰直角三角形,∴BC =AB ,∴AC 2=,Rt △ADC 中,∠ADC =90°,AD =1,则CD =∴CD ; 【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理等知识;掌握等弧对等角是解题关键.23. 如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,()1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ BC ∥交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ 面积的最大值,并求此时P 点坐标.【答案】(1)223y x x =+-(2)2;P (-1,0)【解析】【分析】(1)用待定系数法将A ,B 的坐标代入函数一般式中,即可求出函数的解析式;(2)分别求出C 点坐标,直线AC ,BC 的解析式,PQ 的解析式为:y =-2x +n ,进而求出P ,Q 的坐标以及n 的取值范围,由CPQ CPA APQ S S S =-△△△列出函数式求解即可.【小问1详解】解:∵点A (1,0),AB =4,∴点B 的坐标为(-3,0),将点A (1,0),B (-3,0)代入函数解析式中得:01093b c b c =++⎧⎨=-+⎩, 解得:b =2,c =-3,∴抛物线的解析式为223y x x =+-;【小问2详解】解:由(1)得抛物线的解析式为223y x x =+-,顶点式为:2y (x 1)4=+-,则C 点坐标为:(-1,-4),由B (-3,0),C (-1,-4)可求直线BC 的解析式为:y =-2x -6,由A (1,0),C (-1,-4)可求直线AC 的解析式为:y =2x -2,∵PQ ∥BC ,设直线PQ 的解析式为:y =-2x +n ,与x 轴交点P ,02n ⎛⎫ ⎪⎝⎭, 由222y x n y x =-+⎧⎨=-⎩解得:22,42n n Q +-⎛⎫ ⎪⎝⎭, ∵P 在线段AB 上, ∴312n -<<, ∴n 的取值范围为-6<n <2,则CPQ CPA APQ S S S =-△△△11214122222n n n -⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()21228n =-++ ∴当n =-2时,即P (-1,0)时,CPQ S △最大,最大值为2.【点睛】本题考查二次函数的面积最值问题,二次函数的图象与解析式间的关系,一次函数的解析式与图象,熟练掌握数形结合思想是解决本题的关键。

2022年广东中考数学试卷23题分析与反思

2022年广东中考数学试卷23题分析与反思

2022年广东中考数学试卷23题分析与反思分析:本题难度不大,但有一定灵活性。

由“根据人们出行时间可以确定他们各自的路程”知道“ a、 b 两地相距45千米”,而要
求甲乙两人中任意一个人选择合适交通工具的方法是:先确定另外一个人选什么样的交通工具,再与该交通工具对应的另外一个城市的所需费用是多少(设为 x),然后列式求解即可得到答案。

我想出现这
种情况主要原因还是考生审题不够仔细,对平均数与总费用之间的关系没有深刻理解造成的。

正确做法应当是根据题目条件“各组中相同的人数越多,则每个人花费的钱数就越少”来确定答案,比如4人或6人,而只是粗略计算出人数相同,那么结果肯定是错误的;同样,假如考生认真读懂题干,把此题改为“至少要使第一组平均费用最小”,那么无论问几人都能轻松找到答案,但事实却恰恰相反。

反思:第1问平均数在这里起到了承上启下的作用。

当你已经看明白题意并会解决问题时,应首先从较简单的问题入手,按照前面步骤完成基础部分的试题,然后再回过头来分析困难一些的问题,更容易突破瓶颈取得进步。

当然,除了完整做好基础部分试题之外,还要养成复习归纳的习惯,尤其是对于已经完成的基础部分试题,应注重将它们及时回顾并总结方法规律,避免遗忘丢分,提高自己的综合运用水平。

- 1 -。

近三年广东省中考数学试题考点分析(WORD版)

近三年广东省中考数学试题考点分析(WORD版)

近三年广东省中考数学试题考点分析(WORD版)题型题号2017年2016年2015年选择题1相反数相反数绝对值2科学记数法数轴科学记数法3求补角中心对称图形中位数4一元二次方程求参数的值(代入法)科学记数法平行求角度5众数正方形的性质对称图形6对称图形(轴对称和中心对称图形)中位数整式计算7用函数图象求点坐标点坐标最大数8整式计算锐角三角函数方程根的个数9圆的基本性质整体思想求值扇形面积10正方形性质、相似几何问题分段函数图像几何问题分段函数图像填空题11因式分解算术平方根多边形外角和12多边形内角和因式分解四边形计算13数轴、比较大小求不等式组的解集分式方程14概率弧长公式相似性质15整式运算(整体代入)矩形与勾股定理找规律16矩形中的折叠问题圆周角与三角函数阴影部分面积解答题一17实数的计算(绝对值、0指数幂,负整数指数幂)实数的计算(绝对值、0指数幂,负整数指数幂)解一元二次方程18分式化简求值分式化简求值分式化简求值19二元一次方程组应用题(1)作垂直平分线(2)利用中位线求边长(1)作垂线(2)利用三角函数求边长解答题二20(1)作垂直平分线(2)利用外角求角度分式方程的应用(1)画树状图(2)求概率21几何证明与计算(菱形的性质、等腰三角和等边三角形的性质)解直角三角形几何证明与计算(折叠)22数据分析(频数分布图、扇形、估算)数据分析(条形、扇形、估算)(1)二元一次方程组应用(2)一元一次不等式应用解答题三23函数小综合(一次函数、二次函数、锐角三角函数)函数小综合(反比例函数、一次函数、二次函数)反比例函数与一次函数(最短路径问题)24(1)圆切线的性质、圆的基本性质、角平分线(2)切线的性质、平行和等腰三角形(3)全等、相似的证明和性质、求弧长(1)相似证明(2)三角形的性质(3)圆的切线的证明(1)角(圆的垂径定理)(2)特殊四边形的证明(3)垂直25图形变换,动态的问题、数形结合(1)求点的坐标(2)等腰三角形存在性讨论(3)二次函数、分类讨论、数形结合等求面积的最小值图形变换,动态的问题、数形结合(1)平行四边形的判定(2)全等三角形的性质和判定(3)二次函数、分类讨论、数形结合等求面积的最大值动点问题,数形结合(1)几何基本计算(2)三角函数计算边长(3)积,解直角三角形应用,二次函数求最值,二次根式计算。

精品解析:2022年广东省中考数学真题(解析版)

精品解析:2022年广东省中考数学真题(解析版)
2.计算 的结果是( )
A.1B. C.2D.4
【答案】D
【解析】
【分析】利用乘方的意义计算即可.
【详解】解:
故选:D.
【点睛】本题考查有理数的乘方,熟练掌握乘方的意义是解答本题的关键.
3.下列图形中具有稳定性的是()
A. 平行四边形B. 三角形C. 长方形D. 正方形
【答案】B
【解析】
【分析】根据三角形具有稳定性,四边形具有不稳定性可得结论.
22.如图,四边形 内接于 , 为 的直径, .
(1)试判断 的形状,并给出证明;
(2)若 , ,求 的长度.
【答案】(1)△ABC是等腰直角三角形;证明见解析;
(2) ;
【解析】
【分析】(1)根据圆周角定理可得∠ABC=90°,由∠ADB=∠CDB根据等弧对等角可得∠ACB=∠CAB,即可证明;
(2)Rt△ABC中由勾股定理可得AC,Rt△ADC中由勾股定理求得CD即可;
(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?
【答案】(1)作图见解析;
(2)月销售额在4万元的人数最多;中间的月销售额为5万元;平均数为7万元;
(3)月销售额定为7万元合适,
【解析】
【分析】(1)根据所给数据确定销售额为4万元的人数为4人;销售额为8万元的人数为2人,然后补全条形统计图即可;
详解】解:三角形具有稳定性;
故选:B.
【点睛】本题考查了三角形的稳定性和四边形的不稳定性,比较简单.
4.如图,直线a,b被直线c所截,a∥b,∠1=40°,则∠2等于( )
A.30°B.40°C.50°D.60°
【答案】B
【解析】
【分析】两条平行线被第三条直线所截,同位角相等.即:两直线平行,同位角相等.

近二年广东省中考数学试题知识点分析

近二年广东省中考数学试题知识点分析
统计 一次函数与二次函数综合 圆(求弧长、证线段等、证切线) 压轴题(三角形、菱形、最反比例函数 因式分解 代数式值 多边形内角和 三角函数 三角形旋转 矩形中扇形阴影面积 解方程组 分式化简 作图与三角形证明
统计 增长率应用题 矩形、三角形相似 压轴题(二次函数) 几何综合题(相似、全等、圆) 压轴题(三角形、函数、最值……)
东省中考数学试题知识点分析
大题 一、选择题30分
二、填空题24分 三、解答题15分 四、解答题24分 五、解答题27分
近二年广东省中考数学试题知识点分析
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2013年 相反数 三视图 科学记数法 不等式 中位数 平行线性质
2014年 数的比较大小 轴对称图形、中心对称图形
整式加减 分解因式 多边形内角和
概率 平行四边形性质 一元二次方程根的判别 等腰三角形周长
二次函数 整式除法 科学记数法 三角形中位线 圆中线段计算 不等式组 三角形旋转后面积 实数综合运算 分式化简求值 作三角形角平分线并证明线段等 测物高解直角三角形 利润应用

2024广东中考数学分析范文

2024广东中考数学分析范文

2024广东中考数学分析范文数学分析是中学数学的重要内容,也是学生备战中考的重点之一、下面是一篇关于2024年广东中考数学分析的范文,供参考。

2024年广东中考数学分析题考查了一些基础知识和解题策略,要求学生熟练运用已掌握的知识和方法进行解题。

此次考试题型多样,包括选择题、填空题和解答题,考查了多个知识点,如函数、方程、平面几何等。

在选择题方面,考查了函数的零点及其个数、函数的图像、函数的性质等。

这些题目主要是考查学生对函数的定义和基本性质的理解和应用能力。

学生在解答这类题目时,应注意细节,尤其是要注意图像的对称性、单调性和整体性质。

在填空题方面,考查了方程的解和解的个数、函数的表示和计算等。

这些题目主要是考查学生对方程的理解和解题方法的掌握。

学生在解答这类题目时,应注意方程解的范围、解的个数及其求解过程。

在解答题方面,考查了平面几何的证明、函数应用题等。

这些题目主要是考查学生的证明能力和实际问题解决能力。

学生在解答这类题目时,应注意结论的证明过程、图像的理解和应用能力。

此次数学分析题难度适中,整体试卷的时间安排合理,给学生留有一定的答题时间。

尤其是在解答题部分,几个问题的难度有所递进,为学生提供了展示自己数学水平的机会。

在备考中,考生应重点掌握与数学分析相关的基本知识,如函数、方程、变量之间的关系等。

要灵活运用所学的知识和方法,将其应用于实际问题中,培养解题的思维能力和问题解决能力。

同时,还要注重题目的分析和细节的把握,避免因大意而出错。

总结而言,2024年广东中考数学分析题考查了学生对数学基本知识和解题方法的掌握程度,要求学生能够熟练运用所学的知识和方法进行解题。

此次试题的难度适中,整体试卷的设计合理,给学生留有一定的答题时间。

通过认真备考和答题,相信广大考生都能取得优异的成绩。

(以上为一篇2024广东中考数学分析范文,共计240字。

2023年广东省中考数学试卷题型分析

2023年广东省中考数学试卷题型分析
30.43 %
中档
5
1,4,15,19,20
21.74 %
较难
1
23
4.35 %

1
22
4.35 %
⭐知识点分析 共计:23个知识点
知识点
分值
占比
正数和负数
3.00
2.50%
轴对称图形
3.00
2.50%
科学记数法—表示较大的数
3.00
2.50%
平行线的性质
3.00
2.50%
分式的加减法
3.00
2.50%
2023年广东省中考数学试卷题型分析
试卷总分值 120
⭐试卷难度系数 0.58 中档
⭐试卷总体分析
题类
题量(道)
客观题
10
主观题
13
题型
题量
选择题(10)
10
填空题(5)
5
解答题(8)
8
⭐试题难度分析
试题难易度程度
题量
题号
题量占比

9
2,3,5,7,8,11,12,16,21
39.13 %
较易
7
6,9,10,13,14,17,18
相似三角形的判定与性质
3.00
2.50%
实数的运算
10.00
8.33%
分式方程的应用
7.00
5.83%
解直角三角形的应用
7.00
5.83%
作图—复杂作图
9.00
7.50%
正方形的性质
9.00
7.50%
方差
9.00
7.50%
圆的综合题
12.00
10.00%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
解答题(三)
今年的压轴题考查的模型与往年相似:
23题为直线与二次函数的综合,同样是以求解析式与点的坐标形式入手,增加了对存在性问题的探索,考查考生的探究能力;求点坐标存在性问题的计算量较大;
24题是圆与四边形的综合,问题设置仍是“两证一算”,结合了垂直平分线的性质与判定、三角形相似或全等来证明相切,其中(2)(3)问都可以灵活选用多种方法进行解题;
图形变换,动态问题,数形结合(1)平行四边形的判定(2)全等三角形的性质和判定(3)二次函数、分类讨论、数形结合等求面积最大值
【典例分析】
该题考查圆与四边形的综合,对考生的要求有了明显的提高。需要对辅助线进行灵活处理,要求学生具有数学思维的完整性和注重方法的积累。此题考查了学生对于全等、相似等多种方法的综合,因此,考生需要关注一题多解的题型。
9
一元二次方程的判别式
圆的基本性质
整体思想求值
10
几何问题分段函数图像
正方形性质、相似
几何问题分段函数图像
【典例分析】
分析:考查学生对有理数的基本认识。
分析:三视图主要考查学生对图形的观察、推理、想象等多方面能力,锻炼学生立体图形与平面图形的相互转化。
2
填空题
填空题要求学生不仅要了解这个知识点,而且要达到理解、掌握的程度。今年的填空题,对各种公式的考查力度增强,学生要根据公式的特征来解决新的情境,灵活应用。
解直角三角形
22
矩形折叠问题
(1)证三角形全等(2)证等腰三角形
数据分析(频数分布图、扇形、估算)
数据分析(条形、扇形、估算)
【典例分析】
2017年考查二元一次方程的应用;2018年将应用题调整到了7分,设置了两问,与以往方程搭配不等式不同的是,今年两问都是方程的应用,其中第(1)问考查分式方程的应用,第(2)问考查一元一次方程的应用。考查考生灵活选用所学方程解决实际问题的能力,准确找到等量关系是解题的关键。
2018广东中考数学详评
2018年广东省中考数学试卷与前几年相比,在知识内容、题型、题量等方面总体保持稳定,在稳定的基础上既考查了四基——基础知识、基本技能、基本数学思想方法和基本活动经验,又突出课本核心内容,注重联系社会实际与学生生活实际,考查学生的运算能力、推理能力、应用意识和综合意识,更加重视数学思想和数学方法的积累。
4
解答题(二)
解答题(二)中的三道解答题都是平时练习中的经典题目。改变点是在考点分布上,应用题从6分题回归到了7分题进行考查。
解答题二
题号
2018
2017
2016
20
(1)分式方程应用
(2)一元一次方程应用
(1)作垂直平分线(2)利用外角求角度
分式方程的应用
21
数据分析(条形、扇形、估算)
几何证明与计算(菱形的性质、等腰三角和等边三角形的性质)
(1)相似证明(2)三角形性质(3)圆的切线证明
25
图形变换,动态问题,数形结合
(1)利用旋转的性质、含特殊角的直角三角形,等边三角形的判定与性质求角度(2)等面积法求线段长度(3)双动点问题求三角形面积与二次函数最值
图形变换,动态问题,数形结合(1)求点的坐标(2)等腰三角形存在性讨论(3)二次函数、分类讨论、数形结合等求面积最小值
3
解答题(一)
解答题(一)主要考查对实数的综合运算能力、分式的化简求值和基本的尺规作图,一定要注意细心计算,不要出错,并且规范答题格式。
解答题一
题号
2018
2017
2016
17
实数的计算(绝对值、0指数幂,负指数幂)
实数的计算(绝对值、0指数幂,负指数幂)
实数的计算(绝对值、0指数幂,负指数幂)
18
试卷结构
由于2018年的考纲较之前没有大的改变,故今年广东省中考数学试卷与前两年相比,在知识点、题型、分值分布等方面总体保持稳定。
题型与题量
全卷共分为5大题,25小题,满分120分。
知识板块占比统计
考查数与式的题目每年相对固定,所占分值稳定在30分左右,属于基础知识,复习这一板块的时候需要重点掌握基础知识。方程与不等式这一板块,大部分是小题,但每年会有一个解答题来考查方程与不等式,出现在18-20题范围内,2018年的分值比重有所增加。而函数这一部分则相对稳定,一般在选择题和23题考查,复习这一部分内容时,要掌握好各个函数间的关联性及其交点问题。
2018
2017
2016
1
有理数比较大小
相反数
相反数
2
科学记数法
科学记数法
数轴
3
三视图
求补角
中心对称图形
4
中位数
一元二次方程求参数的值
科学记数法
5
对称图形(轴对称)
众数
正方形的性质
6
解不等式
对称图形(轴对称和中心对称)
中位数
7
三角形相似的性质
用函数图象求点坐标
点坐标
8
平行线的性质
整式计算
锐角三角函数
致2019考生
1、打基础,重能力。
以新课标为提纲,立足双基,注重提高分析和解决问题的能力,注意思维能力的锻炼和良好数学习惯的养成并且切实提高计算能力。比如20题,23题,25题对计算能力的要求较高。
2、强联系,搭模型。
注意初中数学知识体系的形成与梳理,注意数学思想、方法的积累与归纳;特别是压轴题,是区分考生数学成绩的一个关键,会着重考查多个知识点的综合整理、分析。因此,我们要有一个清晰的知识网络,把各个知识点相关联。而压轴题通常会在模型的基础上来改进,因此需要掌握课上所讲的模型,熟练运用数学思想来突破难题。
分式化简求值
分式化简求值
分式化简求值
19
(1)作垂直平分线
(2)利用菱形和垂直平分线的性质求角度数
二元一次方程组应用题
(1)作垂直平分线(2)利用中位线求边长
【典例分析】
该题型连续3年出现相似的尺规作图,都是作线段的垂直平分线,考查基本的尺规作图,利用菱形和垂直平分线的性质等求角度。因此,考生需要注意常规作图题的解题思路。
今年试题考点与往年试题类似,但阅读量增加,提高了对基本概念和定义灵活运用的能力要求。
填空题
题号
2018
2017
2016
11
圆周角定理
因式分解
算术平方根
12
因式分解,完全平方公式
多边形内角和
因式分解
13
平方根
数轴、比较大小
求不等式组的解集
14
二次根式和绝对值的性质
概率
弧长பைடு நூலகம்式
15
阴影部分面积计算
整式运算(整体代入)
函数小综合(一次函数、二次函数、锐角三角函数)
函数小综合(一次函数、二次函数、锐角三角函数)
24
圆综合(1)平行的判定、垂直平分线的判定与性质;(2)圆的切线证明、三角函数与三角形相似、全等;
(3)等腰三角形的性质、相似、全等
(1)圆切线的性质、圆的基本性质、角平分线(2)切线的性质、平行和等腰三角形(3)全等、相似的证明和性质、求弧长
统计与概率部分,2018年没有考查概率,而全卷统计部分分值仍为10分。
近三年每题考查知识点的情况
1
选择题
今年选择题的整体水平与去年持平,但是题目考点方面有新的改变:选择第1题,过往都是考查相反数、倒数、绝对值,而今年考查实数大小比较,与2014年类似;而第3题则考查了近三年未曾考过的三视图。
选择题
题号
3、积方法,活运用。
注重思维方法训练,要一题多解。几何综合题目经常有多种解题方法,比如2018年中考的24题,其后两小题都可以用不同的方法进行解答,我们平时做题时可以多尝试一题多解。
压轴的25题为几何与函数综合问题,与往年的以四边形为载体不同,今年是以特殊三角形为载体结合双动点与等面积法、利用分类讨论思想求图形面积以及利用函数思想求最值,是学生们熟悉的题型及常用的解题思想,体现了高中数学对学生的数学能力的要求。
解答题三
题号
2018
2017
2016
23
函数小综合(一次函数、二次函数、分类讨论点的存在性)
矩形与勾股定理
16
图形找规律
矩形中的折叠问题
矩形中的折叠问题
【典例分析】
该题考查的主要知识点为反比例函数、全等三角形。该题阅读量很大,需要考生耐心地把文字描述转换成数学语言,通过设点、代入、解方程等步骤,算出B2、B3的坐标,从而发现规律。因此,今后的考生需要注意这种考查方式,更多地去了解利用图形找规律的方法。
几何这一板块,三角形一直是考查的重点,基础题和解答题都会有涉及,分值约占全卷23.3%,今年运用三角形的知识来解题的比重相当大。这几年不再会单纯地考查特殊四边形,而是与图形的翻折、转换与函数等联系起来。图形的认识与变换在2018年的比重相对比较稳定,求角度及线段长度问题分值占比较大。圆的知识板块经常稳定在10%左右,压轴题会出一个关于圆的解答题,要求思维清晰、方法多样,并注重几何体系的知识网络。
相关文档
最新文档