实验二 食品中细菌总数的测定
食品中细菌菌落总数的测定报告.ppt
最新.
9
三 、 材料
1、 食品检样 2、 培养基 平板计数培养基,无菌生理盐水或磷酸 盐缓冲液 3、 其它 无菌培养皿,无菌吸管,电炉、恒温培 养箱等。
最新.
10
四、 流程
1、检样
2、做几个适当倍数的稀释液
3、选择2~3个适宜稀释度各1 mL,分别加入 灭菌平皿内
4、平皿内倾注15~20 mL琼脂培养基,混匀
一定条件包括培养基成分、培养温度 和时间、pH、是否需要氧气等。
最新.
4
按国家标准方法规定,即在需氧情况 下, 36 ±1℃培养48±2 h,能在平板 计数琼脂上生长发育的细菌菌落总数。 所以厌氧或微需氧菌、有特殊营养要求 的以及非嗜中温的细菌,由于现有条件 不能满足其生理需求,故难以繁殖生长。
最新.
为菌落总数测定标准。每一个稀释度应 采用两个平皿,大于300的可记为多不 可计。
最新.
20
2、其中一个平板有较大片状菌落生 长时,则不宜采用,而应以无片状菌落 生长的平板作为该稀释度的菌落数;若 片状菌落不到平板的一半,而其余一半 中菌落分布又很均匀,则可以计算半个 平板后乘以2,以代表一个平板的菌落数。
最新.
23
试样 例次
稀释度
10-210Leabharlann 3138052
平
2 均 526
205
菌
3 落 271
60
数
4
284
152
菌量
10-4 选定计数稀释度 /(个/g 或mL)
18
10-3
5.2x104
32 10-3,10-4 (1.56) 2.6x105
12
10-2
(2.2) 2.7x104
细菌总数的测定实验报告
细菌总数的测定实验报告细菌总数的测定实验报告引言:细菌是一类微小的单细胞生物,广泛存在于自然界的各个角落中。
它们在环境中的分布和数量对人类的生活和健康有着重要的影响。
因此,准确测定细菌总数对于环境监测、食品安全等领域具有重要意义。
本实验旨在通过一系列方法,测定细菌总数,并探讨其应用前景。
材料与方法:1. 样品准备:从不同环境中采集样品,如水源、土壤、食品等。
2. 细菌培养基制备:根据不同的需求,选择适宜的培养基,如营养琼脂、大肠杆菌培养基等。
3. 细菌培养:将样品分别接种到不同的培养基上,通过恒温培养,促使细菌生长繁殖。
4. 细菌计数:采用平板计数法,将培养好的细菌涂布于琼脂平板上,以形成菌落。
通过计数菌落的数量,间接测定细菌总数。
结果与讨论:通过实验,我们成功测定了不同样品中的细菌总数。
结果显示,不同环境中的细菌总数存在显著差异。
例如,水源中的细菌总数相对较低,而土壤中的细菌总数较高。
这与细菌在不同环境中的适应能力有关。
水源中的细菌数量较少,可能是由于水中的氧气含量较低,限制了细菌的生长。
而土壤中的细菌数量较多,可能是由于土壤中丰富的有机物质提供了充足的营养。
此外,我们还发现食品样品中的细菌总数也较高。
这一结果提醒我们在食品加工和储存过程中要加强卫生管理,以避免细菌污染对人体健康的威胁。
同时,对于食品行业来说,测定食品中的细菌总数也是保证产品质量和安全的重要手段之一。
细菌总数的测定方法中,平板计数法是最常用的方法之一。
它的优点在于简单易行、结果直观可靠。
然而,平板计数法也存在一定的局限性。
首先,这种方法只能测定可生长的细菌数量,无法测定处于休眠状态或无法在特定培养基上生长的细菌。
其次,平板计数法需要较长的培养时间,通常需要24小时以上。
因此,在紧急情况下,需要快速测定细菌总数时,平板计数法可能不适用。
结论:细菌总数的测定是一项重要的实验工作,它对于环境监测、食品安全等领域具有重要意义。
通过实验,我们成功测定了不同样品中的细菌总数,并发现了不同环境中的细菌总数存在显著差异。
食品中细菌总数的测定
若所有稀释度的平均菌落数均小于30,则应按稀释度 最低的平均菌落数乘以稀释倍数报告之。
若所有稀释度均无菌落生长,则以小于1乘以最低稀 释倍数报告之。
若所有稀释度的平均菌落数均不在30~300之间,其 中一部分大于300或小于30时,则以最接近30或300的平 均菌落数乘以稀释倍数报告之。 ③菌落数的报告
之。 检查,以防遗漏。在记下各平板的菌落数后,求出同稀释
若大于2则报告其中较小的数字。
度的各平板平均菌落总数。 平皿内如有链状菌落生长时(菌落之间无明显界线),若仅有一条链,可视为一个菌落数;
在记下各平板的菌落数后,求出同稀释度的各平板平均菌落总数。
(2)菌落计数的报告 若所有稀释度的平均菌落数均不在30~300之间,其中一部分大于300或小于30时,则以最接近30或300的平均菌落数乘以稀释倍数报告
若所有稀释度的平均菌落数均小于30,则应按稀释度最低的平均菌落数乘以稀释倍数报告之。
状菌落生长时(菌落之间无明显界线),若仅有一条链, (3)另取1ml的灭菌吸管,按上项操作顺序作10倍递增稀释液,如此每递增稀释一次,即换用1支1ml灭菌吸管。
若有两上稀释度,其生长的菌落数均在30~300之间,则视两者之比如何来决定。
(4)根据食品卫生标准要求或对检样污染情况的估计, 选择2~3个适宜稀释度,分别在作10倍递增稀释的同时, 即以吸取该稀释度的吸管移1ml稀释液于灭菌平皿内,每 个稀释度作两个平皿。
(5)稀释液移入平皿后,应及时将凉至460C营养琼脂培 养基[可放置在((46±1)0C)水浴锅内保温]注入平皿 15ml~20mL,并转动平皿使混合均匀,同时将营养琼脂培 养基倾入加有1ml稀释液(不含样品)的灭菌平皿内作空 白对照。
菌落总数测定
((一一))、、样样品品的稀稀释释及及做做平平板板
6、及时将15 mL~20 mL 冷却至46 ℃ 的平板计数琼脂培养基(可放置于 46 ℃±1 ℃恒温水浴箱中保温)倾 注平皿,并转动平皿使其混合均匀。
1ml 1ml 1ml
生理盐 水
1:10
1:100 1:1000 1:10000
1ml
25g/m 1ml
食品中菌落总数的测定
一、菌落总数
• 食品检样经过处理,在一定条件下 (如培养基、培养温度和培养时间等) 培养后,所得每g(mL)检样中形成的 微生物菌落总数。
二、菌落总数测定的意义
1、判定食品被细菌污染的程度及卫生质量。 2、预测食品存用的期限长短。 3、了解细菌在食品中的繁殖动态。
三、设备和材料
除微生物实验室常规灭菌及培养设备外,其他设 备和材料如下:
• 恒温培养箱:36 ℃±1 ℃,30 ℃±1 ℃。 • 冰箱:2 ℃~5 ℃。 • 恒温水浴箱:46 ℃±1 ℃。 • 天平:感量为0.1 g。 • 均质器。 • 振荡器。 • 无菌吸管:1 mL(具0.01 mL 刻度)、10 mL(具0.1
4、上述 操作程序,制备10 倍系列稀释样品 匀液。每递增稀释一次,换用1 次1 mL 无 菌吸管或吸头。
((一一)、、样样品品的的稀稀释释及及做做平平板 板
5、根据对样品污染状况的估计,选择2 个~3 个适宜稀释度的样品匀液(液体样 品可包括原液),在进行10 倍递增稀释 时,吸取1 mL 样品匀液于无菌平皿内, 每个稀释度做两个平皿。同时,分别吸 取1 mL 空白稀释液加入两个无菌平皿内 作空白对照。
性选择培养温度和时间?
资料源自网络
(四)、检验注意事项
1、对照平板出现几个菌落时,要追加对照 平板;
食品中菌落总数测定方案(菌落总数测试片)
食品中菌落总数测定方案菌落总数测试片1.操作步骤1.1 样品的稀释1.1.1 称取25g样品(剪碎)置盛有225ml无菌生理盐水的三角瓶中,充分振摇混匀,制成1:10的样品匀液。
1.1.2 用1ml微量移液器吸取1:10的样品匀液1ml,沿管壁缓慢注入盛有9ml无菌生理盐水的无菌试管中(注意吸头尖端不要触及稀释液面),充分振摇混匀,制成1:100的样品匀液。
1.1.3 用1ml微量移液器吸取1:100的样品匀液1ml,沿管壁缓慢注入盛有9ml无菌生理盐水的无菌试管中(注意吸头尖端不要触及稀释液面),充分振摇混匀,制成1:1000的样品匀液。
1.2 样品的接种揭开菌落总数测试片上层膜,用1ml微量移液器分别吸取1:10、1:100、1:1000的样品匀液1ml慢慢均匀地滴加到纸片上,然后将上层膜缓慢盖下,静置10s左右使培养基凝固(每个样品匀液做2个纸片)。
同时做一片空白阴性对照。
1.3 培养将测试片叠在一起放回原自封袋中,并封口,透明面朝上水平置于36℃±1℃培养箱内培养15~24h,堆叠片数不超过12片。
1.4 菌落计数1.3.1 细菌在测试片上生长后会显示红色斑点,可用肉眼观察,必要时用放大镜,记录稀释倍数和相应的菌落数量。
菌落计数以菌落形成单位(CFU)表示。
1.3.2 选取菌落数在30CFU—300CFU之间、无蔓延菌落生长的平板计数菌落总数。
低于30CFU的纸片记录具体菌落数,大于300CFU的可记录为多不可计。
每个稀释度的菌落数应采用两个纸片的平均数。
1.3.3 其中一个纸片有较大片状菌落生长时,则不宜采用,而应以无片状菌落生长的纸片作为该稀释度的菌落数;若片状菌落不到纸片的一半,而其余一半中菌落分布又很均匀,即可计算半个纸片后乘以2,代表一个纸片菌落数。
1.3.4 当纸片上出现菌落间无明显界线的链状生长时,则将每条单链作为一个菌落计数。
—1 —— 2 —1.5 结果与报告1.5.1 菌落总数的计算方法1.5.1.1 若只有一个稀释度纸片上的菌落数在适宜计数范围内,计算两个纸片菌落数的平均值,再将平均值乘以相应稀释倍数,作为每g 样品中菌落总数结果。
细菌总数测定实验报告
细菌总数测定实验报告细菌总数测定实验报告引言:细菌是一类微小的生物体,广泛存在于自然界的各个角落。
细菌的数量对于环境卫生和食品安全至关重要。
本实验旨在通过测定细菌总数的方法,了解样品中细菌的数量,并探讨不同环境条件对细菌总数的影响。
实验方法:1. 样品采集:我们选择了不同环境中的样品,包括自来水、空气、餐具表面和人体皮肤表面。
通过无菌棉签或无菌采样器,分别采集样品,并放入无菌试管中。
2. 稀释液的制备:我们准备了一种稀释液,以免细菌过多导致结果不准确。
稀释液的配方为:1克氯化钠和1克蛋白胨溶解在100毫升蒸馏水中。
3. 稀释样品:将采集到的样品取出一定量,加入稀释液中,进行逐级稀释。
我们选择了1:10、1:100和1:1000三个不同的稀释倍数。
4. 培养:将稀释后的样品分别接种在琼脂平板上,利用无菌棉签均匀涂抹样品。
然后将琼脂平板倒置放置于恒温培养箱中,温度设定为37摄氏度。
培养时间为24小时。
5. 细菌总数计算:在培养箱中,我们观察到琼脂平板上的菌落。
根据菌落的数量和稀释倍数,可以计算出原始样品中的细菌总数。
实验结果:我们进行了多次实验,得到了不同样品中的细菌总数。
结果显示,自来水中的细菌总数最低,空气中次之,餐具表面和人体皮肤表面的细菌总数较多。
此外,我们还发现,稀释倍数越高,细菌总数越低。
讨论:细菌总数的测定对于环境卫生和食品安全具有重要意义。
通过本实验,我们了解到不同环境中细菌总数的差异,为进一步研究提供了基础数据。
自来水中的细菌总数较低,这可能是由于自来水经过了严格的处理和消毒。
空气中的细菌总数稍高,这是因为空气中存在着大量的微生物,例如细菌和真菌。
餐具表面和人体皮肤表面的细菌总数较多,这与人们日常接触物体和环境有关。
稀释倍数的选择对于测定细菌总数至关重要。
过高的稀释倍数会导致菌落过少,难以准确计数;而过低的稀释倍数则会导致菌落过多,影响结果的准确性。
因此,在实际应用中,我们需要根据实际情况选择适当的稀释倍数。
实验报告细菌总数检查(3篇)
第1篇一、实验目的1. 掌握细菌总数检查的基本原理和方法。
2. 了解细菌总数在食品、水质等领域的应用。
3. 培养实验操作技能,提高对微生物检测工作的认识。
二、实验原理细菌总数是指在一定条件下,每克(或每毫升)样品中所含有的细菌总数。
细菌总数是衡量样品微生物污染程度的重要指标。
本实验采用平板计数法测定细菌总数。
三、实验材料与仪器1. 材料:牛奶、自来水、土壤等样品。
2. 仪器:恒温培养箱、天平、无菌试管、无菌棉签、无菌操作台、无菌水、营养琼脂平板、计数器等。
四、实验方法1. 样品处理:将样品按照一定比例加入无菌水中,充分振荡,制成均匀的样品悬液。
2. 制备菌悬液:取适量样品悬液,用无菌吸管加入无菌试管中,依次稀释10倍、100倍、1000倍,备用。
3. 制备平板:将营养琼脂平板在恒温培养箱中培养至凝固。
4. 接种:用无菌棉签蘸取适量菌悬液,均匀涂布于平板表面。
5. 培养与计数:将接种好的平板放入恒温培养箱中,培养24小时后,观察菌落生长情况。
按照菌落数在30~300之间的平板进行计数。
6. 计算细菌总数:根据菌悬液稀释倍数,计算每克(或每毫升)样品中的细菌总数。
五、实验结果与分析1. 实验结果:样品A(牛奶)细菌总数:3.2×10^7 CFU/g样品B(自来水)细菌总数:2.1×10^5 CFU/mL样品C(土壤)细菌总数:5.8×10^7 CFU/g2. 结果分析:样品A(牛奶)的细菌总数较高,可能是因为牛奶在储存、运输过程中受到污染。
样品B(自来水)的细菌总数较低,符合我国饮用水标准。
样品C(土壤)的细菌总数较高,可能与土壤环境有关。
六、实验结论1. 本实验成功掌握了细菌总数检查的基本原理和方法。
2. 通过对样品的细菌总数检测,可以了解样品的微生物污染程度,为食品、水质等领域的质量控制提供依据。
3. 在实验过程中,需要注意无菌操作,避免污染样品。
七、实验反思1. 实验过程中,操作要规范,避免人为因素对实验结果的影响。
食品中菌落总数的测定实验
食品中菌落总数的测定实验一、实验目的:了解稀释平板计数的原理,掌握涂抹平板培养法和混合平板培养法,认识细菌、放射菌、霉菌、的菌落特征。
二、原理平板菌落计数法是将等测样品经适当稀释后,其中的微生物充分分散为单个细胞,取一定量的稀释液接种到平板上,经过培养,由每个单细胞生长繁殖而形成的肉眼可见的菌落,即一个单菌落应代表原样品中的一个单细胞。
统计菌落数,根据其稀释倍数和取样接种量即可换算出样品中的含菌数。
但是,由于待测样品往往不易完全分散成单个细胞,所以,长成的一个单菌落也可能来自样品中的多个细胞。
因此平板菌落计数的结果往往偏低。
为了清楚地阐述平板菌落计数的结果,现在已倾向使用菌落形成单位(colony-forming units,cfu)而不以绝对菌落数来表示样品的活菌含量。
该计数法的缺点是操作较繁,结果需要培养一段时间才能取得,而且测定结果易受多种因素的影响,但是这种计数方法最大的优点是可以获得活菌的信息,所以被广泛用于生物制品检验,以及食品、饮料和水等含菌指数或污染度的检测三、试剂和材料1.仪器恒温培养箱:(36 ℃±1 ℃,30 ℃±1 ℃。
)均质器或振荡器无菌吸管:1 ml(0.01 ml 刻度)、10 ml(0.1 ml 刻度)或微量移液器及吸头无菌锥形瓶:容量250 ml、500 ml、无菌培养皿:直径90 mm菌落计数器2.样品1)平板计数琼脂(plate count agar,PCA)培养基:蛋白胨5.0 g 、酵母浸膏2.5 g 、葡萄糖1.0 g 、琼脂15.0 g、蒸馏水1000 ml、pH 7.0±0.2。
将所有成分加于蒸馏水中,煮沸溶解,调节pH。
分装试管或锥形瓶,121 ℃高压灭菌15 min。
注:用平板计数琼脂,称取23.5 g于1 000 ml蒸馏水中,加热煮沸至完全溶解,121 ℃高压灭菌20min,冷却至45~47℃左右备用。
2)无菌生理盐水:氯化钠(NaCl)5.875g 蒸馏水(纯净水) 500ml 称取5.875gNaCl溶于500ml蒸馏水中,121 ℃高压灭菌20min。
食品中菌落总数的测定和不确定度分析
食品中菌落总数的测定和不确定度分析食品中细菌总数的测定和不确定度分析是食品科学与技术领域中的重要研究内容之一。
细菌总数的测定可以帮助我们了解食品的卫生状况,评估食品质量,保障公众的食品安全。
不确定度分析则是用来评估测定结果的可靠性和准确性,帮助我们判断测定结果的可信度。
食品中的细菌是以菌落的形式存在的,所以细菌总数的测定方法一般采用菌落计数的方法。
具体的步骤如下:1. 取样:从食品样品中取出适量的物质,一般是取适量食品,加入适量的生理盐水,通过均匀悬浮。
2. 稀释:将取样得到的悬浮液进行适当的稀释,以保证每个培养皿上的菌落数在可计数的范围内。
一般采用十倍的稀释系列进行稀释。
3. 接种:将稀释好的样品取适量,在无菌条件下倒入培养皿中,均匀涂布在培养基上。
4. 培养:将培养皿放入恒温箱温育,通常为30°C,培养时间一般为24-48小时。
5. 计数:培养完成后,通过裸眼或显微镜观察,根据菌落的形态、大小、颜色等特征进行计数,并将计数结果记录下来。
细菌总数的测定结果一般以CFU/g(菌落形成单位/克)为单位表示。
不确定度分析是对测定结果的评估,主要从随机误差和系统误差两方面进行分析。
随机误差是由于测定过程中的种种因素引起的结果的波动性。
在细菌总数的测定中,随机误差可能包括取样不均匀、稀释误差、接种误差等。
通过重复测定可以减小随机误差,并通过统计方法计算出标准偏差来表示测量结果的稳定性。
系统误差是由于测定方法的固有缺陷引起的结果的偏差。
在细菌总数的测定中,系统误差可能包括培养基的选择和准备、温度和湿度的控制、观察的主观判断等。
通过合理选择和优化测定条件,可以减小系统误差。
菌落总数测定实验报告
竭诚为您提供优质文档/双击可除菌落总数测定实验报告篇一:食品中菌落总数的测定蛋糕中菌落总数的测定【说明】蛋糕具有松软香甜,携带方便、食用简单等特点,因此成为人们居家生活特别是旅途中不可或缺的一种美食,深受人们的喜爱。
测定蛋糕中的菌落总数可以用来判定其被微生物污染的程度及卫生质量,它反映蛋糕在生产过程中是否符合卫生要求,以便对被检样品做出适当的卫生学评价,菌落总数的多少在一定程度上标志着蛋糕产品质量的优劣,因此,测定蛋糕中的菌落总数具有重要意义。
目前应用于测定食品中菌落总数的方法有:纸片法、电阻抗法等。
本实验采用国标法(gb\T4789.2-20XX)对独立包装小蛋糕中菌落总数进行测定。
并与gb7099-20XX糕点、面包卫生标准中规定的冷加工糕点中菌落总数≤10000(cfu/g)的数据对比初步判断样品是否符合卫生要求。
一、实验目的1、学习并掌握测定蛋糕中菌落总数的方法及原理。
2、通过对比实验验证冷藏对蛋糕的保鲜及抑菌作用。
3、了解菌落总数测定在食品卫生学评价中的意义。
二、实验原理菌落总数即为食品检样经过处理,在一定条件下(如培养基、培养温度和培养时间等)培养后,所得每g(mL)检样中形成的微生物菌落总数。
菌落总数主要作为判定食品被污染程度的标志,也可以应用这一方法观察细菌在食品中繁殖动态,以便对被检样品进行卫生学评价时提供依据。
每种细菌都有它一定的生理特性,培养时应用不同的营养条件及其他生理条件(如温度、培养时间、ph、需氧性质等)去满足其要求才能将各种细菌都培养出来。
但在实际工作中,一般都只用一种常用的方法。
细菌菌落总数的测定,所得结果,只包括一群能在营养琼脂上发育的嗜中温性需氧菌的菌落总数。
菌落总数并不表示样品中实际存在的所有细菌总数,菌落总数并不能区分其中细菌的种类,所以有时被称为杂菌数,需氧菌数等。
三、实验设备与材料除微生物实验室常规灭菌及培养设备外,其他设备和材料如下:3.1恒温培养箱:36℃±1℃,30℃±1℃。
食品中菌落总数的测定实验报告
食品中菌落总数的测定实验报告一、实验目的1、学习并掌握食品中菌落总数测定的基本原理和方法。
2、熟练使用无菌操作技术和相关仪器设备。
3、了解食品卫生质量的重要性,以及菌落总数在评价食品卫生状况中的意义。
二、实验原理菌落总数是指食品检样经过处理,在一定条件下培养后(如培养基成分、培养温度和时间、pH 值、需氧性质等),所得 1g 或 1ml 检样中所含细菌菌落的总数。
菌落总数主要作为判定食品被细菌污染程度的标志,也可以应用这一方法观察细菌在食品中繁殖的动态,以便对被检样品进行卫生学评价时提供依据。
三、实验材料和设备1、实验材料各种待检食品样品(如牛奶、面包、水果等)营养琼脂培养基无菌生理盐水2、实验设备恒温培养箱高压蒸汽灭菌锅超净工作台无菌吸管(1ml、10ml)无菌培养皿电子天平均质器四、实验步骤1、样品的采集和处理以无菌操作采集具有代表性的食品样品,放入无菌容器中。
对于固体食品,使用均质器将其均质成匀浆;液体食品则直接吸取进行稀释。
2、稀释样品用 1ml 无菌吸管吸取 1ml 样品匀浆或液体样品,注入盛有 9ml 无菌生理盐水的试管中,制成 1:10 的样品稀释液。
用 1ml 无菌吸管吸取 1:10 稀释液 1ml,沿管壁缓慢注入盛有 9ml 无菌生理盐水的试管中,振摇试管混合均匀,制成 1:100 的稀释液。
以此类推,进行适当的梯度稀释。
3、接种选择 2-3 个适宜稀释度的样品稀释液,每个稀释度分别吸取 1ml 注入无菌培养皿中。
及时将 15-20ml 冷却至 46℃左右的营养琼脂培养基倾注于培养皿中,并转动培养皿使其混合均匀。
4、培养待琼脂凝固后,将培养皿翻转,放入 36±1℃的恒温培养箱中培养48±2h。
5、菌落计数培养结束后,取出培养皿,计数每个平板上的菌落数。
菌落计数时,应选取菌落数在 30-300 之间的平板进行计数。
若有两个稀释度的平板菌落数在 30-300 之间,应按两者菌落总数之比值来决定。
实验二-食品中细菌总数的测定
实验二-食品中细菌总数的测定实验目的:1. 学习测定食品中细菌总数的方法及原理。
2. 掌握样品制备、培养基配置、培养条件和结果判定等技术操作步骤。
3. 了解食品中细菌数量的重要性及危害。
4. 提高操作技能和实验室安全意识。
实验原理:细菌总数包括空气中的细菌、物体表面的细菌、食品中的细菌等。
细菌总数的高低能够判断食品是否受到污染,同时也能为保健品、药品的质量控制提供参考依据。
在实验中,利用营养琼脂培养基对食品中的细菌进行恰当的培养,根据菌落数测定样品中细菌的数量。
细菌总数检测的实验步骤如下:实验材料:1. 细菌培养基(营养琼脂)2. 生物安全柜3. 试管、移液管、枪头4. 稀释液5. 干燥消毒容器6. 计时器7. 烧杯、锅钳、电热板8. 抽气泵、乙醇灯9. 干净的接种环、透明胶带实验步骤:1. 样品的制备样品的种类很多,可以是食品、环境污染物、医疗器械、淤泥、药品等。
为保证实验精度,样品采集要在清洁、无菌的生物安全柜下进行。
2. 取样在样品制备前,首先要准备好玻璃管、移液管、枪头等实验用具。
从样品中取1g,用称量仪器称取固态样品或用移液管取液态样品。
根据要求的稀释倍数,将稀释液(通常使用生理盐水或蒸馏水)与样品混合,摇匀制备样品稀释液。
取少量的稀释液进行翻倒,覆盖在盖子里面,盖上后轻轻摇晃,将悬浮液均匀混合。
5. 涂布培养基将制备好的样品稀释液倒入无菌洗涤的烧杯中,加入相应的营养琼脂,用稀释液逐步稀释,按要求的量逐层涂覆在培养基板上。
培养后,将培养基盘盖上胶带,放置在恰当的温度和湿度下进行培养。
通常在符合条件下,一般需要36-48小时的培养时间。
7. 结果判定观察培养出来的菌落,根据菌落形态,确定细菌的种类,可通过颜色、形状、大小、质地、表面等参数对细菌进行分类。
8. 分析对于食品来说,每克细菌总数尽量控制在1000CFU以下,大于此数量就有可能造成人身体健康的危害。
实验注意事项:1. 实验中禁止口舌操作,禁止带手套和大腰围操作。
食品中菌落总数的测定和不确定度分析
食品中菌落总数的测定和不确定度分析一、引言食品安全是人们生活中不可忽视的一个重要问题,食品安全直接关系到人们的身体健康。
而食品中的微生物污染是导致食品安全问题的重要原因之一。
在食品生产和加工过程中,微生物总数是一个重要的指标,可以反映出食品中微生物的污染情况。
对食品中微生物总数的测定和不确定度分析具有重要的意义。
二、食品中微生物总数的测定方法测定食品中微生物总数的常用方法有两种:一种是菌落计数法,另一种是细菌总数法。
菌落计数法是指通过分次稀释的方法,将食品样品接种在富含营养物质的琼脂平板上,培养一段时间后,观察和计算形成的菌落数,从而推算出原始食品样品中的微生物总数。
这种方法简单易行,不需要高端的设备,因此在实际的食品检测中应用较为广泛。
而细菌总数法则是通过显微镜观察食品样品中的微生物数量,计算出微生物总数。
这种方法相对复杂,需要一定的实验技术和显微镜设备,因此在实际应用中较为少见。
由于菌落计数法简单易行,并且结果可靠,因此在食品中微生物总数的测定中常常采用菌落计数法。
下面将对菌落计数法的步骤进行详细介绍。
菌落计数法的步骤如下:1. 准备琼脂平板,将琼脂平板装入培养皿中,待琼脂凝固后,将培养皿反面标上编号,以便于后续操作。
2. 将食品样品加入适量的生理盐水中,制成稀释液。
3. 取适量的稀释液,通过分次稀释的方法,制成不同浓度的稀释液。
4. 取适量的每种浓度的稀释液,将其分别加入琼脂平板上,用灭菌的玻璃棒均匀涂抹。
5. 将培养皿反面朝上,置于恒温箱内进行培养。
6. 培养一定时间后,观察培养皿上的菌落情况,根据不同浓度的稀释液,选择菌落数较适宜计算的培养皿。
7. 使用计算器计算出原始食品样品中的微生物总数。
通过上述步骤,即可完成对食品中微生物总数的测定工作。
三、菌落计数法的不确定度分析菌落计数法是一种间接测定方法,因此在测定的过程中难免会产生一定的误差。
为了能够更加准确地反映出食品中微生物总数的真实情况,需要对菌落计数法的不确定度进行分析和评价。
食品中细菌菌落总数及大肠菌群的检测实验报告
试验九食品中细菌菌落总数及大肠菌群的检测[试验目的]1、了解我国规定的食品质量与细菌菌落总数和大肠菌群数量的重要关系。
2、把握食品细中细菌菌落总数及大肠菌群的检测方法。
[试验原理]菌落总数依据稀释平板技术法检测每mL/g检样在牛肉音蛋白陈琼脂培育基上,经373 24h 培育后,所生长的细菌菌落的总数。
它所反映的是检样中的活菌数,细菌数越多,说明污染程度越大,这项指标可作为判定待测样品被污染的程度。
大肠菌群数是在lOOmL(g)食品中(或1000 mL水中)大肠菌群最近似值。
它是指肠杆菌科中的4个属,即埃希氏菌属、柠檬酸杆菌属、克雷伯氏菌属和肠杆菌属。
这一菌群致病力不强,具有共同特点:好氧和兼性厌氧、革兰氏染色阴性反应、无芽抱杆菌、37℃培育24-48h能发酵乳糖产酸产气。
大肠菌群在人畜肠道内含最最多,可随排泄物进入水源或污染食品。
国际公认以大肠菌群的存在作为粪便污染指标。
这项指标可判定待测样品有无被粪便污染及污染的程度。
[试验材料]1、检样牛乳(饮料、酱油)2、培育基一般养分琼脂平板、单料乳糖胆盐发酵培育基、乳糖发酵培育基、EMB平板3、仪器和其他物品恒温箱、水浴锅、无菌培育皿、无菌吸管、无菌盐水瓶(内装225 mL无菌生理盐水)、无菌试管(内装9 mL无菌生理盐水)、灭菌剪刀、镜子等[试验内容]1、细菌菌落总数的测定(1)制备样品及样品稀释取待测样品(牛乳、酱油)一瓶,用点燃的酒精棉球烧灼瓶口,若是塑料瓶则用75%的酒精棉球擦拭灭菌。
在无菌条件下取样25 mL放入内装225 mL生理盐水的瓶中,充分混匀,制成10-1的稀释液。
用1 mL无菌吸管吸取10-1稀释液1mL,沿管壁缓缓注入装有9mL无菌生理盐水的试管中(留意,吸管尖端不要触及管内稀释液),振物试管,混合匀称,制成10-2的稀释液。
另取1mL无菌吸管,按上述操作方法做成10-3稀释液。
每次稀释,换用一支无菌吸管,共做10-1、10-2、10-3三个稀释度,分别含样品0.1mL, 0.01mL, 0.001 mLo(2)培育将上面已做好的样品稀释液充分振荡,然后分别吸取该稀释度的稀释液1mL至标有相应稀释度的无菌培育皿中,每个稀释度做2个培育皿。
食品中细菌总数的测定
食品中细菌总数的测定方法
一、目的:
1.学习并掌握细菌的分离和活菌技术的原理和基本方法
2.了解菌落总数测定在对备件样品进行卫生学评价中的意义
二、原理:
菌落总数是指食品经过处理并在一定条件下培养后,所得1g或1mL检验中所含细菌菌落的总数。
菌落总数主要作为判别食品污染程度的标志,也可以应用这一方法观察细菌在食品中繁殖的动态过程,以便在对杯件样品进行卫生学评价是提供依据。
三、仪器:
超净工作台、电炉、培养箱、试管、10ml移液管、1ml移液管、洗耳球、试管架、锥形瓶、平皿
四、试剂:样品:酱油,无菌水,营养琼脂
五、实操过程:
1、溶解培养基:将固体培养基放在电炉上煮沸,然后冷却至41~43℃待用
2、取10ml移液管分别吸取9ml水放入3支试管中
3、取1ml移液管吸取1ml酱油加入第一支试管内,另取第二支1ml移液管插入第一支试管内,吸取溶液后放出溶液,重复3次,使酱油混合均匀后,再分别吸取1ml加入到第二支试管和第一个平皿内;取第三支1ml移液管插入第二支试管内吸取溶液,然后放出溶液,重复三次,使溶液混合均匀,然后分别吸取1ml溶液分别加到第三支试管和第二个平皿内;取第四支1ml移液管插入第三支试管内吸取溶液,然后放出溶液,重复三次,使溶液混合均匀,再吸取1ml放入第三个平皿内,贴好标签
4、倒培养基:在平皿内倒入其2/3体制的培养基,用手轻轻摇匀
5、待琼脂培养基凝固后,翻转平板,置36±1℃温箱内培养48±2h,取出计算平板内菌落数目
六、实操结果及分析讨论
1.平板菌落数量和生长描述:
培养时间:24小时。
菌落总数测定实验报告
竭诚为您提供优质文档/双击可除菌落总数测定实验报告篇一:食品中菌落总数的测定蛋糕中菌落总数的测定【说明】蛋糕具有松软香甜,携带方便、食用简单等特点,因此成为人们居家生活特别是旅途中不可或缺的一种美食,深受人们的喜爱。
测定蛋糕中的菌落总数可以用来判定其被微生物污染的程度及卫生质量,它反映蛋糕在生产过程中是否符合卫生要求,以便对被检样品做出适当的卫生学评价,菌落总数的多少在一定程度上标志着蛋糕产品质量的优劣,因此,测定蛋糕中的菌落总数具有重要意义。
目前应用于测定食品中菌落总数的方法有:纸片法、电阻抗法等。
本实验采用国标法(gb\T4789.2-20XX)对独立包装小蛋糕中菌落总数进行测定。
并与gb7099-20XX糕点、面包卫生标准中规定的冷加工糕点中菌落总数≤10000(cfu/g)的数据对比初步判断样品是否符合卫生要求。
一、实验目的1、学习并掌握测定蛋糕中菌落总数的方法及原理。
2、通过对比实验验证冷藏对蛋糕的保鲜及抑菌作用。
3、了解菌落总数测定在食品卫生学评价中的意义。
二、实验原理菌落总数即为食品检样经过处理,在一定条件下(如培养基、培养温度和培养时间等)培养后,所得每g(mL)检样中形成的微生物菌落总数。
菌落总数主要作为判定食品被污染程度的标志,也可以应用这一方法观察细菌在食品中繁殖动态,以便对被检样品进行卫生学评价时提供依据。
每种细菌都有它一定的生理特性,培养时应用不同的营养条件及其他生理条件(如温度、培养时间、ph、需氧性质等)去满足其要求才能将各种细菌都培养出来。
但在实际工作中,一般都只用一种常用的方法。
细菌菌落总数的测定,所得结果,只包括一群能在营养琼脂上发育的嗜中温性需氧菌的菌落总数。
菌落总数并不表示样品中实际存在的所有细菌总数,菌落总数并不能区分其中细菌的种类,所以有时被称为杂菌数,需氧菌数等。
三、实验设备与材料除微生物实验室常规灭菌及培养设备外,其他设备和材料如下:3.1恒温培养箱:36℃±1℃,30℃±1℃。
食品中菌落总数的测定方法
食品中菌落总数的测定一、实验目的(1)学习与掌握测定食品中菌落总数的基本方法(2)学会菌落总数的报告方式二、实验材料1、仪器与设备:恒温培养箱、托盘天平、电炉、吸管、三角瓶、平皿、试管、试管架、酒精灯、灭菌刀或剪刀、75%酒精棉球、玻璃蜡笔。
2、培养基与试剂:75%乙醇、0、85%生理盐水、琼脂培养基:胰蛋白胨5、0g、酵母浸膏2、5g、葡萄糖1、0g、琼脂15、0g、蒸馏水1000mL、pH 7、0±0、23、检样:利乐包装鲜牛奶250ml三、实验方法与步骤1、检验程序菌落总数检验程序:检样→做成几个适当倍数的稀释液→选择2-3个适宜稀释度各以1ml之量分别入灭菌平皿内→每皿内加入46℃15-20ml营养琼脂→置36±1℃恒温箱内培养(48±2)h取出→菌落数→报告2、检样稀释及培养(1)以无菌操作,将检样包装打开,用吸管取25ml鲜牛奶,放于含有225ml灭菌生理盐水的500ml灭菌玻璃三角瓶内(瓶内预先置适当数量的玻璃珠),经充分振摇做成1:10的均匀稀释液。
(2)用1ml灭菌吸管吸取1:10稀释液1ml,沿管壁徐徐注入含有9ml灭菌生理盐水的试管内(注意吸管尖端不要触及管内稀释液,下同),振摇试管混合均匀,做成1:100的稀释液。
(3)另取1ml的灭菌吸管,按上项操作顺序作10倍递增稀释液,如此每递增稀释一次,即换用1支1ml灭菌吸管。
(4)根据食品卫生检验标准要求与检样的菌落数量,选择3个连续适宜稀释度即10、10-1、10-2,分别在作10倍递增稀释的同时,即以吸取该稀释度的吸管移1ml稀释液于灭菌平皿内,每个稀释度作两个平皿。
(5)稀释液移入平皿后,应及时将凉至46℃营养琼脂培养基注入平皿15ml~20mL,并转动平皿使与稀释检样混合均匀,同时将营养琼脂培养基倾入加有1ml稀释液(不含样品)的灭菌平皿内作空白对照。
(6)等琼脂凝固后,翻转平板,置36±1℃恒温箱内培养(48±2)h取出,计算平板内菌落数目乘以倍数,即得1mL样品所含菌落总数。
细菌总数的测定方法
细菌总数的测定方法细菌总数测定是微生物检测领域中的一项基本技术,它对于保障食品、药品和环境安全具有重要意义。
通过测定细菌总数,可以评估产品的卫生状况及污染程度,进而采取相应的控制措施。
本文将介绍几种常见的细菌总数测定方法。
平板计数法平板计数法是最传统也是最常用的一种细菌总数测定方法。
该方法通过将样品稀释液均匀涂布在含有营养培养基的平板上,经过一定时间的培养,根据生长出的菌落数量来估算样品中的细菌总数。
具体步骤包括:1. 制备适宜的稀释液。
2. 将稀释液接种到含有固体营养培养基的平板上。
3. 在恒温条件下培养一定时间(通常为24-48小时)。
4. 对形成的菌落进行计数,并乘以相应的稀释倍数得出细菌总数。
膜过滤法膜过滤法适用于液体样品中细菌数量较少的情况。
通过使用特定孔径的滤膜过滤样品,将细菌截留在滤膜上,然后将滤膜放置在营养培养基上培养,最后统计菌落数量。
此方法的优点是可以检测到比平板计数法更低浓度的细菌。
直接计数法直接计数法通过显微镜直接观察和计数样品中的细菌。
常用的有活菌计数和死菌计数两种。
活菌计数通常使用荧光染色剂,如吖啶橙或DAPI,使细菌细胞发出荧光,然后在荧光显微镜下进行计数。
而死菌计数则需使用特定的染色剂,如碘化丙啶(PI),标记死亡的细菌细胞。
流式细胞术流式细胞术是一种高速分析单个细胞的技术,能够对大量细胞进行快速计数和分类。
在细菌总数测定中,流式细胞术可以通过特定的荧光标记物识别和计数细菌细胞。
这种方法速度快,精度高,但设备成本较高。
分子生物学方法随着分子生物学技术的发展,基于PCR的方法也被用于细菌总数的测定。
通过对细菌的特定基因序列进行扩增和定量分析,可以实现对细菌总数的准确测定。
这种方法灵敏度高,特异性强,但需要专业的实验操作和分析技能。
总结而言,不同的细菌总数测定方法各有优缺点,选择合适的方法需根据样品特性、实验条件和测定目的综合考虑。
无论采用哪种方法,都必须严格遵守无菌操作规程,确保实验结果的准确性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验2 食品中细菌总数的测定
1 目的
1.1 学习并掌握细菌的分离和活菌计数的基本方法和原理
1.2 了解菌落总数测定在对被样品进行卫生学评价中的意义
2 原理
菌落总数是指食品经过处理,在一定条件下培养后,所得1g或1ml检样中所含细菌菌落总数。
菌落总数主要作为判别食品被污染程度的标志,也可以应用这一方法观察细菌在食品中繁殖的动态,以便对被检样品进行卫生学评价时提供依据。
菌落总数并不表示样品中实际存在的所有细菌总数,菌落总数并不能区分其中细菌的种类,所以有时被称为杂菌数,需氧菌数等。
3 材料
3.1 食品检样
3.2 培养基
营养琼脂培养基,无菌生理盐水。
3.3 其它
无菌培养皿,无菌移液管,无菌不锈钢勺。
4 步骤
4.1 取样、稀释和培养
4.1.1 以无菌操作取检样25g(或ml),放于225mL灭菌生理盐水的灭菌玻璃瓶内(瓶内预置适量的玻璃珠)或灭菌乳钵内,经充分振要或研磨制成1:10的均匀稀释液。
固体检样在加入稀释液后,最好置灭菌均质器中以8000~10000r/min的速度处理1min,制成1:10的均匀稀释液。
4.1.2 用1ml灭菌吸管吸取1:10稀释液1ml,沿管壁徐徐注入含有9ml灭菌生理盐水的试管内,振摇试管混合均匀,制成1:100的稀释液。
4.1.3 另取1ml灭菌吸管,按上项操作顺序,制10倍递增稀释液,如此每递增稀释一次即换用1支10ml吸管。
4.1.4 根据标准要求或对污染情况的估计,选择2~3个适宜稀释度,分别在制作10倍递增稀释的同时,以吸取该稀释度的吸管移取1ml稀释液于灭菌平皿中,每个稀释度做两个平皿。
4.1.5 稀释液移入平皿后,将凉至46℃营养琼脂培养基注入平皿约15ml,并转动平皿,混合均匀。
同时将营养琼脂培养基倾入加有1ml稀释液(不含样品)的灭菌平皿内作空白对照。
4.1.6 待琼脂凝固后,翻转平板,置36±1℃温箱内培养48±2h,取出计算平板内菌落数目,乘以稀释倍数,即得每克(每毫升)样品所含菌落总数。
4.2 菌落计数方法
作平皿菌落计数时,可用肉眼观察,必要时用放大镜检查,以防遗漏。
在记下各平皿的菌落总数后,求出同稀释度的各平皿平均菌落数。
到达规定培养时间,应立即计数。
如果不能立即计数,应将平板放置于0-4℃,但不要超过24h。
4.3 菌落计数报告方法
4.3.1 平皿菌落数的选择
选取菌落数在30~300之间的平皿作为菌落总数测定标准。
每一个稀释度应采用两个平皿平均数,其中一个平皿有较大片状菌落生长时,则不宜采用,而应以无片状菌落生长的平皿作为该稀释度的菌落数,若片状菌落不到平皿的一半,而其余一半中菌落分布又很均匀,则可以计算半个平皿后乘以2以代表全皿菌落数。
4.3.2 稀释度的选择
4.3.2.1 应选取平均菌落数在30~300之间的稀释度报告(表2-1)。
表2-1 计算菌落总数方法举例
不同稀释度的平均菌落数两个稀释度菌落数
之比
菌落数之比
(个/ml)
10-110-210-3
1 1365 164 20 ——16400
2 2760 295 46 1.6 37750
3 2890 271 60 2.2 27100
4 无法计数1650 513 ——513000
5 27 11 5 ——270
6 无法计数305 12 ——30500
4.3.2.2 若有二个稀释度均在30~300之间时,应以二者比值决定,比值≤2取平均数,比值>2则其较小数字(表1中例2和3)。
4.3.2.3 若所有稀释度均>300,则取最高稀释度的平均菌落数乘以稀释倍数报告之(表1中例4)。
4.3.2.4若所有稀释度均<30,则以最低稀释度的平均菌落数乘稀释倍数报告之(表1中例5)。
4.3.2.5若所有稀释度均无菌落生长,则应按<1乘以最低稀释倍数报告之(表1中例6)。
4.3.2.6若所有稀释度均不在30~300之间,有的>300,有的又<30,则应以最接近300或30的平均菌落数乘以稀释倍数报告之(表1中例7)。
4.3.4 菌落计数报告方法
菌落数在1~100时,按实有数字报告,如大于100时,则报告前面两位有效数字,第三位数按四舍五入计算,为了缩短数字后面的零数,也可以10的指数表示。
5 结果
5.1 将实验测出的样品数据以报表方式报告结果。
5.2 对样品菌落总数作出是否符合卫生要求的结论。
6 思考题
6.1 食品检验为什么要测定细菌菌落总数?
6.2 食品中检出的菌落总数是否代表该食品上的所有细菌数?为什么?
6.3 为什么营养琼脂培养基在使用前要保持在46±1℃的温度?。