matlab曲线拟合人口增长模型及其数量预测
matlab曲线拟合人口增长模型及其数量预测
实验目的[1] 学习由实际问题去建立数学模型的全过程;[2] 训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题; [3] 应用matlab 软件求解微分方程、作图、函数拟合等功能,设计matlab 程序来求解其中的数学模型;[4] 提高论文写作、文字处理、排版等方面的能力;通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘拟合问题不收敛时,如何调整初值,变换函数和数据使优化迭代过程收敛。
应用实验(或综合实验)一、实验内容从1790—1980年间美国每隔10年的人口记录如表综2.1所示:表综2.1年 份 1790 1800 1810 1820 1830 1840 1850 人口(×106)3.9 5.3 7.2 9.6 12.9 17.1 23.2 年 份 1860 1870 1880 1890 1900 1910 1920 人口(×106)31.4 38.6 50.2 62.9 76.0 92.0 106.5 年 份 193019401950196019701980人口(×106)123.2 131.7 150.7 179.3 204.0 226.5用以上数据检验马尔萨斯(Malthus)人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进,并利用至少两种模型来预测美国2010年的人口数量。
二、问题分析1:Malthus 模型的基本假设是:人口的增长率为常数,记为 r 。
记时刻t 的人口为x (t ),(即x (t )为模型的状态变量)且初始时刻的人口为x 0,于是得到如下微分方程:⎪⎩⎪⎨⎧==0)0(d d x x rxtx2:阻滞增长模型(或Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为x 的减函数,如设r(x)=r(1-x/x m ),其中r 为固有增长率(x 很小时),x m 为人口容量(资源、环境能容纳的最大数量),于是得到如下微分方程:⎪⎩⎪⎨⎧=-=0)0()1(d d xx x x rx t xm三、数学模型的建立与求解根据Malthus 模型的基本假设,和Logistic 模型,我们可以分别求得微分方程的解析解,y1=x0*exp(r*x);y2= xm/(1+x0*exp(-r*x))对于1790—1980年间美国每隔10年的人口记录,分别用matlab 工具箱中非线性拟合函数的命令作一般的最小二乘曲线拟合,可利用已有程序lsqcurvefit 进行拟合,检验结果进一步讨论模型的改进,预测美国2010年的人口数量。
matlab人口预测与数据曲线拟合
实验问题
据人口统计年鉴,知我国从1949 年至1994年人口数据资料如下: (人口数单位为:百万)
1954 1959 1964 1969 602.66 672.09 704.99 806.71 1979 1984 1989 1994 975.42 1034.75 1106.76 1176.74
xt e a bt ln x t a bt
解:
设
x t e
a bt
ln( x ) a bt
问题转化为求参数 a, b 使得
J (a , b) (a bti ln xi )2
10 i 1
取得最小值.其中, t i 表示年份,xi x t i 表示人口数量。
计算得
a -27.9047, b 0.0176
从而得到人口数与年份的函数关系为
ye
27.9047 0.0176* x
指数预测模型
并预测2000,2005,2010年的人口
年份 预测(百万) 真实值(百万) 2000 1363.6 1295.33 2005 1488.8 1306.28 2010 1625.4 1370.5
2 2 [ f ( x ) y ] i i i i 1 i 1 n n
达到最小。
最小二乘准则
数据插值
已知一组(二维)数据,即平面上的 n 个点( xi , yi ) ,
y f ( x) i 1,2, L, n, xi 互不相同,寻求一个函数(曲线)
使f ( x )在观察点x1 ,L, xn 处满足f ( xi ) yi , i 1,L, n,
MATLAB人口数量预测
MATLAB人口数量预测实验报告一,实验目的:1.、学会用matlab软件进行数据拟合;2、了解利用最小二乘法进行数据拟合的基本思想,掌握用数据拟合法寻找最佳拟合曲线的方法;3、了解多元函数的机制在数据拟合法中的应用;4、通过对实际问题进行分析研究,初步掌握建立数据拟合数学模型的方法。
二.问题分析及建立模型1.多项式拟合对于已知数据点,如果选用拟合基函数为幂函数类1,x,x2,x3….xm,则拟合函数为一个m次多项式函数。
y=f(x)=a m*x m+a m-1*x m-1+…a1*x+a0根据最小二乘法你和思想,问题归结为求m+1元函数Q(a0,a1,…a m)=∑(a m*x i m a m-1*x i m-1+…+a1*x+a0)2的最小值问题,同样的,利用多元可微函数求得极值的必要条件得到法方程组∂Q(a0,a1,…a m)/∂a k=0; k=0,1,2,3…m;此时,矩阵G为一范德蒙矩阵,解此方程可以求的多项式系数a=[a m,a m-1,a0]T模型假设美国的人口满足函数关系x=f(t), f(t)=e a+bt,a,b为待定常数,根据最小二乘拟合的原理,a,b是函数∑=-=niiix tfbaE12))((),(的最小值点。
其中x i是t i时刻美国的人口数。
这是第一种模型。
3.Logistic模型上述模型可以在短时间内较好地拟合实际人口数量,但也存在问题。
即人口是呈指数规律无止境地增长,此时人口的自然增长率随人口的增长而增长,这不可能。
一般说来,当人口较少时增长得越来越快,即增长率在变大;人口增长到一定数量以后,增长就会慢下来,即增长率变小。
这是因为自然资源环境条件等因素不允许人口无限制地增长,它们对人口的增长起着阻滞作用,而且随着人口的增加,阻滞作用越来越大。
而且人口最终会饱和,趋于某一个常数x,假设人口的静增长率为r(1-x(t)/x ),即人口的静增长率随着人口的增长而不断减小,当t 时,静增长率趋于零。
人口问题数据拟合的MATLAB程序
人口问题数据拟合的MATLAB程序拟合%拟合数据人口问题x=[1949 1954 1959 1964 1969 1974 1979 1984 1989 1994];y=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8];% 1 线性模型%用一阶多项式b=polyfit(x,y,1)z=b(2)+b(1).*x;plot(x,y,'r*',x,z),xlabel('x')%用矩阵运算A=[ones(size(x))', x'];b=A\y'z=b(1)+b(2).*x;plot(x,y,'r*',x,z),xlabel('x')%用线性回归A=[ones(size(x))', x'];[b,c,r,j,R] =regress(y',A)% b 回归系数 c 回归系数的置信区间r 残差j 拟合数据的置信区间R 相关系数F值、p值z=b(1)+b(2).*x;z1=z+j(:,1)';z2=z+j(:,2)';plot(x,y,'r*',x,z,x,z1,x,z2),xlabel('x')e=sqrt(sum((y-z).^2)/8)zz1=z-1.96*e; zz2=z+1.96*e;plot(x,y,'r*',x,z,x,zz1,x,zz2)% 2 非线性模型y=b(2)exp(b(1)x)%转化为线性函数A=[ones(size(x))', x'];y1=log(y);[b1,r,j,R]=regress(y1',A)b=[exp(b1(1)) b1(2)]z=b(1).*exp(b(2).*x);e=sqrt(sum((y-z).^2)/8)z1=z-1.96*e; z2=z+1.96*eplot(x,y,'r*',x,z,x,z1,x,z2)%用非线性函数拟合(缺点初值不合适,就得不到解)x=[49 54 59 64 69 74 79 84 89 94];y=[5.4 6.0 6.7 7.0 8.1 9.1 9.8 10.3 11.3 11.8];fun=inline('b(1).*exp(b(2).*x)','b','x');b0=[2 0.01];[b,r,j]=nlinfit(x,y,fun,b0)z=b(1).*exp(b(2).*x);plot(x,y,'r*',x,z)nlintool(x,y,fun,b0) %拟合曲线图。
matlab曲线拟合函数并预测
Matlab曲线拟合函数并预测一、背景介绍(300-500字)在科学研究和工程领域,我们经常需要对实验数据进行分析和预测。
而Matlab作为一种强大的数学软件工具,提供了丰富的函数和工具,可以对实验数据进行曲线拟合和预测。
本文将介绍Matlab中的曲线拟合函数,并结合实际案例来展示如何使用这些函数进行数据分析和预测。
二、Matlab曲线拟合技术(800-1000字)1. 数据导入和处理在进行曲线拟合之前,我们首先需要将实验数据导入Matlab,并进行处理。
这包括数据的清洗、预处理以及数据结构的转换等。
Matlab提供了丰富的数据导入和处理函数,可以帮助我们快速地将实验数据准备好,以便进行后续的分析和拟合。
2. 曲线拟合函数在Matlab中,曲线拟合函数是实现曲线拟合的核心工具。
通过这些函数,我们可以根据实验数据的特征以及我们对拟合曲线的要求,选择合适的曲线模型,并进行拟合。
Matlab提供了多种曲线拟合函数,包括多项式拟合、指数拟合、对数拟合等,以满足不同需求的实验数据分析。
3. 曲线拟合参数估计除了选择合适的曲线模型外,曲线拟合还需要进行参数估计。
Matlab提供了丰富的参数估计函数,可以帮助我们对拟合曲线的参数进行准确的估计,从而得到最优的拟合结果。
4. 曲线拟合质量评价作为对曲线拟合结果的评价,我们需要进行拟合质量的评估。
Matlab提供了多种曲线拟合质量评价指标,包括均方差、决定系数等,可以帮助我们评估拟合结果的准确性和可靠性。
三、曲线拟合与预测实例分析(1200-1500字)以某种实验数据为例,我们通过Matlab进行曲线拟合和预测分析。
我们将实验数据导入Matlab,并进行预处理;选择合适的曲线模型进行拟合,并进行参数估计;我们评价拟合结果的质量,并得出结论;基于拟合曲线,我们进行预测分析,并与实际数据进行对比。
通过这个实例分析,我们可以更加深入地理解Matlab曲线拟合技术的应用和价值。
MATLAB第5次 案例及实验2:人口增长预测
影响因素
个 体 的 出 生 、 死 亡
迁 入 、 迁 出
年 龄 结 构
性 别 比 例
……
2/9
人口增长模型——机理分析方法 现仅考虑出生和死亡对人口数的影响。
在时间段t内,出生和死亡人口数的变化 将依赖于以下因素: 建模过程 1.时间间隔t的长短; 2.时间间隔开始时的人口基数。
1 dN b d N dt
• 人口增长因素 • 仅考虑出生、死亡对人口数的影响
7/9
模型建立
模型建立
出生率b和死亡率d:
• 时间间隔t内的出生人数= b N(t)t • 时间间隔t内的死亡人数= d N(t)t
t时间内人口变换量N:
N(t+t)N(t) = (bd)N (t) t
令
Nk= N (k t), k=0,1,2,3,…
3.若r=0 时 N(t)=N0 。
6/9
rt
人口增长问题——离散方法
问题提出
据人口学家们预测,到2033年,世界人口将突破100亿,每年
增加近1亿人口,以后还会迅猛增长.人们开始考虑,我们赖 以生存的地球究竟是否能承受如此的增长. 现建立数学模 型来预测人口的增长.
问题分析
目标:N(t) 条件与数据:
3.5 x 10
11
马尔萨斯模型人口预测
3
2.5
象。
2
N/人
几何级数的增长
1.5
1
0.5
0 1950
2000
2050 t/年
2100
2150
2200
5/9
得到Logistic模型
N 0 Ke K N (t ) rt rt K K N 0 (e 1) 1 ( N0 1)e
matlab曲线拟合人口增长模型及其数量预测
matlab曲线拟合人口增长模型及其数量预测随着人口数量的不断增加,人口增长的预测成为了重要的社会话题。
为了了解和预测人口的发展趋势,人们需要建立各种数学模型,以帮助他们分析人口变化的规律。
首先,我们需要了解什么是曲线拟合。
曲线拟合是一种数学方法,用于找到能够用已知数据点经过的曲线最佳地描述这些数据点的方程。
接下来,我们需要选择合适的模型,以描述人口增长。
常用的模型有线性模型、指数模型、对数模型和幂函数模型。
在这里,我们选择使用幂函数模型,其数学表达式为y=ax^b,其中y表示人口数量,x表示时间,a和b是拟合参数。
为了得到在该模型下的最佳参数值,我们需要使用matlab中的“拟合曲线工具箱”。
该工具箱提供各种函数,可用于拟合各种类型的数据,包括基于模型的数据点。
在使用该工具箱进行拟合之前,我们需要先准备好我们的数据。
我们可以使用已知的人口数量数据,以确定模型的参数,然后在没有人口数量数据的情况下进行预测。
接下来,我们使用“拟合曲线工具箱”中的“幂函数拟合”函数进行拟合。
该函数会自动计算最佳参数值,并提供了一些工具,用于优化和调整拟合曲线。
此外,对于得到的拟合曲线,我们还可以使用matlab中的“预测函数”来预测不同时间点的人口数量。
该函数将基于已知的拟合参数值,预测给定时间点的人口数量。
在得到拟合和预测结果之后,我们可以使用matlab的图表工具,将结果可视化。
这将有助于我们更好地了解数据点和拟合曲线之间的关系,以及预测结果的准确性。
总之,在制定人口增长规划时,建立数学模型是非常重要的。
使用matlab曲线拟合人口增长模型及其数量预测,可以快速、准确地得到所需的结果,帮助社会决策者制定更好的政策。
数学实验与数学建模基础(MATLAB实现)6-4-数据拟合之人口拟合
目录
1 数据拟合问题简介 2 人口增长问题的数据拟合方法
一、数据拟合问题简介
数据拟合:从一大堆看上去杂乱无章的数 据中找出规律性来,即设法构造一条曲线 (拟合曲线)反映所给数据点总的趋势, 以消除其局部波动。
常用拟合方法:多项式拟合
存在问题:并不是所有问题都可以用多项 式作拟合,比如人口增长问题。
程序运行结果:
p= 0.0074 -12.3390
Z= 2.6864
即 a 12.3390,
b 0.0074
代入拟合函数
当t=2020时,N=14.6787
即到2020年时,全国总人口数将达到14.6787亿。
这一数据虽然不十分准确,但是基本反 映了人口变化趋势。
分析:据人口增长的统计资料和人口理论数 学模型知,当人口总数N不是很大时,在不 太长的时期内,人口增长接近于指数增长。
故采用指数函数对数据进行拟合
N eabt
为了计算方便,将上式两边同时取对数,得
ln N a bt
令 y ln N
变换后的拟合函数为
y(t ) a bt
由人口数据表对人口取对数,计算得
二、人口增长问题的数据拟合方法
问题:已知1996-2004年全国人口总数如 下表,试根据表中数据预测2020年全国人 口总数。(单位:亿)
年 1996 1997
1998
1999
2000
人口 12.2389 12.3626 12.4761 12.5876 12.6743
2001 2002 2003 2004 12.7627 12.8453 12.9227 13.0000
t 1996 1997 1998 1999 y 2.5046 2.5147 2.5238 2.5327 2000 2001 2002 2003 2004 2.5396 2.5465 2.5530 2.5590 2.5649
人口发展模型matlab实现
实验二:人口发展模型实验目的:理解马尔萨斯模型和Logistic模型,利用中国人口数据,进行参数估计,并比较模型的优劣。
实验题目:据统计,建国以来我国人口增长情况如表1:更适合人口的长期预测?并预测2006年至2015年各年人口总数。
马尔萨斯模型假设单位时间内人口增长量与当前时刻人口数成正比,即有,其中,代表增长率,为时刻人口总量,易得,这表明人口按指数变化规律增长。
Logistic模型假设人口增长率是当时人口数量的线性递减函数。
表示按自然资源和环境条件的最大人口容量;表示固有增长率,即人口很少时的增长率;当时,;当时,。
由此建立Logistic模型,求解模型得.实验程序及注释%马尔萨斯模型T=1954:2005;N=[60.2,61.5,62.8,64.6,66,67.2,66.2,65.9,67.3,69.1,70.4,72.5,74.5,76.3,78.5,80. 7,83,85.2,87.1,89.2,90.9,92.4,93.7,95,96.259,97.5,98.705,100.1,101.654,103.008,104. 357,105.851,107.5,109.3,111.026,112.704,114.333,115.823,117.171,118.517,119.85, 121.121,122.389,123.626,124.761,125.786,126.743,127.627,128.453,129.227,129.98 8,130.756];y=log(N); %计算对数值p=polyfit(T,y,1); %线性拟合Malthus=exp(polyval(p,T)); %求线性函数值plot(T,N,'o',T,Malthus) %对原始数据和拟合后的值作图RM=sum((N-Malthus).^2) %求残差平方和%Logistic模型b0=[ 241.9598, 0.02985]; %初始参数值fun=inline('b(1)./(1+(b(1)/60.2-1).*exp(-b(2).*(t-1954)))','b','t');b1=nlinfit(T,x,fun,b0);Logistic=b1(1)./(1+( b1(1)/60.2-1).*exp( -b1(2).*(T-1954))); %非线性拟合的方程plot(T,x,'*',T,Logistic) %对原始数据与曲线拟合后的值作图RL=sum((N-Logistic).^2) %求残差平方和实验数据结果及分析马尔萨斯模型Logistic模型图1 实验结果由上图可以看出,Logistic模型对人口的拟合更加确切,其误差130.8740较马尔萨斯模型的误差757.4464更小。
matlab综合案例 人口增长模型
综合案例 人口增长模型据人口学家们预测,到2033年 ,世界人口将突破100亿,每年增加近1亿人,以后还会迅猛增长。
人们开始考虑,我们赖以生存的地球究竟是否能承受如此的增长。
让我们建立数学模型来预测人口的增长。
我们关心任意时刻的人口总数N (t ),即t 时刻人口中生命个体的总数,而忽略他们的年龄和性别。
影响总人口数的最显著的因素是个体的出生、死亡、以及进出我们所研究区域的个体数。
为了简化问题,我们忽略迁入与迁出的人口,仅考虑时间段∆t 内人口数的变化情况。
很明显,出生和死亡人数的变化将依赖于以下因素:(1) 时间间隔∆t 的长短;(2) 时间间隔开始时的人口总数。
做最简单的假设是正比关系,即时间间隔∆t 内的出生人数= bn(t)∆t 时间间隔∆t 内的死亡人数=dn(t)∆t这里b 和d 分别是出生率和死亡率。
我们得到一个初始模型为N(t+∆t)-N(t)=(b -d)N (t) ∆t (2.35)现在可根据时间区间∆t 的两种情况进一步研究模型. 一种是确定一个有限的时间单位,比如∆t=1年,令N k = N(k)=N (k ∆t), k=1,2,3,… 这样方程(2.35)便是一个关于序列N K ,k=1,2,3, …的差分方程: N k+1= (b -d+1)N k k=1,2,3,…我们可以根据上一年的人口数推算出第二年的人口数以及逐年的人口数。
另一种是考虑很短的时间区间∆t 内的人口变化。
由于一个广阔区域的人口数量很大,可认为人口数N(t)是一个连续变量,因为当N(t)很大时,对应的曲线具有很小的跃变可视为平滑的,这样的处理即简化了模型又不会引起严重误差。
先将式(2.35)改写为tt N t t N t N ∆-∆+)()()(1=b -d令∆t →0,则有d b dtdN N -=1 (2.36)等式左端的表达式可以理解为“相对增长率”,对其作不同的假设可以建立不同的数学模型。
MATLAB之数学建模人口预测
于人口老龄化问题严重,国家现以开放二胎政策,鼓励人们生育。相信大家只要
关注新闻都有些了解。 我们小组成员平常时候也是极喜爱阅读,通过腾讯新闻,微博等对开放二胎政策 略有些了解,正巧遇上MATLBA作业,于是我们的数学建模原型由此而来。
下面从机理上分析人口问题的模型。人口的出生率b和死亡率d可设为常数 N(t+△t)——N(t)=(b—d)*N(t) 令r=b—d,△t→0,可得:
N’(t)=rN(t)
假设N(t0)=N0exp(r(t-t0)) 此为人口学Malthus模型。可见对数据图的推测是有道理的。
(2)修正
最后利用历史数据来确定参数和r。如果只有两个数据,则和r 是唯一的。问题是有很多数据, 而且这些数据并不在同一数据线上。事实上,由于政策、经济、
%----------------------------------------
------------function N=li4_17fun(c,t) N=c(1)*exp(c(2)*t)
其优化结果如下表
初始值 拟合结果
1949年人口N0(BW)
541.7
609.2
2021年人口N24(BW)
N=c(1)*exp(c(2)*t)
其实现的MATELAB的程序代码如下: function youhua clear all;clc t=0:1:21;
N=[54167 57482 61465 65346 66457 70499 76032 82542 88761 9326
101654 105851 111026 115823 119850 123626 126743 129227 13144
人口数据分析matlab报告
数值分析设计报告人口数据的分析 一.问题叙述根据1959年到2008年中国人口的数据,改变思路,从人口增长速度方面进行数据分析,并预测未来人口。
二.问题分析表1 中国1959年至2008年人口表格(单位:亿)人口增长速度即为人口与时间的微分,则可以利用数据微分的知识进行微分估计,得到一组人口增长速度表。
由于普通的一阶微分精度较低,且端点数据不好处理,我们可以采用不同的多项式插值方法来估计微分。
对于中间的数据点,根据数值分析讲义第七章知识,可以采用四次多项式插值公式来获得微分:)88(121)(2112++---+-≈'j j j j j f f f f hx f (1)对于端点的数据,可以采用二次多项式插值公式来获得微分:)]()(4)(3[21)(2100x f x f x f hx f -+-≈'……………. (2) )](3)(4)([21)(2102x f x f x f hx f +-≈' ……………. (3) 通过使用上述公式进行人口增长速度计算,能够达到更高的精度。
接下来根据得到的人口增长速度表,可以通过数据拟合得到人口速度与时间的曲线图,这里采用9次多项式拟合。
………………….(4) (4)式中令n=9,得到9次多项式拟合。
那么接下来通过数值曲线积分可以估计未来几年人口增长的数量,从而得到未来几年的人口。
三.实验程序1. 输入人口数据;t=[1959:2008]; %输入年份数据p=[6.72,6.62,6.59,6.73,6.91,7.04,7.25,7.45,7.63,7.85,8.07,8.30,8.52,8.71,8.92,9.09,9.24,9.37,9.5,9.63,9.75,9.87,10.01,10.17,10.30, 10.44, 10.59, 10.75,10.93,11.10,11.27,11.43,11.58,11.71,11.85,11.98, 12.11, 12.23, 12.36, 12.47,12.57,12.67,12.76,12.85,12.92,13.00,13.08,13.14,13.21,13.28];%输入人口数据t=t-1950; %处理数据v=ones(1,50); %定义速度初始值2.对人口数据直接进行多项式拟合m=polyfit(t,p,9); %9次多项式系数组n=linspace(5,65,1000); %加密数据点c=polyval(m,n); %求多项式的拟合值plot(n,c); %作出人口与年份拟合曲线xlabel('时间/年')ylabel('人口/亿')3.进行人口增长速度计算通过上面(1)式对中间数据进行处理,得到速度值;(2)式对开始两个端点数据进行处理,(3)式对最后两个数据进行处理。
基于MATLAB的人口预测模型
基于 MATLAB 的人口预测模型摘要本文以 1980-2014 年中国年终总人口数据资料为依据,分别使用了一次拟合、灰色预测模型和时间序列模型进行拟合,最终得出时间序列模型的效果最优,得到了中国人口数量逐年增长,但同时增长速度逐渐放缓的结论,为政府制定人口、经济政策提供了一定的依据。
关键词:人口数量;一次拟合;灰色预测;时间序列前言世界人口的迅猛增长引起了许多问题。
特别是一些经济不发达国家的人口过度增长,影响了整个国家的经济发展、社会安定和人民生活水平的提高,给人类生活带来许多问题。
为了解决人口增长过快的问题,人类必须控制自己,做到有计划地生育,使人口的增长与社会、经济的发展相适应,与环境、资源相协调。
我国是世界上人口最多的发展中国家。
人口数量多、增长快、可耕地少、国家底子薄,这是我国的基本国情。
人口增长过快,严重制约着我国经济和社会发展的进程,影响着人民生活的改善和民族素质的提高。
从而造成社会再生产投入不足,严重影响国民经济的可持续发展。
认真分析我国目前的人口现状和特点,采取切实可行的措施控制人口的高速增长,提高人口的整体素质,已成为我国目前经济发展中需要解决的首要问题。
本文以中国近 35 年的人口数据尝试建立模型,分别建立了一次模型、灰色预测 GM(1,1)模型和时间序列 AR 模型,最终选取了拟合效果最好的时间序列模型,用于说明我国人口问题以及预测短期内人口数量变化,以及为我国即将面临的人口问题提供一些建议。
概念与引理定义 1[1]:人口问题,是由于人口在数量、结构、分布等方面快速变化,造成人口与经济、社会以及资源、环境之间的矛盾冲突。
人口数量问题,主要由非均衡生育(多子化和少子化)以及人口迁移造成,只有通过均衡生育(发达国家 2.17 胎,发展中国家 2.3 胎)和调控迁移来解决。
人口结构问题,主要包括年龄、性别、收入、人种、民族、宗教、教育程度、职业、家庭人数等人口结构问题;其中最为突出的是年龄(多子化、少子高龄化)、性别(男女比例失调)和收入(基尼系数高、中产塌陷)结构问题。
matlabregress人口经济预测模型代码解析
MATLAB中的regress函数是一个用于线性回归分析的工具,它可以用来建立人口增长与经济因素之间的关系模型。
以下是一个基本的人口经济预测模型代码解析:
matlab代码:
在这个例子中:
readtable函数用于从CSV文件中读取数据。
regress函数接受两个输入参数:因变量(这里是Population)和自变量(这里是Economy),并返回一个包含回归系数的向量。
第一个元素是截距,后面的元素是斜率和其他多项式系数(如果有)。
intercept和slope分别存储了截距和斜率。
使用回归方程
对未来的人口数量进行预测,其中new_Economy是预测的经济指标值。
最后,打印出预测的人口数量。
请注意,这只是一个基本的例子,实际的人口经济预测模型可能会更复杂,包括更多的变量、非线性关系以及其他统计方法。
此外,数据预处理(如缺失值处理、标准化等)和模型验证(如交叉验证、残差分析等)也是实际建模过程中不可或缺的步骤。
人口各省预测模型matlab_利用matlab编程求解人口预测模型.doc
⼈⼝各省预测模型matlab_利⽤matlab编程求解⼈⼝预测模型.doc利⽤matlab编程求解⼈⼝预测模型.doc利⽤matlab编程求解⼈⼝预测模型⼀、名词和符号说明名词解释:(1)拟合: 对于某个变化过程中的多个相互依赖的变量,可建⽴适当的数学模型,⽤于分析预报决策或控制该过程.对于两个变量可通过⽤⼀个⼀元函数去模拟这两个变量的取值.⽤不同的⽅法可得到不同的模拟函数.下⾯使⽤图表介⽤Mathematica做曲线拟合。
(2)差分⽅程:含有⾃变量,未知函数以及未知函数差分的函数⽅程,称为差分⽅程。
(3)迭代法:是⽜顿在17世纪提出的⼀种求解⽅程f(x)=0.多数⽅程不存在求根公式,从⽽求精确根⾮常困难,甚⾄不可能,从⽽寻找⽅程的近似根就显得特别重要。
设r是f(x)=0的根,选取x0作为r初始近似值,过点(,f())做曲线y=f(x)的切线L,L的⽅程为,求出L与x轴交点的横坐标 ,称为r的⼀次近似值,过点(,f())做曲线y=f(x)的切线,并求该切线与x轴的横坐标称为r的⼆次近似值,重复以上过程,得r的近似值序列{Xn},其中,称为r的n+1次近似值。
上式称为⽜顿迭代公式。
符号说明:第 k年i岁的⼥性总⼈数⼥性⼈⼝的(按年龄)分布向量第k年i岁的⼥性⽣育率第k年i岁的⼥性死亡率第 k年i岁的⼥性存活率i岁⼥性的⽣育模式 k年总和⽣育率(控制⼈⼝数量的主要参数)A 存活率矩阵B ⽣育模式矩阵⼆、模型假设针对本题中出现的数据的代表意义和建⽴模型时能够使问题理想化、简单化,我们应⽤已知数据,将其时间离散化,由于⼥性是影响总⼈⼝变化的主要因素 ,因此本模型从考虑⼥性⼈⼝的发展变化出发, 我们在不失科学性的前提下作出如下合理的基本假设:假设⼥性最⼤年龄为90岁,最⼩年龄为0岁,以1岁为1个年龄组,1年为1个时段,不考虑同⼀时间间隔内⼈⼝数量的变化。
(2) 中短期内,总和⽣育率、死亡率和出⽣性别⽐不会发⽣⼤的波动,可以以往年平均值代替预测值;(3) 长期⼈⼝预测的参数主要由政策决定;(4) 死亡率只与年龄有关,不考虑⽣存空间等⾃然资源的制约,不考虑意外灾难等因素对⼈⼝变化的影响。
matlab 生长曲线拟合
matlab 生长曲线拟合在MATLAB中进行生长曲线拟合时,通常会使用曲线拟合工具箱中的函数来实现。
首先,你需要准备好你的生长数据,包括时间和生长量的测量值。
然后,你可以使用polyfit函数进行多项式拟合,或者使用fit函数进行非线性拟合。
如果你选择使用polyfit函数进行多项式拟合,你需要提供时间和生长量的测量值作为输入,并指定要拟合的多项式的阶数。
例如,如果你想拟合一个二次多项式,你可以使用以下代码:matlab.p = polyfit(time, growth, 2);其中time是时间的测量值,growth是生长量的测量值,2表示拟合的多项式阶数。
拟合结果p将是一个包含多项式系数的向量,你可以使用polyval函数来计算拟合的生长曲线并绘制拟合结果。
另一种方法是使用fit函数进行非线性拟合,这需要指定一个拟合模型。
例如,如果你知道你的生长曲线遵循Logistic增长模型,你可以使用以下代码进行拟合:matlab.f = fit(time', growth', 'exp2');其中time和growth分别是时间和生长量的测量值,'exp2'表示拟合模型为二次指数模型。
拟合结果f将包含拟合的参数和拟合曲线,你可以使用plot函数来绘制拟合结果。
无论你选择哪种方法,都需要对拟合结果进行评估,包括拟合的好坏程度和参数的显著性。
你可以使用拟合后的曲线来预测未来的生长趋势,并对生长过程进行分析和预测。
总之,在MATLAB中进行生长曲线拟合可以帮助你理解生长过程的规律,预测未来的生长趋势,以及优化生长条件和策略。
希望这些信息能够帮助到你。
用MATLAB求解人口模型问题
用MATLAB 或Excel通过曲线拟合估计模型参数目的:(1)掌握利用Matlab估计模型参数的一些方法;(2)掌握利用Excel估计模型参数的一些方法。
方法:(1)在Matlab中,最小二乘曲线拟合(lsqcurvefit函数)、多项式拟合(polyfit函数)、曲线拟合攻击(cftool)。
(2)在Excel中,插入图表并添加趋势线。
练习题目:请用Matlab或Excel完成以下模型的参数估计问题,将相关命令、程序代码及运行结果(截图)粘贴在相应题目下方。
练习1:估计人口增长模型中的参数。
下表为美国1790-1990年人口数据(单位:百万)。
年1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890人口 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9年1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000人口76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4(模型1)指数增长模型:(模型2)阻滞增长模型:x txxxemm rt ()()=+--11(1)用1790~1900年数据估计模型(1)中参数;运行上述代码,得r=0.2743;lnx0=-1.1580,即x0=3.1836.所以1790年到1890年的拟合函数为线性函数ln(x(t))=0.2743t+1.1580 即: x(t)=3.1836e^(0.2743t);(2)用1790~2000年数据估计模型(1)中参数;>> t=[1:22];>> y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4];>> y=log(y);>> k=polyfit(t,y,1)得r=0.2022;lnx0=1.5970,即x0=4.9382;所以1790年到2000年的拟合函数为线性函数ln(x(t))=0.2022t+1.5970;即: x(t)=4.9382e^(0.2022t);clc;clear;t=[1:22];x(t)=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4];x1=4.9382*exp(0.2022*t);plot(t,x(t),'o',t,x1,'r')legend ('实验数据','拟合曲线');(3)用1790~2000年数据估计模型(2)中参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验目的
[1] 学习由实际问题去建立数学模型的全过程;
[2] 训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题;
[3] 应用matlab软件求解微分方程、作图、函数拟合等功能,设计matlab程序来求解
其中的数学模型;
[4] 提高论文写作、文字处理、排版等方面的能力;
通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘拟合问题不收敛时,如何调整初值,变换函数和数据使优化迭代过程收敛。
应用实验(或综合实验)
一、实验内容
从1790—1980年间美国每隔10年的人口记录如表综2.1所示:
表综2.1
用以上数据检验马尔萨斯(Malthus)人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进,并利用至少两种模型来预测美国2010年的人口数量。
二、问题分析
1:Malthus 模型的基本假设是:人口的增长率为常数,记为 r。
记时刻t的人口为x(t),(即x(t)为模型的状态变量)且初始时刻的人口为x0,于是得到如下微分方程:
⎪⎩⎪⎨⎧==0
)0(d d x x rx
t
x 2:阻滞增长模型(或Logistic 模型) 由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,假设人口的增长率为x 的减函数,如设r(x)=r(1-x/x m ),其中r 为固有增长率(x 很小时),x m 为人口容量(资源、环境能容纳的最大数量),于是得到如下微分方程:
⎪⎩
⎪
⎨⎧=-=0)0()1(d d x
x x x rx t
x
m
三、数学模型的建立与求解
根据Malthus 模型的基本假设,和Logistic 模型,我们可以分别求得微分方程的
解析解,
y1=x0*exp(r*x);
y2= xm/(1+x0*exp(-r*x))
对于1790—1980年间美国每隔10年的人口记录,分别用matlab 工具箱中非线性拟合函数的命令作一般的最小二乘曲线拟合,可利用已有程序lsqcurvefit 进行拟合,检验结果进一步讨论模型的改进,预测美国2010年的人口数量。
四、实验结果及分析
对于Malthus 模型 作一般的最小二乘曲线拟合,可利用已有程序lsqcurvefit 得到拟合函数为y=(3.54e-011)*exp(0.0149*x), 当x=2010时,预测的人口为359.4916
由于资源、环境等因素对人口增长的阻滞作用,人口增长到一定数量后,增长率会下降,运用Logistic 模型对微分方程的解进行拟合,得到y2= 360.4/(1+53.11 *exp(-0.02342*(x-1790)))
到2010年时,预计人口数量为y2 = 275.6894,
作图可以看出两条曲线拟合程度较高相比基本模型,改进模型更接近实际。
1780
1800
1820
1840
1860
1880
1900
1920
1940
1960
1980
0 50
100
150
200
250
x
y
fitted curve
五、附录(程序等)
Malthus 模型
1、编写拟合函数的文件fitful2.m
function y=fitful2(a,x)
y=a(1).*exp(a(2).*x);
2、运行的脚本文件
clc,clear
a0=[50,0.02];x
y
xdata=[1790:10:1980];
ydata=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5];
[a,resnorm,residual,flag,output]=lsqcurvefit('fitful2',a0,xdata,ydata )
xi=[1790:10:1980];
yi=fitful2(a,xdata)
plot(xdata,ydata,'r-o',xi,yi,'b-+')
xlabel('x'),ylabel('y=f(x)');
Logistic模型
程序:
x=[1790:10:1980]';
y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5]';
st_ = [500 30 0.2 ];
ft_ = fittype('a/(1+b*exp(-k*(x-1790)))',...
'dependent',{'y'},'independent',{'x'},...
'coefficients',{'a', 'b','k'});
cf_ = fit(x,y,ft_,'Startpoint',st_)
plot(cf_,'fit',0.95);hold on,plot(x,y,'*')。