初三中考数学复习 整式 专题练习题 含答案
中考数学总复习《整式的加减》专项提升训练(带有答案)
中考数学总复习《整式的加减》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.若x表示一个两位数,把数字3放在x的左边,组成一个三位数是( )A.3xB.3×100+xC.100x+3D.10x+32.某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品( )A.(3m+2)kgB.(5m+2)kgC.(3m﹣2)kgD.(5m﹣2)kg3.如果a﹣b=12,那么﹣3(b﹣a)的值是( )A.﹣35B.23C.32D.164.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是( )A.2B.17C.3D.165.下列各组单项式中,不是同类项的是( )A.12a3y与2ya33B.6a2mb与-a2bmC.23与32D.12x3y与-12xy36.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,77.多项式3x3﹣2x2y2+x+3是( )A.三次四项式B.四次四项式C.三次三项式D.四次三项式8.下列各题去括号所得结果正确的是( )A.x2﹣(x﹣y+2z)=x2﹣x+y+2zB.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C.3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣29.某商家在甲批发市场以每包a元的价格购进了40包茶叶,又在乙批发市场以每包b元(a>b)的价格购进了同样的茶叶60包,如果商家以每包a+b2元的价格卖出这种茶叶,那么卖完后,该商家( )A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定10.若多项式3x2﹣2(5+y﹣2x2)+mx2的值与x的值无关,则m等于( )A.0B.1C.﹣1D.﹣7二、填空题11.一个两位数个位为a,十位数字为b,这个两位数为.12.若a-2b=3,则9-2a+4b的值为.13.多项式5x2-7x2y-6x2y2+6是________次________项式.14.去括号:﹣6x3﹣[4x2﹣(x+5)]= .15.两个多项式的和是5x2﹣4x+5,其中一个多项式是﹣x2+2x﹣4,则另一个多项式是 .16.记Sn =a1,+a2+…an,令Tn=,则称Tn为a1,a2,…,an这列数的“凯森和”,已知a1,a2,…a500的“凯森和”为2004,那么1,a1,a2,…a500的“凯森和”为.三、解答题17.化简:﹣3x2y+3xy2+2x2y﹣2xy218.化简:2(a﹣1)﹣(2a﹣3)+319.化简:3a2+4(a2﹣2a﹣1)﹣2(3a2﹣a+1).20.化简:3(m﹣5n+4mn)﹣2(2m﹣4n+6mn).21.先化简再求值:2a2﹣[12(ab﹣4a2)+8ab]﹣12ab,其中a=1,b=13.22.为鼓励市民节约用水,某地推行阶梯式水价计费制,标准如下:每户居民每月用水不超过17立方米的按每立方米a元计费;超过17立方米而未超过30立方米的部分按每立方米b元计费;超过30立方米的部分按每立方米c元计费.(1)若某户居民在一个月内用水15立方米,则该用户这个月应交水费多少元?(2)若某户居民在一个月内用水28立方米,则该用户这个月应交水费多少元?(3)若某户居民在一个月内用水35立方米,则该用户这个月应交水费多少元?23.小明购买了一套经济适用房,地面结构如图所示(墙体厚度、地砖间隙都忽略不计,单位:米),他计划给卧室铺上木地板,其余房间都铺上地砖.根据图中的数据,解答下列问题:(结果用含x、y的代数式表示)(1)求整套住房需要铺多少平方米的地砖?(2)求客厅的面积比其余房间的总面积多多少平方米?24.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?25.化简求值:(1)已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2①求﹣A﹣3B②若x=﹣1,y=12时,﹣A﹣3B的值.(2)三角形的三边的长分别是2x+1,3x﹣2,8﹣2x(单位:cm),求这个三角形的周长,(用含x的代数式表示).如果x=3cm,三角形的周长是多少?参考答案1.B.2.B.3.C.4.B5.D6.C.7.B8.B.9.A.10.D.11.答案为:10b+a.12.答案为:313.答案为:四,四.14.答案为:﹣6x3﹣4x2+x+5.15.答案为:6x2﹣6x+9.16.答案为:2001.17.原式=﹣x2y+xy2;18.原式=2a﹣2﹣2a+3+3=4;19.原式=a2﹣6a﹣6.20.原式=3m﹣15n+12mn﹣4m+8n﹣12mn=﹣m﹣7n.21.解:2a2﹣[12(ab﹣4a2)+8ab]﹣12ab=2a2﹣[12ab﹣2a2+8ab]﹣12ab=2a2﹣12ab+2a2﹣8ab﹣12ab=4a2﹣ab﹣8ab;当a=1,b=13时原式=4×12﹣1×13﹣8×1×13=4﹣13﹣83=1.22.解:(1)∵某户居民在一个月内用水15立方米∴该用户这个月应交水费15a元;(2)∵某户居民在一个月内用水28立方米∴该用户这个月应交水费17a+(28﹣17)b=(17a+11b)元;(3)∵某户居民在一个月内用水35立方米∴该用户这个月应交水费是:17a+13b+(35﹣30)c=(17a+13b+5c)元;23.解:客厅的面积为6xm2,厨房的面积为6m2,卫生间的面积是2ym2,卧室的面积是12m2;(1)地砖的面积是(6x+6+2y)m2;(2)客厅的面积比其余房间的总面积多6x-(6+2y+12)=(6x-2y-18)m2.24.解:(1)设从甲仓库调往A县农用车x辆则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340到B的总费用=760﹣30×4=640故总费用=340+640=980.25.解:(1)①∵A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2∴﹣A﹣3B=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy﹣20y2;②当x=﹣1,y=12时,原式=﹣1﹣12﹣5=﹣612;(2)根据题意得:2x+1+3x﹣2+8﹣2x=(3x+7)cm 当x=3时,原式=9+7=16cm.。
2023年中考数学----整式之整式的乘除运算知识回顾与专项练习题(含答案解析)
2023年中考数学----整式之整式的乘除运算知识回顾与专项练习题(含答案解析)知识回顾1. 单项式乘单项式:系数相乘得新的系数,再把同底数幂相乘。
对应只在其中一个因式存在的字母,连同它的指数一起作为积的一个因式。
2. 单项式乘多项式:利用单项式去乘多项式的每一项,得到单项式乘单项式,再按照单项式乘单项式进行计算,把得到的结果相加。
()ac ab c b a +=+注意:多项式的每一项都包含前面的符号。
3. 多项式乘多项式:利用前一个多项式的每一项乘后一个多项式的每一项,得到单项式乘单项式,再按照单项式还曾单项式进行计算,把得到的结果相加。
()()bd bc ad ac d c b a +++=++ 4. 单项式除以单项式:系数相除得到新的系数,再把同底数幂相除。
对于只在被除式里面存在的字母,连同它的指数一起作为商的一个因式。
5. 多项式除以单项式:利用多项式的每一项除以单项式,得到单项式除以单项式,再按照单项式除以单项式进行计算,再把多得到的结果相加。
6. 乘法公式:①平方差公式:()()22b a b a b a −=−+。
②完全平方公式:()2222b ab a b a +±=±。
1、(2022•黔西南州)计算(﹣3x )2•2x 正确的是( ) A .6x 3B .12x 3C .18x 3D .﹣12x 3【分析】先算积的乘方,再算单项式乘单项式即可. 【解答】解:(﹣3x )2•2x =9x 2•2x =18x 3.故选:C.2、(2022•常德)计算x4•4x3的结果是()A.x B.4x C.4x7D.x11【分析】根据同底数幂的乘法运算法则进行计算便可.【解答】解:原式=4•x4+3=4x7,故选:C.3、(2022•陕西)计算:2x•(﹣3x2y3)=()A.﹣6x3y3B.6x3y3C.﹣6x2y3D.18x3y3【分析】直接利用单项式乘单项式计算,进而得出答案.【解答】解:2x•(﹣3x2y3)=﹣6x3y3.故选:A.4、(2022•温州)化简(﹣a)3•(﹣b)的结果是()A.﹣3ab B.3ab C.﹣a3b D.a3b【分析】先化简乘方,再根据单项式乘单项式的法则计算即可.【解答】解:原式=﹣a3•(﹣b)=a3b.故选:D.5、(2022•聊城)下列运算正确的是()A.(﹣3xy)2=3x2y2B.3x2+4x2=7x4C.t(3t2﹣t+1)=3t3﹣t2+1D.(﹣a3)4÷(﹣a4)3=﹣1【分析】A、根据积的乘方与幂的乘方运算判断即可;B、根据合并同类项法则计算判断即可;C、根据单项式乘多项式的运算法则计算判断即可;D、根据积的乘方与幂的乘方、同底数幂的除法法则计算即可.【解答】解:A、原式=9x2y2,不合题意;B、原式=7x2,不合题意;C、原式=3t3﹣t2+t,不合题意;D、原式=﹣1,符合题意;故选:D.6、(2022•台湾)计算多项式6x2+4x除以2x2后,得到的余式为何?()A.2B.4C.2x D.4x【分析】利用多项式除以单项式的法则进行计算,即可得出答案.【解答】解:(6x2+4x)÷2x2=3...4x,∴余式为4x,故选:D.7、(2022•上海)下列运算正确的是()A.a2+a3=a6B.(ab)2=ab2C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【分析】根据合并同类项法则,积的乘方的运算法则,完全平方公式以及平方差公式即可作出判断.【解答】解:A、a2和a3不是同类项,不能合并,故本选项不符合题意;B、(ab)2=a2b2,故本选项不符合题意;C、(a+b)2=a2+2ab+b2,故本选项不符合题意;D、(a+b)(a﹣b)=a2﹣b2,故本选项符合题意.故选:D.8、(2022•赤峰)已知(x+2)(x﹣2)﹣2x=1,则2x2﹣4x+3的值为()A.13B.8C.﹣3D.5【分析】先根据平方差公式进行计算,求出x2﹣2x=5,再变形,最后代入求出答案即可.【解答】解:(x+2)(x﹣2)﹣2x=1,x2﹣4﹣2x=1,x2﹣2x=5,所以2x2﹣4x+3=2(x2﹣2x)+3=2×5+3=10+3=13,故选:A.9、(2022•广元)下列运算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.3y•2x2y=6x2y2D.(x﹣2y)(x+2y)=x2﹣2y2【分析】根据合并同类项判断A选项;根据幂的乘方与积的乘方判断B选项;根据单项式乘单项式判断C选项;根据平方差公式判断D选项.【解答】解:A选项,x2与x不是同类项,不能合并,故该选项不符合题意;B选项,原式=9x2,故该选项不符合题意;C选项,原式=6x2y2,故该选项符合题意;D选项,原式=x2﹣(2y)2=x2﹣4y2,故该选项不符合题意;故选:C.10、(2022•益阳)已知m,n同时满足2m+n=3与2m﹣n=1,则4m2﹣n2的值是.【分析】观察已知和所求可知,4m2﹣n2=(2m+n)(2m﹣n),将代数式的值代入即可得出结论.【解答】解:∵2m+n=3,2m﹣n=1,∴4m2﹣n2=(2m+n)(2m﹣n)=3×1=3.故答案为:3.11、(2022•遵义)已知a+b=4,a﹣b=2,则a2﹣b2的值为.【分析】根据平方差公式将a2﹣b2转化为(a+b)(a﹣b),再代入计算即可.【解答】解:∵a+b=4,a﹣b=2,∴a2﹣b2=(a+b)(a﹣b)=4×2=8,故答案为:8.12、(2022•资阳)下列计算正确的是()A.2a+3b=5ab B.(a+b)2=a2+b2C.a2×a=a3D.(a2)3=a5【分析】根据合并同类项法则,完全平方公式,同底数幂的乘法法则以及幂的乘方运算法则即可求出答案.【解答】解:A.2a与3b不是同类项,所以不能合并,故A不符合题意B.(a+b)2=a2+2ab+b2,故B不符合题意C.a2×a=a3,故C符合题意D.(a2)3=a6,故D不符合题意.故选:C.13、(2022•枣庄)下列运算正确的是()A.3a2﹣a2=3B.a3÷a2=aC.(﹣3ab2)2=﹣6a2b4D.(a+b)2=a2+ab+b2【分析】根据合并同类项法则,积的乘方、幂的乘方法则及单项式除法法则、完全平方公式逐项判断.【解答】解:A、3a2﹣a2=2a2,故A错误,不符合题意;B、a3÷a2=a,故B正确,符合题意;C、(﹣3a3b)2=9a6b2,故C错误,不符合题意;D、(a+b)2=a2+2ab+b2,故D不正确,不符合题意;故选:B.14、(2022•兰州)计算:(x+2y)2=()A.x2+4xy+4y2B.x2+2xy+4y2C.x2+4xy+2y2D.x2+4y2【分析】利用完全平方公式计算即可.【解答】解:(x+2y)2=x2+4xy+4y2.故选:A.15、(2022•乐山)已知m2+n2+10=6m﹣2n,则m﹣n=.【分析】根据完全平方公式得出m和n的值即可得出结论.【解答】解:∵m2+n2+10=6m﹣2n,∴m2﹣6m+9+n2+2n+1=0,即(m﹣3)2+(n+1)2=0,∴m=3,n=﹣1,∴m﹣n=4,故答案为:4.16、(2022•滨州)若m+n=10,m n=5,则m2+n2的值为.【分析】根据完全平方公式计算即可.【解答】解:∵m+n=10,mn=5,∴m2+n2=(m+n)2﹣2mn=102﹣2×5=100﹣10=90.故答案为:90.17、(2022•德阳)已知(x+y)2=25,(x﹣y)2=9,则xy=.【分析】已知两式左边利用完全平方公式展开,相减即可求出xy的值.【解答】解:∵(x+y)2=x2+y2+2xy=25,(x﹣y)2=x2+y2﹣2xy=9,∴两式相减得:4xy=16,则xy=4.故答案为:418、(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b2【分析】左边大正方形的边长为(a+b),面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,根据面积相等即可得出答案.【解答】解:根据题意,大正方形的边长为a+b,面积为(a+b)2,由边长为a的正方形,2个长为a宽为b的长方形,边长为b的正方形组成,所以(a+b)2=a2+2ab+b2.故选:A.19、(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【分析】去括号后合并同类项即可得出结论.【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.本课结束。
中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案
中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案一、选择题1.下列计算正确的是()A.(3a)2=6a2B.(a2)3=a5C.a6÷a2=a3D.a2⋅a=a32.若8x=21,2y=3,则23x−y的值是()A.7 B.18 C.24 D.633.计算(−2ab)(ab−3a2−1)的结果是()A.−2a2b2+6a3b B.−2a2b2−6a3b−2abC.−2a2b2+6a3b+2ab D.−2a2b2+6a3b−14.若(x−1)(x+4)=x2+ax+b,则a、b的值分别为().A.a=5,b=4 B.a=3,b=−4 C.a=3,b=4 D.a=55.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若27×3x=39,则x的值等于10.计算:(√3−√2)(√3+√2)=.11.在实数范围内分解因式2x2+3x−1=.12.要使(y2−ky+2y)⋅(−y)的展开式中不含y2项,则k的值是.13.已知4y2−my+9是完全平方式,则m的值为.三、解答题14.计算:(2a−1)(a+2)−6a3b÷3ab.15.把下列多项式分解因式:(1)a4−8a2b2+16b4(2)x2(y2−1)+2x(y2−1)+(y2−1)16.已知a+b=5,ab=−6,求:(1)a2b+ab2的值;(2)a2+b2的值;(3)a-b的值.17.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的____(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35利用得到的结论,求a2+b2+c2的值.参考答案1.D2.A3.C4.B5.C6.C7.B8.A9.610.111.2(x −−3+√174)(x −−3−√174)12.213.±1214.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:a 4−8a 2b 2+16b 4=(a 2−4b 2)2=(a +2b)2(a −2b)2(2)解:x 2(y 2−1)+2x(y 2−1)+(y 2−1)=(x 2+2x +1)(y 2−1)=(x +1)2(y +1)(y −1)16.(1)解:∵a +b =5,ab =−6∴a 2b +ab 2=ab(a +b)=−30(2)解: a 2+b 2=(a +b)2−2ab=25+12=37(3)解: (a −b)2=a 2+b 2−2ab=37+12=49故a−b=±7 .17.(1)C(2)否;(x−2)4(3)解:设x2−2x+1=y原式=(y−1)(y+1)+1=y2−1+1=y2=(x2−2x+1)2=[(x−1)2]2=(x−1)4.18.(1)解:∵边长为(a+b+c)的正方形的面积为:(a+b+c)2,分部分来看的面积为a2+b2+c2+2ab+ 2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)解:∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)解:∵a+b+c=10∴a2+b2+c2=(a+b+c)2−2ab−2bc−2ac=102−2×35=30∴a2+b2+c2的值为30.。
中考数学一轮复习:代数式与整式(含因式分解)过关练测(word版、含答案)
3.代数式与整式(含因式分解)一、选择题1.下列各式中正确的是()A.a3·a2=a6B.3ab-2ab=1C.6a2+13a=2a+1 D.a(a-3)=a2-3a2.下列运算正确的是()A.(-a)³=a³B.(a²)³=a⁵C.a²÷a-²=1D.(-2a³)²=4a⁶3.下列各式计算正确的是()A.4a-a=3B.a⁶÷a²=a³C.(-a³)²=a⁶D.a³·a²=a⁶4.下列运算正确的是()A.a²·a³=a⁶B.a⁸÷a⁴=a²C.a³+a³=2a⁶D.(a³)²=a⁶5.计算(a²)³的结果是()A.a⁵B.a⁶C.a⁸D.a⁹6.下列运算正确的是()A.3a²-a²=3B.(a²)³=a⁵C.a³·a⁶=a⁹D.(2a²)²=4a²7.小明总结了以下结论:①a(b+c)=ab+ac;②a(b-c)=ab-ac;③(b-c)÷a =b÷a-c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0).其中一定成立的个数是()A.1B.2C.3D.48.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a -b)²=a ²-2ab +b ²B.a(a -b)=a ²-abC.(a -b)²=a ²-b ²D.a ²-b ²=(a +b)(a -b)9.下列等式从左到右变形,属于因式分解的是( )A.(a +b)(a -b)=a2-b2B.x2-2x +1=(x -1)2C.2a -1=a ⎝ ⎛⎭⎪⎫2-1a D.x2+6x +8=x(x +6)+810.若(92-1)(112-1)k=8×10×12,则k =( ) A.12 B.10 C.8 D.611.对于任意的有理数a ,b ,如果满足a 2+b 3=a +b2+3,那么我们称这一对数a ,b 为“相随数对”,记为(a ,b ).若(m ,n )是“相随数对”,则3m +2[3m +(2n -1)]=( )A.-2B.-1C.2D.312.从前,古希腊一位庄园主把一块边长为a 米(a >6)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加6米,相邻的另一边减少6米,变成矩形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.没有变化B.变大了C.变小了D.无法确定二、填空题13.分解因式:m ²n -n ³= .14.分解因式:3a ²-6a +3= .15.分解因式:2a ³-8a = .16.已知m+n=12,m-n=2,则m²-n²=.17.分解因式:2a²-8=.18.分解因式:mn²-m=.19.分解因式:x³-xy²=.20.分解因式:x²y-y=.21.分解因式:2a²-4a+2=.22.数学讲究记忆方法.如计算(a⁵)²时若忘记了法则,可以借助(a⁵)²=a⁵×a⁵=a⁵+⁵=a¹º,得到正确答案.你计算(a²)⁵-a³×a⁷的结果是.23.现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片块.24.下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第个图形共有210个小球.三、计算题25.计算:(x-y)²+x(x+2y).26.先因式分解,再计算求值:2x³-8x,其中x=3.27.小红在计算a(1+a)-(a-1)²时,解答过程如下:红的解答从第步开始出错,请写出正确的解答过程.参考答案一、选择题1.D2.D3.C4.D5.B6.C7.C8.D9.B 10.B 11.A 12.C二、填空题13.n(m+n)(m-n)14.3(a-1)²15.2a(a+2)(a-2)16.2417.2(a+2)(a-2)18.m(n+1)(n-1)19.x(x+y)(x-y)20.y(x+1)(x-1)21.2(a-1)²22.(1)a²+b²(2)423.m²-m24.20三、计算题25.解:原式=x²-2xy+y²+x²+2xy=2x²+y².26.解:原式=2x(x²-4)=2x(x+2)(x-2).当x=3时,原式=2×3×(3+2)×(3-2)=30.27.第一步解:(1+a)-(a-1)²=a+a²-(a²-2a+1)=a+a²-a²+2a-1=3a-1.。
2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)
2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)1. 合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。
2. 整式的加减的实质:合并同类项。
3. 整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。
②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。
③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。
④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。
4. 乘法公式:①平方差公式:()()22b a b a b a −=−+。
②完全平方公式:()2222b ab a b a +±=±。
5. 因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a −+=−22完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则: ()()n x m x c bx x ++=++2。
31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21. 【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21. 【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时, 原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣ =1+1+2×+﹣1﹣2 =2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值. 【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值: (1)(x ﹣x 1)2; (2)x 4+41x. 【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵=, ∴= = =﹣4x • =32﹣4=5;(2)∵=,∴=+2 =5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°; (2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。
2023年中考数学----整式加减运算知识回顾及专项练习题(含答案解析)
2023年中考数学----整式加减运算知识回顾及专项练习题(含答案解析)知识回顾1.整式的加减运算:整式加减运算的实质就是合并同类项。
专项练习题(含答案解析)1、(2022•泰州)下列计算正确的是()A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn2【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=5ab,符合题意;B、原式=3y2,不符合题意;C、原式=8a,不符合题意;D、原式不能合并,不符合题意.故选:A.2、(2022•包头)若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为.【分析】现根据题意列出算式,再去掉括号合并同类项即可.【解答】解:由题意得,这个多项式为:(2xy+3y2﹣5)﹣(3xy+2y2﹣8)=2xy+3y2﹣5﹣3xy﹣2y2+8=y2﹣xy+3.故答案为:y2﹣xy+3.3、(2022•吉林)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.【分析】根据题意合并同类项即可.【解答】解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.4、(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.本课结束。
2024年中考数学一轮复习练习题:整式的加减(含答案)
2024年中考数学一轮复习练习题:整式的加减一、单选题1.下列各式计算正确的是( )A .2x•3x 2=6x 2B .(﹣3a 2b )2=6a 4b 2C .﹣a 2+2a 2=a 2D .(a+b )(a ﹣2b )=a 2﹣2b 22.已知A=5a ﹣3b ,B=﹣6a+4b ,则A ﹣B 等于( )A .﹣a+bB .11a+bC .11a ﹣7bD .﹣a ﹣7b3.代数式的4x ﹣4﹣(4x ﹣5)+2y ﹣1+3(y ﹣2)值( )A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x ,y 都有关4.单项式 ―m 2n 3 的系数、次数分别是( )A .―1,3B .―13,3C .13,3D .―13, 25.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A .13x ﹣1B .6x 2+13x ﹣1C .5x+1D .﹣5x ﹣16.如果单项式x m+2n y 与x 4y 4m ﹣2n 的和是单项式,那么m ,n 的值为( )A .m=﹣1,n=1.5B .m=1,n=1.5C .m=2,n=1D .m=﹣2,n=﹣17.已知a ,b ,c 在数轴上对应的点如图所示,则代数式|b ―a|―|c +b|+|a ―c|化简后的结果为( )A .2b ―2cB .2b +2aC .2bD .―2a 8.不改变多项式3b 3―2ab 2+4a 2b ―a 3的值,把后三项放在前面是“-”号的括号中,以下正确的是( )A .3b 3―(2ab 2+4a 2b ―a 3)B .3b 3―(2ab 2+4a 2b +a 3)C .3b 3―(―2ab 2+4a 2b ―a 3)D .3b 3―(2ab 2―4a 2b +a 3)二、填空题9.计算: 3x ―2x = .10.代数式2x ﹣4y ﹣3中,y 的系数是 ,常数项是 .11.单项式﹣ 12 y 2﹣bx 2a 与 14 x 3﹣ay b 是同类项,那么3b ﹣3a 的值是 .12.长方形的长为 2b ―a ,宽比长少 b ,则这个长方形的周长是 .13.一个多项式 A 与 x 2―2x +1 的和是 3x ―6 ,则这个多项式 A 为 .三、解答题14.化简:(1)5m +2n ―m ―3n(2)3a 2―1―2a ―5+3a ―a 2(3)14ab 2―5a 2b ―34a 2b +0.75ab 2(4)4(m +n)―5(m +n)+2(m +n)15.已知A=x 2+ax ,B=2bx 2﹣4x ﹣1,且多项式2A+B 的值与字母x 的取值无关,求a ,b 的值. 16.先化简,再求值:2(m 2―2mn)+[(m 2+4mn)―(2m 2+n 2)],其中m ,n 的取值如图所示.17.已知A =2x 2+3mx ―2x ―1,B =―x 2+mx ―1.(1)求3A +6B 的值;(2)若3A +6B 的值与x 无关,求m 的值.18.红枣丰收了,为了运输方便,小华的爸爸打算把一个长为(a+2b) cm 、宽为(a+b)cm 的长方形纸板制成一个有底无盖的盒子,在长方形的四个角各截去一个边长为12 bcm 的小正方形,然后沿虚线折起即可,如图所示.(1)现将盒子的外表面贴上彩纸,用代数式表示至少需要多大面积的彩纸;(2)当a=8,b=6时,求所需彩纸的面积.答案1.C2.C3.C4.B5.D6.B7.D8.D9.x10.﹣4;﹣311.012.6b ―4a13.―x 2+5x ―714.(1)解: 5m +2n ―m ―3n=(5―1)m +(2―3)n=4m ―n ;(2)解: 3a 2―1―2a ―5+3a ―a 2=(3―1)a 2+(3―2)a ―(1+5)=2a 2+a ―6 ;(3)解: 14ab 2―5a 2b ―34a 2b +0.75ab 2=(14ab 2+34ab 2)―(5a 2b +34a 2b)=ab 2―234a 2b ;(4)解: 4(m +n)―5(m +n)+2(m +n)=(4+2―5)(m +n)=m +n .15.解:∵A=x 2+ax ,B=2bx 2﹣4x ﹣1,∴2A+B=2(x 2+ax )+(2bx 2﹣4x ﹣1)=2x 2+2ax+2bx 2﹣4x ﹣1=(2+2b )x 2+(2a ﹣4)x ﹣1,由结果与x取值无关,得到2+2b=0,2a﹣4=0,解得:a=2,b=﹣116.解:原式=2m2―4mn+m2+4mn―2m2―n2=m2―n2,由数轴标注的m,n的值可知m=―2,n=3,当m=―2,n=3时,原式=(―2)2―32=4―9=―5.17.(1)解:3A+6B=3(2x2+3mx―2x―1)+6(―x2+mx―1)=6x2+9mx―6x―3―6x2+6mx―6=15mx―6x―9=(15m―6)x―9(2)解:3A+6B=15mx―6x―9=(15m―6)x―9,因为该多项式的值与x无关,所以15m―6=0,则m≠2.518.略。
中考数学总复习《整式的加减》专项测试卷-附带参考答案
中考数学总复习《整式的加减》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.用正三角形、正四边形和正六边形按如图所示的规律拼图案,则第n个图案中正三角形的个数为( )A.2n+1B.3n+2C.4n+2D.4n−22.根据如图所示的计算程序,若输入的值x=−3,则输出y的值为( )A.−2B.−8C.10D.133.“比a的2倍大1的数”,列式表示是( )A.2(a+1)B.2(a−1)C.2a+1D.2a−14.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为( )A.xy B.x+y C.10y+x D.10x+y 5.单项式−xy3z4的系数及次数分别是( )A.系数是0,次数是7B.系数是1,次数是8C.系数是−1,次数是7D.系数是−1,次数是86.根据以下程序,当输入x=−2时,输出结果为( )A.−5B.−2C.0D.37.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A.84B.336C.452D.5108.下列各式中,不是整式的是( )A.6xy B.yxC.x+9D.4二、填空题(共5题,共15分)9...如果m和n互为相反数,那么化简(3m−n)−(m−3n)的结果是.10.已知21×2=21+2,32×3=32+3,43×4=43+4⋯若ab×10=ab+10(a,b都是正整数),则a+b的最小值是.11. (−√9)2的平方根是x,64的立方根是y,则x+y的值为.12.写出一个单项式,使得它与多项式m+2n的和为单项式:.13.如果关于x的多项式ax2−abx+b与bx2+abx+2a的和是一个单项式,那么a 与b的关系是.三、解答题(共3题,共45分)14.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为T=2π√lg,其中T(s)表示周期,l(m)表示摆长,g取9.8m/s2,假如一台座钟摆针的摆长为0.5m,它每摆动一个来回发出一次滴答声,那么在1min内,该座钟大约发出了多少次滴答声?(π取3.14)15.现有大小两艘轮船,小船每天运x吨货物,大船比小船每天多运10吨货物,现在让大船完成运送100吨货物的任务,小船完成运送80吨货物的任务.(1) 分别写出大船、小船完成任务用的时间;(2) 试说明哪艘轮船完成任务用的时间少.16.已知两个关于x,y的单项式mx3a−4y3与−2nx a+2y3是同类项(其中xy≠0).(1) 求a的值;(2) 如果它们的和为零,求(2m−4n−1)2021的值.参考答案1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】D5. 【答案】D6. 【答案】B7. 【答案】C8. 【答案】B9. 【答案】−110. 【答案】1911. 【答案】1或712. 【答案】−m13. 【答案】a=−b或b=−2a14. 【答案】将l=0.5m,g=9.8m/s2代入T=2π√lg 中,得T=2π√0.59.8≈1.42(s)于是60T =601.42≈42(次).答:在1min内,该座钟大约发出了42次滴答声.15. 【答案】(1) 大船完成任务用的时间为100x+10天,小船完成任务用的时间为80x天.(2) 100x+10−80x=20x−800x(x+10)=20(x−40)x(x+10)(天)因为x>0,所以x+10>0,所以当x>40时20(x−40)x(x+10)>0,即100x+10>80x,小船所用时间少;当x=40时20(x−40)x(x+10)=0,即100x+10=80x,两船所用时间相同;当x<40时20(x−40)x(x+10)<0,即100x+10<80x,大船所用时间少.16. 【答案】(1) 由题意得3a−4=a+2解得a=3.(2) 由题意得m−2n=0∴2m−4n=0∴(2m−4n−1)2021=(−1)2021=−1.。
中考数学总复习《整式与因式分解》专题训练-附答案
中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。
中考数学复习《整式的加减》专项提升训练题-附答案
中考数学复习《整式的加减》专项提升训练题-附答案学校:班级:姓名:考号:一、单选题1.整式中单项式的个数为()A.2 B.3 C.4 D.52.已知多项式,下面说法正确的是()A.它是四次五项式B.三次项式C.常数项是5 D.一次项系数是13.下列选项中,两个整式的结果相同的是()A.和B.和C.和D.和4.下列去括号正确的是()A.B.C.D.5.如果与是同类项,那么m,n的值是()A.m=2,n=1 B.m=0,n=1C.m=2,n=2 D.m=1,n=26.已知.若的值与无关,则的值为()A.B.4 C.D.27.已知一个多项式与的和等于,则这个多项式是()A.B.C.D.8.为落实“双减”政策,某校利用课后服务开展形式多样的活动,七、八、九年级共有50人参加书法学习,其中七年级的人数比八年级人数的2倍少1人,设八年级的人数为人,则九年级的人数为().A.B.C.D.二、填空题9.若,则括号内的式子为.10.若多项式是关于,的三次三项式,则常数.11.已知三角形第一边的长为,第二边比第一边长a-b,第三边比第二边短a,则这个三角形的周长是(用含字母的代数式表示)12.若多项式与多项式的和不含二次项,则等于.13.已知有理数a,b,c,其大小关系为:,化简代数式等于.三、计算题14.(1)(2)15.先化简,再求值:,其中.16.已知和.(1)求,结果用含m,n的式子表示;(2)若的值与字母m的取值无关,求n的值.17.某位同学做一道题:已知两个多项式,且,求的值,他误将“”看成“”,求得结果为.(1)求多项式;(2)求的正确结果.18.某公司生产一种电子产品和配件,已知该电子产品的售价为200元/台,配件的售价为20元/个,在促销活动期间,有如下两种优惠方案(顾客只能选择其中一种优惠方案):①买一台电子产品送一个配件;②电子产品每台降价10元出售,配件每个打9折.在促销活动期间,某学校计划到该公司购买台电子产品,个配件.(1)分别求该校选择优惠方案①,②购买该电子产品和配件所需的总费用;(用含x、y的代数式来表示)(2)若该校计划购买该电子产品10台,配件20个,请通过计算判断,选择哪种优惠方案更省钱?参考答案:1.【答案】B2.【答案】D3.【答案】D4.【答案】B5.【答案】A6.【答案】A7.【答案】A8.【答案】C9.【答案】10.【答案】-111.【答案】7a+b12.【答案】413.【答案】14.【答案】(1)解:原式=-(2m-3m+3n-3-2)-1=-(-m+3n-5)-1=m-3n+5-1=m-3n+4.(2)解:原式=5x2-6y2+10x2-4y2+7xy=15x2-10y2+7xy15.【答案】解:(1)==当时原式===.16.【答案】(1)解:因为所以====.(2)解:因为,的值与字母m的取值无关所以解得.17.【答案】略18.【答案】(1)解:选择①所需总费用为(元)选择②所需总费用为(元).(2)解:当,时选择优惠方案①需要的费用:(元);选择优惠方案②需要的费用:(元).因为故答案为:优惠方案①更省钱。
中考数学总复习《整式的乘法》专项提升训练(带有答案)
中考数学总复习《整式的乘法》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算a •a 2的结果是( )A .a 3B .a 2C .3aD .2a 22.如果a 2n ﹣1a n+5=a 16,那么n 的值为( )A.3B.4C.5D.63.计算(-a 3)2的结果是( )A.-a 5B.a 5C.a 6D.-a 64.如果3a =5,3b =10,那么9a ﹣b 的值为( ) A.12 B.14 C.18D.不能确定 5.下列运算错误的是( )A.-m 2·m 3=-m 5B.-x 2+2x 2=x 2C.(-a 3b)2=a 6b 2D.-2x(x-y)=-2x 2-2xy6.若x+y=2,xy=-2 ,则(1-x)(1-y)的值是( ) A.-1 B.1 C.5 D.-37.如图所示,从边长为a 的大正方形中挖去一个边长是b 的小正方形,小明将图a 中的阴影部分拼成了一个如图b 所示的长方形,这一过程可以验证( )A.a 2+b 2﹣2ab=(a ﹣b)2B.a 2+b 2+2ab=(a+b)2C.2a 2﹣3ab+b 2=(2a ﹣b)(a ﹣b)D.a 2﹣b 2=(a+b)(a ﹣b)8.若4x 2+kx +25=(2x +a)2,则k +a 的值可以是( )A.﹣25B.﹣15C.15D.209.计算20222﹣2021×2023的结果是( )A.1B.﹣1C.2D.﹣210.观察下列各式及其展开式:(a +b)2=a 2+2ab +b 2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是( )A.36B.45C.55D.66二、填空题11.已知39m•27m=36,则m=________.12.若(mx3)·(2x k)=﹣8x18,则适合此等式的m=______,k=_____.13.如图是一个L形钢条的截面,它的面积为________14.如图,两个正方形边长分别为a、b,如果a+b=7,ab=13,则阴影部分的面积为.15.已知x2+2x=3,则代数式(x+1)2﹣(x+2)(x﹣2)+x2的值为_____.16.化简:6(7+1)(72+1)(74+1)(78+1)+1= .三、解答题17.化简:(x+3)(x+4)﹣x(x﹣1)18.化简:(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19.化简:(x﹣6)(x+4)+(3x+2)(2﹣3x)20.化简:(3a+2b)(2a-3b)-(a-2b)(2a-b).21.先化简,再求值:[(x+2y)2﹣(x+y)(x﹣y)﹣5y2]÷2x,其中x=﹣2,y=1 2.22.已知(x2+px+8)(x2-3x+q)的展开式中不含x2和x3项,求p,q的值.23.已知a+b=7,ab=12.求:(1)a2+b2;(2)(a-b)2的值.24.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?25.阅读材料:把形ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4= .(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC 的形状,并说明理由.参考答案1.A2.B3.C4.B5.D6.D7.D8.A9.A10.B11.答案为:12 .12.答案为:﹣4,15.13.答案为:ac+bc-c2.14.答案为:515.答案为:816.答案为:73217.原式=8x+12.18.原式=4x2+4x+1﹣y219.原式=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.20.原式=4a2-8b2.21.解:原式=(x2+4xy+4y2﹣x2+y2﹣5y2)÷2x=4xy÷2x=2y当x=﹣2,y=12时,原式=1.22.解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(p-3)x3+(q-3p+8)x2+(pq-24)x+8q.[来源:学科网] 因为展开式中不含x2和x3项所以p-3=0,q-3p+8=0解得p=3,q=1.23.解:(1)a2+b2=(a+b)2-2ab=72-2×12=49-24=25;(2)(a-b)2=(a+b)2-4ab=72-4×12=49-48=1.24.解:(1)28和2012都是神秘数;(2)这两个连续偶数构造的神秘数是4的倍数;(3)两个连续奇数的平方差不是神秘数.25.解:(1)∵a2﹣4a+4=(a﹣2)2,故答案为:(a﹣2)2;(2)∵a2+2a+b2﹣6b+10=0∴(a+1)2+(b﹣3)2=0∴a=﹣1,b=3∴a+b=2;(3)△ABC为等边三角形.理由如下:∵a2+4b2+c2﹣2ab﹣6b﹣2c+4=0∴(a﹣b)2+(c﹣1)2+3(b﹣1)2=0∴a﹣b=0,c﹣1=0,b﹣1=0∴a=b=c=1∴△ABC为等边三角形.。
九年级《数学》整式及其运算专题中考真题测试题(含解析)
整式及其运算专题测试题一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a -=( )A .aB .a -C .3aD .12.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a -=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 3.(2023·江西·统考中考真题)计算()322m 的结果为( )A .68mB .66mC .62mD .52m4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a -=B .325a a a ⋅=C .321a a ÷=D .()23a a =5.(2023·山东滨州·统考中考真题)下列计算,结果正确的是() A .235a a a ⋅= B .()325a a = C .33()ab ab = D .23a a a ÷=6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a7.(2023·湖南常德·统考中考真题)若2340a a +-=,则2263a a +-=() A .5 B .1 C .1- D .08.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是()A .23a a +B .23a a ⋅C .23()aD .102a a ÷9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=10.(2023·云南·统考中考真题)下列计算正确的是( )C .233a b a a ÷=D .222()()4a a a +-=-30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( ) A .23232332a b a b a b -=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a =35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( ) A .22434b b b += B .()246a a = C .()224x x -= D .326a a a ⋅=36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=37.(2023·内蒙古·统考中考真题)下列各式计算结果为5a 的是( )A .()23aB .102a a ÷C .4a a ⋅D .15(1)a --38.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是( )A .6B .5-C .3-D .439.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab -=C .34()a a a -⋅=D .222()a b a b +=+40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a -=41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -=二、填空题 42.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为________.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.45.(2023·全国·统考中考真题)计算:(3)a b +=_________.46.(2022秋·上海·七年级专题练习)计算:2232a a -=________.47.(2023·湖北十堰·统考中考真题)若3x y +=,且2y =,则22x y xy +的值是___________________.48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,且7ab =,则22a b ab +的值为______.49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.三、解答题整式及其运算专题答案一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a -=( )A .aB .a -C .3aD .1 【答案】A【分析】根据合并同类项法则进行计算即可.【详解】解:2a a a -=,故A 正确.故选:A .【点睛】本题主要考查了合并同类项,解题的关键是熟练掌握合并同类项法则,准确计算.2.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a -=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 【答案】D【分析】根据合并同类项可判断A ,根据完全平方公式可判断B ,根据单项式除以单项式可判断C ,根据积的乘方与幂的乘方运算可判断D ,从而可得答案.【详解】解:3a 3,a 2不是同类项,不能合并,故A 不符合题意.()2222a b a ab b +=++,故B 不符合题意.3222a b a ab ÷=,故C 不符合题意.()2242a b a b =,故D 符合题意.故选:D.【点睛】本题考查的是合并同类项,完全平方公式的应用,单项式除以单项式,积的乘方与幂的乘方运算的含义,熟记基础运算法则是解本题的关键. 3.(2023·江西·统考中考真题)计算()322m 的结果为( ) A .68mB .66mC .62mD .52m 【答案】A【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =. 故选:A .【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键. 4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a -=B .325a a a ⋅=C .321a a ÷=D .()23a a = 【答案】B【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则分别计算即可.【详解】解:3a 与2a 不是同类项,不能合并,故A 选项错误.33522a a a a +⋅==,故B 选项正确.32a a a ÷=,故C 选项错误.()236a a =,故D 选项错误. 故选:B .【点睛】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方,熟练掌握各项运算法则是解题的关键.5.(2023·山东滨州·统考中考真题)下列计算,结果正确的是( ) A .235a a a ⋅= B .()325a a = C .33()ab ab = D .23a a a ÷=【详解】∵2340a a +-=,∵234+=a a ,∵()222632332435a a a a +-=+-=⨯-=.故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.8.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( ) A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 【答案】B【分析】根据同底数幂的运算法则即可求解.【详解】解:A 选项,不是同类项,不能进行加减乘除,不符合题意. B 选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是235a a +=,符合题意.C 选项,根据幂的乘方可知,底数不变,指数相乘,结果是236a a ⨯=,不符合题意.D 选项,根据同底数幂的除法可知,底数不变,指数相减,结果是1028a a -=,不符合题意.故选:B .【点睛】本题主要考查同底数幂的混合运算法则,掌握同底数幂的运算法则是解题的关键.9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=【答案】D【分析】根据同底数幂的乘法、除法,幂的乘方,合并同类项进行运算,然后判断即可.【详解】解:A 、错误,因为23x x x +≠,故不符合要求.B 、错误,因为6332x x x x ÷=≠,故不符合要求.C 、错误,因为()43127x x x =≠,故不符合要求.D 、正确,因为347x x x ⋅=,故符合要求.故选:D .【点睛】本题考查了同底数幂的乘法、除法,幂的乘方,合并同类项.解题的关键在于正确的运算.10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 【答案】D【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==,故A 错误.2222(3)39a a a ==,故B 错误.63633a a a a -÷==,故C 错误.()22223312a a a a -=-=,故D 正确. 故选:D .【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b 【答案】C【分析】先计算单项式乘以单项式,然后根据单项式除以单项式进行计算即可求解.【详解】解:2432a a b ab ⋅÷3122a b ab =÷26a =.故选:C .【点睛】本题考查了单项式除以单项式,熟练掌握单项式除以单项式的运算法则是解题的关键.12.(2023·湖南怀化·统考中考真题)下列计算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()2329ab a b =D .523a a -=【答案】A【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .因为235a a a ⋅=,故选项正确,符合题意.B .因为624a a a ÷=,故选项错误,不符合题意.C .因为()2326ab a b =,故选项错误,不符合题意.D .因为523a a a -=,故选项错误,不符合题意.故选:A .【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.13.(2023·甘肃武威·统考中考真题)计算:()22a a a +-=( )A .2B .2aC .22a a +D .22a a -【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()222222a a a aa a a +-=+-=. 故选:B.【点睛】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键.14.(2023·浙江温州·统考中考真题)化简43()a a ⋅-的结果是( )A .12aB .12a -C .7aD .7a - 【答案】D【分析】根据积的乘方以及同底数幂的乘法进行计算即可求解.【详解】解:因为43()a a ⋅-()437aa a =⨯-=-. 故选:D .【点睛】本题考查了积的乘方以及同底数幂的乘法,熟练掌握积的乘方以及同底数幂的乘法的运算法则是解题的关键.15.(2023·山东烟台·统考中考真题)下列计算正确的是( )A .2242a a a +=B .()32626a a =C .235a a a ⋅=D .824a a a ÷=【答案】C【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A.因为2222a a a +=,故该选项不正确,不符合题意.B.因为()32628a a =,故该选项不正确,不符合题意.C.因为235a a a ⋅=,故该选项正确,符合题意.D.因为826a a a ÷=,故该选项不正确,不符合题意.故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键.16.(2023·湖南岳阳·统考中考真题)下列运算结果正确的是( )A .23a a a ⋅=B .623a a a ÷=C .33a a -=D .222()a b a b -=-【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A 、因为23a a a ⋅=,故该选项正确,符合题意.B 、因为624a a a ÷=,故该选项不正确,不符合题意.C 、因为32a a a -=,故该选项不正确,不符合题意.D 、因为222()2a b a ab b -=-+,故该选项不正确,不符合题意.故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键.17.(2023·江苏扬州·统考中考真题)若23( )22a b a b ⋅=,则括号内应填的单项式是( )A .aB .2aC .abD .2ab 【答案】A【分析】将已知条件中的乘法运算可以转化为单项式除以单项式进行计算即可解据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A .因为6243a a a a ÷=≠,原计算错误,不符合题意.B .因为()5210a a a -=-≠-,原计算错误,不符合题意.C .因为()()2111a a a +-=-,原计算正确,符合题意.D .因为222(1)211a a a a +=++≠+,原计算错误,不符合题意.故选:C .【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.20.(2023·浙江台州·统考中考真题)下列运算正确的是( ).A .()2122a a -=-B .()222a b a b +=+C .2325a a a +=D .()22ab ab = 【答案】A【分析】根据去括号法则判断A ;根据完全平方公式判断B ;根据合并同类项法则判断C ;根据积的乘方法则判断D 即可.【详解】解:A .因为()2122a a -=-,计算正确,符合题意.B .因为()222222a b a ab b a b +=++≠+,计算错误,不符合题意.C .因为23255a a a a +=≠,,计算错误,不符合题意.D .因为()2222ab a b ab =≠,计算错误,不符合题意.故选:A .【点睛】本题考查了去括号法则,合并同类项法则,积的乘方法则,完全平方公式等知识,熟练掌握各运算法则是解题的关键.A .4482x x x +=B .()32626x x -=-C .633x x x ÷=D .236x x x ⋅=【答案】C 【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、因为4442x x x +=,选项计算错误,不符合题意.B 、因为()32628x x -=-,选项计算错误,不符合题意.C 、因为633x x x ÷=,选项计算正确,符合题意.D 、因为236x x x ⋅=,选项计算错误,不符合题意.故选:C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( ) A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 6【答案】B【分析】根据同类项的定义、同底数幂的除法性质、完全平方公式、积的乘方公式进行判断.【详解】解:A 、3a 和4b 不是同类项,不能合并,所以此选项不正确. B 、x 12÷x 6=x 6,所以此选项正确.C 、(a +2)2=a 2+4a +4,所以此选项不正确.D 、(ab 3)3=a 3b 9,所以此选项不正确.故选:B .【点睛】本题主要考查了合并同类项、同底数幂的除法、完全平方公式、积的乘方,熟练掌握运算法则是解题的关键.25.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b -=-C .632a a a ÷=D .()326a a = 【答案】D【分析】根据同底数幂乘除法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A .a 2·a 3=a 5,故该选项计算错误,不符合题意.B .(-a 3b)2=a 6b 2,故该选项计算错误,不符合题意.C .a 6÷a 3=a 3,故该选项计算错误,不符合题意.D .(a 2)3=a 6,故该选项计算正确,符合题意.故选:D .【点睛】本题考查同底数幂乘除法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=【答案】A【分析】根据单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法法则计算后再判断即可.【详解】解:A.因为4322x x x ÷=,计算正确,故选项A 符合题意.B.因为()4312x x =,原选项计算错误,故选项B 不符合题意. C.4x 与3x 不是同类项不能合并,原选项计算错误,故选项C 不符合题意.D.因为347x x x ⋅=,原选项计算错误,故选项D 不符合题意.故选:A .【点睛】本题主要考查单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法,解答的关键是对相应的运算法则的掌握.27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a -=D .()222a b a b -=- 【答案】A【分析】根据同底数幂的乘法,幂的乘方,合并同类项,完全平方公式进行计算,即可得出结论.【详解】解:A 、因为437a a a ⋅=,选项计算正确,符合题意.B 、因为()326a a =,选项计算错误,不符合题意.C 、因为22232a a a -=选项计算错误,不符合题意.D 、因为()2222a b a ab b -=-+,选项计算错误,不符合题意. 故选:A .【点睛】本题考查整式的运算.熟练掌握相关运算法则,是解题的关键. 28.(2023·广西·统考中考真题)下列计算正确的是( )A .347a a a +=B .347a a a ⋅=C .437a a a ÷=D .()437a a =【答案】B【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A.因为347a a a +≠,故该选项不符合题意.B.因为347a a a ⋅=,故该选项符合题意.C.因为437a a a a ÷=≠,故该选项不符合题意.D.因为()43127a a a =≠,故该选项不符合题意.故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b -=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +-=- 【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A.因为22ab a b -≠,故该选项不正确,不符合题意.B.因为235a a a ⋅=,故该选项不正确,不符合题意.C.因为233a b a ab ÷=,故该选项不正确,不符合题意.D.因为222()()4a a a +-=-,故该选项正确,符合题意.故选:D .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键.30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( ) A .23232332a b a b a b -=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.因为23232332a b a b a b -=,故该选项正确,符合题意.B.因为235a a a ⋅=,故该选项不正确,不符合题意.C.因为624a a a ÷=,故该选项不正确,不符合题意.D.因为()326a a =,故该选项不正确,不符合题意.故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y = 【答案】D【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A.因为x 2·x 3=x 5,所以A 选项不符合题意.B .因为12210x x x ÷=,所以B 选项不符合题意.C .因为222()2x y x y xy +=++,所以C 选项不符合题意.D .因为()3263x y x y =,所以D 选项符合题意.故选:D .【点睛】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键.32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+【答案】B【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A 、因为633a a a ÷=,故选项错误.B 、因为235a a a ⋅=,故选项正确.C 、因为()23624a a =,故选项错误.D 、因为()2222a b a ab b +=++,故选项错误.故选:B . 【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键.33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=【答案】C【分析】根据完全平方公式及合并同类项、积的乘方运算依次判断即可.【详解】解:A 、因为22(2)44x x x +=++,选项计算错误,不符合题意. B 、因为246a a a ⋅=,选项计算错误,不符合题意.C 、因为()23624x x =,计算正确,符合题意.D 、因为222235x x x +=,选项计算错误,不符合题意.故选:C .【点睛】题目主要考查完全平方公式及合并同类项、积的乘方运算,熟练掌握运算法则是解题关键.34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a = 【答案】C 【分析】分别根据积的乘方,完全平方公式,平方差公式和幂的乘方法则进行判断即可.【详解】解:A.因为()2224a a -=,原式计算错误. B.因为()2222a b a ab b -=-+,原式计算错误.C.因为()()2224m m m -+--=-,计算正确.D.因为()2510a a =,原式计算错误.故选:C .【点睛】本题考查了积的乘方,完全平方公式,平方差公式和幂的乘方,熟练掌握运算法则,牢记乘法公式是解题的关键.35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( ) A .22434b b b +=B .()246a a =C .()224x x -=D .326a a a ⋅= 【答案】C【分析】根据单项式乘以单项式,幂的乘方,积的乘方,合并同类项,进行计算即可求解.【详解】解:A.因为22234b b b +=,故该选项不正确,不符合题意.B.因为()248a a =,故该选项不正确,不符合题意.C.因为()224x x -=,故该选项正确,符合题意.D.因为2326a a a ⋅=,故该选项不正确,不符合题意.故选:C .【点睛】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅= 【答案】D【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.因为826a a a ÷=,故该选项不正确,不符合题意.B.因为23a a a +≠,故该选项不正确,不符合题意.C.因为()326a a =,故该选项不正确,不符合题意.D.因为235a a a ⋅=,故该选项正确,符合题意.故选:D .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.37.(2023·内蒙古·统考中考真题)下列各式计算结果为5a 的是( ) A .()23a B .102a a ÷ C .4a a ⋅ D .15(1)a --【答案】C【分析】根据同底数幂的乘除法及幂的乘方运算法则即可判断.【详解】解:A 、因为()236a a =,不符合题意. B 、因为1028a a a ÷=,不符合题意.C 、因为45a a a ⋅=,符合题意.D 、因为515(1)a a --=-,不符合题意.故选:C .【点睛】题目主要考查同底数幂的乘除法及幂的乘方运算法则,熟练掌握运算法则是解题关键.38.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是( )A .6B .5-C .3-D .4 【答案】D【分析】2230a a --=变形为223a a -=,将2(23)(23)(21)a a a +-+-变形为()2428aa --,然后整体代入求值即可.【详解】解:由2230a a --=得223a a -=,∵2(23)(23)(21)a a a +-+-2249441a a a =-+-+2848a a =-- ()2428a a =--438=⨯-4=.故选:D .【点睛】本题主要考查了代数式求值,解题的关键是熟练掌握整式混合运算法则,将2(23)(23)(21)a a a +-+-变形为()2428a a --.39.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab -=C .34()a a a -⋅=D .222()a b a b +=+【答案】A【分析】根据幂的运算法则,乘法公式处理.【详解】A.因为()22346a b a b =,正确,符合题意. B.因为32ab ab ab -=,原计算错误,本选项不合题意.C.因为34()a a a -⋅=-,原计算错误,本选项不合题意.D.因为222()2a b a b ab +=++,原计算错误,本选项不合题意.【点睛】本题考查幂的运算法则,整式的运算,完全平方公式,掌握相关法则是解题的关键.40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a -=【答案】A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.【详解】解:A .因为()23236a a a ⨯==,故A 选项计算正确,符合题意. B .因为62624a a a a -÷==,故B 选项计算错误,不合题意.C .因为34347a a a a +==⋅,故C 选项计算错误,不合题意.D .2a 与a -不是同类项,所以不能合并,故D 选项计算错误,不合题意. 故选:A .【点睛】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -=【答案】D【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.【详解】解:因为325a a a⋅=,故A不符合题意.因为4=3-,故B不符合题意.ab ab ab因为()222+=+,故C不符合题意.a a+a11因为()236-=,故D符合题意.a a故选:D.【点睛】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.二、填空题42.(2023·湖南永州·统考中考真题)22a与4ab的公因式为________.【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得2a2与4ab的公因式为2a.故答案为:2a.【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.43.(2023·天津·统考中考真题)计算()22xy的结果为________.【答案】24x y【分析】直接利用积的乘方运算法则计算即可求得答案.【详解】解:()2224=.xy x y故答案为:24x y.【点睛】本题考查了积的乘方运算,解题的关键是熟练掌握运算法则.44.(2023·河南·统考中考真题)某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n套.故答案为:3n.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.45.(2023·全国·统考中考真题)计算:(3)a b+=_________.【答案】3ab a+【分析】根据单项式乘多项式的运算法则求解.【详解】解:(3)3a b ab a+=+.故答案为:3+.ab a【点睛】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键.46.(2022秋·上海·七年级专题练习)计算:22-=________.32a a【答案】2a【分析】直接根据合并同类项法则进行计算即可得到答案.【详解】解:222232(32)a a a a -=-=故答案为:2a .【点睛】本题主要考查了合并同类项,掌握合并同类项运算法则是解答本题的关键.47.(2023·湖北十堰·统考中考真题)若x+y=3,且y=2,则x 2y+xy 2的值是___________________.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:x 2y+xy 2=xy(x+y),∵x+y=3,y=2,∵x=1,∵原式=1×2×3=6.故答案为:6.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键.48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,且7ab =,则22a b ab +的值为______.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】a 2b+ab 2=ab(a+b)=7×6=42.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.49.(2023春·广东梅州·八年级校考阶段练习)计算:(a2b)3=___.【答案】a6b3【详解】试题分析:根据积的乘方运算法则可得(a2b)3=a6b3.故答案为:a6b3.三、解答题。
中考数学总复习《整式的加减》专项测试卷-附带参考答案
中考数学总复习《整式的加减》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.若x是2的相反数,∣y∣=3,则x−y= ( )A.−5B.1C.−1或5D.1或−52.下列各式:① π;② ab=ba;③ x3;④ 2m−1>0;⑤ 1x;⑥ 8(x2+y2),其中代数式的个数是( )A.1B.2C.3D.4 3.下列说法中正确的是( )A.3x−12不是多项式B.16πx3的系数为16C.0不是单项式D.2ab7的次数为24.若∣m∣=3,∣n∣=2且mn<0,则m+n的值是( )A.−1B.1C.1或5D.±15.代数式a2−1b的正确解释是( )A.a与b的倒数的差的平方B.a与b的差的平方的倒数C.a的平方与b的差的倒数D.a的平方与b的倒数的差6.某商店举办促销活动,促销的方法是将原价x元的衣服以(0.7x−50)元出售,则下列说法中,能正确表达该商店促销方法的是( )A.原价减去50元后再打7折B.原价打7折后再减去50元C.原价减去50元后再打3折D.原价打3折后再减去50元7.已知a−3b=−2,则2a−6b+7等于( )A.11B.9C.5D.38.某新书进价为a元,现在加价20%出售,则该书的售价为( )A.(a+0.2)元B.0.2a元C.1.2a元D.(a+1.2)元二、填空题(共5题,共15分)9.比−4x小2x的单项式是.10.一件上衣的原售价为a元,打8折后售出,则售价为元.11.某种苹果的售价是每千克x元(x<10),用50元买5千克这种苹果,应找回元.12..如果m和n互为相反数,那么化简(3m−n)−(m−3n)的结果是.13.在劳技课上莹莹用一根铁丝正好围成一个长方形,若此长方形的一边长为(2a+b)cm,另一边比这条边长(a−b)cm,则这根铁丝的长为cm.三、解答题(共3题,共45分)14.解答下列问题.(1) 先化简,再求值:2xy−[12(5xy−16x2y2)−2(xy−4x2y2)]其中x=−12,y=4.(2) 已知a+b=7,ab=10求整式(5ab+4a+7b)+(6a−3ab)−(4ab−3b)的值.15.计算:(1) 2(y2−2x)−(−5x+3y2);(2) (4x m y n−8x n y m)−(−5x n y m−3x m y n);(3) 3a2−[7a−(4a−3)−2a2];(4) −2(mn−3m2)−[m2−5(mn−m2)+2mn].16.观察下列单项式:−x,3x2,−5x3,7x4⋯−37x19,39x20⋯写出第n个单项式,为了解这个问题,特提供下面的解题思路.(1) 这组单项式的系数依次为多少,它们的绝对值规律是什么?(2) 这组单项式的次数的规律是什么?(3) 根据上面的归纳,猜想出第n个单项式,用含n的代数式表示;(4) 请你根据猜想,写出第2020个与第2021个单项式.参考答案1. 【答案】D2. 【答案】D3. 【答案】D4. 【答案】D5. 【答案】D6. 【答案】B7. 【答案】D8. 【答案】C9. 【答案】−6x10. 【答案】0.8a11. 【答案】50−5x12. 【答案】−12a313. 【答案】6a14. 【答案】(1) 原式=2xy−(52xy−8x2y2−2xy+8x2y2)=2xy−12xy=32xy.当x=−12,y=4时原式=32×(−12)×4=−3.(2) 原式=5ab+4a+7b+6a−3ab−4ab+3b =−2ab+10(a+b).当a+b=7,ab=10时原式=−20+70=50.15. 【答案】(1) −y2+x.(2) 7x m y n−3x n y m.(3) 5a2−3a−3.(4) mn.16. 【答案】(1) 这组单项式的系数依次为−1,3,−5,7⋯系数为奇数且奇数项为负数,故单项式的系数的符号是(−1)n,第n个单项式的系数的绝对值为2n−1.(2) 这组单项式的次数的规律是从1开始的连续自然数.(3) 第n个单项式是(−1)n⋅(2n−1)x n.(4) 第2020个单项式是(−1)2020⋅(2×2020−1)x2020=4039x2020第2021个单项式是(−1)2021⋅(2×2021−1)x2021=−4041x2021.。
中考数学复习《整式的乘法与因式分解》专项提升训练题-附答案
中考数学复习《整式的乘法与因式分解》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.如果(3n)2=316,那么n的值为()A.3 B.4 C.8 D.22.下列运算正确的是()A.a7÷a=a7B.a2⋅a3=a5C.(ab)2=ab2D.(a2)3=a5 3.已知x m=a,x n=b(x≠0),则x3m−2n的值等于()A.3a−2b B.a3−b2C.a3b2D.a3b24.若(x2−x+m)(x−8)中不含x的一次项,则m的值为()A.8 B.−8C.0 D.8或−85.下列代数式变形中,属于因式分解是()A.m(m−2)=m2−2m B.m2−2m+1=m(m−2)+1C.m2−1=(m+1)(m−1)D.m2−2+1m2=(m−1m)26.如图,阴影部分是在边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列2种割拼方法,其中能够验证平方差公式的是()A.①B.②C.①②D.①②都不能7.已知x−1x =2,则x2+1x2的值为()A.2 B.4 C.6 D.88.如果二次三项式x2−ax−9(a为整数)在整数范围内可以分解因式,那么a可取值的个数是()A.2个B.3个C.4个D.无数个二、填空题9.−3ab⋅2a2b=.10.因式分解:x2−2xy+y2=.11.如果(x+3)(x−4)=x2−kx−12成立,则k的值为.12.若a2−b2=1,a+b=2,则a−b=.13.若(x−2022)2+(x−2024)2=100,则(x−2023)2=.三、解答题14.计算:(1)(−2xy2)3⋅5x2y(2)(−6x4+8x3)÷(−2x2)+(3x+2)(1−x)15.因式分解:(1)3ax2−6ax+3a.(2)(x2+y2)2−4x2y2.16.已知a−b=7,ab=6.(1)求a2+b2的值;(2)求a4b2−a3b3+a2b4的值.17.阅读下列材料:因式分解的常用方法有提取公因式法和公式法,但有的多项式仅用上述方法就无法分解,如x2−2xy+y2−16.我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解.过程如下:x2−2xy+y2−16=(x−y)2−16=(x−y+4)(x−y−4).这种因式分解的方法叫分组分解法.利用这种分组的思想方法解决下列问题:(1)因式分解:a2−6ab+9b2−36;(2)△ABC三边a,b,c满足a2+c2+2b2−2ab−2bc=0,判断△ABC的形状并说明理由.18.从边长为a的正方形减掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).图1 图2(1)上述过程所揭示的因式分解的等式是.(2)若9x2−16y2=30,3x+4y=6求4y−3x的值.(3)(1−122)(1−132)(1−142)⋯(1−1992)(1−11002)参考答案1.C2.B3.D4.B5.C6.C7.C8.A9.−6a3b210.(x−y)211.112.1213.4914.(1)解:(−2xy2)3⋅5x2y=(−8x3y6)⋅5x2y=−40x5y7(2)解:(−6x4+8x3)+(−2x2)+(3x+2)(1−x) =3x2−4x+3x−3x2+2−2x=−3x+215.(1)解:3ax2−6ax+3a=3a(x2−2x+1)=3a(x−1)2;(2)解:(x2+y2)2−4x2y2=(x2+y2)2−(2xy)2=(x2+y2+2xy)(x2+y2−2xy)=(x+y)2(x−y)2.16.(1)解:∵a−b=7,∴(a−b)2=49即a2−2ab+b2=49;又∵ab=6∴a2−2×6+b2=49∴a2+b2=61;(2)解:∵a4b2−a3b3+a2b4=a2b2(a2−ab+b2)又∵ab=6由(1),得a2+b2=61.∴a2b2(a2−ab+b2)=62×(61−6)=1980.∴a4b2−a3b3+a2b4=1980.17.(1)解:a2−6ab+9b2−36=(a−3b)2−36=(a−3b−6)(a−3b+6);(2)解:△ABC是等边三角形理由:∵a2+c2+2b2−2ab−2bc=0∴(a2−2ab+b2)+(c2−2bc+b2)=0∴(a−b)2+(b−c)2=0∵(a−b)2≥0(b−c)2≥0∴a−b=0,且b−c=0∴a=b,且b=c∴a=b=c∴△ABC是等边三角形.18.(1)a2−b2=(a+b)(a−b)(2)解:9x2−16y2=30∴(3x+4y)(3x−4y)=30∵3x+4y=6∴3x−4y=5∴4y−3x=−5(3)解:原式=(1−12)(1+12)(1−13)(1+13)(1−14)(1+14)⋯(1−199)(1+199)(1−1100)(1+1100)=12×32×23×43×34×54×⋯×9899×10099×99100×101100=101200。
2023年中考数学----整式之代数式专项练习题(含答案解析)与知识回顾
2023年中考数学----整式之代数式专项练习题(含答案解析)与知识回顾专项练习题(含答案解析)1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100﹣x )元C .8(100﹣x )元D .(100﹣8x )元 【分析】直接利用乙的单价×乙的本数=乙的费用,进而得出答案.【解答】解:设购买甲种读本x 本,则购买乙种读本的费用为:8(100﹣x )元. 故选:C .2.(2022•杭州)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .y x 1910=320B .xy 1910=320 C .|10x ﹣19y |=320 D .|19x ﹣10y |=320【分析】直接利用10张A 票的总价与19张B 票的总价相差320元,得出等式求出答案.【解答】解:由题意可得:|10x ﹣19y |=320.故选:C .3.(2022•吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要 元.(用含m 的代数式表示)【分析】根据题意直接列出代数式即可.【解答】解:篮球队要买10个篮球,每个篮球m 元,一共需要10m 元,故答案为:10m .4.(2022•梧州)若x =1,则3x ﹣2= .【分析】把x =1代入3x ﹣2中,计算即可得出答案.【解答】解:把x =1代入3x ﹣2中,原式=3×1﹣2=1.故答案为:1.5.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a ﹣b =2,求代数式6a ﹣2b ﹣1的值.”可以这样解:6a ﹣2b ﹣1=2(3a ﹣b )﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x =2是关于x 的一元一次方程ax +b =3的解,则代数式4a 2+4ab +b 2+4a +2b ﹣1的值是 .【分析】根据x =2是关于x 的一元一次方程ax +b =3的解,可得:b =3﹣2a ,直接代入所求式即可解答.【解答】解:原式=(2a +b )2+2(2a +b )﹣1=32+2×3﹣1=14,故答案为:14.6.(2022•邵阳)已知x 2﹣3x +1=0,则3x 2﹣9x +5= .【分析】原式前两项提取3变形后,把已知等式变形代入计算即可求出值.【解答】解:∵x 2﹣3x +1=0,∴x 2﹣3x =﹣1,则原式=3(x 2﹣3x )+5=﹣3+5=2.故答案为:2.7.(2022•郴州)若32=−b b a ,则ba = . 【分析】对已知式子分析可知,原式可根据比例的基本性质可直接得出比例式的值.【解答】解:根据=得3a=5b,则=.故答案为:.知识回顾1.代数式的定义:由数与字母通过“+,-,×,÷”以及乘方、开方等运算符号连接的式子叫做代数式。
中考数学专题复习《整式的运算》测试卷-附带答案
中考数学专题复习《整式的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.计算(−x2)3的结果是()A.−x6B.x6C.−x5D.−x82.下列计算正确的是()A.x7÷x=x7B.(−3x2)2=−9x4C.x3•x3=2x6D.(x3)2=x63.下列计算正确的是()A.3x+3y=6xy B.a2•a3=a6C.b6÷b3=b2D.(m2)3=m6 4.下列计算正确的是()A.3a3⋅2a3=6a3B.(−4a3b)2=8a6b2C.(a+b)2=a2+b2D.−2a2+3a2=a25.下列运算正确的是()A.(x−1)(x+1)=x2−x−1B.x2−2x+3=(x−1)2+4C.(x−1)2=x2−2x−1D.(x−1)(−1−x)=1−x26.观察一列单项式:x−3x37x5−15x731x9⋯.则第n个单项式是()A.(−1)n+1(2n−1)x2n−1B.(−1)n(2n−1)x2n+1C.(−1)n+1(2n−1)x2n−1D.(−1)n(2n+1)x2n−17.若k为任意整数则(2k+3)2−4k2的值总能()A.被2整除B.被3整除C.被5整除D.被7整除8.已知10a=25,100b=40则a+2b的值是()A.1B.2C.3D.49.对于任意自然数n关于代数式(n+7)2﹣(n﹣5)2的值说法错误的是()A.总能被3整除B.总能被4整除C.总能被6整除D.总能被7整除10.若2a-3b=-1 则代数式4a2−12ab+9b2的值为()A.-1B.1C.2D.311.已知关于x的两个多项式A=x2−ax−2B=x2−2x−3.其中a为常数下列说法:①若A−B的值始终与x无关则a=−2②关于x的方程A+B=0始终有两个不相等的实数根③若A ⋅B 的结果不含x 2的项 则a =52④当a =1时 若A B 的值为整数 则x 的整数值只有2个.以上结论正确的个数有( ) A .4B .3C .2D .112.对于若干个单项式 我们先将任意两个单项式作差 再将这些差的绝对值进行求和并化简 这样的运算称为对这若干个单项式作“差绝对值运算”. 例如:对2,3,4作“差绝对值运算” 得到|2−3|+|2−4|+|3−4|=4 则①对1,3,4,7作“差绝对值运算”的结果是19 ②对x 2,x ,−3(x 2>x >−3)进行“差绝对值运算”的结果是38 则x =±4 ③对a ,b ,c (互不相等)进行“差绝对值运算”的结果一共有7种. 以上说法中正确的个数为( ) A .0B .1C .2D .3二 填空题13.已知3x+y=-3 xy=-6 则 xy 3+9x 3y = .14.若实数m 满足(m −2023)2+(2024−m)2=2025 则(m −2023)(2024−m)= .15. 已知 m +n +2m+n =4,则 (m +n )2+(2m+n )2的值为 . 16.小明在化简:(4x 2−6x +7)−(4x 2−□x +2)时发现系数“□”印刷不清楚 老师提示他:“此题的化简结果是常数” 则多项式中的“□”表示的数是 .17.如果一个三位自然数m =abc ̅̅̅̅̅的各数位上的数字互不相等且均不为0 满足a +c =b 那么称这个三位数为“中庸数”.将“中庸数”m =abc ̅̅̅̅̅的百位 个位数字交换位置 得到另一个“中庸数”m ′=cba ̅̅̅̅̅ 记F(m)=m−m ′99,T(m)=m+m ′121.例如:m =792,m ′=297.F(m)=792−29799=5 T(m)=792+297121=9.计算F(583)= 若“中庸数”m 满足2F(m)=s 2,2T(m)=t 2 其中s ,t 为自然数1 2 3…… 则该“中庸数”m 是 .18.一个四位自然数M 若它的千位数字与十位数字的差为3 百位数字与个位数字的差为2 则称M 为“接二连三数” 则最大的“接二连三数”为 已知“接二连三数”M 能被9整除 将其千位数字与百位数字之和记为P 十位数字与个位数字之差记为Q 当PQ 为整数时 满足条件的M 的最小值为 .三 计算题19.计算:(1)x(1−x)(2)(a−1)(2a+3)−2a(a−4)(3)x 2x−1−x−1.20.计算:(1)(−2xy2)2⋅3x2y.(2)(−2a2)(3ab2−5ab3).(3)(3m2n)2⋅(−2m2)3÷(−m2n)2.(4)(a−2b−3c)(a−2b+3c).21.(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1)其中x=−12 ..22.−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)其中x=−2y=12.23.先化简再求值:[(x+2y)2−(x+2y)(x−2y)]÷4y其中x=1y=−1.四解答题24.观察下面的等式:32−12=8×1,52−32=8×2,72−52=8×3,92−72=8×4,⋯(1)写出192−172的结果.(2)按上面的规律归纳出一个一般的结论(用含n的等式表示n为正整数)(3)请运用有关知识推理说明这个结论是正确的.25.尝试:①152=225=1×2×100+25.②252=625=2×3×100+25.③352=1225=_▲_...运用:小滨给出了猜想和证明请判断是否正确若有错误请给出正确解答.猜想:(10a+5)2=100a(a+1)+25.证明:(10a+5)2=100a(a+1)+25所以10a2+100a+5=100a2+100a+25.所以10a2=100a2.因为a≠0所以10a2≠100a2.所以等式不成立结论错误.26.已知实数a b满足(2a2+b2+1)(2a2+b2-1)=80 试求2a2+b2的值.解:设2a2+b2=m则原方程可化为(m+1)(m-1)=80 即m2=81 解得:m=±9 ∵2a2+b2≥0 ∴2a2+b2=9 上面的这种方法称为“换元法” 换元法是数学学习中最常用的一种思想方法在结构较复杂的数和式的运算中若把其中某些部分看成一个整体并用新字母代替(即换元)则能使复杂问题简单化.根据以上阅读材料解决下列问题:(1)已知实数x y满足(2x2+2y2-1)(x2+y2)=3 求3x2+3y2-2的值(2)若四个连续正整数的积为120 求这四个正整数.27.阅读下列材料:我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方公式如果一个多项式不是完全平方公式我们常做如下变形:先添加一个适当的项使式子中出现完全平方式再减去这个项使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法可以求代数式的最大值或最小值.例如:求代数式x2+2x-3的最小值.解:x2+2x-3=x2+2x+12-12-3=(x2+2x+12)-4=(x+1)2-4.∵(x+1)2≥0 ∴(x+1)2-4≥-4∴当x=-1时x2+2x-3的最小值为-4.再例如:求代数式-x2+4x-1的最大值.解:-x2+4x-1=-(x2-4x+1)=-(x2-4x+22-22+1)=-[(x2-4x+22)-3]=-(x-2)2+3∵(x-2)2≥0 ∴-(x-2)2≤0 ∴-(x-2)2+3≤3.∴当x=2时-x2+4x-1的最大值为3.(1)【直接应用】代数式x2+4x+3的最小值为(2)【类比应用】若M=a2+b2-2a+4b+2023 试求M的最小值(3)【知识迁移】如图学校打算用长20m的篱笆围一个长方形菜地菜地的一面靠墙(墙足够长)求围成的菜地的最大面积.28.在学习《完全平方公式》时某数学学习小组发现:已知a+b=5 ab=3 可以在不求a b的值的情况下求出a2+b2的值.具体做法如下:a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.(1)若a+b=7 ab=6 则a2+b2=(2)若m满足(8-m)(m-3)=3 求(8-m)2+(m-3)2的值同样可以应用上述方法解决问题.具体操作如下:解:设8-m=a 8-m=a m-3=b则a+b=(8-m)+(m-3)=5 a+b=(8-m)+(m-3)=5 ab=(8-m)(m-3)=3所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.请参照上述方法解决下列问题:若(3x-2)(10-3x)=6 求(3x-2)2+(10-3x)2的值29.利用完全平方公式a2+2ab+b2=(a+b)2和a2−2ab+b=2(a−b)2的特点可以解决很多数学问题.下面给出两个例子:例1分解因式:x2+2x−3x2+2x−3=x2+2x+1−4=(x+1)2−4=(x+1+2)(x+1−2)=(x+3)(x−1)例2求代数式2x2−4x−6的最小值:2x2−4x−6=2(x2−2x)−6=2(x2−2x+1−1)−6=2[(x−1)2−1]−6=2(x−1)2−8又∵2(x−1)2≥0∴当x=1时代数式2x2−4x−6有最小值最小值是−8.仔细阅读上面例题模仿解决下列问题:(1)分解因式:m2−8m+12(2)代数式−x2+4x−2有最(大小)值当x=时最值是(3)当x y为何值时多项式2x2+y2−8x+6y+25有最小值?并求出这个最小值.30.发现:一个两位数的平方与其个位数字的平方的差一定是20的倍数.如:132−32=160160是20的8倍262−62=640640是20的32倍.(1)请你仿照上面的例子再举出一个例子:(⋅⋅⋅⋅)2−(⋅⋅⋅⋅⋅)2=(⋅⋅⋅⋅⋅)(2)十位数字为1 个位数字为a的两位数可表示为若该两位数的平方与a的平方的差是20的5倍则a=(3)设一个两位数的十位数字为m个位数字为n(0<m<100≤n<10且m n为正整数)请用含m n的式子论证“发现”的结论是否符合题意.31.灵活运用完全平方公式(a±b)2=a2±2ab+b2可以解决许多数学问题.例如:已知a−b=3,ab=1求a2+b2的值.解:∵a−b=3,ab=1∴(a−b)2=9,2ab=2,∴a2−2ab+b2=9∴a2−2+b2=9,∴a2+b2=9+2=11.请根据以上材料解答下列问题.(1)若a2+b2与2ab−4互为相反数求a+b的值.(2)如图矩形的长为a 宽为b 周长为14 面积为8 求a2+b2的值.32.定义:对于一个三位正整数如果十位数字恰好等于百位数字与个位数字之和的一半我们称这个三位正整数为“半和数”.例如三位正整数234 因为3=12×(2+4)所以234是“半和数”.(1)判断147是否为“半和数” 并说明理由(2)小林列举了几个“半和数”:111 123 234 840… 并且她发现:111÷3=37123÷3=41 234÷3=78840÷3=280… 所以她猜测任意一个“半和数”都能被3整除.小林的猜想正确吗?若正确请你帮小林说明该猜想的正确性若错误说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】D4.【答案】D5.【答案】D6.【答案】C7.【答案】B8.【答案】C9.【答案】D10.【答案】B11.【答案】B12.【答案】B13.【答案】-27014.【答案】−101215.【答案】1216.【答案】617.【答案】2 121或484或58318.【答案】9967 885619.【答案】(1)解:x(1−x)=x−x2(2)解:(a−1)(2a+3)−2a(a−4)=2a2+3a−2a−3−2a2+8a=9a−3(3)解:x 2x−1−x−1=x2x−1−(x+1)=x2−(x+1)(x−1)x−1=x2−x2+1x−1=1x−1.20.【答案】(1)解:(−2xy2)2⋅3x2y=4x2y4⋅3x2y=12x4y5(2)解:(−2a2)(3ab2−5ab3)=−6a3b2+10a3b3(3)解:(3m2n)2⋅(−2m2)3÷(−m2n)2=9m4n2⋅(−8m6)÷m4n2=−72m10n2÷m4n2=−72m6(4)解:(a−2b−3c)(a−2b+3c)=[(a−2b)−3c][(a−2b)+3c]=(a−2b)2−9c2=a2−4ab+4b2−9c2.21.【答案】解:原式=x2+4x+4+4x2﹣1﹣4x2﹣4x=x2+3当x=−1 2时∴原式=(−12)2+3=31 4.22.【答案】解:−12(xy−x2)+3(y2−12x2)+2(14xy−12y2)=−12xy+12x2+3y2−32x2+12xy−y2=−x2+2y2当x=−2y=1 2时原式=−(−2)2+2×(12)2=−4+2×1 4=−4+1 2=−72.23.【答案】解:化简方法一:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x+2y)(x+2y−x+2y)]÷4y=[(x+2y)·4y]÷4y=x+2y化简方法二:[(x+2y)2−(x+2y)(x−2y)]÷4y=[(x2+4xy+4y2)−(x2−4y2)]÷4y=(x2+4xy+4y2−x2+4y2)÷4y=(4xy+8y2)÷4y=4xy÷4y+8y2÷4y=x+2y当x=1y=−1时原式=1+2×(−1)=−1.24.【答案】(1)8×9(2)(2n+1)2−(2n−1)2=8n(3)(2n+1)2−(2n−1)2=(2n+1+2n−1)(2n+1−2n+1)=4n×2=8n。
中考数学复习《整式的加减》专项练习题-带有答案
中考数学复习《整式的加减》专项练习题-带有答案一、选择题1.下列各式中,不是整式的是()C.0 D.x+yA.3a B.12x2.单项式−3πxy2z3的系数和次数分别是()A.−π,5B.−1,6C.−3π,6D.−3,73.下列式子中,与−3a2b是同类项的是()A.−3ab2B.−ba2C.2ab2D.2a3b4.多项式2x2y|m|−(m−2)xy+1是关于x.y的四次二项式,则m的值为()A.2 B.-2 C.±2 D.±15.下列各式去括号正确的是()A.−(a−3b)=−a−3b B.a+(5a−3b)=a+5a−3bC.−2(x−y)=−2x−2y D.−y+3(y−2x)=−y+3y−2x6.要使多项式3x2−2(5+x−2x2)+mx2化简后不含x的二次项,则m的值为()A.−7B.7 C.1 D.−37.多项式2x2−7x+3减去5x2−x−4的结果是()A.−3x2−6x+7B.−3x2−8x−1C.7x2−8x+7D.−3x2−6x−18.下列计算结果正确的是()A.x2y−2xy2=−xy2B.3a2+5a2=8a4C.−3(2a−b)=−6a+b D.4m+2n−(n−m)=5m+n二、填空题9.整数n=时,多项式3x2+n+2x2−n+1是三次三项代数式.x2y3按字母x升幂排列是.10.将多项式2−3xy2+5x3y−1311.已知:x2+3x−4=0,则代数式2x2+6x+4的值是x n y4可以合并成一项,则n m= .12.若单项式2x2y m与−1313.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是50km/h,水流速度是akm/h.则3h后两船相距千米.三、解答题14.化简:(1)8a+5b−(3a+4b)(2)5xy2+3x2y−2(3xy2+x2y)15.先化简,再求值:2(−a2+2ab)−3(ab−a2),其中a=2,b=−1.16.已知多项式(3ax+2)−(6x+3)的值与x的大小无关,求代数式2a3−3a+5的值.17.已知多项式-3x m+1y3+x3y-3x4-1是五次四项式,单项式3x3n y2的次数与这个多项式的次数相同. (1)求m,n的值.(2)把这个多项式按x降幂排列.18.已知:A=−3x2+2xy+1,B=3x2−4xy.(1)计算:A+B;(2)若(x+1)2+|y−2|=0,求A+B的值.参考答案1.B2.C3.B4.A5.B6.A7.A8.D9.±1x2y3+5x3y10.2−3xy2−1311.1212.1613.30014.(1)8a+5b−(3a+4b)=8a+5b-3a-4b=5a+b;(2)5xy2+3x2y−2(3xy2+x2y)= 5xy2+3x2y−6xy2−2x2y= x2y−xy2 .15.解:原式=a2+ab.∴当a=2,b=−1时,原式=2 16.解:(3ax+2)−(6x+3)=3ax+2−6x−3=(3a−6)x−1∵多项式(3ax+2)−(6x+3)的值与x的大小无关∴3a−6=0解得a=2则2a3−3a+5=2×23−3×2+5=15.17.(1)解:由题意得:m+1+3=5,3n+2=5∴m=1,n=1(2)解:-3x4+x3y-3x2y3-118.(1)解:原式=−3x2+2xy+1+3x2−4xy=−3x2+3x2+2xy−4xy+1=1−2xy;(2)解:根据题意得,x+1=0,y−2=0∴x=−1,y=2∴原式=1−2×(−1)×2=1+4=5.。
初三数学练习02 整式与因式分解-2024年中考数学真题分项汇编(全国通用)(解析版)
专题02 整式与因式分解一.选择题1.(2022·江苏宿迁)下列运算正确的是( )A .21m m -=B .236·m m a =C .()222mn m n =D .()235m m =【答案】C【分析】由合并同类项可判断A ,由同底数幂的乘法可判断B ,由积的乘方运算可判断C ,由幂的乘方运算可判断D ,从而可得答案.【详解】解:2m m m -=, 故A 不符合题意;235m m m ⋅=, 故B 不符合题意;()222mn m n =, 故C 符合题意;()236m m =, 故D 不符合题意;故选:C【点睛】本题考查的是合并同类项,同底数幂的乘法,积的乘方运算,幂的乘方运算,掌握以上基础运算是解本题的关键.2.(2022·湖南株洲)下列运算正确的是( )A .235a a a ⋅=B .()235a a =C .22()ab ab = D .632(0)a a a a =≠【答案】A【分析】根据同底数幂相乘,幂的乘方,积的乘方,分式的化简,逐项判断即可求解.【详解】解:A 、235a a a ⋅=,故本选项正确,符合题意;B 、()236a a =,故本选项错误,不符合题意;C 、222()ab a b =,故本选项错误,不符合题意;D 、462(0)a a a a=≠,故本选项错误,不符合题意;故选:A 【点睛】本题主要考查了同底数幂相乘,幂的乘方,积的乘方,分式的化简,熟练掌握相关运算法则是解题的关键.3.(2022·陕西)计算:()2323x x y ⋅-=( )A .336x y B .236x y -C .336x y -D .3318x y 【答案】C【分析】利用单项式乘单项式的法则进行计算即可.【详解】解:()()23233323236x x y x x y x y ⋅-=⨯-⨯=-⋅⨯.故选:C .【点睛】本题考查了单项式乘单项式的运算,正确地计算能力是解决问题的关键.4.(2022·浙江嘉兴)计算a 2·a ( )A .aB .3aC .2a 2D .a 3【答案】D【分析】根据同底数幂的乘法法则进行运算即可.【详解】解:23,a a a 故选D【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法,底数不变,指数相加”是解本题的关键.5.(2022·四川眉山)下列运算中,正确的是( )A .3515x x x ⋅=B .235x y xy +=C .22(2)4x x -=-D .()2242235610x x y x x y⋅-=-【答案】D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 3515x x x ⋅=,根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B. 235x y xy +=,2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 22(2)4x x -=-,根据完全平方公式可得:22(2)44-=+-x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ⋅-=-,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则,解题的关键是掌握同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.6.(2022·江西)下列计算正确的是( )A .236m m m ⋅=B .()m n m n --=-+C .2()m m n m n +=+D .222()m n m n +=+【答案】B【分析】利用同底数幂的乘法,去括号法则,单项式乘多项式,完全平方公式对各选项依次判断即可.【详解】解:A 、2356m m m m ⋅=≠,故此选项不符合题意;B 、()m n m n --=-+,故此选项符合题意;C 、22()m m n m mn m n +=+≠+,故此选项不符合题意;D 、22222()2m m n m n m n n +=++≠+,故此选项不符合题意.故选:B .【点睛】本题考查了整式的混合运算,涉及到同底数幂的乘法,去括号法则,单项式乘多项式的运算法则,完全平方公式等知识.熟练掌握各运算法则和222()2a b a ab b +=++的应用是解题的关键.7.(2022·浙江宁波)将两张全等的矩形纸片和另两张全等的正方形纸片按如图方式不重叠地放置在矩形ABCD 内,其中矩形纸片和正方形纸片的周长相等.若知道图中阴影部分的面积,则一定能求出( )A .正方形纸片的面积B .四边形EFGH 的面积C .BEF 的面积D .AEH △的面积【答案】C 【分析】设正方形纸片边长为x ,小正方形EFGH 边长为y ,得到长方形的宽为x -y ,用x 、y 表达出阴影部分的面积并化简,即得到关于x 、y 的已知条件,分别用x 、y 列出各选项中面积的表达式,判断根据已知条件能否求出,找到正确选项.【详解】根据题意可知,四边形EFGH 是正方形,设正方形纸片边长为x ,正方形EFGH 边长为y ,则长方形的宽为x -y ,所以图中阴影部分的面积=S 正方形EFGH +2S △AEH +2S △DHG =2112()222y y x y xy +⨯-+⨯=2xy ,所以根据题意,已知条件为xy 的值,A.正方形纸片的面积=x 2,根据条件无法求出,不符合题意;B.四边形EFGH 的面积=y 2, 根据条件无法求出,不符合题意;C.BEF 的面积=12xy ,根据条件可以求出,符合题意;D.AEH △的面积=21()22xy y y x y --=,根据条件无法求出,不符合题意;故选 C .【点睛】本题考查整式与图形的结合,熟练掌握正方形、长方形、三角形等各种形状的面积公式,能正确用字母列出各种图形的面积表达式是解题的关键.8.(2022·浙江温州)化简3()()a b -⋅-的结果是( )A .3ab-B .3ab C .3a b -D .3a b【答案】D【分析】先化简乘方,再利用单项式乘单项式的法则进行计算即可.【详解】解:()()()333·a b a b a b -⋅-=--=,故选:D .【点睛】本题考查单项式乘单项式,掌握单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式是解题的关键.9.(2022·江西)将字母“C ”,“H ”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H ”的个数是( )A .9B .10C .11D .12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B .【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.10.(2022·浙江绍兴)下列计算正确的是( )A .2()a ab a a b +÷=+B .22a a a ⋅=C .222()a b a b +=+D .325()a a =【答案】A【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确;B 、23a a a ⋅=,原式计算错误;C 、222()2a b a b ab +=++,原式计算错误;D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.11.(2022·云南)按一定规律排列的单项式:x ,3x ²,5x ³,7x 4,9x 5,……,第n 个单项式是( )A .(2n -1)nx B .(2n +1)n x C .(n -1)n x D .(n +1)n x 【答案】A【分析】系数的绝对值均为奇数,可用(2n -1)表示;字母和字母的指数可用xn 表示.【详解】解:依题意,得第n 项为(2n -1)xn ,故选:A .【点睛】本题考查的是单项式,根据题意找出规律是解答此题的关键.12.(2022·重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为( )A .15B .13C .11D .9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C .【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.13.(2022·安徽)下列各式中,计算结果等于9a 的是( )A .36+a a B .36a a ⋅C .10a a -D .182÷a a 【答案】B 【分析】利用整式加减运算和幂的运算对每个选项计算即可.【详解】A .36+a a ,不是同类项,不能合并在一起,故选项A 不合题意;B .36369a a a a +⋅==,符合题意;C .10a a -,不是同类项,不能合并在一起,故选项C 不合题意;D .11816282a a a a -==÷,不符合题意,故选B【点睛】本题考查了整式的运算,熟练掌握整式的运算性质是解题的关键.14.(2022·四川成都)下列计算正确的是( )A .2m m m +=B .()22m n m n -=-C .222(2)4m n m n +=+D .2(3)(3)9m m m +-=-【答案】D【分析】根据合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式进行运算,即可一一判定.【详解】解:A.2m m m +=,故该选项错误,不符合题意;B.()222m n m n -=-,故该选项错误,不符合题意;C.2224(2)4m n m n mn ++=+,故该选项错误,不符合题意;D.2(3)(3)9m m m +-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项法则、单项式乘以多项式法则、完全平方公式及平方差公式,熟练掌握和运用各运算法则和公式是解决本题的关键.15.(2022·山东滨州)下列计算结果,正确的是( )A .352()a a =B =C 2=D .1cos302︒=【答案】C【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A 、23236()a a a ⨯==,该选项错误;B ==C 2==,该选项正确;D、cos30=°C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.16.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.17.(2022·湖南湘潭)下列整式与2ab为同类项的是()A.2a b B.2ab c2ab-C.ab D.2【答案】B【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项求解.【详解】解:由同类项的定义可知,a的指数是1,b的指数是2.A、a的指数是2,b的指数是1,与2ab不是同类项,故选项不符合题意;B 、a 的指数是1,b 的指数是2,与2ab 是同类项,故选项符合题意;C 、a 的指数是1,b 的指数是1,与2ab 不是同类项,故选项不符合题意;D 、a 的指数是1,b 的指数是2,c 的指数是1,与2ab 不是同类项,故选项不符合题意.故选:B .【点睛】此题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.(2022·江苏苏州)下列运算正确的是( )A 7=-B .2693÷=C .222a b ab +=D .235a b ab⋅=【答案】BA 选项不正确;C 选项中2a 、2b 不是同类项,不能合并;D 选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A.7==,故A 不正确;B. 2366932÷=⨯=,故B 正确;C. 222a b ab +≠,故C 不正确;D. 236a b ab ⋅=,故D 不正确;故选B .【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.19.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:()()x y z m n x y z m n ----=--++,()x y z m n x y z m n ----=--+-,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为( )A .0B .1C .2D .3【答案】D【分析】给x y -添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x 的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.【详解】解:∵()x y z m n x y z m n ----=----∴①说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号,无法使得x 的符号为负号∴②说法正确∵当括号中有两个字母,共有4种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有三个字母,共有3种情况,分别是()x y z m n ----、()x y z m n ----、()x y z m n ----;当括号中有四个字母,共有1种情况,()x y z m n ----∴共有8种情况∴③说法正确∴正确的个数为3故选D .【点睛】本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.二.填空题20.(2022·江苏苏州)已知4x y +=,6-=x y ,则22x y -=______.【答案】24【分析】根据平方差公式计算即可.【详解】解:∵4x y +=,6-=x y ,∴22()()4624x y x y x y -=+-=⨯=,故答案为:24.【点睛】本题考查因式分解的应用,先根据平方差公式进行因式分解再整体代入求值是解题的关键.21.(2022·四川乐山)如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______.【答案】5【分析】设正方形a 、b 、c 、d 的边长分别为a 、b 、c 、d ,分别求得b =13c ,c =35d ,由“优美矩形”ABCD 的周长得4d +2c =26,列式计算即可求解.【详解】解:设正方形a 、b 、c 、d 的边长分别为a 、b 、c 、d ,∵“优美矩形”ABCD 的周长为26,∴4d +2c =26,∵a =2b ,c =a +b ,d =a +c ,∴c =3b ,则b =13c ,∴d =2b +c =53c ,则c =35d ,∴4d +65d =26,∴d =5,∴正方形d 的边长为5,故答案为:5.【点睛】本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.22.(2022·四川乐山)已知221062m n m n ++=-,则m n -=______.【答案】4【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得,m n 的值,进而代入代数式即可求解.【详解】解: 221062m n m n ++=-,2210620m n m n +-+∴+=,即()()22310m n -++=,3,1m n ∴==-,()314m n ∴-=--=,故答案为:4.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.23.(2022·湖南邵阳)已知2310x x -+=,则2395x x -+=_________.【答案】2【分析】将2395x x -+变形为23(31)+2x x -+即可计算出答案.【详解】22239539323(31)+2x x x x x x -+=-++=-+∵2310x x -+=∴23950+2=2x x -+=故答案为:2.【点睛】本题考查代数式的性质,解题的关键是熟练掌握代数式的相关知识.24.(2022·天津)计算7m m ⋅的结果等于___________.【答案】8m 【分析】根据同底数幂的乘法即可求得答案.【详解】解:7178m m m m +⋅==,故答案为:8m .【点睛】本题考查了同底数幂的乘法,熟练掌握计算方法是解题的关键.25.(2022·江苏扬州)掌握地震知识,提升防震意识.根据里氏震级的定义,地震所释放出的能量E 与震级n 的关系为 1.510n E k =⨯(其中k 为大于0的常数),那么震级为8级的地震所释放的能量是震级为6级的地震所释放能量的________倍.【答案】1000【分析】分别求出震级为8级和震级为6级所释放的能量,然后根据同底数幂的除法即可得到答案.【详解】解:根据能量E 与震级n 的关系为 1.510n E k =⨯(其中k 为大于0的常数)可得到,当震级为8级的地震所释放的能量为: 1.58121010k k ⨯⨯=⨯,当震级为6级的地震所释放的能量为: 1.5691010k k ⨯⨯=⨯,12391010100010k k ⨯==⨯ ,∴震级为8级的地震所释放的能量是震级为6级的地震所释放能量的1000倍.故答案为:1000.【点睛】本题考查了利用同底数幂的除法底数不变指数相减的知识,充分理解题意并转化为所学数学知识是解题的关键.26.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n =1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n ;然后根据n =1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n =1时,“•”的个数是3=3×1;n =2时,“•”的个数是6=3×2;n =3时,“•”的个数是9=3×3;n =4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n ;又∵n =1时,“○”的个数是1=1(11)2⨯+;n =2时,“○”的个数是2(21)32⨯+=,n =3时,“○”的个数是3(31)62⨯+=,n =4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.27.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.28.(2022·山东滨州)若10m n +=,5mn =,则22m n +的值为_______.【答案】90【分析】将22m n +变形得到()22m n mn +-,再把10m n +=,5mn =代入进行计算求解.【详解】解:∵10m n +=,5mn =,∴22m n + ()22m n mn =+- 21025=-⨯ 10010=- 90=.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.29.(2022·山东泰安)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是_____(用科学记数法表示,保留2位有效数字)【答案】7.1×10-7【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【详解】∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10-7.故答案是:7.1×10-7.【点睛】本题主要考查了用科学记数法表示数的除法与有效数字,正确掌握运算法则是解题关键.30.(2022·四川德阳)已知(x+y )2=25,(x ﹣y )2=9,则xy=___.【答案】4【分析】根据完全平方公式的运算即可.【详解】∵()225x y +=,()29x y -=∵()2x y ++()2x y -=4xy =16,∴xy =4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用.31.(2022·浙江嘉兴)分解因式:m 2-1=_____.【答案】()()11m m +-【分析】利用平方差公式进行因式分解即可.【详解】解:m 2-1=()()11,m m +- 故答案为:()()11m m +-【点睛】本题考查的是利用平方差公式分解因式,掌握“平方差公式的特点”是解本题的关键.32.(2022·湖南怀化)因式分解:24-=x x _____.【答案】2(1)(1)+-x x x 【分析】根据提公因式法和平方差公式进行分解即可.【详解】解:()242221(1)(1)-=-=+-x x x x x x x ,故答案为:2(1)(1)+-x x x 【点睛】本题考查了提公因式法和平方差公式,熟练掌握提公因式法和平方差公式是解题的关键.33.(2022·浙江绍兴)分解因式:2x x + = ______.【答案】(1)x x +【分析】利用提公因式法即可分解.【详解】2(1)x x x x +=+,故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.34.(2022·浙江宁波)分解因式:x 2-2x +1=__________.【答案】(x -1)2【详解】由完全平方公式可得:2221(1)x x x -+=-故答案为2(1)x -.【点睛】错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.35.(2022·江苏连云港)若关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,则m n +的值是___.【答案】1【分析】根据一元二次方程解的定义把1x =代入到()2100mx nx m +-=≠进行求解即可.【详解】∵关于x 的一元二次方程()2100mx nx m +-=≠的一个解是1x =,∴10m n +-=,∴1m n +=,故答案为:1.【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.36.(2022·浙江丽水)如图,标号为①,②,③,④的矩形不重叠地围成矩形PQMN ,已知①和②能够重合,③和④能够重合,这四个矩形的面积都是5.,AE a DE b ==,且a b >.(1)若a ,b 是整数,则PQ 的长是___________;(2)若代数式222a ab b --的值为零,则ABCD PQMNS S 四边形矩形的值是___________.【答案】 -a b3+【分析】(1)根据图象表示出PQ 即可;(2)根据2220a ab b --=分解因式可得()()0a b a b --=,继而求得a b =,根据这四个矩形的面积都是5,可得55,EP EN a b==,再进行变形化简即可求解.【详解】(1) ①和②能够重合,③和④能够重合,,AE a DE b ==,PQ a b ∴=-,故答案为:-a b ;(2)2220a ab b --=,2222222()2()()0a ab b b a b b a b a b ∴-+-=--=--=,0a b ∴-=或0a b -=,即a b =(负舍)或a b = 这四个矩形的面积都是5,55,EP EN a b∴==,()()()()()()()()22555555ABCD PQMNa b a b a b a b S b a ab a b S a b a b a b b a ab ⎛⎫++⋅++⋅⎪+⎝⎭∴===-⎛⎫----⋅⎪⎝⎭四边形矩形,2222222222222222a b ab a b a b a a b ab a b a b b ++++-===+-+-+,3==+【点睛】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据.37.(2022·四川德阳)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45【分析】根据题意找到图形规律,即可求解.【详解】根据图形,规律如下表:三角形3正方形4五边形5六边形6M 边形m11111121+21+211+2111+21111+21(3)1m ⎫⎪-⎬⎪⎭ 31+2+31+2+31+21+2+31+21+21+2+31+21+21+21+2+312(3)12m +⎫⎪-⎬⎪+⎭ 41+2+3+41+2+3+41+2+31+2+3+41+2+31+2+31+2+3+41+2+31+2+31+2+31+2+3+4123(3)123m ++⎫⎪-⎬⎪++⎭n12n +++ 12n +++ 12n +++ 12n+++12n+++12(1)n +++- 12(1)n +++- 12(1)n +++- 12(1)n +++- 12(1)n +++- 12(1)n +++- 12(1)(3)12(1)n m n +++-⎫⎪-⎬⎪+++-⎭由上表可知第n 个M 边形数为:12)[12(1)]()(3S n n m +++++++-=- ,整理得:1)(1)(3)2(2n n n n m S --+=+,则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +--+--+=+==,故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.38.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,24 68 10 1214 16 18 20……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n 行有n 个数,则前n 行共有(1)2n n +个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n 行有n 个数.∴前n 行共有1+2+3+⋯+n =(1)2n n +个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.三.解答题39.(2022·江苏苏州)已知23230x x --=,求()2213x x x ⎛⎫-++ ⎪⎝⎭的值.【答案】24213x x -+,3【分析】先将代数式化简,根据23230x x --=可得2213x x -=,整体代入即可求解.【详解】原式222213x x x x =-+++24213x x =-+.∵23230x x --=,∴2213x x -=.∴原式22213x x ⎛⎫=-+ ⎪⎝⎭211=⨯+3=.【点睛】本题考查了整式的乘法运算,代数式化简求值,整体代入是解题的关键.40.(2022·江苏宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【答案】(1)300,240(2)当040x <≤时,选择乙超市更优惠,当50x =时,两家超市的优惠一样,当4050x <<时,选择乙超市更优惠,当50x >时,选择甲超市更优惠.【分析】(1)根据甲、乙两家超市的优惠方案分别进行计算即可;(2)设单位购买x 件这种文化用品,所花费用为y 元, 可得当040x <≤时,10,y x =甲 100.88,y x x =⨯=乙 显然此时选择乙超市更优惠,当40x >时()4000.610406100,y x x =+⨯-=+甲 100.88,y x x =⨯=乙再分三种情况讨论即可.(1)解: 甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为3010=300⨯(元),∵乙超市全部按标价的8折售卖,∴该单位需要购买30件这种文化用品,则在甲超市的购物金额为30100.8240⨯⨯=(元),故答案为:300,240(2)设单位购买x 件这种文化用品,所花费用为y 元,又当10x =400时,可得40,x = 当040x <≤时,10,y x =甲 100.88,y x x =⨯=乙 显然此时选择乙超市更优惠,当40x >时,()4000.610406100,y x x =+⨯-=+甲 100.88,y x x =⨯=乙当y y =甲乙时,则86100,x x =+ 解得:50,x = ∴当50x =时,两家超市的优惠一样,当y y >乙甲时,则61008,x x +> 解得:50,x < ∴当4050x <<时,选择乙超市更优惠,当y y <乙甲时,则61008,x x +< 解得:50,x > ∴当50x >时,选择甲超市更优惠.【点睛】本题考查的是列代数式,一次函数的实际应用,一元一次不等式的实际应用,清晰的分类讨论是解本题的关键.41.(2022·湖南衡阳)先化简,再求值:()()()2a b a b b a b +-++,其中1a =,2b =-.【答案】2a 2ab +,3-【分析】利用平方差公式与多项式乘法法则进行化简,再代值计算.【详解】解:原式222222a b ab b a ab =-++=+,将1a =,2b =-代入式中得:原式()21212143=+⨯⨯-=-=-.【点睛】本题考查多项式乘法与平方差公式,熟练掌握相关运算法则是解题的关键.42.(2022·浙江金华)如图1,将长为23a +,宽为2a 的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a 的代数式表示图2中小正方形的边长.(2)当3a =时,该小正方形的面积是多少?【答案】(1)3a +(2)36【分析】(1)分别算出直角三角形较长的直角边和较短的直角边,再用较长的直角边减去较短的直角边即可得到小正方形面积;(2)根据(1)所得的小正方形边长,可以写出小正方形的面积代数式,再将a 的值代入即可.(1)解:∵直角三角形较短的直角边122a a =⨯=,较长的直角边23a =+,∴小正方形的边长233a a a =+-=+;(2)解:22(3)69S a a a =+=++小正方形,当3a =时,2(33)36S =+=小正方形.【点睛】本题考查割补思想,属性结合思想,以及整式的运算,能够熟练掌握割补思想是解决本题的关键.43.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.44.(2022·浙江丽水)先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =.【答案】12x +;2【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解.【详解】(1)(1)(2)x x x x +-++2212x x x=-++12x=+当12x =时,原式12x =+11222=+⨯=.【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.45.(2022·重庆)若一个四位数M 的个位数字与十位数字的平方和恰好是M 去掉个位与十位数字后得到的两位数,则这个四位数M 为“勾股和数”.例如:2543M =,∵223425+=,∴2543是“勾股和数”;又如:4325M =,∵225229+=,2943≠,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()9c d G M +=,()()()103a c b d P M -+-=.当()G M ,()P M 均是整数时,求出所有满足条件的M .【答案】(1)2022不是“勾股和数”,5055是“勾股和数”;理由见解析(2)8109或8190或4536或4563.【分析】(1)根据“勾股和数”的定义进行验证即可;。
中考数学复习《整式的乘法与因式分解》专题训练-附带参考答案
中考数学复习《整式的乘法与因式分解》专题训练-附带参考答案一、选择题1.下列计算正确的是( )A .(3a)2=6a 2B .(a 2)3=a 5C .a 6÷a 2=a 3D .a 2⋅a =a 32.若8x =21,2y =3,则23x−y 的值是( )A .7B .18C .24D .633.计算(−2ab)(ab −3a 2−1)的结果是( )A .−2a 2b 2+6a 3bB .−2a 2b 2−6a 3b −2abC .−2a 2b 2+6a 3b +2abD .−2a 2b 2+6a 3b −14.若(x −1)(x +4)=x 2+ax +b ,则a 、b 的值分别为( ).A .a =5,b =4B .a =3,b =−4C .a =3,b =4D .a =55.下列运算中,计算正确的是( )A .(−a +2b)(−a −2b)=a 2−4b 2B .(a −2b)(2a +b)=a 2−4b 2C .(a −2b)(2b −a)=a 2−4b 2D .(a +2b)(−a −2b)=a 2−4b 26.分解因式4x 2−y 2的结果是( )A .(4x +y)(4x −y)B .4(x +y)(x −y)C .(2x +y)(2x −y)D .2(x +y)(x −y) 7.设a =x −2017,b =x −2019,c =x −2018若a 2+b 2=34,则c 2的值是( )A .16B .12C .8D .48.把多项式x 2+ax+b 分解因式,得(x+1)(x ﹣3)则a ,b 的值分别是( )A .a=2,b=3B .a=﹣2,b=﹣3C .a=﹣2,b=3D .a=2,b=﹣3 二、填空题9.计算(√3−1)(√3+1)的结果等于 .10.若a m = 4,a 2m+n = 128,则a n= 11.因式分解:a 3−16a = .12.若(x +3)(x +m)=x 2−2x −15.则m = .13.已知a+ 1a =3,则a 2+ 1a 2 的值是 .三、解答题14.计算下列各题:(1);(2).15.因式分解:(1)(2)16.已知x=2−√3,y=2+√3求下列代数式的值:(1)x2+2xy+y2;(2)x2−y2.17.为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:方法一:S小正方形=;方法二:S小正方形=;(2)(m+n)2,(m−n)2,4mn这三个代数式之间的等量关系为;(3)根据(2)题中的等量关系,解决如下问题:①已知:a−b=5,ab=−6求:(a+b)2的值;②已知:a−1a=1,求:(a+1a)2的值.18.观察下列分解因式的过程:x2+2xy−3y2解:原式=x2+2xy+y2−y2−3y2=(x2+2xy+y2)−4y2=(x+y)2−(2y)2=(x+y+2y)(x+y−2y)=(x+3y)(x−y)像这种通过增减项把多项式转化成适当的完全平方形式的方法,在代数计算与推理中往往能起到巧妙解题的效果.(1)请你运用上述方法分解因式:x2+4xy−5y2;(2)若M=2(3x2+3x+1),N=4x2+2x−3比较M、N的大小,并说明理由;(3)已知Rt△ABC中∠C=90°,三边长a,b,c满足c2+25=8a+6b,求△ABC的周长.参考答案1.【答案】D2.【答案】A3.【答案】C4.【答案】B5.【答案】A6.【答案】C7.【答案】A8.【答案】B9.【答案】210.【答案】811.【答案】a(a+4)(a−4)12.【答案】-513.【答案】714.【答案】(1)解:(2)解:15.【答案】(1)解:== ;(2)解:== .16.【答案】(1)解:∵x =2−√3∴x +y =4∴x 2+2xy +y 2=(x +y)2=42=16;(2)解:∵x =2−√3∴x +y =4∴x 2−y 2=(x +y)(x −y)=4×(−2√3)=−8√3.17.【答案】(1)(m −n)2;(m +n)2−4mn(2)(m +n)2=(m −n)2+4mn(3)(3)①a −b =5∴(a +b)2=(a −b)2+4ab=52+4×(−6)=25+(−24)=1;②(a +1a )2=(a −1a )2+4⋅a ⋅1a=12+4=1+4=5.18.【答案】(1)解:x 2+4xy −5y 2=x 2+4xy +4y 2−4y 2−5y 2 =(x 2+4xy +4y 2)−9y 2=(x +2y)2−9y 2=(x +2y +3y)(x +2y −3y)=(x +5y)(x −y);(2)解:M >N理由:∵M =2(3x 2+3x +1)∴M −N=2(3x 2+3x +1)−(4x 2+2x −3)=2x 2+4x +5=2x2+4x+2+3=2(x2+2x+1)+3=2(x+1)2+3∵(x+1)2≥0∴2(x+1)2+3≥3∴M−N≥3>0∴M>N.(3)解:由题意∴a2+b2+25=8a+6b∴a2+b2−8a−6b+25=0∴a2−8a+16+b2−6b+9=0∴(a2−8a+16)+(b2−6b+9)=0∴(a−4)2+(b−3)2=0∵(a−4)2≥0,(b−3)2≥0∴a−4=0,b−3=0∴a=4,b=3由题意∴△ABC的周长是3+4+5=12.。
北京市2023年九年级中考数学一轮复习——整式的运算 练习题(解析版)
北京市2023年九年级中考数学一轮复习——整式的运算 练习题一、单选题1.(2022·北京顺义·一模)下列计算正确的是( )A .22423a a a +=B .632a a a ÷=C .352()a a =D .222()ab a b =2.(2022·北京十一学校一分校模拟预测)下列运算中正确的是( )A .326a a a =B .347()a a =C .632a a a ÷=D .5552a a a +=3.(2022·北京一七一中一模)某中学开展“筑梦冰雪,相约冬奥”的学科活动,设计几何图形作品表达对冬奥会的祝福.小冬以长方形ABCD 的四条边为边向外作四个正方形,设计出“中”字图案,如图所示.若四个正方形的周长之和为24,面积之和为12,则长方形ABCD 的面积为( )A .1B .32C .2D .834.(2022·北京东城·二模)下列运算结果正确的是( )A .32a a -=B .248a a a ⋅=C .()()2224a a a +-=-D .()22a a -=- 5.(2022·北京·中国人民大学附属中学朝阳学校一模)如果23+=x x ,那么代数式(1)(1)(2)x x x x +-++的值是( )A .2B .3C .5D .66.(2022·北京石景山·一模)下列运算正确的是( )A .235a a a +=B .235a a a ⋅=C .236()a a -=D .3222a b ab a b -÷=-7.(2022·北京·清华附中一模)广阔无垠的太空中有无数颗恒星,其中离太阳系最近的一颗恒星称为“比邻星”,它距离太阳系约4.2光年.光年是天文学中一种计量天体时空距离的长度单位,1光年约为9500000000000千米.则“比邻星”距离太阳系约为( )A .13410⨯千米B .12410⨯千米C .139. 510⨯千米D .129. 510⨯千米8.(2022·北京昌平·模拟预测)下列运算正确的是( )333336C .(﹣2x )3=﹣6x 3D .a 6÷a 2=a 4二、填空题9.(2022·北京东城·一模)已知23-=x x ,则代数式(1)(1)(2)x x x x +-+-=________.10.(2022·北京大兴·一模)某游泳馆为吸引顾客,推出了不同的购买游泳票的方式.游泳票在使用有效期限内,支持一个人在一天内不限次数的进入到游泳馆进行游泳.游泳票包括一日票、三日票、五日票及七日票共四种类型,价格如下表:某人想连续6天不限次数的进入到游泳馆游泳,若决定从以上四种类型中购买游泳票,则总费用最低为______元.11.(2022·北京石景山·一模)0m >,0n >,若22413m n +=,3mn =,请借助下图直观分析,通过计算求得2m n +的值为______.12.(2022·北京朝阳·一模)如图,2022年北京冬奥会上,一些可看作正六边形的“小雪花”对称地排列在主火炬周围,中间空出了13个“小雪花”的位置来突出主火炬,在其中91个“小雪花”上面写有此次参会的国家或地区的名称,此外还有几个“小雪花”上面只有中国结图案,这些只有中国结图案的“小雪花”共有_________个.13.(2022·北京市师达中学模拟预测)如图1,小长方形纸片的长为2,宽为1,将4张这样的小长方形按图2所示的方式不重叠的放在长方形内,未被覆盖的部分恰好被分割为两个长方形A 和B ,设长方形A 和B 的周长分别为1C 和2C ,则1C ______________2C (填“>”、“=”或“<”)三、解答题14.(2022·北京·中考真题)已知2220x x +-=,求代数式2(2)(1)x x x +++的值.15.(2022·北京市第二中学朝阳学校九年级阶段练习)已知21m m -=,求代数式()()()21213m m m m +--+的值.16.(2022·北京·长辛店学校九年级期中)已知a 2+2a ﹣2=0,求代数式(a ﹣1)(a +1)+2(a ﹣1)的值. 17.(2022·北京朝阳·一模)已知230x x +-=,求代数式(23)(23)(3)+---x x x x 的值.18.(2022·北京市第七中学一模)如图所示,纸片甲、乙分别是长方形ABCD 和正方形EFGH ,将甲、乙纸片沿对角线AC ,EG 剪开,不重叠无空隙地拼接起来,其中间部分恰好可以放入一张正方形纸片OPQR ,与甲、乙纸片一起组成纸片丙的四边形NALM ,设AD a =,AB b =.(1)求纸片乙的边长(用含字母a 、b 的代数式表示);(2)探究纸片乙、丙面积之间的数量关系.19.(2022·北京十一学校一分校模拟预测)已知2210x x +-=,求代数式2(1)(4)(3)(3)x x x x x ++++-+的值.20.(2022·北京朝阳·模拟预测)解下列不等式,并把解在数轴上表示出来.(1)5x ﹣5<2(2+x );(2)413x x -->1; (3)323228x x ->-; (4)x (x +4)≤(x +1)2+9.21.(2022·北京房山·模拟预测)为确定传染病的感染者,医学上可采用“二分检测方案”.假设待检测的总人数是2m (m 为正整数).将这2m 个人的样本混合在一起做第1轮检测(检测1次),如果检测结果是阴性,可确定这些人都未感染;如果检测结果是阳性,可确实其中感染者,则将这些人平均分成两组,每组12m -个人的样本混合在一起做第2轮检测,每组检测1次.依此类推:每轮检测后,排除结果为阴性的组,而将每个结果为阳性的组再平均分成两组,做下轮检测,直至确定所有的感染者.例如,当待检测的总人数为8,且标记为“x ”的人是唯一感染者时,“二分检测方案”可用如图所示.从图中可以看出,需要经过4轮共n 次检测后,才能确定标记为“x ”的人是唯一感染者.(1)n 的值为___________;(2)若待检测的总人数为8,采用“二分检测方案”,经过4轮共9次检测后确定了所有的感染者,写出感染者人数的所有可能值___________;22.(2022·北京昌平·模拟预测)先化简,再求值:已知1x y -=,求()()()()212x y x y y x x +-+---的值.23.(2022·北京师大附中模拟预测)已知210x x +-=,求代数式()()()112x x x x +-++的值.24.(2022·北京市第五中学分校模拟预测)已知2410x x -=+,求代数式22(2)(3)(3)x x x x +-+-+的值. 25.(2022·北京·东直门中学模拟预测)已知2410x x --=,求代数式22(23)()()x x y x y y --+--的值. 26.(2021·北京·中考真题)已知22210a b +-=,求代数式()()22-++a b b a b 的值.27.(2020·北京·中考真题)已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.参考答案:1.D【分析】由合并同类项、同底数幂除法,幂的乘方、积的乘方,分别进行判断,即可得到答案.【详解】解:A.22223a a a +=,故A 错误;B.633a a a ÷=,故B 错误;C.236()a a =,故C 错误;D.222()ab a b =,故D 正确;故选:D .【点睛】本题考查了同底数幂除法,积的乘方,幂的乘方,合并同类项,解题的关键是熟练掌握运算法则进行解题.2.D【分析】根据同底数幂的乘法和除法,幂的乘方,合并同类项逐项计算判断即可.【详解】325a a a =,故A 错误,不符合题意;3412()a a =,故B 错误,不符合题意;633a a a ÷=,故C 错误,不符合题意;5552a a a +=,故D 正确,符合题意;故选D .【点睛】本题考查同底数幂的乘法和除法,幂的乘方,合并同类项.掌握各运算法则是解题关键.3.B【分析】设矩形ABCD 的边AB a ,AD b ,根据四个正方形周长之和为24,面积之和为12,得到3a b +=,226a b +=,再根据222[()()]21ab a b a b =+-+,即可求出答案. 【详解】解:设AB a ,AD b ,由题意得,8824a b +=,222212a b +=,即3a b +=,226a b +=,2223[()()]121(96)22ab a b a b ∴=+-+=-=, 即长方形ABCD 的面积为32, 故选:B .【点睛】本题考查完全平方公式的意义和应用,掌握完全平方公式的结构特征是正确应用的前提.4.C【分析】逐一分析各选项,利用对应法则进行计算即可判断出正确选项.【详解】解:A 选项中:32a a a -=,因此错误;B 选项中:246·a a a =,因此错误;C 选项中:()()2224a a a +-=-,因此正确;D 选项中:()22a a -=,因此错误;故选:C .【点睛】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容,解决本题的关键是牢记相关运算法则和公式即可.5.C【分析】先将代数式(1)(1)(2)x x x x +-++进行化简,然后代入求值.【详解】解:(1)(1)(2)x x x x +-++=x 2-1+x 2+2x=2(x 2+x)-1.∵23+=x x ,∴原式=231 5.⨯-=故选C.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.6.B【分析】根据整式的运算法则即可求出答案.【详解】A 、a 2与a 3不是同类项不能合并,故A 错误;B 、235a a a ⋅=,底数不变指数相加,故B 正确;C 、(-a 2)3=a 6,底数不变指数相乘,故C 错误;D 、3222a b ab a -÷=-,原选项计算错误.故选B.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】9 500 000 000 000×4.2=39900000000000≈40000000000000=4×1013.故选A .【点睛】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.D【详解】A 、a 3•a 3=a 3+3=a 6同底数幂的乘法,底数不变指数相加;故本选项错误;B 、a 3+a 3=2a 3合并同类项,系数相加字母和字母的指数不变;故本选项错误;C 、(﹣2x )3=﹣8x 3幂的乘方,底数不变指数相乘.故本选项错误;D 、a 6÷a 2=a 4同底数幂的除法,底数不变指数相减;故本选项正确.故选D .9.5【分析】根据()2()()(112)21x x x x x x =+----+,将代数式23-=x x 代入求解即可.【详解】解:()22211()()()12212x x x x x x x x x +-=-++--=--,将23-=x x 代入得,原式2315=⨯-=,故答案为:5.【点睛】本题考查了代数式求值,平方差公式.解题的关键在于将代数式进行正确的化简.10.250【分析】分5种方案计算费用比较即可.【详解】解:连续6天不限次数的进入到游泳馆游泳方案一:买一日票6张,费用506300⨯=(元)方案二:买一日票1张,五日票1张,费用50200250+=(元)方案三:买一日票3张,三日票1张,费用350130280⨯+=(元)方案四:买三日票2张,费用2130260⨯=(元)方案五:买七日票1张,费用270(元)故方案二费用最低:250(元)故答案为:250.【点睛】本题考查了根据实际问题求最小值,解题的关键是需要分情况列出可能性.11.5【分析】设图形中小正方形边长为n ,最中间的正方形边长为m ,则大正方形的边长为2m n +,根据最大正方形的面积计算即可.【详解】设图形中小正方形边长为n ,最中间的正方形边长为m ,则大正方形的边长为2m n +, ∴大正方形的面积为:22244(2)m n mn m n ++=+∵22413m n +=,3mn =∴222(2)44131225m n m n mn +=++=+=∵0m >,0n >,∴25m n +=.故答案为:5.【点睛】本题考查完全平方公式与几何图形,利用数形结合思想表示图形的边长是解题的关键. 12.5【分析】根据图形先计算图中共有的小雪花的数量,再减去上面写有此次参会的国家或地区名称的小雪花,即可得答案.【详解】解:仔细观察图像可知,图中共有小雪花3×2+4×2+4×2+9×2+10×2+9×2+6×2+3×2=96(个)其中有在其中91个“小雪花”上面写有此次参会的国家或地区的名称,∴“小雪花”上面只有中国结图案有 96-91=5(个)故答案为:5.【点睛】本题考查了图形的规律,以及有理数的加减运算,解题的关键是仔细看图.13.=【分析】设图2中大长方形长为x ,宽为y ,再表示出长方形A 和B 的长和宽,进而可得周长,然后可得答案.【详解】解:设图2中大长方形长为x ,宽为y ,则长方形A 的长为x ﹣1,宽为y ﹣3,周长1C =2(x ﹣1+y ﹣3)=2x +2y ﹣8,长方形B 的长为x ﹣2,宽为y ﹣2,周长2C =2(x ﹣2+y ﹣2)=2x +2y ﹣8,则1C =2C ,故答案为:=.【点睛】本题主要考查整式的加减,关键是正确设出未知数,表示出长方形A 和B 的长和宽.14.5【分析】先根据2220x x +-=,得出222x x +=,将2(2)(1)x x x +++变形为()2221x x ++,最后代入求值即可.【详解】解:∵2220x x +-=,∴222x x +=,∴2(2)(1)x x x +++22221x x x x =++++2241x x =++()2221x x =++221=⨯+5=【点睛】本题主要考查了代数式求值,完全平方公式,单项式乘多项式,将2(2)(1)x x x +++变形为()2221x x ++,是解题的关键.15.2【分析】根据平方差公式、合并同类项,化简代数式即可求解.【详解】解:()()()21213m m m m +--+22413m m m =---()231m m =--21m m -=∴原式3112=⨯-=【点睛】本题考查了代数式、整式加减、合并同类项、平方差公式等知识点,熟练的正确运算是解决问题的关键.16.1-【分析】(1)(1)2(1)a a a -++-223a a =+-,由2220a a +-=可得222a a +=,整体代入求解即可.【详解】解:(1)(1)2(1)a a a -++-(1)(12)a a =-++(1)(3)a a =-+223a a =+-∵2220a a +-=∴222a a +=∴原式23=-1=-.【点睛】本题考查了代数式求值.解题的关键在于熟练掌握平方差公式及整体代入的思想.17.0【分析】根据整式的乘法对代数式进行化简,整体代入即可得到答案.【详解】解:(23)(23)(3)+---x x x x=222(2)3(3)x x x ---=22493x x x --+=2339x x +-=23(3)x x +-∵230x x +-=∴原式=0即代数式(23)(23)(3)+---x x x x 的值为0.【点睛】本题考查整式的化简求值,根据整式的运算法则和乘法公式进行准确计算是解题的关键. 18.(1)纸片乙的边长为2a b + (2)纸片丙的面积是纸片乙的面积的2倍【分析】(1)设纸片乙的边长为m .根据丙图中线段的和差关系列出一元一次方程求解即可.(2)用a 和b 分别表示纸片乙和纸片丙的面积,即可求出纸片乙、丙的数量关系.(1)解:设纸片乙的边长为m ,则MP =m ,PL =m .∴MP+PL=2m .∵AD =a ,AB =b ,∴OL =a ,MQ =b .∵纸片OPQR 是正方形,∴OP =QP .∴MP +PL =MQ +QP +PL =MQ +OP +PL =MQ +OL =a +b .∴2m =a +b . ∴2a b m +=. ∴纸片乙的边长为2a b +. (2)解:S 乙=222224a b a ab b +++⎛⎫= ⎪⎝⎭. ∵MQ =b ,MP =2a b +,∴2a b QP MP MQ -=-=. S 丙=22221122222222a b a b a ab b ab +-++⎛⎫⎛⎫⨯+⨯+= ⎪ ⎪⎝⎭⎝⎭. ∴S 丙=2S 乙.∴纸片丙的面积是纸片乙的面积的2倍.【点睛】本题考查线段的和差关系,解一元一次方程,三角形面积公式,正方形面积公式,整式的混合运算,熟练掌握这些知识点是解题关键.19.5-【分析】根据完全平方公式,单项式乘以多项式,平方差公式进行化简,再将已知代数式变形代入求解即可.【详解】解:∵2(1)(4)(3)(3)x x x x x ++++-+2222149x x x x x =+++++-2368x x =+-又2210x x +-=221x x +=∴原式()2328x x =+-318=⨯-=5-【点睛】本题考查了整式的化简求值,掌握完全平方公式,单项式乘以多项式,平方差公式是解题的关键.20.(1)x >3,数轴见解析(2)x >4,数轴见解析(3)x ≤4.5,数轴见解析(4)x ≤5,数轴见解析【分析】(1)根据去括号、移项、合并同类项和系数化为1即可求出不等式的解集;(2)根据去分母、移项、合并同类项和系数化为1即可求出不等式的解集.(3)根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(4)去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(1)解:5x ﹣5<2(2+x )去括号得,5x﹣5<4+2x,移项得,5x﹣2x>4+5,合并同类项,3x>9,∴x>3.在数轴上表示此不等式的解集如下:(2)解:413xx-->1去分母,得4x﹣1﹣3x>3,移项,得4x﹣3x>3+1,合并同类项,得x>4,∴x>4.在数轴上表示此不等式的解集如下:(3)解:323 228x x->-去分母,得12≥4x﹣(2x﹣3),去括号,得12≥4x﹣2x+3,移项,得﹣4x+2x≥3﹣12,合并同类项,得﹣2x≥﹣9,∴x≤4.5.在数轴上表示此不等式的解集如下:(4)解:x(x+4)≤(x+1)2+9去括号,得x2+4x≤x2+2x+1+9,移项,得x 2﹣x 2+4x ﹣2x ≤1+9,合并同类项,得2x ≤10,∴x ≤5.在数轴上表示此不等式的解集如下:【点睛】本题考查了解一元一次不等式,能正确运用不等式的基本性质进行计算是解此题的关键.21.(1)7(2)2、3、4【分析】(1)由图可计算得到n 的取值.(2)当经过4轮共9次检测后确定所有感染者,只需第3轮对两组都进行检查,由此得到所有可能的结果.(1)由题意可知,第1轮需检测1次,第2轮需检测2次,第3轮需检测2次,第4轮需检测2次, ∴12227n =+++=故答案为7.(2)由(1)可知,若只有1个感染者,则只需7次检测即可,经过4轮9次检测查出所有感染者,比只有1个感染者多2次检测,则只需第3轮时,对两组都进行检查,即对最后四个人进行检查,可能的结果如下图所示:故答案为:2、3、4【点睛】本题考查了数学建模能力,正确理解题意并合理建模是解答本题的关键.22.221y x -++,3【分析】根据乘法公式与单项式乘以多项式法则展开合并同类项,然后整体代入1x y -=,求值即可.【详解】解:()()()()212x y x y y x x +-+---,2222212x y y y x x =-+-+-+ ,221y x =-++ ,∵1x y -=,∴原式()221212113x y x y =-+=-+=⨯+=.【点睛】本题考查多项式乘法化简求值,掌握平方差公式和完全平方公式,以及单项式乘以多项式法则是解题关键.23.1【分析】先根据整式混合运算法则进行化简,再得出21x x +=,代入即可【详解】解:()()()112x x x x +-++2212x x x =-++2221x x =+-()221x x =+-∵210x x +-=∴21x x +=,则原式=211=1⨯-;【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.24.x 2+4x +13;14【解析】先把原式化简成含有x 2+4x 的代数式,再由已知得到x 2+4x =1并代入到化简后的代数式即可得到解答.【详解】解:由已知可得:x 2+4x =1,∴原式=()222449x x x x ++--+=222449x x x x ++-++=2413x x ++=1+13=14.【点睛】本题考查代数式的应用,由已知得到某式的值然后代入化简后的代数式求值是解题关键. 25.12【分析】将代数式应用完全平方公式和平方差公式展开后合并同类项,将241x x -=整体代入求值.【详解】解:∵2410x x --=,∴241x x -=.∴22(23)()()x x y x y y --+--22224129x x x y y =-+-+-23129x x =-+()2349x x =-+139=⨯+12=.26.1【分析】先对代数式进行化简,然后再利用整体思想进行求解即可.【详解】解:()()22-++a b b a b=22222a ab b ab b -+++=222a b +,∵22210a b +-=,∴2221a b +=,代入原式得:原式=1.【点睛】本题主要考查整式的乘法运算及完全平方公式,熟练掌握利用整体思想进行整式的化简求值是解题的关键.27.21024x x --,-2【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.【详解】解:原式=22942x x x -+- 2102 4.x x =--∵2510x x --=,∴251x x -=,∴21022x x -=,∴原式=242-=-.【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.。