电压比较器资料讲解
常用的电压比较器
常用的电压比较器电压比较器是一种常用的电子元件,用于将输入的电压与参考电压进行比较,并输出相应的逻辑信号。
在实际电路中,电压比较器的使用场景非常广泛,例如用于电源监测、电压检测、电压自动调节等。
本文将介绍常用的电压比较器及其相关参考内容。
1. 常用电压比较器的种类常用的电压比较器有很多种类,常见的有以下几种:1) 开环比较器:是一种基本的电压比较器,具有高增益和高速度,可以将输入电压的随时间变化情况通过比较转换为输出信号。
常见的开环比较器有LM311、LM339等。
2) 窗口比较器:是一种特殊的电压比较器,具有两个参考电压,当输入电压位于两个参考电压之间时,输出为高电平;否则输出为低电平。
常见的窗口比较器有LM393、LM2903等。
3) 差分比较器:是一种用于比较两个输入电压之间差异的电压比较器,常用于模拟信号处理中。
常见的差分比较器有LM311、AD820等。
2. 电压比较器的输入电压范围和功耗不同的电压比较器具有不同的输入电压范围和功耗。
一般来说,输入电压范围是指比较器能够正常工作的输入电压范围,超出该范围的输入电压可能会引起比较器的不确定性。
而功耗则与比较器的工作电流有关,功耗较低的比较器可以减小电路的能耗。
在选择比较器时,应根据具体应用需求选择合适的输入电压范围和功耗。
3. 电压比较器的输出特性电压比较器的输出特性是指输出信号的电平和响应时间等。
常见的输出电平有两种:开漏输出和推挽输出。
开漏输出一般用于需要驱动外部负载的场合,而推挽输出则可以直接驱动数字电路。
响应时间是指比较器从接收输入信号到输出信号变化所需的时间,一般来说,响应时间越短越好,可以提高比较器的响应速度。
4. 电压比较器的应用场景电压比较器在实际应用中非常广泛,常见的应用场景有以下几种:1) 电源监测:用于检测电源电压是否在正常范围内,当电源电压低于或高于设定阈值时,电压比较器可以输出相应的信号进行报警或保护。
2) 电压检测:用于检测电路中的电压是否满足要求,当电压低于或高于设定阈值时,电压比较器可以输出相应的信号进行控制或调节。
电压比较器
电压比较器
电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。
电压比较器的功能:比较两个电压的大小(用输出电压的高或低电平,表示两个输入电压的大小关系):
当”+”输入端电压高于”-”输入端时,电压比较器输出为高电平;
当”+”输入端电压低于”-”输入端时,电压比较器输出为低电平;
电压比较器的作用:它可用作模拟电路和数字电路的接口,还可以用作波形产生和变换电路等。
利用简单电压比较器可将正弦波变为同频率的方波或矩形波。
简单的电压比较器结构简单,灵敏度高,但是抗干扰能力差,因此我们就要对它进行改进。
改进后的电压比较器有:滞回比较器和窗口比较器。
运放,是通过反馈回路和输入回路的确定“运算参数”,比如放大倍数,反馈量可以是输出的电流或电压的部分或全部。
而比较器则不需要反馈,直接比较两个输入端的量,如果同相输入大于反相,则输出高电平,否则输出低电平。
电压比较器输入是线性量,而输出是开关(高低电平)量。
一般应用中,有时也可以用线性运算放大器,在不加负反馈的情况下,构成电压比较器来使用。
可用作电压比较器的芯片:所有的运算放大器。
常见的有LM324 LM358 uA741 TL081\2\3\4 OP07 OP27,这些都可以做成电压比较器(不加负反馈)。
LM339、LM393是专业的电压比较器,切换速度快,延迟时间小,可用在专门的电压比较场合,其实它们也是一种运算放大器。
LM339的引脚图如下:
LM339。
什么是电子电路中的电压比较器
什么是电子电路中的电压比较器电子电路中的电压比较器是一种广泛应用于电子设备中的重要电子元件。
它常被用来比较两个电压输入,并输出相应的结果,用于电压判断和控制电路。
本文将介绍电压比较器的工作原理、种类及应用领域。
一、工作原理电压比较器是基于比较两个输入电压的大小而产生输出信号的电路。
它通常由一个差动放大器和一个阈值比较器组成。
差动放大器可以放大输入电压信号,而阈值比较器则将放大的信号与设定的阈值进行比较,并输出高或低电平。
在工作过程中,如果输入电压大于阈值,则输出为高电平。
反之,如果输入电压小于阈值,则输出为低电平。
通过这种方式,电压比较器可实现对电压信号的判断和控制。
二、种类电压比较器有多种不同的类型,根据其不同的特性和应用需求选择适合的类型。
以下是几种常见的电压比较器类型:1. 开环比较器:开环比较器是最简单的电压比较器类型,它具有高增益和快速响应的特点。
然而,开环比较器对输入信号的共模电压具有较高的要求,且输出波形不稳定。
因此,在一些特定的应用场合,需要使用更精确和稳定的电压比较器。
2. 集成比较器:集成比较器是目前应用最广泛的电压比较器类型之一。
它内部集成了多种功能,如偏置电源、输出驱动电路等,能够更好地适应不同的应用需求。
3. 窗口比较器:窗口比较器可以同时比较两个阈值,它在两个阈值之间的电压范围内输出高电平,而在阈值范围之外输出低电平。
窗口比较器常用于需要检测输入信号是否在特定范围内的电路。
三、应用领域电压比较器在电子电路中有广泛的应用。
以下是几个常见的应用领域:1. 电压检测与保护:电压比较器可以用于电源电压的监测与保护。
当电源电压超出设定的范围时,电压比较器会输出相应的信号,用以触发保护措施,防止电子设备受损。
2. 模拟信号处理:电压比较器可用于模拟信号处理,如模拟信号的采样、滤波和波形整形等。
通过比较不同电压水平的信号,可以实现对模拟电路的控制和调整。
3. 数字信号处理:在数字电路中,电压比较器被广泛应用于逻辑电平判断、数据的比较和选择等。
模电课件电压比较器
减小失调电压与失调电流
失调电压与失调电流是电压比较器的重要参数,减小失调电压与失调电 流可以提高比较器的性能。
通过优化工艺和版图设计,可以减小失调电压与失调电流。例如,采用 对称的结构设计、优化器件尺寸和比例等措施,都可以减小失调电压与 失调电流。
在实际应用中,可以通过校准和补偿技术,对失调电压与失调电流进行 补偿,提高比较器的性能。
在传感器信号处理中的应用
模拟-数字转换
01
电压比较器在传感器信号处理中用于模拟-数字转换,将模拟信
号转换为数字信号,便于计算机处理和传输。
阈值感器的输出信号是否超过预设阈值,从
而触发相应的动作或报警。
数据采集与处理
03
电压比较器在传感器数据采集系统中用于比较和筛选数据,确
未来电压比较器的研究和发展需要关 注环保和可持续发展,推广绿色电子 技术,减少对环境的影响。
THANKS
感谢观看
较大的失调电压和失调电流会影响电压比较器的精度和性能。
响应时间与带宽
响应时间
带宽与响应时间的关系
电压比较器对输入信号的响应速度, 即输出电压从一种状态跳变到另一种 状态所需的时间。
带宽越宽,响应时间越短;带宽越窄, 响应时间越长。
带宽
描述了电压比较器的频率响应特性, 即电压比较器能够处理的最高频率信 号。
03
电压比较器的电路实现
差分输入的电压比较器
差分输入电压比较器是一种常见的电压比较器,其特点是输入信号为差分信号, 可以有效地抑制共模干扰。
差分输入电压比较器通常由运算放大器组成,其工作原理是将差分信号输入到运 放的反相输入端和同相输入端,通过运放的放大作用,将差分信号转换为单端信 号,并进行比较。
《电压比较器 》课件
电压比较器通常由运算放大器(OpAmp)或差分放大器构成,其工作原 理基于运算放大器的非线性特性。
电压比较器的应用场景
电压比较器在各种电子设备和系 统中广泛应用,如模拟-数字转 换器、自动控制系统、传感器接
口等。
在电源管理中,电压比较器用于 检测电源电压是否正常,从而保 护电路免受过压或欠压的损害。
电压比较器的电源电路设计
电源电压范围
电源电路应能够提供稳定的电源 电压,以满足电压比较器的正常
工作需求。
电源噪声抑制
为了减小电源噪声对比较器性能的 影响,电源电路应具有噪声抑制功 能。
电源效率
为了降低能耗和提高系统稳定性, 电源电路应具有较高的电源效率。
04
电压比较器的应用实例
电压比较器在信号处理中的应用
电压比较器的线性工作范围问题
总结词
线性工作范围是电压比较器的重要性能指标,如果超出其线性范围,电压比较器的输出可 能失真或不稳定。
详细描述
电压比较器的线性工作范围受到其内部电路设计和制造工艺的限制。当输入信号的幅度超 过一定范围时,电压比较器的输出可能不再是理想的阶跃信号,而是出现失真或振荡现象 。
未来电压比较器的发展方向
研究新型的电压比较器结构和设计方 法,以提高性能和降低成本。
加强电压比较器的智能化和自适应控 制研究,以提高其适应性和应用范围 。
探索电压比较器与其他电子器件的集 成和优化,以实现更小尺寸和更高可 靠性的系统。
拓展电压比较器的应用领域,如物联 网、人工智能、新能源等新兴领域, 以满足不断增长的市场需求。
阈值检测
在自动控制系统中,电压比较器用于检测系统参数是否超过预设 阈值,从而触发相应的控制动作。
调节系统
电压比较器
讨论三
已知各电压比较器的电压传输特性如图所示,说出它 们各为哪种电压比较器;输入电压为5sinωt(V),画出各 电路输出电压的波形。
反相输入 滞回比较器
窗口 比较器
同相输入 单限比较器
你能分别组成具有图
示电压传输特性的电压 比较器电路吗?
讨论四:求解图示各电路的电压传输特性。
uI
A
UREF
uo
两只特性相同而又制 作在一起的稳压管
输出限幅电路
uO=± UZ
1) 集成运放的净输入电压和净 输入电流均近似为零,保护了 输入级; 2) 集成运放没有工作到非线性 区,加速集成运放状态的转换
电压比较器的分析方法:
1、写出 uP、uN的表达式,令uP= uN,求解出的 uI即为UT; 2、根据输出端限幅电路决定输出的高、低电平;
U OM U OM U OM U OM
当uI>URH时,uO1= - uO2= UOM,D1导通, D2截止; uO= UZ。
当uI<URH时,uO2= - uO1= UOM,D2导通, D1截止; uO= UZ 。
当URL<uI< URH时, uO1= uO2= -UOM,D1、 D2均截止; uO= 0。
UH
t
UL
ui
R
-
+
uo
ui
+
Uom
t
R1
R2
-Uom
例:R1=10k,R2=20k ,的波形。
ui 10V
5V
t
0
ui R
UR R1
-
+
+
R2
uo
Uom uo
UL
电压比较器课件
电压比较器是一种电子器件,用于比较两个电压信号的大小。它常用于自动 控制系统、电源管理和传感器接口等领域,具有高精度性能、快速响应时间 和低功耗小尺寸的优势。
什么是电压比较器
电压比较器是一种电子器件,用于比较两个电压信号的大小。它可以判断哪 个电压较大或较小,并产生相应的输出信号。
电压比较器的特点和优势
1 高精度性能
2 快速响应时间
电压比较器具有较高的 精度和稳定性,能够准 确判断电压信号的大小。
电压比较器能够快速响 应输入信号的变化,实 时进行比较并输出相应 的结果。
3 低功耗和小尺寸
电压比较器通常采用低 功耗设计,适用于需要 长时间工作和有限空间 的应用场景。
电压比较器的设计和选型考虑因素
1 输入电压
考虑需要比较的电压范围和电压级别,选择适合的电压比较器。
根据输入电压与参考电压 的关系,具有不同的输出 方向。
窗口型电压比较器
可以设定上下门限,判断 输入电域
1 自动控制系统
电压比较器广泛应用于自动控制系统中,如温度控制、电机控制等。
2 电源管理
可以用于电源电压监测和电池电压保护等电源管理任务。
3 传感器接口
电压比较器常用于传感器接口电路,用于判断传感器信号的强度或触发阈值。
电压比较器的原理和结构
1 原理
电压比较器基于比较输入电压与参考电压的大小关系,利用放大器、比较器和反馈网络 等组成。
2 结构
一般包括输入端、输出端、电源端和参考电压输入端等组成部分。不同的类型有不同的 内部结构。
常见的电压比较器类型
开关型电压比较器
具有两个输出状态,输出 完全接通或接断。
定向型电压比较器
电压比较器解读课件
总结词
电压比较器在传感器接口中起到信号调 理的作用。
VS
详细描述
传感器输出的信号通常比较微弱,电压比 较器可以将这些微弱的信号进行放大或缩 小,使其满足后续电路的需求,实现传感 器与后续电路的接口匹配。
BIG DATA EMPOWERS TO CREATE A NEW ERA
THANKS
感谢观看
现,以减小外界干扰对电路的影响。
选择合适的电压比较器型号
要点一
总结词
要点二
详细描述
不同的应用场景需要选择不同类型的电压比较器,需要根 据实际需求选择合适的型号。
选择电压比较器型号时需要考虑其输入输出范围、精度、 功耗、工作频率、噪声性能等参数,以及电路的接口方式 和封装形式等因素,以确保电路的正常运行和性能要求。
在自动控制系统中,电压比较器 用于比较设定值与实际值,根据 比较结果输出相应的控制信号, 以调节系统的运行状态。
在信号处理中的应用
总结词
电压比较器在信号处理中用于信号的阈值检测和滤波。
详细描述
电压比较器在信号处理中,可以将信号进行阈值检测,提取出高于或低于某一阈值的信号,从而实现信号的筛选 和滤波。
需求。
抗干扰设计
抗干扰设计是电压比较器电路设计中非常重要的一环,它能够提高电压比较器的稳 定性。
常见的抗干扰设计包括加装滤波器、使用屏蔽线等措施,以减小外界噪声对电压比 较器的影响。
抗干扰设计还需要考虑电源噪声的影响,可以通过加装去耦电容等方式来减小电源 噪声对电压比较器的影响。
电源设计
电源设计是电压比较器电路设计 中不可或缺的一环,它能够为电 压比较器提供稳定的电源电压。
电压比较器
了正反馈电路实现的。
10
2、估算阈值
按临界条件下的比较器状态来计算。
1)反相端输入 在临界跳变时
ui
R1
uN -
uo, R4
uP uN iP iN 0
R2
uP + R3
uo
uN ui
uREF
uZ
根据叠加原理,有
uP
R2 R2 R3
uo
R3 R2 R3
uREF
R3uREF R2uo R2 R3
uREF为参考电压,根据比 较器在临界状态条件可
uREF
求得电路的阈值电压。 ui
R1 R2
uN -
uo, R
图1:
uP +
uo
uN
R1 R1 R2
ui
R2 R1 R2
uREF
uP
0
图1
uT
ui
R2 R1
uREF
当uREF 0,ui uT,uN 0时,uo, UOH
当uREF 0,ui uT,uN 0时,uo, UOL
C2
+
uO2 D2
R2
uZ
窗口比较器的特点是ui单方向变化时可以使uo
产生两次跳变。其电压传输特性如图。
18
该电路由 uRH 2R u1N -
两个单门限比
u1P + C1
较器接成同相 ui R
、反相输入形 式构成的。
uRL
2R
u2N u2P
C2
+
uO1 D1
uO2 D2
R1 R2
uO uZ
图中使uRH>uRL,D1、D2作用是防止电流回流损
ui -
电压比较器的原理
电压比较器的原理
电压比较器是一种电子器件,主要用于比较两个输入电压的大小,并输出一个相应的电平信号。
其原理如下:
1. 比较阈值设定:电压比较器通常具有一个或多个阈值电压,
用于设定比较的基准电压。
这些阈值电压可以通过外部电阻或内部电
压参考源设定。
2. 输入端比较:电压比较器的输入端接收两个待比较的输入电压。
这两个输入电压经由输入阻抗高的差动放大器进行放大,然后与
设定的阈值电压进行比较。
3. 输出控制:根据比较结果,电压比较器的输出端将输出一个
电平信号,表示输入电压的大小关系。
通常,输出电平取决于其接地、正电源和负电源电压的情况。
4. 功能选择:电压比较器还可能具有其他功能,例如输出延迟,滞后控制和极限电流保护等。
总结起来,电压比较器通过比较两个输入电压与设定的阈值电压
的关系,来确定输出信号的高低电平。
这种比较器可用于测量和控制
系统中的电压、温度、光强等参数的变化,并根据设定的阈值进行相
应的处理和控制。
电压比较器
电压比较器概述电压比较器是一种常见的电子元件,用于比较两个电压信号的大小。
它通常由一个差分放大器和一个输出级组成。
电压比较器的输出通常是一个开关信号,表示输入信号的大小关系。
工作原理电压比较器的工作原理基于差分放大器的特性。
差分放大器是一种特殊的放大器电路,它由两个输入端(非反馈输入端和反馈输入端)和一个输出端组成。
非反馈输入端接收一个参考电压信号,反馈输入端接收待比较的电压信号。
比较器的输出取决于差分放大器输出的电压大小,当差分放大器输出的电压大于一定阈值时,输出为高电平;当差分放大器输出的电压小于一定阈值时,输出为低电平。
常见的比较器类型1. 窗口比较器窗口比较器是一种常见的比较器类型,它能够比较输入信号是否在一个预设的范围内。
窗口比较器通常有两个阈值,一个上限和一个下限,输入信号只有在这个范围内时,输出才会为高电平。
窗口比较器广泛应用于模拟电路中的阈值检测、电压监测等场景。
2. 比例器比例器是一种将输入电压与参考电压进行比较的比较器。
它通过调整参考电压的大小,可以实现输入信号电压的缩放。
比例器通常用于测量和控制应用中。
3. 高速比较器高速比较器主要用于高速数字电路中。
它具有快速的响应时间和较高的功耗。
高速比较器通常通过减小内部电路的延时来提高响应速度。
比较器的应用电压比较器在各种电子系统中都有广泛的应用。
以下是一些常见的应用场景:1. 系统监测比较器常用于系统监测和保护电路中。
例如,温度监控系统中使用比较器来检测温度是否超过设定值,以触发相应的保护措施。
2. 电压测量比较器广泛应用于电压测量领域。
例如,电池监测电路中使用比较器来测量电池电压是否达到一定阈值,以保证电池的安全使用。
3. 数字控制系统比较器在数字控制系统中也有重要的应用。
例如,在数字通信中,比较器用于数据解调器中的恢复时钟信号的检测。
总结电压比较器是一种常见的电子元件,用于比较两个电压信号的大小。
它主要由一个差分放大器和一个输出级组成。
电压比较器的基础知识
电压比较器的基础知识
由于(运算放大器)Aod=∞,微小的差分输入(ud=up-un)就可能使运放输出达到饱和:uo=Aod(up-un),uo=+uom或-uom。
这是我们理解电压(比较器)的基础。
运放的电压传输特性如下图所示:
在电压比较器电路中,集成运放处于开环状态或引入正反馈。
有两类典型的电压比较器:单限比较器与滞回比较器。
单限比较器电路,只有一个(阈值电压)UT,输入(信号)ui 经过UT时,输出电压发生跳变。
滞回比较器电路,有两个阈值电压UT1和UT2,输入信号ui变化过程中,先经历一个UT,到达第二个UT时,输出电压发生变化。
加上阈值电压UT,+Uom 与-Uom的大小、输出电压uo的跃变方向同为电压比较器的三个参数。
通常以电压传输特性给出来。
下面举例子说明:
例1 单限电压比较器
需要注意的是,在电压传输特性曲线中:跃变方向判断技巧,
ui连接到同相端,曲线呈“S”型,ui连接到反相端,曲线呈“反S”型。
R与Dz组成双向稳压电路,故输出为+Uz与-Uz。
例2 滞回电压比较器
习题解答
(1) 阈值电压为u+=u-时,对应的ui值的大小。
(ui-0)/R1=(0-uz)/R2,可得:
UT=ui=±1.2V
(2)电压传输特性如下,uom=±6V,跃变方向因信号从同相端输入,所以特性曲线为”s“型。
上题电压传输特性曲线
上题输出波形图。
7.4电压比较器
模拟电子技术基础教学内容1 电压比较器的概述2 单门限电压比较器3 双门限电压比较器4 窗口电压比较器(2)特点:⏹输入信号是连续变化的模拟量,输出为数字量“0”或“1”。
⏹运算放大器是工作在开环状态或正反馈状态,即工作在非线性区。
(1)定义:将输入信号与基准电压相比较,比较的结果只有两个电平:高电平或低电平。
1 电压比较器的概述◆单门限电压比较器◆双门限电压比较器◆窗口比较器◆同相输入◆反相输入(3)类型:◆集成运放开环状态◆集成运放正反馈状态2单门限电压比较器(1)反相输入的电压比较器i REF o Zu U u U >=-,i REF o Zu U u U <=+,u o u i+U OM -U OMOU REF+U Z-U Z (2)反相过零比较器U REF =0时称为过零比较器(3)具有输入保护和输出限幅的单门限电压比较器+-u ou i AR 1R 2D 1D 2±U ZU REFR 3D Z电路特点:①当A od 不够大时,高低电平转换时的陡度减小。
②抗干扰能力差。
3双门限电压比较器(1)电路组成及门限电压的计算u o =+U Z 时,u i 对应的u P 值称为上门限电压值。
1P Z12R u U R R =±+1T+Z12R U U R R =++1T-Z12R U U R R =-+u o =-U Z 时,u i 对应的u P 值称为下门限电压值。
(2)画出电压传输特性曲线P u Z D Z±U R2R 1R A i u ou -+t+T U OZU -ZU +o u -T U Otiu -T U OZU -ZU +ou iu +T U -T U O ZU -ZU +ou iu +T U OZU -ZU +iu ou 有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)1T T+T-Z122R U U U U R R ∆=-=+(4)回差电压ΔU T1T+Z12R U U R R =++1T-Z12R U U R R =-++-u ou iAR 1R 2R±U ZD Zu PU REF+-u ou iAR 1R 2R ±U Zu P(5)比较器的应用O O REFU ZU ﹣Z U +o u tt i u 存在干扰时双门限电压比较器存在干扰时单门限电压比较器-T U O O +T U ZU ﹣Z U +o u tt i u 有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)3窗口比较电压器U t1>U t2U t1采用反相输入,U t2采用同相输入。
电压比较器工作原理及应用
电压比较器工作原理及应用引言:电压比较器是电子电路中一种常用的器件,广泛应用于模拟电路、数字电路、自动控制系统等领域。
本文将介绍电压比较器的工作原理及其应用。
一、电压比较器的工作原理电压比较器是一种能够比较两个输入电压的器件,并输出相关信号的电路。
其基本工作原理是将两个输入电压分别与一个参考电压进行比较,根据比较结果产生相应的输出信号。
在电压比较器中,通常有两个输入端(非反相端和反相端)和一个输出端。
非反相端接收一个输入电压Vin,反相端接收另一个输入电压Vref。
比较器将Vin和Vref进行比较并输出一个高或低的电平信号。
当Vin大于Vref时,输出高电平,当Vin小于Vref时,输出低电平。
电压比较器的核心是一个差分放大器,其输入差模信号(即输入电压的差值)经过放大后与参考电压进行比较。
差分放大器通常由一个放大器和一个比较电路组成。
放大器负责放大差模信号,而比较电路负责对放大后的信号进行比较,根据比较结果产生输出。
二、电压比较器的应用1. 模拟电路在模拟电路中,电压比较器常用于比较两个电压的大小,以判断电路的状态。
例如,在电池供电系统中,可以使用电压比较器来监测电池电压是否低于设定值,从而提醒用户更换电池。
此外,电压比较器还可以用于测量信号的幅值、控制放大器的增益等。
2. 数字电路在数字电路中,电压比较器通常被用于比较两个二进制数字的大小关系。
例如,在数字编码器和解码器中,电压比较器用于比较输入信号与参考电平,以确定输入信号的具体数值。
此外,电压比较器还可以用于数字信号的判断、门电路的触发等。
3. 自动控制系统在自动控制系统中,电压比较器被广泛应用于电压比较、电压检测、开关控制等方面。
例如,在温度控制系统中,可以使用电压。
电压比较器课件
基于BiCMOS工艺的电压比较器设计结合了双极晶体管和CMOS晶体管的优点,利用双极晶体管的高电流传输特性和CMOS晶体管的高开关速度,实现高速度、低功耗、高精度的电压比较功能。这种设计广泛应用于高速比较器、模数转换器等电子系统中。
05
CHAPTER
电压比较器的测试与验证
为保证测试结果的准确性,测试环境应保持安静、无干扰,且温度、湿度等参数应满足测试要求。
VS
功耗是电压比较器在工作过程中消耗的能量。
详细描述
功耗是指电压比较器在工作过程中所消耗的能量,通常以毫瓦(mW)或瓦(W)为单位表示。功耗的大小反映了比较器的效率和工作稳定性。在选择电压比较器时,应考虑功耗与性能之间的平衡。
总结词
04
CHAPTER
电压比较器的设计与实现
基于运放的电压比较器设计通常采用运算放大器作为核心元件,通过负反馈和正反馈电路实现电压比较功能。
基于运放的电压比较器设计利用运算放大器的电压放大和电流放大特性,通过负反馈和正反馈电路调整输入和输出电压,实现电压比较功能。这种设计具有高精度、低噪声、低失真等优点,广泛应用于模拟电路和数字电路中。
总结词
详细描述
总结词
基于BiCMOS工艺的电压比较器设计结合了双极晶体管和CMOS晶体管的优点,具有高速度、低功耗、高精度等特性。
总结词
电压比较器由差分放大器构成,当两个输入电压之间存在一定电压差时,差分放大器会输出相应的电压信号。当输入电压满足一定条件时,输出信号会通过反相器等逻辑门电路转换为相应的逻辑信号。
详细描述
02
CHAPTER
电压比较器的应用
在数字电路中,电压比较器用于比较两个电压的大小,并根据比较结果输出相应的逻辑状态(高电平或低电平)。
电压比较器
UT+
0
ui
-UOM
例3 R2=10k,RF=20k ,UOM=12V,UREF=9V。
当输入ui为如图所示的波形时,画出输出uo 的波形。 u
10V
i
5V 0
t
ui
R1
uo
-
+
UREF R2
A+
uo
UOM
UT-
UT+
0
RF
ui
-UOM
ui
R1
-
+
UREF R2
A+
uo
RF
(1)首先计算上下门限电压
波形变换器:正弦波 矩形波
用稳压管限幅的过零比较器。
ui
+ A +
uo
UZ +UZ
uo
0
设UZ<UOH、 UZ<|-UOL| 当ui>0时 , uo = +UZ
ui
-UZ
当ui<0时 , uo = -UZ
二、 任意门限电平比较器
ui U REF 0 R1 R2
U TH
R1 U REF R2
思考:若将ui和UREF的位置互换,则得
到的同相输入迟滞比较器电压传输特 性该如何分析?
UREF
R1
- +
A
+
uo
ui
R2
RF
*4.3.3 窗口比较器
+VCC R1 -
(VCC 2U D ) R2 UL R1 R2
1 (VCC 2U D ) 2
UH
D
+1 R2
课件:第23讲 电压比较器
电压比较器是将一个模拟输入信号ui 与一个 固定的参考电压 UR 进行比较和鉴别的电路。
电压比较器通常由集成运放构成,与前面章节 不同的是,比较器中的集成运放大多处于开环 或正反馈的状态。只要在两个输入端加一个很 小的信号,运放就会进入Fra bibliotek线性区,属于集成
运放的非线性应用范围。
ui
(1
R2 R3
)U R
R2 R3
Uo
UTH 2
(1
R2 R3
)U
R
R2 R3
U oH
滞回比较器由于有回差电压存在,大大提高了电路的 抗干扰能力,回差ΔUTH 越大,抗干扰能力越强。因为输 入信号因受干扰或其他原因发生变化时,只要变化量不超 过回差ΔUTH,这种比较器的输出电压就不会来回变化。
“虚当短U”+ =临U界–时情,况 则高、低电平发生转换。
结论2:两输入“电虚流断均”为零。 这一结论与工作在线性区时的结论2相同。 由于理想运放的rid=∞,输入电流为零。 虽然U+可能不等于U–, 但是仍有 I+ = I– = 0。
2. 比较器的分类:
过零比较器
(零电平比较器)
1)简单比较器 (单限比较器)
特点是输入信号单方四向、变窗化口(电例压如比ui较从器足够低单调 升高到足够高),可使输出电压uo跳变两次,其传 输特性如图所示,它形似窗口,称为窗口比较器。
的方向。
(3)电压比较器的分析方法: ①写出 u-、u+的表达式,令u-=u+ ,
求解出的u I 即为UTH ; ②根据输出端限幅电路决定输出的高、低电平; ③根据输入电压作用于同相输入端还是反相输入端,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压比较器
电压比较器是对输入信号进行鉴幅与比较的电路,是组成非正弦波发生电路的基本单元电路,在测量和控制中有着相当广泛的应用。
电压比较器的功能是对两个输入电压的大小进行比较,并根据比较结果输出高、低两个电平。
此外由于高电平相当于逻辑“1”,低电平相当逻辑“0”,所以比较器可作为摸拟与数字电路之间的接口电路.
由于比较器输出只有两个状态,因此,用作比较器的运放将工作在开环或正反馈的非线性状态。
电压比较器的电路符号
电压比较器的基本特性
1. 输出 高电平(U oH )和低电平(U oL )
用运放构成的比较器,其输出的高电平UoH 和低电平UoL 可分别接近于正电源电压(UCC)和负电源电压(-UCC)。
2. 鉴别灵敏度
理想的电压比较器,在高、低电平转换的门限UT 处具有阶跃的传输特性。
这就要求运放:
实际运放的Aud 不为无穷大。
在UT 附近存在着一个比较的不灵敏区。
在该区域内输出既非UoH ,也非UoL ,故无法对输入电平大小进行判别。
显然,Aud 越大,则不灵敏区就越小,称比较器的鉴别灵敏度越高。
3.转换速度
作为比较器的另一个重要特性就是转换速度,即比较器输出状态发生转换所需要的时间。
ud A =
∞
u u EE
u -u +
通常要求转换时间尽可能短,以便实现高速比较。
为此可对比较器施加正反馈,以提高转换速度。
理想集成运放非线性应用时的特点
非线性应用的条件:运放开环或施加正反馈。
非线性应用特点:
反相电压比较器 电路如图所示, 输入信号u i 加在反相端,参考电压u r 加在同相端。
u i < u r , u o =U OH ui > ur , uo=UOL。
同相电压比较器 电路如图所示, 输入信号u i 加在同相端,参考电压u r 加在反相端。
ui < ur , uo=UOL ui > ur , uo=UOH
当参考电压为零时,则为同相过零比较器。
o CC oL o CC oH
i i u u u U U u u u U U +--+
-+==>≈-=<≈+=
其传输特性 uo= f ( ui )
简单比较器应用中存在的问题
①. 输出电压转换时间受运放的限制,使高频脉冲的边缘不够陡峭;
②. 抗干扰能力差。
在比较门限处,输出将产生多次跳变。
为了解决以上两个问题,在比较器中引入正反馈,构成所谓“迟滞比较器”。
这种比较器具有很强的抗干扰能力,同时由于正反馈加速了状态转换,从而改善了输出波形的边缘。
反相迟滞比较器
反相迟滞比较器电路如图所示。
R1和R2将输出电压uo 反馈到运放的同相端,构成正反馈。
为简单计,R1端所接的参考电平为地。
当u i 很负使u -< u +时, u o 为高电平U oH
此时,同相端电位u+为: 当ui 由负逐渐增大到ui =U+′时,输出将由高电平跳变为低电平。
对于反相电路uo 从高跳到低所对应的ui 电压称为上门限电压,记为UTH 。
可见,UTH = U+′
当输出一旦变为低电平,则同相端也同时跳变为: 由于 ,因而ui >以后,uo 将维持在低电平。
同相放大器电路如图5所示。
如果图5中RF=∞,R1=0时,它就变成与图3(b)一样的比较器电路了。
图5中的Vin 相当于图3(b)中的VA 。
U U ++'''>U +'112
f oH R U U U R R +''==+112
f oL R U U U R R +''''==+
比较器与运放的差别
运放可以做比较器电路,但性能较好的比较器比通用运放的开环增益更高,输入失调电压更小,共模输入电压范围更大,压摆率较高(使比较器响应速度更快)。
另外,比较器的输出级常用集电极开路结构,如图6所示,它外部需要接一个上拉电阻或者直接驱动不同电源电压的负载,应用上更加灵活。
但也有一些比较器为互补输出,无需上拉电阻。
这里顺便要指出的是,比较器电路本身也有技术指标要求,如精度、响应速度、传播延迟时间、灵敏度等,大部分参数与运放的参数相同。
在要求不高时可采用通用运放来作比较器电路。
如在A/D变换器电路中要求采用精密比较器电路。
由于比较器与运放的内部结构基本相同,其大部分参数(电特性参数)与运放的参数项基本一样(如输入失调电压、输
入失调电流、输入偏置电流等)。
比较器典型应用电路
这里举两个简单的比较器电路为例来说明其应用。
1.散热风扇自动控制电路
一些大功率器件或模块在工作时会产生较多热量使温度升高,一般采用散热片并用风扇来冷却以保证正常工作。
这里介绍一种极简单的温度控制电路,如图7所示。
负温度系数(NTC)热敏电阻RT粘贴在散热片上检测功率器件的温度(散热片上的温度要比器件的温度略低一些),当5V电压加在RT及R1电阻上时,在A点有一个电压VA。
当散热片上的温度上升时,则热敏电阻RT的阻值下降,使VA上升。
RT的温度特性如图8所示。
它的电阻与温度变化曲线虽然线性度并不好,但是它是单值函数(即温度一定时,其阻值也是一定的单值)。
如果我们设定在80℃时应接通散热风扇,这80℃即设定的阈值温度TTH,在特性曲线上可找到在80℃时对应的RT的阻值。
R1的阻值是不变的(它安装在电路板上,在环境温度变化不大时可认为R1值不变),则可以计算出在80℃时的VA值。
R2与RP组成分压器,当5V电源电压是稳定电压时(电压稳定性较好),调节RP可以改变VB的电压(电位器中心头的电压值)。
VB值为比较器设定的阈值电压,称为VTH。
设计时希望散热片上的温度一旦超过80℃时接通散热风扇实现散热,则VTH的值应等于80℃时的K值。
一旦VA>VTH,则比较器输出低电平,继电器K吸合,散热风扇(直流电机)得电工作,使大功率器件降温。
VA、VTH电压变化及比较器输出电压Vout的特性如图9所示。
这里要说清楚的是在VA开始大于VTH 时,风扇工作,但散热体有较大的热量,要经过一定时问才能把温度降到80℃以下。
从图7可看出,要改变阈值温度TTH十分方便,只要相应地改变VTH值即可。
VTH值增大,TTH增大;反之亦然,调整十分方便。
只要RT确定,RT的温度特性确定,则R1、R2、RP可方
便求出(设流过RT、R1及R2、RP的电流各为0.1~0.5mA)。
2.窗口比较器
窗口比较器常用两个比较器组成(双比较器),它有两个阈值电压VTHH(高阈值电压)及VTHL(低阈值电压),与VTHH及VTHL 比较的电压VA输入两个比较器。
若VTHL≤VA≤VTHH,Vout输出高电平;若VA<VTHL,VA>VTHH,则Vout输出低电平,如图10所示。
图10是一个冰箱报警器电路。
冰箱正常工作温度设为0~5℃,(0℃到5℃是一个“窗口”),在此温度范围时比较器输出高电平(表示温度正常);若冰箱温度低于0V或高于5℃,则比较器输出低电平,此低电平信号电压输入微控制器(μC)作报警信号。
温度传感器采用NTC热敏电阻RT,已知RT在0℃时阻值为333.1kΩ;5℃时阻值为258.3kΩ,则按1.5V工作电压及流过R1、RT的电流约1.5
uA,可求出R1的值。
R1的值确定后,可计算出0℃时的VA 值为0.5V(按图10中R1=665kΩ时),5℃时的VA值为0.42V,则VTHL=0.42V,VTHH=0.5V。
若设R2=665kΩ,则按图11,可求出
流过R2、R3、R4电阻的电流I=(1.5V-0.5V)/665kΩ=0.0015mA,按R4×I/=0.42V,可求出R4=280kΩ再按0.5V=(R3+R4)0.0015mA,则可求出R3=53.3kΩ。
本例中两个比较器采用低工作电压、低功耗、互补输出双比较器LT1017,无需外接上拉电阻。