球铁典型铸造缺陷极其防止

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

球铁典型铸造缺陷极其防止

1、球化不良与球化衰退

(1)球化不良:

球化不良是指球化处理没有达到预期的球化效果。球化不良的金相组织为:集中分布的厚片状石墨和少量球状、团状石墨;有时还有水草状石墨。随着球化不良的程度的加剧,集中分布的厚片状石墨的数量逐渐增多、面积增大,球化不良将使球墨铸铁的力学性能达不到响应牌号要求的指标。关于球化不良产生的原因极其防止措施分述如下:

1、原铁液含硫高 硫是主要反球化元素,含硫高会严重影响球化,一般原铁液的硫的质量分数要小于等于0.06%。

为保证球化,当原铁液含硫量偏高时,必须响应地提高球化剂的加入量,含硫量越高,则球化剂的消耗量也越多。

2、球化元素残留量低 为使石墨球化良好,球铁中必须含有一定量的残余镁和稀土,在我国现今生产条件下,残余镁量的质量分数不得小于0.03%,残余稀土量的质量分数不得小于0.02%。

3、铁液氧化 原材料中铁锈、污染以及铁液在熔化与过热中的氧化,导致铁液中的FeO 含量增多,因而在球化过程中要消耗更多的镁,致使残余镁量过低。

4、炉料含有反球化元素 当反球化元素超出允许范围时,就会影响球化效果,要注意废钢中可能含有钛,还要注意电镀材料、铝销、铅系涂料进入冲天炉。

稀土有中和反球化元素的能力,根据我国原生铁中含有较多的反球化元素的情况,我国球铁中的残余稀土量比国外的要多。

5、 孕育效果差 由于孕育效果差,或者孕育衰退,均会造成石墨球数量少,使得石墨球不圆整。

6、型砂水分高、含硫量高 由于界面反应,铁液中的镁与铸型表面中的氧、硫发生作用,致使铸件表面的残余镁量不足,形成一薄层的片状石墨。解决的措施就是提高残余镁量,减少型砂含水量,型砂硫的质量分数应小于0.1%,或采用能获得还原性气氛的涂料。在使用含硫硬化剂的树脂砂铸型中,可采用含有MgO 、CaO 的涂料。

2、球化衰退

球化衰退的特点时:炉前球化良好,在铸件上球化不好;或者同一浇包的铁液,先浇注的铸件球化良好,后浇注的铸件球化不好。

球化衰退的原因是镁量和稀土量随着铁液停止时间的延长而发生衰退。镁、稀土与氧的亲和力大于与硫的亲和力,所以孚在铁液表面的Mgs 、Ce 2S 3夹杂物与空气中的氧要发生下列反应:2MgS+O 2=2MgO+2S 2Ce 2S 3+3O 2=2Ce 2O 3+6S 此时,所产生的硫又进入铁液中,与镁、稀土发生作用:Mg+S=MgS

2Ce+3S=Ce 2S 3 这样,随铁液停置时间的延长,硫不断和镁与稀土发生作用,不断生成MgS 、Ce 2S 3,它们又不断的被空气中的氧所氧化,循环进行。结果,消耗了铁液中的镁和稀土,硫又重新从浮渣进入铁液中,出现“回硫现象”。

稀土铈、钇的沸点比镁高,在一般的铁液温度下它们不会发生汽化逸出。此外,稀土铈、钇的硫化物、氧化物的熔点高、密度大,上浮速度慢。所以,稀土铈、钇的减缓速度比镁要小,在1350~1400℃,镁的质量分数的衰减率是(0.001~0.004)%/Min;轻稀土铈的质量分数的衰减速率是(0.0006~0.002)%/min;重稀土钇的质量的衰减率是0.0008%/min。各种球化元素的衰减速率与铁液中的含硫量有密切关系,含硫量越高,则衰减速率就越快。

减少球化衰退的措施列举如下:

(1)缩短铁液的停置时间:从球化处理完成到浇注完毕,应在15min以内结束。

(2)降低原铁液含硫量:原铁液含硫高,则需要消耗更多的球化元素,另外,原铁液含硫量高,也是渣中的硫化物含量增大,促使“回硫现象”加剧,加速球化衰退。

(3)加强覆盖与扒渣:球化处理后加稀渣剂(例如珍珠岩)覆盖,并采取多次扒渣措施,可减少“回硫现象”。

(4)适当增加球化剂用量根据铁液中的含硫量,采取响应的增加球化剂用量的措施,是可行的,也是有效的,但不是最佳的。治本的措施是力求把铁液中的含硫量降至最低。另外,过多地加入球化剂,不仅增加成本,而且还会导致石墨球化程度的恶化。

3、缩孔和缩松

特点:

缩孔和缩松在球铁中要比在普通灰铁中更为普遍。要防止它们,就必须给予更多的注意和控制。能够明显看出的、尺寸较大而又集中的孔洞叫缩孔,不宜看清的、细小分散的孔洞叫缩松。大多在铸件热节的上部产生缩孔。在铸件热节处、在缩孔的下方往往有比较分散的缩松。但是,对于一些壁厚均匀的中心,或者是在厚壁的中心部位,也可出现缩松。

有些缩松的体积很小,只有在显微镜下才能被发现。这种缩松呈多角形,有时连续、有时断续,分布在共晶团边界。这种缩松叫显微缩松。奥氏体枝晶凝固后,残余的铁液则在枝晶间最后凝固,因得不到补缩而形成显微缩松。

球墨铸铁的缩孔与缩松体积比普通灰铸铁、白口铸铁和碳钢都要大。(从铸铁成分一文中有表及数据说明),但是,在生产中,也可采用无冒口工艺得到健全的球铁铸件。

球墨铸铁缩孔和缩松增大的原因

1、球状石墨在铁液中析出经过球化处理后,球状石墨会立即在铁液中析出,并且,随着温度的逐步降低,铁液中的石墨球逐渐长大。石墨析出和长大的过程,伴随着液态金属的膨胀。

2、离异共晶转变球墨铸铁以离异共晶的方式进行共晶转变。其凝固方式是内外几乎是同时进行的粥样凝固,因而容易形成显微缩松。

3、共晶膨胀量大由于呈粥样凝固,铸件在共晶转变期间要持续很长时间,球墨铸铁的共晶时间可比普通灰铸铁延长一倍还要多,由此,导致共晶转变的石墨化膨胀量大。

4、型壁移动在共晶凝固期间,由于粥样凝固,决定了铸件表面的凝固层很薄,以至不能建立其足够强度的凝固外壳,以抑制共晶凝固期间产生的石墨化膨胀,致使铸型内壁向外移动。在铸型刚度不够的情况下,使型腔尺寸增大,由此导致缩孔缩松体积进一步增大。

5、球化处理使铁液的过冷度加大铁液经过球化处理后,原有的氢、氧、氮和CO 气体含量减少,铁液得到了净化,致使外来核心减少。并且,铁液的过热温度越高,净化

相关文档
最新文档