弹性力学期末考试卷A答案

合集下载

弹性力学复习重点+试题及答案【整理版】

弹性力学复习重点+试题及答案【整理版】

)))))))弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

弹性力学复习重点+试题及答案【整理版】

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料一、简答题1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

平面问题的几何方程:揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定.反之,当形变分量完全确定时,位移分量却不能完全确定。

平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系.2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明.答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号?答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体"?试举例说明。

答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的.(2)假定物体是完全弹性的。

(3)假定物体是均匀的.(4)假定物体是各向同性的.(5)假定位移和变形是微小的。

(完整版)《弹性力学》试题参考答案

(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为: ,。

0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。

ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量。

S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。

由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。

期末考试试卷A答案—弹性力学

期末考试试卷A答案—弹性力学

,考试作弊将带来严重后果!华南理工大学2011年期末考试试卷(A )卷《弹性力学》1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷;20分)、五个基本假定在建立弹性力学基本方程时有什么用途?(10分)答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

(2分) 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。

(4分) 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。

因此,反映这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。

(6分) 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。

进一步地说,就是物体的弹性常数也不随方向而变化。

(8分)5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。

同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。

在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

(10分)2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分)解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。

简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。

而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。

例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。

所以,严格来说,不成立。

3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分)解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。

2. 在弹性碰撞中,两个物体的速度满足_________定律。

3. 弹簧的弹簧常数_________,表示弹簧的_________。

4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。

5. 弹性模量是衡量材料_________的物理量。

四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。

(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。

求物体滑到斜面底部时的速度。

(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。

它们从静止开始相互碰撞,求碰撞后A和B的速度。

《弹性力学》试题参考标准答案与弹性力学复习题

《弹性力学》试题参考标准答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题————————————————————————————————作者:————————————————————————————————日期:弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时,形变量即完全确定。

反之,当形变分量完全确定时,位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同,弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。

本科弹性力学试题及答案

本科弹性力学试题及答案

本科弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中,下列哪一项不是基本假设?A. 连续性假设B. 均匀性假设C. 各向异性假设D. 小变形假设答案:C2. 在弹性力学中,下列哪一项不是应力的类型?A. 正应力B. 剪应力C. 拉应力D. 弯应力答案:D3. 弹性模量E和泊松比μ之间存在以下哪种关系?A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+μ)D. E = 2G(1-μ)答案:C4. 弹性力学中的圣维南原理适用于以下哪种情况?A. 仅适用于平面应力问题B. 仅适用于平面应变问题C. 适用于平面应力和平面应变问题D. 不适用于任何情况答案:C5. 弹性力学中,下列哪一项不是位移场的基本方程?A. 几何方程B. 物理方程C. 运动方程D. 边界条件答案:D6. 弹性力学中,下列哪一项不是平面应力问题的特点?A. 应力分量σz=0B. 应变分量εz≠0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:B7. 弹性力学中,下列哪一项不是平面应变问题的特点?A. 应力分量σz≠0B. 应变分量εz=0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:A8. 弹性力学中,下列哪一项不是应力集中的类型?A. 几何不连续引起的应力集中B. 材料不连续引起的应力集中C. 载荷不连续引起的应力集中D. 温度不连续引起的应力集中答案:D9. 弹性力学中,下列哪一项不是弹性常数?A. 杨氏模量EB. 泊松比μC. 剪切模量GD. 体积模量K答案:D10. 弹性力学中,下列哪一项不是弹性体的基本性质?A. 均匀性B. 连续性C. 各向同性D. 各向异性答案:D二、填空题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程包括______、______和______。

答案:几何方程、物理方程、平衡方程2. 弹性力学中,应变能密度W与应力分量和应变分量的关系为W=______。

《弹性力学》试题参考答案与弹性力学复习题

《弹性力学》试题参考答案与弹性力学复习题

弹性力学复习资料一、简答题√1.试写出弹性力学平面问题的基本方程.它们揭示的是那些物理量之间的相互关系?在应用这些方程时.应注意些什么问题?答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。

应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx .因此.决定应力分量的问题是超静定的.还必须考虑形变和位移.才能解决问题。

√平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。

应注意当物体的位移分量完全确定时.形变量即完全确定。

反之.当形变分量完全确定时.位移分量却不能完全确定。

√平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。

应注意平面应力问题和平面应变问题物理方程的转换关系。

√2.按照边界条件的不同.弹性力学问题分为那几类边界问题?试作简要说明。

答:按照边界条件的不同.弹性力学问题分为位移边界问题、应力边界问题和混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的.也就是位移的边界值是边界上坐标的已知函数。

应力边界问题中.物体在全部边界上所受的面力是已知的.即面力分量在边界上所有各点都是坐标的已知函数。

混合边界问题中.物体的一部分边界具有已知位移.因而具有位移边界条件;另一部分边界则具有应力边界条件。

√3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。

如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定.它们是:σx 、σy 、σz 、τxy 、τyz 、、τzx 。

正面上的应力以沿坐标轴正方向为正.沿坐标轴负方向为负。

负面上的应力以沿坐标轴负方向为正.沿坐标轴正方向为负。

√4.在推导弹性力学基本方程时.采用了那些基本假定?什么是“理想弹性体”?试举例说明。

答:答:在推导弹性力学基本方程时.采用了以下基本假定: (1)假定物体是连续的。

(2)假定物体是完全弹性的。

(3)假定物体是均匀的。

(4)假定物体是各向同性的。

同济大学弹性力学期末试卷06-07

同济大学弹性力学期末试卷06-07
同济大学本科课程期终考试(考查)统一命题纸
A卷
2006—2007 学年第 一 学期 课程名称:弹性力学 课号: 任课教师: 专业年级: 学号: 姓名: 考试(√)考查( ) 考试(查)日期: 2007 年 1 月 22 日 出考卷教师签名:朱合华、许强、王君杰、李遇春、陈尧舜、邹祖军、赖永瑾、 蔡永昌 教学管理室主任签名:
A
P 3P P P cos , B cos , C sin , D sin ; 3 8a 8a 32a 32a 2
3P P 3 3P 1 xy cos sin (1 y), y 0, xy cos ( 2 y 2 1) 3 4a 4a 8a 16a 4a
将应力分量代入边界条件,可解得:
A q, B
所以应力分量解答为:
1 q cos 2
r q(cos cos ) q(cos 2 cos ) r q sin
(2) 解:由题可知,体力 X=0,Y=0,且为弹性力学平面应力问题。 1) 、本题所设应力函数满足双调和方程:
2 2
(√)
那么由 ( x, y) 0, (√) (×) (×)
确定的应力分量必然满足平衡微分方程。 果会有所差别。 (4)如果弹性体几何形状是轴对称时,就可以按轴对称问题进行求解。
(3)在求解弹性力学问题时,要谨慎选择逆解法和半逆解法,因为解的方式不同,解的结
(5)无论是对于单连通杆还是多连通杆,其载面扭矩均满足如下等式:
2)挠度函数取为: v a sin 梁的总势能为
x
L
b sin
3x L
EI d 2 v L ( 2 ) dx p( x)vdx Pv( ) 2 0 dx 2 0 EI 4 2 L a 81b 2 2 p0 a 3b Pa b 3 4L

弹性力学试题及标准答案

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。

2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。

3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。

4、物体受外力以后,其内部将发生内力,它的集度称为应力。

与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。

应力及其分量的量纲是L -1MT -2。

5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。

6、平面问题分为平面应力问题和平面应变问题。

7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。

8、已知一点处的应力分量,200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。

9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。

10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。

11、表示应力分量与体力分量之间关系的方程为平衡微分方程。

12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。

分为位移边界条件、应力边界条件和混合边界条件。

13、按应力求解平面问题时常采用逆解法和半逆解法。

14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。

其具体步骤分为单元分析和整体分析两部分。

15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、选择题(每题2分,共20分)1. 下列哪种材料不具有弹性特性?A. 钢材B. 橡胶C. 水泥D. 玻璃答案:C2. 弹性力学中的胡克定律描述了什么关系?A. 应力与应变的关系B. 应力与位移的关系C. 应变与位移的关系D. 应力与应变能的关系答案:A3. 在弹性力学中,下列哪个物理量表示单位体积内的应变能?A. 应力B. 应变C. 应变能密度D. 弹性模量答案:C4. 下列哪个物理量表示材料的抗拉强度?A. 弹性模量B. 泊松比C. 屈服强度D. 抗拉强度答案:D5. 在弹性力学中,下列哪个物理量表示单位长度上的位移?A. 应变B. 位移C. 位移梯度D. 位移矢量答案:C二、填空题(每题2分,共20分)1. 胡克定律表达式为:σ = Eε,其中σ表示____,E 表示____,ε表示____。

答案:应力、弹性模量、应变2. 在三维应力状态下,应力张量的分解表达式为:σ = σ_0 + σ_1 + σ_2,其中σ_0表示____,σ_1表示____,σ_2表示____。

答案:平均应力、最大切应力、最小切应力3. 下列物理量中,表示单位体积内应变能的物理量为____。

答案:应变能密度4. 在弹性力学中,泊松比μ表示____与____的比值。

答案:横向应变、纵向应变5. 在弹性力学中,下列物理量中与应力状态无关的是____。

答案:位移三、计算题(每题20分,共60分)1. 已知一矩形截面梁,截面尺寸为10cm×20cm,受到均匀分布载荷q=10kN/m,求梁的弯曲应力σ和挠度w。

答案:σ = 5MPa,w = 0.0025m2. 一根长为2m的杆件,弹性模量E=200GPa,泊松比μ=0.3,两端受到轴向拉力F=100kN,求杆件的伸长量Δl。

答案:Δl = 0.005m3. 一圆形截面杆,直径d=10cm,受到扭矩M=2kN·m,弹性模量E=200GPa,泊松比μ=0.3,求杆件的扭转角φ。

《弹性力学》试题参考答案

《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。

2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。

3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。

4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。

5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。

二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。

作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。

(2)将次要的位移边界条件转化为应力边界条件处理。

2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。

题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。

试求薄板面积的改变量S ∆。

题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。

由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。

弹性力学试题及答案

弹性力学试题及答案

弹性⼒学试题及答案《弹性⼒学》试题参考答案(答题时间:100分钟)⼀、填空题(每⼩题4分)1.最⼩势能原理等价于弹性⼒学基本⽅程中:平衡微分⽅程,应⼒边界条件。

2.⼀组可能的应⼒分量应满⾜:平衡微分⽅程,相容⽅程(变形协调条件)。

3.等截⾯直杆扭转问题中, M dxdy D=??2?的物理意义是杆端截⾯上剪应⼒对转轴的矩等于杆截⾯的扭矩M 。

4.平⾯问题的应⼒函数解法中,Airy 应⼒函数?在边界上值的物理意义为边界上某⼀点(基准点)到任⼀点外⼒的矩。

5.弹性⼒学平衡微分⽅程、⼏何⽅程的量表⽰为:0,=+i j ij X σ,)(21,,i j j i ij u u +=ε。

⼆、简述题(每⼩题6分)1.试简述⼒学中的圣维南原理,并说明它在弹性⼒学分析中的作⽤。

圣维南原理:如果物体的⼀⼩部分边界上的⾯⼒变换为分布不同但静⼒等效的⾯⼒(主⽮与主矩相同),则近处的应⼒分布将有显著的改变,但远处的应⼒所受影响可以忽略不计。

作⽤:(1)将次要边界上复杂的⾯⼒(集中⼒、集中⼒偶等)作分布的⾯⼒代替。

(2)将次要的位移边界条件转化为应⼒边界条件处理。

2.图⽰两楔形体,试分别⽤直⾓坐标和极坐标写出其应⼒函数?的分离变量形式。

题⼆(2)图(a )=++= )(),(),(222θθ??f r r cy bxy ax y x (b )?=+++= )(),(),(33223θθ??f r r dy cxy y bx ax y x 3.图⽰矩形弹性薄板,沿对⾓线⽅向作⽤⼀对拉⼒P ,板的⼏何尺⼨如图,材料的弹性模量E 、泊松⽐ µ 已知。

试求薄板⾯积的改变量S ?。

题⼆(3)图设当各边界受均布压⼒q 时,两⼒作⽤点的相对位移为l ?。

由q E)1(1µε-=得,)1(2222µε-+=+=?Eb a q b a l设板在⼒P 作⽤下的⾯积改变为S ?,由功的互等定理有:l P S q ??=??将l ?代⼊得:221b a P ES +-=µ显然,S ?与板的形状⽆关,仅与E 、µ、l 有关。

弹性力学期末测试模拟试题

弹性力学期末测试模拟试题

《弹性力学》期末考试学号: 姓名一选择题 (每题 3分 , 共 36分1. 所谓“ 应力状态” 是指。

A. 斜截面应力矢量与横截面应力矢量不同;B. 不同截面的应力不同,因此应力矢量是不可确定的。

C. 3个主应力作用平面相互垂直;D. 一点不同截面的应力随着截面方位变化而改变;2. 应力不变量说明A. 主应力的方向不变;B. 一点的应力分量不变;C.应力随着截面方位改变,但是应力状态不变;D. 应力状态特征方程的根是不确定的; 3 在轴对称问题中, σr 是, τr θ是。

A.恒为零;B. 与 r 无关;C.与θ无关;D.恒为常数。

4. 半平面体在边界上受集中力下的解答是。

A. 精确解;B. 圣维南意义下的解;C.近似解;D.数值解。

5. 在与三个应力主轴成相同角度的斜面上,正应力σN = 。

A. σ1+σ2+σ3;B. (σx +σy +σz /3;C. (σ1+σ2+σ3 /2;D. (σ1+σ2+σ3 /9。

6.等截面直杆扭转中,矩形截面上最大剪应力发生在A .矩形截面长边上; B. 矩形截面短边上; C. 矩形截面中心; D. 矩形截面角点。

7. 矩形薄板自由边上独立的边界条件个数,正确的是个。

A . 2; B. 3; C. 1; D. 4。

8. 薄板弯曲问题的物理方程有个。

A 3; B. 6; C. 2; D. 4。

9. 薄板弯曲问题的应力σx , σy , τxy 个沿厚度分布是。

A 均匀分布; B. 三角分布; C.梯形分布; D.双曲线分布。

10. 下列关于轴对称问题的叙述,正确的是。

A. 轴对称应力必然是轴对称位移;B. 轴对称位移必然是轴对称应力;C. 只要轴对称结构,救会导致轴对称应力;D. 对于轴对称位移,最多只有两个边界条件。

11. 下列关于弹性力学基本方程描述正确的是 D .变形协调方程是确定弹性体位移单值连续的唯一条件;。

A. 几何方程适用小变形条件;B. 物理方程与材料性质无关;C. 平衡微分方程是确定弹性体平衡的唯一条件;12. 矩形薄板受纯剪作用,剪力强度为 q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名词解释(共10分,每小题5分)1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。

2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。

一.填空(共20分,每空1分)1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移边界条件、应力边界条件和混合边界条件。

2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。

3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或远大于无孔时的应力。

二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。

4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。

5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、整体分析三个主要步骤。

二.绘图题(共10分,每小题5分)分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。

图3-1图3-2三. 简答题(24分)1. (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途?答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。

2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。

3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。

因此,反应这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。

4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。

5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。

同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。

2. (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征?答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy 平面,外力沿板厚均匀分布,只有平面应力分量x σ,y σ,xy τ存在,且仅为x,y 的函数。

平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy 平面,外力沿z 轴无变化,只有平面应变分量x ε,y ε,xy γ存在,且仅为x,y 的函数。

3. (8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数Φ求解,应力函数Φ必须满足哪些条件?答:(1)相容方程:04=Φ∇(2)应力边界条件(假定全部为应力边界条件,σs s =):()()()上在στστσs s f l m f m l ys xy y x s yx x =⎪⎩⎪⎨⎧=+=+(3)若为多连体,还须满足位移单值条件。

四. 问答题(36)1. (12分)试列出图5-1的全部边界条件,在其端部边界上,应用圣维南原理列出三个积分的应力边界条件。

(板厚1=δ)图5-1解:在主要边界2h y ±=上,应精确满足下列边界条件:()l qx h y y -=-=2σ,()02=-=h y yxτ; ()02=+=h y yσ,()12q h y yx-=+=τ在次要边界0=x 上,应用圣维南原理列出三个积分的应力边界条件,当板厚1=δ时,()⎰+-=-=220h h N x x F dy σ,()⎰+-=-=220h h x x M ydy σ,()⎰+-=-=220h h S x xy F dy τ在次要边界l x =上,有位移边界条件:()0==l x u ,()0==l x v 。

这两个位移边界条件可以改用三个积分的应力边界条件代替:()l q F dy h h N x x ⎰+-=+-=2210σ,()262220qlh ql l F M ydy S h h x x +---=⎰+-=σ,()2220qlF dy h h S x xy --=⎰+-=τ 2. (10分)试考察应力函数3cxy =Φ,0>c ,能满足相容方程,并求出应力分量(不计体力),画出图5-2所示矩形体边界上的面力分布,并在次要边界上表示出面力的主矢和主矩。

图5-2解:(1)相容条件:将3cxy =Φ代入相容方程024422444=∂Φ∂+∂∂Φ∂+∂Φ∂yy x x ,显然满足。

(2)应力分量表达式:cxy yx 622=∂Φ∂=σ,0=y σ,23cy xy -=τ (3)边界条件:在主要边界2h y ±=上,即上下边,面力为()chx h y y 32±=±=σ,()2243ch h y xy -=±=τ 在次要边界l x x ==,0上,面力的主失和主矩为()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-===⎰⎰⎰⎰+-+-=+-=+-=22322202202204300h h h h x xy h h x x h h x x h c dy cy dy dy y dy τσσ ()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=====⎰⎰⎰⎰⎰⎰+-+-=+-+-=+-+-=22322203222222222432606h h h h x xy h h h h l x x h h h h l x x h c dy cy dy clh dy cly dy y dy cly dy τσσ 弹性体边界上的面力分布及在次要边界l x x ==,0上面力的主失量和主矩如解图所示。

3. (14分)设有矩形截面的长竖柱,密度为ρ,在一边侧面上受均布剪力q, 如图5-3所示,试求应力分量。

(提示:采用半逆解法,因为在材料力学弯曲的基本公式中,假设材料符合简单的胡克定律,故可认为矩形截面竖柱的纵向纤维间无挤压,即可设应力分量0=xσ )图 5-3解:采用半逆解法,因为在材料力学弯曲的基本公式中,假设材料符合简单的胡克定律,故可认为矩形截面竖柱的纵向纤维间无挤压,即可设应力分量0=xσ, (1) 假设应力分量的函数形式。

0=xσ(2) 推求应力函数的形式。

此时,体力分量为g f f y x ρ==,0。

将0=x σ代入应力公式22yx ∂Φ∂=σ有022=∂Φ∂=y x σ对x 积分,得()x f y=∂Φ∂, (a )()()x f x yf 1+=Φ。

(b )其中()x f ,()x f 1都是x 的待定函数。

(3)由相容方程求解应力函数。

将式(b )代入相容方程04=Φ,得()()041444=+dx x f d dx x f d y 这是y 的一次方程,相容方程要求它有无数多的根(全部竖柱内的y 值都应该满足),可见它的系数和自由项都必须等于零。

()044=dx x f d ,()0414=dx x f d ,两个方程要求()Cx Bx Ax x f ++=23,()231Ex Dx x f += (c)()x f 中的常数项,()x f 1中的一次和常数项已被略去,因为这三项在Φ的表达式中成为y 的一次和常数项,不影响应力分量。

得应力函数()()2323Ex Dx Cx Bx Ax y ++++=Φ (d)(4)由应力函数求应力分量。

022=-∂Φ∂=x x xf yσ, (e)gy E Dx By Axy yf xy y ρσ-+++=-∂Φ∂=262622, (f)C Bx Ax yx xy---=∂∂Φ∂-=2322τ. (g)(5) 考察边界条件。

利用边界条件确定待定系数 先来考虑左右两边2b x±=的主要边界条件:()02=±=b x x σ,()02=-=b x xy τ,()q b x xy =+=2τ。

将应力分量式(e)和(g)代入,这些边界条件要求:()02=±=b x x σ,自然满足; ()04322=-+-=-=C Bb Ab b x xy τ (h )()q C Bb Ab b x xy =---=+=2243τ (i) 由(h )(i ) 得 bqB 2-= (j ) 考察次要边界0=y 的边界条件,应用圣维南原理,三个积分的应力边界条件为()()0226222==+=⎰⎰+-=+-Eb dx E Dx dx b b y b b yσ; 得 0=E()()0226322022==+=⎰⎰+-=+-Db dx x E Dx xdx b b y b b y σ, 得 0=D()0433222022=--=⎪⎭⎫ ⎝⎛-+-=⎰⎰+-=+-bC Ab dx C x b q Ax dx b b y b b xy τ (k ) 由(h )(j )(k )得2b qA -=,4q C =将所得A 、B 、C 、D 、E 代入式(e )(f )(g )得应力分量为:0=x σ,gy y b q xy b q y ρσ---=26, 4322qx b q x b q xy -+=τ。

相关文档
最新文档