(完整word版)复试材料力学重点知识点总结(二轮主要)
(完整word版)材料力学知识点总结
材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学II复习要点(1)
《材料力学Ⅱ》复习要点第一章 绪论材料力学的任务及研究对象;变形固体的基本假设;外力与内力、截面法、应力应变的基本概念;杆件变形的基本形式。
第二章 拉伸、压缩与剪切轴向拉伸、压缩的概念;轴力和轴力图的画法;横截面和斜截面上的应力计算以及拉(压)杆的变形计算、胡克定律;材料在拉伸、压缩时的力学性质;强度条件的应用、应力集中的概念;拉(压)杆的超静定问题的应用;应变能和比能;剪切的概念、剪切和挤压的实用计算。
第三章 扭转扭转概念,扭矩及扭矩图的画法;剪切胡克定律;圆轴扭转时的应力与应变的计算;扭转强度及刚度条件的应用。
第四章 弯曲内力平面弯曲的概念;剪力、弯矩方程及相应的剪力、弯矩图的画法;M F q S --的微分关系;可以利用微分关系画出梁的剪力、弯矩图;刚架内力图的画法。
第五章 弯曲应力纯弯曲和横力弯曲梁横截面上各点正应力的计算,梁按正应力的强度条件及应用;矩形截面梁的弯曲剪应力计算;提高梁弯曲强度的措施。
第六章 弯曲变形梁的挠度及转角概念;挠曲线近似微分方程,位移边界条件与连续条件,积分法、叠加法求梁变形计算;简单超静定梁的应用;梁的刚度校核,提高梁弯曲刚度的措施。
第七章 应力和应变分析 强度理论点的应力状态的概念;平面应力状态下应力分析的解析法及图解法的应用;广义胡克定律,体积应变的概念;体积胡克定律;强度理论的概念;四种常见的强度理论及其相当应力。
第八章 组合变形拉伸(压缩)与弯曲组合、扭转与弯曲组合的应力计算及强度条件的应用。
第九章 压杆稳定压杆稳定性的概念;两端铰支中心受压细长压杆的临界力公式,杆端不同约束时的临界压力公式;临界应力、欧拉公式的适用范围;细长临界应力求解、欧拉公式的应用;提高压杆稳定性措施。
第十章 动载荷动静法的应用;自由落体冲击时,构件动相应的计算。
第十一章 交变应力掌握交变应力下杆件的受力及变形。
第十三章 能量方法应变能,功的互等定理,卡氏第二定理;虚功原理的概念与单位载荷法的应用;图乘法的应用。
材料力学知识点归纳总结(完整版)
材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
(完整版)材料力学各章重点内容总结
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学主要知识点归纳
材料力学主要知识点一、基本概念1、构件正常工作的要求:强度、刚度、稳定性。
2、可变形固体的两个基本假设:连续性假设、均匀性假设。
另外对于常用工程材料(如钢材),还有各向同性假设。
3、什么是应力、正应力、切应力、线应变、切应变。
杆件截面上的分布内力集度,称为应力。
应力的法向分量σ称为正应力,切向分量τ称为切应力。
杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。
4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。
5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。
6、强度理论及其相当应力(详见材料力学ⅠP229)。
7、截面几何性质A 、截面的静矩及形心①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=Ay xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。
B 、极惯性矩、惯性矩、惯性积、惯性半径① 极惯性矩:⎰=A P dA I 2ρ② 对x 轴惯性矩:⎰=A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=Axy xydA I ④ 惯性半径:A I i x x =,A I i y y =。
C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b为y c 距y 轴距离。
② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,b 为截面形心距y 轴距离。
二、杆件变形的基本形式1、轴向拉伸或轴向压缩:A 、应力公式 AF =σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。
C 、应变公式E σε=D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。
材料力学复习总结知识点
A、30 B、 35 C、 40 D、 70
基工本字变 形形截面方拉:校(形压核) 主销应力将扭。转两块等弯曲厚度的板连接在一起,上面的板中同时
根据弯矩图判断可能的危险截面为:A和D左截面,可能的危险点为:A截面的上边缘点和D左截面的下边缘点产生最大的拉应力,D左
存在拉应力σ、剪应力τ、挤压应力σ ,比较其数值大小 截已面知的 轴上的边许缘用点剪产应生力最为大[τ]的=压60应MP力a,. 剪变模量为G=80GPa,许用转角为[θ]=20/mb。s
m ax [ ]
二、应力状态
1. 平面应力状态: 解析法(公式)
2. 三向应力状态:
ma x1, ma x1 23
3. 广义胡克定律:
1
1 E
[ 1
( 2
3 )]
2
1 E
[ 2
( 3
1 )]
3
1 E
[ 3
( 1
2 )]
4. 强度理论:建立复杂应力状态下的强度条件
r [] 其中
r1, r2, r3, r4
三、压杆稳定
1. 欧拉公式:
Fcr
2 EI ( l)2
(适用范围:细长杆)
2. 压杆的柔度:
细长杆
P
cr
2E 2
中长杆
0 P
cr ab
长度因数(反应约况 束) 情
l
i
i l
截面形状、大小 杆长
σ σcr=σs
临界应力总图
σs
A
粗短杆
σcr=a−bλ
可得( ) 基本变形 拉(压)
扭转
弯曲
基本变形 拉(压) 扭转
弯曲
材料力学的两项基本任务:
BC杆为正方形截面,边长a=70mm,C端也是球铰。
(完整版)材料力学复习重点汇总
6.有效裂纹长度:将原有的裂纹长度与松弛后的塑性区相重合并得到的裂纹长度【新P74;旧P86】。
五、试述应力场强度因子的意义及典型裂纹 的表达式
答:应力场强度因子 :表示应力场的强弱程度。 在裂纹尖端区域各点的应力分量除了决定于位置外,尚与强度因子 有关,对于某一确定的点,其应力分量由 确定, 越大,则应力场各点应力分量也越大,这样 就可以表示应力场的强弱程度,称 为应力场强度因子。 “I”表示I型裂纹。 几种裂纹的 表达式,无限大板穿透裂纹: ;有限宽板穿透裂纹: ;有限宽板单边直裂纹: 当b a时, ;受弯单边裂纹梁: ;无限大物体内部有椭圆片裂纹,远处受均匀拉伸: ;无限大物体表面有半椭圆裂纹,远处均匀受拉伸:A点的 。
六、试述冲击载荷作用下金属变形和断裂的特点。
冲击载荷下,瞬时作用于位错的应力相当高,结果使位错运动速率增加,因为位错宽度及其能量与位错运动速率有关,运动速率越大,则能量越大,宽度越小,故派纳力越大。结果滑移临界切应力增大,金属产生附加强化。
由于冲击载荷下应力水平比较高,将使许多位错源同时开动,增加了位错密度和滑移系数目,出现孪晶,减少了位错运动自由行程的平均长度,增加了点缺陷的浓度。这些原因导致金属材料在冲击载荷作用下塑性变形极不均匀且难以充分进行,使材料屈服强度和抗拉强度提高,塑性和韧性下降,导致脆性断裂。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(完整版)材料力学知识点总结
一、基本变形材料力学总结变形现象: 平面假设: 应变规律: = d ∆l = 常数dx变形现象:平面假设: 应变规律:=d = dx变形现象:平面假设: 应变规律:= y= N =T= T = MyI Z = M max WZ= QS * z I z b = QS max max I bz max W= E (单向应力状态) = G(纯剪应力状态)=⎛ N ⎫≤ []maxA ⎪ ⎝ ⎭max[]=un塑材:u=s 脆材:u =bmax= ⎛ T ⎫ ≤ [] ⎪ ⎝ W t ⎭max弯曲正应力 1. [t ]= [c ]max≤ []2. [t ]≠ [c ] t max ≤ [t ] cmac ≤ [c ]弯曲剪应力=Q max S max ≤ [] max I bz轴向拉压扭转弯曲刚度条=T ⋅180 ≤[]max GIP注意:单位统一ymax≤[y]max≤[]件变形d∆l=N ; ∆L =NLdx EA EAEA—抗拉压刚度=d=Tdx GIZ=TLGIPGI p—抗扭刚度1=M (x)(x) EIy '' =M (x)EIEI—抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩形A=bhbh 3bh 2IZ=12;WZ=6实心圆A= d 24d4d3IP=32;Wt=16d4d3IZ=64;WZ=32空心圆D 2A =(1-2)4d44IP=32(1 -)d 3W =(1 -4)t16d 4I =(1-4)Z64d34WZ=32(1-)其(1)'剪切(1)强度条件:=Q≤[]A—剪切面积A(2)挤压条件:=P bs ≤[]bs A bsJA j—挤压面积矩形:=3Qmax 2 A圆形:=4Qmax 3A环形:= 2Qmax Amax均发生在中性轴上它公(2)GE式2(1 )二、还有:(1)外力偶矩:m = 9549 N (N •m)n(2)薄壁圆管扭转剪应力:=TN—千瓦;n—转/分2r 2t(3)矩形截面杆扭转剪应力:max =Tb2h;=TG b3hDB c AD 'Z ZC c cn n三、截面几何性质(1)平行移轴公式:I =I +a 2A;(2)组合截面:IYZ=IZ Y+abA1.形心:y c∑A i y ci=i =1 ;∑A ii =1∑A i z ciz =i =1∑A ii =12.静矩:S Z =∑A i y ci ;S y =∑A i z ci3.惯性矩:I Z =∑(I Z ) i ;I y =∑(I y ) i四、应力分析:(1)二向应力状态(解析法、图解法)a.解析法: b.应力圆:n σ:拉为“+”,压为“-”xτ:使单元体顺时针转动为“+”x yx y cos 2sin 2α:从x 轴逆时针转到截面的法线为“+”2 2 xx y sin 2cos 22 xtg22xmaxminxx yy2c:适用条件:平衡状态(2)三向应力圆:;; 1 3max 1 min 3 max 2nn2x y22xyxc121223311(3) 广义虎克定律:1(1 (1E 123xE xyz1 ( 1(2E 231yE yzx1(1(3E3 1 2zExy*适用条件:各向同性材料;材料服从虎克定律(4) 常用的二向应力状态 31. 纯剪切应力状态:1,20 ,3x2. 一种常见的二向应力状态:132r 3r 4五、强度理论破坏形式脆性断裂塑性断裂强度理论 第一强度理论(最大拉应力理论)莫尔强度理论 第三强度理论 (最大剪应力理论) 第四强度理论(形状改变比能理论) 破坏主要因素 单元体内的最大拉应力单元体内的最大剪应力单元体内的改变比能破坏条件 1 = bmax =su f = u fs强度条件 1 ≤ [] 1-3≤ []适用条件 脆性材料 脆性材料 塑性材料 塑性材料*相当应力:r,,]r 11r 313r 4222242232r=2+42≤[]=2+32≤[]4r22(M +N ) + 4≤ []r3 =r=(M+N)2+32≤[]WM 2 +T 2r3 =圆截面WM 2 + 0.75T 2r4=(M+N)2 + 4(T)2W Z A W t(M+N)2 + 4(T)2W Z A W t α 中性轴ZMpr3 =≤ []r 4 =≤ []i 2I Z*y =-=-ZAe y e ytg=y=-I ZtgZ I y中性轴Z≤ []Z≤ []A W≤ []P Mmax =±max ±max≤ []sincos( +)W Z W y=max maxM强度条件43=±P ±MA W)I yI Z=M (y c os+z s in公式简图弯扭拉(压)弯扭拉(压)弯斜弯曲类型六、材料的力学性质脆性材料<5%塑性材料≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段b强度指标s ,b e sα塑性指标,tg E七.组合变形只有σs,无σbb剪断断口垂直轴线拉断断口与轴夹角45ºb45º拉断铸铁断口垂直轴线剪断s b 滑移线与轴线45︒,剪45低碳钢扭压拉八、压杆稳定欧拉公式: P=2EI min,=2E,应用范围:线弹性范围,σ<σ ,λ>λcr(l ) 2cr2crpp柔度:=ul;=E;0 =a -s, σib柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:cr =2E2临界应力λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σsλoλPλ稳定校核:安全系数法: n P c rP I n w ,折减系数法:P []A提高杆件稳定性的措施有: 1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学知识点总结
材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域具有重要的意义。
以下是对材料力学主要知识点的总结。
一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。
在拉伸或压缩时,杆件的内力称为轴力。
通过截面法可以求出轴力的大小,轴力的正负规定为拉力为正,压力为负。
胡克定律描述了应力与应变之间的线性关系,在弹性范围内,应力与应变成正比,即σ =Eε,其中σ为正应力,ε为线应变,E 为材料的弹性模量。
材料在拉伸和压缩过程中会经历不同的阶段。
低碳钢的拉伸实验是研究材料力学性能的重要手段,其拉伸曲线可分为弹性阶段、屈服阶段、强化阶段和颈缩阶段。
通过拉伸实验可以得到材料的屈服极限、强度极限等重要力学性能指标。
二、剪切与挤压剪切是指在一对大小相等、方向相反、作用线相距很近的横向外力作用下,杆件的横截面发生相对错动的变形形式。
剪切面上的内力称为剪力,其大小可以通过截面法求得。
在工程中,通常还需要考虑连接件的挤压问题。
挤压面上的应力称为挤压应力,其大小与挤压面的面积和外力有关。
三、扭转扭转是指杆件受到一对大小相等、方向相反、作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线发生相对转动的变形形式。
圆轴扭转时,横截面上的内力为扭矩。
扭矩的正负规定为右手螺旋法则,拇指指向截面外为正,指向截面内为负。
根据材料力学的理论,圆轴扭转时横截面上的切应力呈线性分布,最大切应力发生在圆周处。
四、弯曲弯曲是指杆件在垂直于轴线的外力或外力偶作用下,轴线由直线变为曲线的变形形式。
梁在弯曲时,横截面上会产生弯矩和剪力。
弯矩的正负规定为使梁下侧受拉为正,上侧受拉为负;剪力的正负规定为使截面顺时针转动为正,逆时针转动为负。
弯曲正应力和弯曲切应力是弯曲问题中的重要应力。
弯曲正应力沿截面高度呈线性分布,最大正应力发生在截面的上下边缘处。
弯曲切应力在矩形截面梁中,其分布规律较为复杂,但在一些常见的情况下,可以通过公式进行计算。
材料力学知识点总结(重、难点部分)
第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
材料力学复习要点word精品文档9页
第一章绪论§1.1 材料力学的任务二、基本概念1、构件:工程结构或机械的每一组成部分。
(例如:行车结构中的横梁、吊索等)理论力学—研究刚体,研究力与运动的关系。
材料力学—研究变形体,研究力与变形的关系。
2、变形:在外力作用下,固体内各点相对位置的改变。
(宏观上看就是物体尺寸和形状的改变)弹性变形—随外力解除而消失塑性变形(残余变形)—外力解除后不能消失刚度:在载荷作用下,构件抵抗变形的能力3、内力:构件内由于发生变形而产生的相互作用力。
(内力随外力的增大而增大)强度:在载荷作用下,构件抵抗破坏的能力。
4、稳定性:在载荷作用下,构件保持原有平衡状态的能力。
强度、刚度、稳定性是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。
三、材料力学的任务材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计既经济又安全的构件,提供必要的理论基础和计算方法若:构件横截面尺寸不足或形状不合理,或材料选用不当—不满足上述要求,不能保证安全工作.若:不恰当地加大横截面尺寸或选用优质材料—增加成本,造成浪费研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。
因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。
四、材料力学的研究对象构件的分类:杆件、板壳*、块体*材料力学主要研究杆件﹜直杆——轴线为直线的杆曲杆——轴线为曲线的杆等截面杆——横截面的大小形状不变的杆变截面杆——横截面的大小或形状变化的杆等截面直杆——等直杆§1.2 变形固体的基本假设在外力作用下,一切固体都将发生变形,故称为变形固体。
在材料力学中,对变形固体作如下假设:1、连续性假设:认为整个物体体积内毫无空隙地充满物质灰口铸铁的显微组织球墨铸铁的显微组织2、均匀性假设:认为物体内的任何部分,其力学性能相同普通钢材的显微组织优质钢材的显微组织3、各向同性假设:认为在物体内各个不同方向的力学性能相同(沿不同方向力学性能不同的材料称为各向异性材料。
完整版材料力学各章重点内容总结
完整版材料力学各章重点内容总结材料力学各章重点内容总结第一章绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章轴向拉压、轴力图:注意要标明轴力的大小、单位和正负号。
、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
、轴向拉压时横截面上正应力的计算公式: F N注意正应力有正负号,A拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:注意角度是指斜截面与横截面的夹角七、线应变一-没有量纲、泊松比一没有量纲且只与材料有关、l胡克定律的两种表达形式: E , I 出注意当杆件伸长时I 为正,EA缩短时I 为负。
八、低碳钢的轴向拉伸实验:会画过程的应力一应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p,弹性极限e )、屈服阶段(屈服极限s )、强化阶段(强度极限 b )和局部变形阶段会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力一应变曲线cos 2 ,sin2五、轴向拉压时横截面上正应力的强度条件F N,maxmaxA六、利用正应力强度条件可解决的三种问题: 1?强度校核maxF N ,maxA定要有结论 2.设计截面A F N,max3.确定许可荷载F^max A180八、圆轴在扭转时的刚度条件maxT maxGI p(注意单位:给出的许用单九、衡量材料塑性的两个指标:伸长率耳100 及断面收缩率 A-A 1100,工程上把 5 的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
对没有明显屈服极限的塑性材料,如何来确定其屈服指标?见课本第24页。
材料力学面试基本知识点总结
材料力学面试基本知识点总结材料力学面试基本知识点总结材料力学是研究材料力学性能和变形行为的学科,具有广泛的应用领域,包括工程结构、材料加工、航空航天等。
在面试中,材料力学是一个常见的问题,掌握材料力学的基本知识点对于应聘者来说至关重要。
本文将总结材料力学面试中的一些基本知识点,供大家参考。
一、材料的力学性质1. 弹性模量:材料弹性变形程度的度量,描述材料的刚度。
2. 屈服强度:材料在拉伸过程中发生塑性变形时所承受的最大应力。
3. 抗拉强度:材料在拉伸过程中能够承受的最大拉伸应力。
4. 硬度:材料抵抗划痕或压痕的能力。
5. 断裂韧性:材料在受力作用下发生断裂的能力。
二、材料的变形行为1. 弹性变形:在材料受力后,当力消失时能完全恢复原状的变形。
2. 塑性变形:材料受力后,在力消失的情况下仍能保持部分形状的变形。
3. 破坏:材料在受力作用下失去原有性能,无法恢复。
三、应力与应变关系1. 应力:物体在受力时受到的内部分子间相互作用力。
2. 应变:物体由于受到外力作用而改变的形状或尺寸。
3. 霍克定律:描述应力与应变之间的线性关系,其中应力与应变的比例常数为弹性模量。
4. 应力应变曲线:描述材料在受力作用下的应力-应变关系。
四、材料的力学性能1. 韧性:材料抵抗断裂的能力,可通过材料的断裂韧性来衡量。
2. 脆性:材料在受力作用下很容易发生断裂,没有明显的变形过程。
3. 塑性:材料在受力作用下能够出现明显的塑性变形。
4. 硬度:材料抵抗划痕、压痕的能力,可通过硬度测试进行评估。
五、常见的材料力学测试方法1. 拉伸试验:通过对试样进行拉伸以测定材料的抗拉强度、屈服强度、延展性等指标。
2. 压缩试验:通过对试样进行压缩以测定材料的抗压强度、变形行为等指标。
3. 弯曲试验:通过对试样进行弯曲以测定材料的屈服强度、韧性等指标。
4. 硬度测试:通过将一定形状的硬体载入物体表面,测定所需的载入力或载入深度来评估材料的硬度。
材料力学重点总结材料力学重点
材料力学阶段总结一. 材料力学(de)一些基本概念1.材料力学(de)任务:解决安全可靠与经济适用(de)矛盾. 研究对象:杆件强度:抵抗破坏(de)能力 刚度:抵抗变形(de)能力 稳定性:细长压杆不失稳.2. 材料力学中(de)物性假设连续性:物体内部(de)各物理量可用连续函数表示. 均匀性:构件内各处(de)力学性能相同. 各向同性:物体内各方向力学性能相同.3. 材力与理力(de)关系, 内力、应力、位移、变形、应变(de)概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体.内力:附加内力.应指明作用位置、作用截面、作用方向、和符号规定.应力:正应力、剪应力、一点处(de)应力.应了解作用截面、作用位置(点)、作用方向、和符号规定.正应力⎩⎨⎧拉应力压应力应变:反映杆件(de)变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲.4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内. 5. 材料(de)力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段. 拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=12塑性材料与脆性材料(de)比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1(de)系数,使用材料时确定安全性与经济性矛盾(de)关键.过小,使构件安全性下降;过大,浪费材料. 许用应力:极限应力除以安全系数. 塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学(de)研究方法1) 所用材料(de)力学性能:通过实验获得.2)对构件(de)力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用(de)未来状态.3)截面法:将内力转化成“外力”.运用力学原理分析计算.8.材料力学中(de)平面假设寻找应力(de)分布规律,通过对变形实验(de)观察、分析、推论确定理论根据.1) 拉(压)杆(de)平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等. 2) 圆轴扭转(de)平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度.横截面上正应力为零. 3) 纯弯曲梁(de)平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁(de)纵向纤维;正应力成线性分布规律.9 小变形和叠加原理 小变形:① 梁绕曲线(de)近似微分方程 ② 杆件变形前(de)平衡③切线位移近似表示曲线④力(de)独立作用原理叠加原理:①叠加法求内力②叠加法求变形.10 材料力学中引入和使用(de)(de)工程名称及其意义(概念)1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载.2) 单元体,应力单元体,主应力单元体.3) 名义剪应力,名义挤压力,单剪切,双剪切.4) 自由扭转,约束扭转,抗扭截面模量,剪力流.5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量.6) 相当应力,广义虎克定律,应力圆,极限应力圆.7) 欧拉临界力,稳定性,压杆稳定性.8)动荷载,交变应力,疲劳破坏.二. 杆件四种基本变形(de)公式及应用1. 四种基本变形:2. 四种基本变形(de)刚度,都可以写成:刚度 = 材料(de)物理常数×截面(de)几何性质 1)物理常数:某种变形引起(de)正应力:抗拉(压)弹性模量E ; 某种变形引起(de)剪应力:抗剪(扭)弹性模量G . 2)截面几何性质:拉压和剪切:变形是截面(de)平移: 取截面面积 A ; 扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩ρI ;梁弯曲:各截面绕轴转动一角度:取对轴(de)惯性矩Z I . 3. 四种基本变形应力公式都可写成:应力=截面几何性质内力对扭转(de)最大应力:截面几何性质取抗扭截面模量maxρ=ρI W p对弯曲(de)最大应力:截面几何性质取抗弯截面模量max y I W ZZ =4. 四种基本变形(de)变形公式,都可写成:变形=刚度长度内力⨯因剪切变形为实用计算方法,不考虑计算变形.弯曲变形(de)曲率221dxyd x ±=ρ)(,一段长为 l (de)纯弯曲梁有: z x EI l M x l=ρ=θ)(补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆(de)轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲(de)组合变形问题;杆(de)压缩问题,要注意它(de)长细比λ(柔度).这里(de)简单压缩是指“小柔度压缩问题”. 2、关于“剪切”实用性(de)强度计算法,作了剪应力在受剪截面上均匀分布(de)假设.要注意有不同(de)受剪截面: a.单面受剪:受剪面积是铆钉杆(de)横截面积; b.双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积.c.圆柱面受剪:受剪面积以冲头直径d 为直径,冲板厚度 t 为高(de)圆柱面面积. 3.关于扭转表中公式只实用于圆形截面(de)直杆和空心圆轴.等直圆杆扭转(de)应力和变形计算公式可近似分析螺旋弹簧(de)应力和变形问题是应用杆件基本变形理论解决实际问题(de)很好例子. 4.关于纯弯曲纯弯曲,在梁某段剪力 Q=0 时才发生,平面假设成立.横力弯曲(剪切弯曲)可以视作剪切与纯弯曲(de)组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出(de)正应力公式可以在剪切弯曲中使用.5.关于横力弯曲时梁截面上剪应力(de)计算问题为计算剪应力,作为初等理论(de)材料力学方法作了一些巧妙(de)假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1) 无论作用于梁上(de)是集中力还是分布力,在梁(de)宽度上都是均匀分布(de).故剪应力在宽度上不变,方向与荷载(剪力)平行.2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有Q bdh h n=τ⎰)(,因 )(h τ=τ (de)函数形式未知,无法积分.但由剪应力互等定理,考虑微梁段左、右内力(de)平衡,可以得出:bI QS z Z *=τ剪应力在横截面上沿高度(de)变化规律就体现在静矩*z S 上, *z S 总是正(de).剪应力公式及其假设: a.矩形截面假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q(de)方向一致; 假设2:横截面上同一层高上(de)剪应力相等. 剪应力公式:b I y QS y z z )()(*=τ ,⎥⎦⎤⎢⎣⎡-=22*22y y b y S Z)()( 平均ττ2323max=⋅=bh Q b. 非矩形截面积假设1: 同一层上(de)剪应力τ作用线通过这层两端边界(de)切线交点,剪应力(de)方向与剪力(de)方向.假设2:同一层上(de)剪应力在剪力Q 方向上(de)分量y τ相等.剪应力公式:z z y I y b y QS y )()()(*=τ2322*)(32)(y R y S z -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-ℜ•=222134)(R y Q y y πτ 平均ττ34max =c.薄壁截面假设1:剪应力τ与边界平行,与剪应力谐调. 假设2:沿薄壁t,τ均匀分布. 剪应力公式:zz tI QS *=τ学会运用“剪应力流”概念确定截面上剪应力(de)方向. 三.梁(de)内力方程,内力图,挠度,转角遵守材料力学中对剪力 Q 和弯矩 M (de)符号规定.在梁(de)横截面上,总是假定内力方向与规定方向一致,从统一(de)坐标原点出发划分梁(de)区间,且把梁(de)坐标原点放在梁(de)左端(或右端),使后一段(de)弯矩方程中总包括前面各段.均布荷载 q 、剪力Q 、弯矩M 、转角θ、挠度 y 间(de)关系:由: ,M dxyd EI =22 Q dx dM =, q dx dQ = 有 )()(x q dxyd EI x Q dx dMdxy d EI ===4433设坐标原点在左端,则有:q: q dxyd EI =44, q 为常值Q : A qx dxyd EI +=33:M B Ax x q dx y d EI ++=2222 :θC Bx x A x qdx dy EI +++=2326:y D Cx x B x A x q y EI ++++=⋅2342624 其中A 、B 、C 、D 四个积分常数由边界条件确定. 例如,如图示悬臂梁:则边界条件为:430080600000lq D y lq C B M A Q l x l x x x =→=-=→=θ=→==→=====|||| 8624434ql x ql x q y EI +-=⋅EIql yx 84==截面法求内力方程:内力是梁截面位置(de)函数,内力方程是分段函数,它们以集中力偶(de)作用点,分布(de)起始、终止点为分段点;1)在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;2)在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3)剪力等于脱离梁段上外力(de)代数和.脱离体截面以外另一端,外力(de)符号同剪力符号规定,其他外力与其同向则同号,反向则异号;4)弯矩等于脱离体上(de)外力、外力偶对截面形心截面形心(de)力矩(de)代数和.外力矩及外力偶(de)符号依弯矩符号规则确定.梁内力及内力图(de)解题步骤:1)建立坐标,求约束反力;2)划分内力方程区段;3)依内力方程规律写出内力方程;4)运用分布荷载q、剪力Q、弯矩M(de)关系作内力图;关系:()()()()()()⎪⎩⎪⎨⎧+=+====⎰⎰dcdcCDCDxdxQMMxdxqQQxQdxdMxqdxdQdxMd,22规定:①荷载(de)符号规定:分布荷载集度q向上为正;②坐标轴指向规定:梁左端为原点,x轴向右为正.剪力图和弯矩图(de)规定:剪力图(de) Q轴向上为正,弯矩图(de) M轴向下为正.5)作剪力图和弯矩图:①无分布荷载(de)梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率(﹨);Q<0,有负斜率(/);②有分布荷载(de)梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率(﹨),M 图下凹(︶);q>0,Q图有正斜率(/),M图上凸(︵);③ Q=0(de)截面,弯矩可为极值;④集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图(de)斜率也突变,弯矩图有尖角;⑤集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥在剪力为零,剪力改变符号,和集中力偶作用(de)截面(包括梁固定端截面),确定最大弯矩(maxM);⑦指定截面上(de)剪力等于前一截面(de)剪力与该两截面间分布荷载图面积值(de)和;指定截面积上(de)弯矩等于前一截面(de)弯矩与该两截面间剪力图面积值(de)和.共轭梁法求梁(de)转角和挠度:要领和注意事项:1)首先根据实梁(de)支承情况,确定虚梁(de)支承情况2)绘出实梁(de)弯矩图,作为虚梁(de)分布荷载图.特别注意:实梁(de)弯矩为正时,虚分布荷载方向向上;反之,则向下.3)虚分布荷载()x q (de)单位与实梁弯矩()xM单位相同()mKN⋅若为,虚剪力(de)单位则为2mKN⋅,虚弯矩(de)单位是3mKN⋅4)由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等.计算时需要这些图形(de)面积和形心位置.叠加法求梁(de)转角和挠度:各荷载对梁(de)变形(de)影响是独立(de).当梁同时受n 种荷载作用时,任一截面(de)转角和挠度可根据线性关系(de)叠加原理,等于荷载单独作用时该截面(de)转角或挠度(de)代数和.四. 应力状态分析 1.单向拉伸和压缩应力状态划分为单向、二向和三向应力状态.是根据一点(de)三个主应力(de)情况而确定(de). 如:x σ=σ1,032==σσ 单向拉伸有:EXX σε=,x z Y v εεε-==主应力只有x σ=σ1,但就应变,三个方向都存在.若沿 α 和 2π+α 取出单元体,则在四个截面上(de)应力为: ⎪⎪⎩⎪⎪⎨⎧ασ-=τασ=σασ=τασ=σπ+απ+ααα22222222Sin Sin Sin Cos x x x x ,, 看起来似乎为二向应力状态,其实是单向应力状态.2.二向应力状态. 有三种具体情况需注意1)已知两个主应力(de)大小和方向,求指定截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ασ-σ=τασ-σ+σ+σ=σαα22222212121Sin Cos由任意互相垂直截面上(de)应力,求另一任意斜截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ατ+ασ-σ=τατ-ασ-σ+σ+σ=σαα2222222Cos Sin Sin Cos x y xx yx Y x由任意互相垂直截面上(de)应力,求这一点(de)主应力和主方向⎪⎪⎩⎪⎪⎨⎧σ-στ-=ατ-σ-σ±σ+σ=⎭⎬⎫σσyx xxy x y x tg 222202221)((角度 α 和 0α 均以逆时针转动为正)2) 二向应力状态(de)应力圆 应力圆在分析中(de)应用:a) 应力圆上(de)点与单元体(de)截面及其上应力一一对应;b) 应力圆直径两端所在(de)点对应单元体(de)两个相互垂直(de)面; c)应力圆上(de)两点所夹圆心角(锐角)是应力单元对应截面外法线间夹角(de)两倍2;d) 应力圆与正应力轴(de)两交点对应单元体两主应力;e)应力圆中过圆心且平行剪应力轴而交于应力圆(de)两点为最大、最小剪应力及其作用面.极点法:确定主应力及最大(小)剪应力(de)方向和作用面方向.3) 三方向应力状态,三向应力圆,一点(de)最大应力(最大正应力、最大剪应力)广义虎克定律:弹性体(de)一个特点是,当它在某一方向受拉时,与它垂直(de)另外方向就会收缩.反之,沿一个方向缩短,另外两个方向就拉长. 主轴方向:[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=ε213313223211111v E v E v E )( 或()()()()[]()()()()[]()()()()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧ε+ε+ε+-+=σε+ε+ε--+=σε+ε+ε--+=σ213313223211121112111211v v v V E v v v v E v v v v E非主轴方向:()[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=εy x z z x z y y z y x x v E v E v E 111体积应变:()32132121σσσεεε++-=++Ev五. 强度理论1.计算公式.强度理论可以写成如下统一形式:[]σσ≤r其中:r σ:相当应力,由三个主应力根据各强度理论按一定形式组合而成.[]σ:许用应力,[]nσσ=,0σ:单向拉伸时(de)极限应力,n :安全系数.1)最大拉应力理论(第一强度理论)11σ=σr , 一般:[]nbσσ=2) 最大伸长线应变理论(第二强度理论)()3212σσσσ+-=v r ,一般:[]nbσσ=3) 最大剪应力理论(第三强度理论)313σσσ+=r , 一般:[]nsσσ=4) 形状改变比能理论(第四强度理论)()()()[]213232221421σσσσσσσ-+-+-=r , 一般:[]nsσσ=5) 莫尔强度理论[][]31σσσ-σ=σ-+M , []n+=σσ, 0+σ:材料抗拉极限应力强度理论(de)选用:1)一般,脆性材料应采用第一和第二强度理论;塑性材料应采用第三和第四强度理论.2)对于抗拉和抗压强度不同(de)材料,可采用最大拉应力理论3)三向拉应力接近相等时,宜采用最大拉应力理论;4)三向压应力接近相等时,宜应用第三或第四强度理论.六.分析组合形变(de)要领材料服从虎克定律且杆件形变很小,则各基本形变在杆件内引起(de)应力和形变可以进行叠加,即叠加原理或力作用(de)独立性原理.分析计算组合变形问题(de)要领是分与合:分:即将同时作用(de)几组荷载或几种形变分解成若干种基本荷载与基本形变,分别计算应力和位移.合:即将各基本变形引起(de)应力和位移叠加,一般是几何和.分与合过程中发现(de)概念性或规律性(de)东西要概念清楚、牢记.斜弯曲:平面弯曲时,梁(de)挠曲线是荷载平面内(de)一条曲线,故称平面弯曲;斜弯曲时,梁(de)挠曲线不在荷载平面内,所以称斜弯曲.斜弯曲时几个角度间(de)关系要清楚:ϕ力作用角(力作用平面):α斜弯曲中性轴(de)倾角:斜弯曲挠曲线平面(de)倾角:θϕ=αtg I I tg y zϕ=θtg I I tg yzθ=α∴即:挠度方向垂直于中性轴一般,α≠ϕθ≠ϕ或即:挠曲线平面与荷载平面不重合.强度刚度计算公式:[]σ≤⎪⎪⎭⎫ ⎝⎛ϕ+ϕ=σsin cos max max c z zW W W M 22z y f f f +=ϕ==cos zz y y EI pl EI l P f 3333ϕ==sin yy z z EI pl EI l P f 3333拉(压)与弯曲(de)组合:拉(压)与弯曲组合,中性轴一般不再通过形心,截面上有拉应力和压应力之区别偏心拉压问题,有时要求截面上下只有一种应力,这时载荷(de)作用中心与截面形心不能差得太远,而只能作用在一个较小(de)范围内这个范围称为截面(de)核心.强度计算公式及截面核心(de)求解:[]σ≤±=σzW M A N max minmax012020=++yp zp iz z iy y⎪⎪⎩⎪⎪⎨⎧-=-=pyzpz y z i a y i a 22扭转与弯曲(de)组合形变:机械工程中常见(de)一种杆件组合形变,故常为圆轴. 分析步骤:根据杆件(de)受力情况分析出扭矩和弯矩和剪力.找出危险截面:即扭矩和弯矩均较大(de)截面.由扭转和弯曲形变(de)特点,危险点在轴(de)表面.剪力产生(de)剪应力一般相对较小而且在中性轴上(弯曲正应力为零).一般可不考虑剪力(de)作用.弯扭组合一般为复杂应力状态,应采用合适(de)强度理论作强度分析,强度计算公式:[]σ≤τ+σ=σ2234r[]σ≤⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=σ2234P T r W M A P[]σ≤τ+σ=σ2243r[]σ≤⎪⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛=σ2243PT r W M A P 扭转与拉压(de)组合:杆件内最大正应力与最大剪应力一般不在横截面或纵截面上,应选用适当强度理论作强度分析.强度计算公式[]σ≤+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=τ+σ=σ22222231244T T r M M WW M W M[]σ≤+=τ+σ=σ2222475013T r M M W.七.超静定问题:总结:分析步骤关键点:变形协调条件—力力—简单超静定梁问题拉压压杆的超静定问⎪⎭⎪⎬⎫求解简单超静定梁主要有三个步骤:1) 解得超静定梁(de)多余约束而以其反力代替;2) 求解原多余约束处由已知荷载及“多余”约束反力产生(de)变形; 3)由原多余支座处找出变形协调条件,重立补充方程.能量法求超静定问题:⎰⨯=ldx U 022刚度内力⎰⎰⎰⎰A +I M +EI M +EA N =ρτl l l ldx G kQ dx G dx dx U 002202022222卡氏第一定理:应变能对某作用力作用点上该力作用方向上(de)位移(de)偏导数等于该作用力,即:i iP U=δ∂∂注1:卡氏第一定理也适用于非线性弹性体; 注2:应变能必须用诸荷载作用点(de)位移来表示.卡氏第二定理:线弹性系统(de)应变能对某集中荷载(de)偏导数等于该荷载作用点上沿该荷载方向上(de)位移,即i iP Uδ=∂∂*若系统为线性体,则:U U=*注1: 卡氏第二定理仅适用于线弹性系统;卡氏第二定理(de)应变能须用独立荷载表示.注2: 用卡氏定理计算,若得正号,表示位移与荷载同向;若得负号,表示位移与荷载反向.计算(de)正负与坐标系无关.八.压杆稳定性(de)主要概念压杆失稳破坏时横截面上(de)正应力小于屈服极限(或强度极限),甚至小于比例极限.即失稳破坏与强度不足(de)破坏是两种性质完全不同(de)破坏.临界力是压杆固有特性,与材料(de)物性有关(主要是E),主要与压杆截面(de)形状和尺寸,杆(de)长度,杆(de)支承情况密切相关.计算临界力要注意两个主惯性平面内惯矩I和长度系数μ(de)对应.压杆(de)长细比或柔度表达了欧拉公式(de)运用范围.细长杆(大柔度杆)运用欧拉公式判定杆(de)稳定性,短压杆(小柔度杆)只发生强度破坏而一般不会发生失稳破坏;中长杆(中柔度杆)既有强度破坏又有较明显失稳现象,通常根据实验数据处理这类问题,直线经验公式是最简单实用(de)一种.折剪系数ψ 是柔度 λ (de)函数,这是因为柔度不同,临界应力也不同.且柔度不同,安全系数也不同.压杆稳定性(de)计算公式:欧拉公式及ψ系数法(略)九. 动荷载、交变应力及疲劳强度 1.动荷载分析(de)基本原理和基本方法:1)动静法,其依据是达朗贝尔原理.这个方法把动荷(de)问题转化为静荷(de)问题.2) 能量分析法,其依据是能量守恒原理.这个方法为分析复杂(de)冲击问题提供了简略(de)计算手段.在运用此法分析计算实际工程问题时应注意回到其基本假设逐项进行考察与分析,否则有时将得出不合理(de)结果.构件作等加速运动或等角速转动时(de)动载荷系d k 为:stdd k σσ=这个式子是动荷系数(de)定义式,它给出了 d k (de)内涵和外延. d k (de)计算式,则要根据构件(de)具体运动方式,经分析推导而定.构件受冲击时(de)冲击动荷系数 d k 为:stdst d d k ∆∆σσ==这个式子是冲击动荷系数(de)定义式,其计算式要根据具体(de)冲击形式经分析推导而定.两个d k 中包含丰富(de)内容.它们不仅能给出动(de)量与静(de)量之间(de)相互关系,而且包含了影响动载荷和动应力(de)主要因素,从而为寻求降低动载荷对构件(de)不利影响(de)方法提供了思路和依据.2.交变应力与疲劳失效基本概念:应力循环,循环周期,最大、最小循环应力,循环特征(应力比),持久极限,条件持久极限,应力集中系数,构件(de)尺寸系数,表面质量系数,持久极限曲线等.应力寿命曲线:表示一定循环特征下标准试件(de)疲劳强度与疲劳寿命之间关系(de)曲线,称应力寿命曲线,也称S —N 曲线:持久极限曲线:构件(de)工作安全系数:m a r k n σψ+σβεσ=σσ=σσσ-σ1max构件(de)疲劳强度条件为:nn ≥σ十.平面图形(de)几何性质:意义总结:计算公式、物理心主惯矩及其计算公式惯性主轴、主惯矩、形惯矩、惯积的转轴公式公式惯矩、惯积的平行移轴性积及其求解惯性矩、极惯性矩、惯静矩、形心及其求解⎪⎪⎪⎭⎪⎪⎪⎬⎫1.静矩:平面图形面积对某坐标轴(de)一次矩.定义式:⎰=Ay zdA S ,⎰=Az ydA S量纲为长度(de)三次方.2. 惯性矩:平面图形对某坐标轴(de)二次矩.⎰=Ay dA z I 2,⎰=Az dA y I 2量纲为长度(de)四次方,恒为正.相应定义:惯性半径AI i y y =,AI i zz=为图形对y 轴和对 z轴(de)惯性半径.3. 极惯性矩:⎰=Ap dA I 2ρ因为222zy +=ρ所以极惯性矩与(轴)惯性矩有关系:()z y Ap I I dA z y I +=+=⎰224. 惯性积:⎰=Ayz yzdA I定义为图形对一对正交轴y 、z轴(de)惯性积.量纲是长度(de)四次方. yz I 可能为正,为负或为零. 5. 平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I A a I I C C CC z y yzz z y y 226. 转轴公式:αα2sin 2cos 22211yz zy zy Ay I I I I I dA z I ---+==⎰αα2sin 2cos 221yz zy zy z I I I I I I +--+=αα2cos 2sin 211yz zy z y I I I I +-=7. 主惯性矩(de)计算公式:()2242120yzz y z y y I I I I I I +-++=()2242120yzz y zy z I I II I I +--+=截面图形(de)几何性质都是对确定(de)坐标系而言(de),通过任意一点都有主轴.在强度、刚度和稳定性研究中均要进行形心主惯性矩(de)计算.。
材料力学知识点总结
材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域有着至关重要的作用。
以下是对材料力学主要知识点的总结。
一、基本概念1、外力:作用在物体上的力,包括载荷和约束力。
2、内力:物体内部各部分之间相互作用的力。
3、应力:单位面积上的内力。
4、应变:物体在受力时发生的相对变形。
二、轴向拉伸与压缩1、轴力:杆件沿轴线方向的内力。
轴力的计算通过截面法,即假想地将杆件沿某一截面切开,取其中一部分为研究对象,根据平衡条件求出截面处的内力。
2、拉压杆的应力正应力计算公式为:σ = N / A,其中 N 为轴力,A 为横截面面积。
应力在横截面上均匀分布。
3、拉压杆的变形纵向变形:Δl = Nl / EA,其中 E 为弹性模量,l 为杆件长度。
横向变形:Δd =μΔl,μ 为泊松比。
三、剪切与挤压1、剪切:在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。
2、剪切力:平行于横截面的内力。
3、切应力:τ = Q / A,Q 为剪切力,A 为剪切面面积。
4、挤压:连接件在接触面上相互压紧的现象。
5、挤压应力:σbs = Pbs / Abs,Pbs 为挤压力,Abs 为挤压面面积。
四、扭转1、扭矩:杆件受扭时,横截面上的内力偶矩。
扭矩的计算同样使用截面法。
2、圆轴扭转时的应力横截面上的切应力沿半径线性分布,最大切应力在圆周处,计算公式为:τmax = T / Wp,T 为扭矩,Wp 为抗扭截面系数。
3、圆轴扭转时的变形扭转角:φ = TL / GIp,G 为剪切模量,Ip 为极惯性矩。
五、弯曲内力1、平面弯曲:梁在垂直于轴线的平面内发生弯曲变形,且外力和外力偶都作用在该平面内。
2、剪力和弯矩剪力:梁横截面上切向分布内力的合力。
弯矩:梁横截面上法向分布内力的合力偶矩。
(完整版)材料力学知识点总结
材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学知识点总结
材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。
以下是对材料力学主要知识点的总结。
一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。
在拉伸或压缩时,杆件横截面上的内力称为轴力。
轴力的正负规定为:拉伸时轴力为正,压缩时轴力为负。
通过实验可以得到材料在拉伸和压缩时的应力应变曲线。
低碳钢的拉伸应力应变曲线具有明显的四个阶段:弹性阶段、屈服阶段、强化阶段和局部变形阶段。
弹性阶段内应力与应变成正比,遵循胡克定律;屈服阶段材料出现明显的塑性变形;强化阶段材料抵抗变形的能力增强;局部变形阶段试件在某一局部区域产生显著的收缩,直至断裂。
对于拉伸和压缩杆件,其横截面上的正应力计算公式为:$\sigma =\frac{N}{A}$,其中$N$为轴力,$A$为横截面面积。
而纵向变形量$\Delta L$可以通过公式$\Delta L =\frac{NL}{EA}$计算,其中$E$为材料的弹性模量,$L$为杆件长度。
二、剪切与挤压剪切是指在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。
在剪切面上的内力称为剪力。
剪切面上的平均切应力计算公式为:$\tau =\frac{Q}{A}$,其中$Q$为剪力,$A$为剪切面面积。
挤压是在连接件与被连接件之间,在接触面上相互压紧而产生的局部受压现象。
挤压面上的应力称为挤压应力,其计算公式为:$\sigma_{jy} =\frac{F_{jy}}{A_{jy}}$,其中$F_{jy}$为挤压力,$A_{jy}$为挤压面面积。
三、扭转扭转是指杆件受到一对大小相等、方向相反且作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线产生相对转动。
圆轴扭转时,横截面上的内力是扭矩。
扭矩的正负规定:右手螺旋法则,拇指指向截面外法线方向为正,反之为负。
材料力学知识点总结共31页文档
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复试面试材力重点总结一. 材料力学的一些基本概念1. 材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3. 材力与理力的关系, 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的 适用条件:应力~应变是线性关系:材料比例极限以内。
5. 材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V E G +=12 塑性材料与脆性材料的比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料 []ss n σσ= s σσ=0 脆性材料 []bb n σσ= b σσ=07. 材料力学的研究方法 1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
运用力学原理分析计算。
8.材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。
1) 拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
2) 圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。
横截面上正应力为零。
3) 纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。
9 小变形和叠加原理小变形:①梁绕曲线的近似微分方程②杆件变形前的平衡③切线位移近似表示曲线④力的独立作用原理叠加原理:①叠加法求内力②叠加法求变形。
10 材料力学中引入和使用的的工程名称及其意义(概念)1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载。
2) 单元体,应力单元体,主应力单元体。
3) 名义剪应力,名义挤压力,单剪切,双剪切。
4) 自由扭转,约束扭转,抗扭截面模量,剪力流。
5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量。
6) 相当应力,广义虎克定律,应力圆,极限应力圆。
7) 欧拉临界力,稳定性,压杆稳定性。
8)动荷载,交变应力,疲劳破坏。
二. 杆件四种基本变形的公式及应用1. 四种基本变形:2. 四种基本变形的刚度,都可以写成:刚度 = 材料的物理常数×截面的几何性质1)物理常数:某种变形引起的正应力:抗拉(压)弹性模量E;某种变形引起的剪应力:抗剪(扭)弹性模量G。
2)截面几何性质:拉压和剪切:变形是截面的平移:取截面面积 A;扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩ρI;I。
梁弯曲:各截面绕轴转动一角度:取对轴的惯性矩Z3. 四种基本变形应力公式都可写成:应力=截面几何性质内力 对扭转的最大应力:截面几何性质取抗扭截面模量max ρ=ρI W p对弯曲的最大应力:截面几何性质取抗弯截面模量maxy I W Z Z =4. 四种基本变形的变形公式,都可写成:变形=刚度长度内力⨯因剪切变形为实用计算方法,不考虑计算变形。
弯曲变形的曲率 221dxy d x ±=ρ)(,一段长为 l 的纯弯曲梁有: z x EI l M x l =ρ=θ)(补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆的轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲的组合变形问题;杆的压缩问题,要注意它的长细比λ(柔度)。
这里的简单压缩是指“小柔度压缩问题”。
2、关于“剪切”实用性的强度计算法,作了剪应力在受剪截面上均匀分布的假设。
要注意有不同的受剪截面:a.单面受剪:受剪面积是铆钉杆的横截面积;b.双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积。
c.圆柱面受剪:受剪面积以冲头直径d为直径,冲板厚度t 为高的圆柱面面积。
3.关于扭转表中公式只实用于圆形截面的直杆和空心圆轴。
等直圆杆扭转的应力和变形计算公式可近似分析螺旋弹簧的应力和变形问题是应用杆件基本变形理论解决实际问题的很好例子。
4.关于纯弯曲纯弯曲,在梁某段剪力Q=0时才发生,平面假设成立。
横力弯曲(剪切弯曲)可以视作剪切与纯弯曲的组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出的正应力公式可以在剪切弯曲中使用。
5.关于横力弯曲时梁截面上剪应力的计算问题为计算剪应力,作为初等理论的材料力学方法作了一些巧妙的假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1) 无论作用于梁上的是集中力还是分布力,在梁的宽度上都是均匀分布的。
故剪应力在宽度上不变,方向与荷载(剪力)平行。
2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有Q bdh h n =τ⎰)(,因 )(h τ=τ 的函数形式未知,无法积分。
但由剪应力互等定理,考虑微梁段左、右内力的平衡,可以得出:b I QS z Z *=τ剪应力在横截面上沿高度的变化规律就体现在静矩*z S 上,*z S 总是正的。
剪应力公式及其假设:a.矩形截面假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q 的方向一致;假设2:横截面上同一层高上的剪应力相等。
剪应力公式:b I y QS y z z )()(*=τ ,⎥⎦⎤⎢⎣⎡-=22*22y y b y S Z)()( 平均ττ2323max=⋅=bh Q b. 非矩形截面积 假设1: 同一层上的剪应力τ作用线通过这层两端边界的切线交点,剪应力的方向与剪力的方向。
假设2:同一层上的剪应力在剪力Q 方向上的分量y τ相等。
剪应力公式:z z y I y b y QS y )()()(*=τ2322*)(32)(y R y S z -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-ℜ•=222134)(R y Q y y πτ 平均ττ34max =c.薄壁截面假设1:剪应力τ与边界平行,与剪应力谐调。
假设2:沿薄壁t ,τ均匀分布。
剪应力公式:z z tI QS *=τ学会运用“剪应力流”概念确定截面上剪应力的方向。
三.梁的内力方程,内力图,挠度,转角☐ 遵守材料力学中对剪力 Q 和弯矩 M 的符号规定。
☐在梁的横截面上,总是假定内力方向与规定方向一致,从统一的坐标原点出发划分梁的区间,且把梁的坐标原点放在梁的左端(或右端),使后一段的弯矩方程中总包括前面各段。
☐ 均布荷载 q 、剪力Q 、弯矩M 、转角θ、挠度 y 间的关系:由: ,M dxy d EI =22 Q dx dM =, q dx dQ = 有 )()(x q dxy d EI x Q dx dM dx y d EI ===4433 设坐标原点在左端,则有:q : q dxy d EI =44, q 为常值 Q : A qx dxy d EI +=33 :M B Ax x q dxy d EI ++=2222 :θ C Bx x A x q dx dy EI +++=2326 :y D Cx x B x A x q y EI ++++=⋅2342624 其中A 、B 、C 、D 四个积分常数由边界条件确定。
例如,如图示悬臂梁:则边界条件为:430080600000l q D y l q C B M A Q l x l x x x =→=-=→=θ=→==→=====||||8624434ql x ql x q y EI +-=⋅ EI ql yx 840==截面法求内力方程: 内力是梁截面位置的函数,内力方程是分段函数,它们以集中力偶的作用点,分布的起始、终止点为分段点;1) 在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;2) 在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3) 剪力等于脱离梁段上外力的代数和。
脱离体截面以外另一端,外力的符号同剪力符号规定,其他外力与其同向则同号,反向则异号;4)弯矩等于脱离体上的外力、外力偶对截面形心截面形心的力矩的代数和。
外力矩及外力偶的符号依弯矩符号规则确定。
梁内力及内力图的解题步骤:1)建立坐标,求约束反力;2)划分内力方程区段;3)依内力方程规律写出内力方程;4)运用分布荷载q、剪力Q、弯矩M的关系作内力图;关系:()()()()()()⎪⎩⎪⎨⎧+=+====⎰⎰dcdcCDCDxdxQMMxdxqQQxQdxdMxqdxdQdxMd,22规定:①荷载的符号规定:分布荷载集度q向上为正;②坐标轴指向规定:梁左端为原点,x轴向右为正。
剪力图和弯矩图的规定:剪力图的Q轴向上为正,弯矩图的M轴向下为正。
5)作剪力图和弯矩图:①无分布荷载的梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率(﹨);Q<0,有负斜率(/);②有分布荷载的梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率(﹨),M 图下凹(︶);q>0,Q图有正斜率(/),M图上凸(︵);③ Q=0的截面,弯矩可为极值;④ 集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图的斜率也突变,弯矩图有尖角;⑤ 集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥ 在剪力为零,剪力改变符号,和集中力偶作用的截面(包括梁固定端截面),确定最大弯矩(max M );⑦ 指定截面上的剪力等于前一截面的剪力与该两截面间分布荷载图面积值的和;指定截面积上的弯矩等于前一截面的弯矩与该两截面间剪力图面积值的和。
共轭梁法求梁的转角和挠度:要领和注意事项:1) 首先根据实梁的支承情况,确定虚梁的支承情况2) 绘出实梁的弯矩图,作为虚梁的分布荷载图。