材料力学知识点总结

合集下载

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。

2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。

3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。

构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。

任何固体在外力作用下都会发生形状和尺寸的改变——即变形。

因此,这些材料统称为变形固体。

第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。

按照外力作用方式的不同,外力又可分为分布力和集中力。

2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。

已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。

首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。

因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。

由平衡条件就可以确定内力。

例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。

2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。

3、平衡求力对留下部分建立平衡方程,求解内力。

4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。

(完整版)材料力学各章重点内容总结

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

材料力学知识点总结

材料力学知识点总结
论) 单元体内的最大拉
应力
1
b
1
脆性材料
莫尔强度理 论
脆性材料
* 相当应力: r
塑性断裂
第三强度理论 (最大剪应力理
论) 单元体内的最大
剪应力
max
s
1
3
塑性材料
第四强度理论 (形状 改变比能理论)
单元体内的改变比 能
u f u fs
塑性材料
r1
1, r3
1
3 , r4
1
[ 2
1
2 2
2
2
3
3
1 2]
A= d 2
4 A D 2 (1 2 )
4
( 1) '
( 2) G
E
2(1 )
d4
d3
IP
;Wt
32
16
IP
d4 (1
4)
32
Wt
d3 (1
4)
16
剪切
(1)强度条件:
Q
A —剪切面积
A
(2)挤压条件:
Pbs
bs
bs
AJ
A j—挤压面积
弯曲
y max
y
maxБайду номын сангаас
1 M ( x) ( x) EI y '' M (x)
4
六、材料的力学性质
脆性材料 <5% 塑性材料 ≥5% 低碳钢四阶段: (1)弹性阶段
(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段
强度指标
s, b
b e
s
α
塑性指标
,

45



滑移线与轴线 45 ,剪断

材料力学知识点总结免费版

材料力学知识点总结免费版

材料力学知识点总结材料力学是研究物质内部力学行为以及材料的变形和破坏的学科。

它是工程领域中非常重要的基础学科,涉及材料的结构、性能和应用等方面。

本文将从基本概念、力学性质、变形与破坏等方面对材料力学的知识点进行总结。

1.弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的变形与恢复过程。

弹性力学主要关注材料的弹性性质,即材料在外力作用下是否能够发生恢复性变形。

弹性力学的基本理论包括胡克定律、泊松比等。

2.塑性力学塑性力学研究材料的塑性行为,即材料在外力作用下会发生永久性变形的能力。

塑性力学主要关注材料的塑性应变、塑性流动规律等。

常见的塑性变形方式包括屈服、硬化、流变等。

3.破裂力学破裂力学研究材料的破裂行为,即材料在外力作用下发生破裂的过程。

破裂力学主要关注材料的断裂韧性、断口形貌等。

常见的破裂失效方式包括断裂、断裂韧性减小、疲劳等。

4.疲劳力学疲劳力学研究材料在交变应力作用下的疲劳失效行为。

疲劳力学主要关注材料的疲劳寿命、疲劳强度等。

材料在交变应力作用下会逐渐积累微小损伤,最终导致疲劳失效。

5.断裂力学断裂力学研究材料在应力集中区域的破裂行为。

断裂力学主要关注材料的应力集中系数、应力集中因子等。

在材料中存在裂纹等缺陷时,应力集中会导致裂纹扩展,最终引发断裂失效。

6.成形加工力学成形加工力学研究材料在加工过程中的变形行为。

成形加工力学主要关注材料的流变性质、加工硬化等。

常见的成形加工方式包括挤压、拉伸、压缩等。

7.热力学力学热力学力学研究材料在高温条件下的力学行为。

热力学力学主要关注材料的热膨胀、热应力等。

材料在高温条件下,由于热膨胀不均匀等因素,会产生热应力,从而影响材料的力学性能。

通过以上对材料力学的知识点的总结,我们可以了解到材料力学对工程领域的重要性。

在工程实践中,需要根据材料的力学性质来设计和制造材料的结构,以保证其性能和安全性。

因此,掌握材料力学的基本概念和原理对于工程师和科研人员来说是至关重要的。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。

它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域具有重要的意义。

以下是对材料力学主要知识点的总结。

一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。

在拉伸或压缩时,杆件的内力称为轴力。

通过截面法可以求出轴力的大小,轴力的正负规定为拉力为正,压力为负。

胡克定律描述了应力与应变之间的线性关系,在弹性范围内,应力与应变成正比,即σ =Eε,其中σ为正应力,ε为线应变,E 为材料的弹性模量。

材料在拉伸和压缩过程中会经历不同的阶段。

低碳钢的拉伸实验是研究材料力学性能的重要手段,其拉伸曲线可分为弹性阶段、屈服阶段、强化阶段和颈缩阶段。

通过拉伸实验可以得到材料的屈服极限、强度极限等重要力学性能指标。

二、剪切与挤压剪切是指在一对大小相等、方向相反、作用线相距很近的横向外力作用下,杆件的横截面发生相对错动的变形形式。

剪切面上的内力称为剪力,其大小可以通过截面法求得。

在工程中,通常还需要考虑连接件的挤压问题。

挤压面上的应力称为挤压应力,其大小与挤压面的面积和外力有关。

三、扭转扭转是指杆件受到一对大小相等、方向相反、作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线发生相对转动的变形形式。

圆轴扭转时,横截面上的内力为扭矩。

扭矩的正负规定为右手螺旋法则,拇指指向截面外为正,指向截面内为负。

根据材料力学的理论,圆轴扭转时横截面上的切应力呈线性分布,最大切应力发生在圆周处。

四、弯曲弯曲是指杆件在垂直于轴线的外力或外力偶作用下,轴线由直线变为曲线的变形形式。

梁在弯曲时,横截面上会产生弯矩和剪力。

弯矩的正负规定为使梁下侧受拉为正,上侧受拉为负;剪力的正负规定为使截面顺时针转动为正,逆时针转动为负。

弯曲正应力和弯曲切应力是弯曲问题中的重要应力。

弯曲正应力沿截面高度呈线性分布,最大正应力发生在截面的上下边缘处。

弯曲切应力在矩形截面梁中,其分布规律较为复杂,但在一些常见的情况下,可以通过公式进行计算。

材料力学知识点总结(重、难点部分)

材料力学知识点总结(重、难点部分)

第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。

(2)理解变形固体的基本假设、条件及其意义。

(3)明确内力的概念、初步掌握用截面法计算内力的方法。

(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。

(5)了解杆件变形的受力和变形特点。

二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。

在外力作用下,构件内部两部分间的附加相互作用力称为内力。

内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。

2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。

截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。

一点处的全应力可以分解为两个应力分量。

垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。

应力单位为Pa 。

1MPa=610Pa, 1GPa=910Pa 。

应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。

3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。

利用截面法求内力的四字口诀为:切、抛、代、平。

一切:在欲求内力的截面处,假想把构件切为两部分。

二抛:抛去一部分,留下一部分作为研究对象。

至于抛去哪一部分,视计算的简便与否而定。

三代:用内力代替抛去部分队保留部分的作用力。

一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。

四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。

4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结在材料科学领域,材料力学是一个重要的分支,它研究材料的力学性质,包括材料的强度、刚度、韧性等方面。

材料力学的研究可以帮助我们理解和预测材料在不同应力条件下的行为,并为材料的设计和应用提供依据。

本文将对材料力学的一些重要知识点进行总结。

1. 弹性模量弹性模量是材料应力和应变之间的比例系数,描述材料在受力时的变形能力。

其计算公式为:E = σ / ε其中,E表示弹性模量,σ表示应力,ε表示应变。

弹性模量越大,材料的刚度越高,即材料越不容易发生形变。

常见的材料弹性模量有杨氏模量、剪切模量等。

2. 屈服强度屈服强度是材料在拉伸过程中发生塑性变形的最大应力。

当材料受到超过屈服强度的应力时,将产生塑性变形。

屈服强度是材料强度的重要指标之一,对于材料的选择和设计具有重要意义。

3. 断裂强度断裂强度是材料在拉伸过程中发生断裂的最大应力。

材料的断裂强度是其极限强度,表示材料能够承受的最大应力。

对于工程结构和材料的可靠性分析,断裂强度是一个关键参数。

4. 韧性韧性是材料抵抗断裂的能力,描述了材料在发生破坏前吸收的能量。

韧性与断裂强度密切相关,通常情况下,韧性较高的材料在承受冲击和动态载荷时表现更好。

韧性可以通过材料的断裂延伸率来评估。

5. 硬度硬度是材料抵抗划痕和压痕的能力,常用来评估材料的耐磨性和耐腐蚀性。

硬度测试可以通过洛氏硬度、巴氏硬度等方法进行测量。

硬度与材料的结晶度、晶粒尺寸、相变和合金化等因素有关。

6. 断裂韧性断裂韧性是材料在发生断裂时的能量吸收能力,同时考虑了材料的强度和韧性。

断裂韧性通常用断裂韧性指标(例如KIC)来评估,该指标描述了材料在存在裂纹的情况下抵抗断裂的能力。

7. 塑性变形塑性变形是材料在应力作用下发生永久性变形的能力。

与弹性变形不同,塑性变形发生后材料不能恢复其原始形状。

塑性变形通常发生在材料的屈服点之后。

8. 蠕变蠕变是材料在长时间暴露于高温和恒定应力下发生的塑性变形。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===n i i ni ci i c A y A y 11 ; ∑∑===ni i ni ci i c A z A z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-”τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min 2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:i ul =λ;ρρσπλE=;ba s σλ-=0, 柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w Icr n P P n ≥=,折减系数法:][σϕσ≤=A P提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是工程学科中的重要基础学科,它研究材料在外力作用下的力学性能和变形规律。

在工程实践中,对材料力学知识的掌握对于设计和制造具有重要意义的工程结构和材料具有重要的指导作用。

本文将对材料力学的一些重要知识点进行总结,以便于工程技术人员更好地掌握这一学科的核心内容。

1.应力和应变。

在材料力学中,应力和应变是两个最基本的概念。

应力是单位面积上的力,它描述了材料受力情况的强度。

而应变则是材料在受力作用下的形变程度,是长度、面积或体积的变化与原始长度、面积或体积的比值。

应力和应变是描述材料受力行为的重要物理量,对于材料的选取和设计具有重要的指导意义。

2.弹性力学。

弹性力学是研究材料在外力作用下的弹性变形规律的学科。

在弹性力学中,材料在受到外力作用后会发生弹性变形,而当外力消失时,材料会恢复到原始状态。

弹性力学研究材料的弹性模量、泊松比等重要参数,这些参数对于材料的选取和设计具有重要的指导作用。

3.塑性力学。

与弹性力学相对应的是塑性力学,它研究材料在受到外力作用后发生的塑性变形规律。

塑性变形是指材料在受到外力作用后发生的不可逆变形,这种变形会导致材料的形状和尺寸发生永久性的改变。

塑性力学研究材料的屈服强度、抗拉强度等重要参数,这些参数对于材料的加工和成形具有重要的指导作用。

4.断裂力学。

断裂力学是研究材料在受到外力作用下发生断裂的规律的学科。

材料的断裂是由于外力作用超过了其承受能力而导致的,断裂力学研究材料的断裂韧性、断裂强度等重要参数,这些参数对于材料的安全设计和使用具有重要的指导作用。

5.疲劳力学。

疲劳力学是研究材料在受到交变载荷作用下发生疲劳破坏的规律的学科。

在实际工程中,材料往往要经受交变载荷的作用,如果这种载荷作用时间足够长,就会导致材料的疲劳破坏。

疲劳力学研究材料的疲劳寿命、疲劳极限等重要参数,这些参数对于材料的使用寿命和安全具有重要的指导作用。

总之,材料力学是工程学科中的重要基础学科,它研究材料在外力作用下的力学性能和变形规律。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性等问题的一门学科。

它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。

以下是对材料力学主要知识点的总结。

一、拉伸与压缩在拉伸和压缩的情况下,我们主要关注杆件的内力、应力和变形。

内力是指杆件在外力作用下,其内部各部分之间相互作用的力。

通过截面法可以求出内力。

应力则是单位面积上的内力。

正应力计算公式为σ = N / A ,其中 N 为轴力,A 为横截面面积。

对于拉伸和压缩变形,其变形量Δl 可以通过公式Δl = Nl / EA 计算,其中 E 为材料的弹性模量,l 为杆件长度。

二、剪切与挤压剪切是指在一对相距很近、大小相同、指向相反的横向外力作用下,杆件的横截面发生相对错动的变形。

剪切应力τ = Q / A ,其中 Q 为剪力,A 为剪切面面积。

挤压是连接件在接触面上相互压紧的现象,挤压应力σbs = Fbs /Abs ,Fbs 为挤压力,Abs 为挤压面面积。

三、扭转当杆件受到绕轴线的外力偶作用时,会发生扭转。

扭矩 T 可以通过外力偶矩计算得到。

圆轴扭转时的切应力分布规律是沿半径线性分布,最大切应力在圆轴表面。

扭转角φ 可以通过公式φ = Tl / GIp 计算,G 为材料的切变模量,Ip 为极惯性矩。

四、弯曲弯曲是指杆件在垂直于轴线的横向力或作用于轴线平面内的力偶作用下,轴线由直线变为曲线的变形。

弯矩是弯曲内力的一种,通过截面法可以求出。

弯曲应力的分布与截面形状有关,对于矩形截面,最大正应力在截面边缘。

挠度和转角是弯曲变形的两个重要参数,可以通过积分等方法求解。

五、应力状态与强度理论一点的应力状态可以用应力单元体来表示。

常用的强度理论有第一强度理论(最大拉应力理论)、第二强度理论(最大伸长线应变理论)、第三强度理论(最大切应力理论)和第四强度理论(形状改变比能理论)。

强度理论用于判断材料在复杂应力状态下是否发生破坏。

材料力学重点总结材料力学重点

材料力学重点总结材料力学重点

材料力学阶段总结一. 材料力学(de)一些基本概念1.材料力学(de)任务:解决安全可靠与经济适用(de)矛盾. 研究对象:杆件强度:抵抗破坏(de)能力 刚度:抵抗变形(de)能力 稳定性:细长压杆不失稳.2. 材料力学中(de)物性假设连续性:物体内部(de)各物理量可用连续函数表示. 均匀性:构件内各处(de)力学性能相同. 各向同性:物体内各方向力学性能相同.3. 材力与理力(de)关系, 内力、应力、位移、变形、应变(de)概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体.内力:附加内力.应指明作用位置、作用截面、作用方向、和符号规定.应力:正应力、剪应力、一点处(de)应力.应了解作用截面、作用位置(点)、作用方向、和符号规定.正应力⎩⎨⎧拉应力压应力应变:反映杆件(de)变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲.4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内. 5. 材料(de)力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s p σσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段. 拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=12塑性材料与脆性材料(de)比较:6. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1(de)系数,使用材料时确定安全性与经济性矛盾(de)关键.过小,使构件安全性下降;过大,浪费材料. 许用应力:极限应力除以安全系数. 塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学(de)研究方法1) 所用材料(de)力学性能:通过实验获得.2)对构件(de)力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用(de)未来状态.3)截面法:将内力转化成“外力”.运用力学原理分析计算.8.材料力学中(de)平面假设寻找应力(de)分布规律,通过对变形实验(de)观察、分析、推论确定理论根据.1) 拉(压)杆(de)平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等. 2) 圆轴扭转(de)平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度.横截面上正应力为零. 3) 纯弯曲梁(de)平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁(de)纵向纤维;正应力成线性分布规律.9 小变形和叠加原理 小变形:① 梁绕曲线(de)近似微分方程 ② 杆件变形前(de)平衡③切线位移近似表示曲线④力(de)独立作用原理叠加原理:①叠加法求内力②叠加法求变形.10 材料力学中引入和使用(de)(de)工程名称及其意义(概念)1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载.2) 单元体,应力单元体,主应力单元体.3) 名义剪应力,名义挤压力,单剪切,双剪切.4) 自由扭转,约束扭转,抗扭截面模量,剪力流.5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量.6) 相当应力,广义虎克定律,应力圆,极限应力圆.7) 欧拉临界力,稳定性,压杆稳定性.8)动荷载,交变应力,疲劳破坏.二. 杆件四种基本变形(de)公式及应用1. 四种基本变形:2. 四种基本变形(de)刚度,都可以写成:刚度 = 材料(de)物理常数×截面(de)几何性质 1)物理常数:某种变形引起(de)正应力:抗拉(压)弹性模量E ; 某种变形引起(de)剪应力:抗剪(扭)弹性模量G . 2)截面几何性质:拉压和剪切:变形是截面(de)平移: 取截面面积 A ; 扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩ρI ;梁弯曲:各截面绕轴转动一角度:取对轴(de)惯性矩Z I . 3. 四种基本变形应力公式都可写成:应力=截面几何性质内力对扭转(de)最大应力:截面几何性质取抗扭截面模量maxρ=ρI W p对弯曲(de)最大应力:截面几何性质取抗弯截面模量max y I W ZZ =4. 四种基本变形(de)变形公式,都可写成:变形=刚度长度内力⨯因剪切变形为实用计算方法,不考虑计算变形.弯曲变形(de)曲率221dxyd x ±=ρ)(,一段长为 l (de)纯弯曲梁有: z x EI l M x l=ρ=θ)(补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆(de)轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲(de)组合变形问题;杆(de)压缩问题,要注意它(de)长细比λ(柔度).这里(de)简单压缩是指“小柔度压缩问题”. 2、关于“剪切”实用性(de)强度计算法,作了剪应力在受剪截面上均匀分布(de)假设.要注意有不同(de)受剪截面: a.单面受剪:受剪面积是铆钉杆(de)横截面积; b.双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积.c.圆柱面受剪:受剪面积以冲头直径d 为直径,冲板厚度 t 为高(de)圆柱面面积. 3.关于扭转表中公式只实用于圆形截面(de)直杆和空心圆轴.等直圆杆扭转(de)应力和变形计算公式可近似分析螺旋弹簧(de)应力和变形问题是应用杆件基本变形理论解决实际问题(de)很好例子. 4.关于纯弯曲纯弯曲,在梁某段剪力 Q=0 时才发生,平面假设成立.横力弯曲(剪切弯曲)可以视作剪切与纯弯曲(de)组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出(de)正应力公式可以在剪切弯曲中使用.5.关于横力弯曲时梁截面上剪应力(de)计算问题为计算剪应力,作为初等理论(de)材料力学方法作了一些巧妙(de)假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1) 无论作用于梁上(de)是集中力还是分布力,在梁(de)宽度上都是均匀分布(de).故剪应力在宽度上不变,方向与荷载(剪力)平行.2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有Q bdh h n=τ⎰)(,因 )(h τ=τ (de)函数形式未知,无法积分.但由剪应力互等定理,考虑微梁段左、右内力(de)平衡,可以得出:bI QS z Z *=τ剪应力在横截面上沿高度(de)变化规律就体现在静矩*z S 上, *z S 总是正(de).剪应力公式及其假设: a.矩形截面假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q(de)方向一致; 假设2:横截面上同一层高上(de)剪应力相等. 剪应力公式:b I y QS y z z )()(*=τ ,⎥⎦⎤⎢⎣⎡-=22*22y y b y S Z)()( 平均ττ2323max=⋅=bh Q b. 非矩形截面积假设1: 同一层上(de)剪应力τ作用线通过这层两端边界(de)切线交点,剪应力(de)方向与剪力(de)方向.假设2:同一层上(de)剪应力在剪力Q 方向上(de)分量y τ相等.剪应力公式:z z y I y b y QS y )()()(*=τ2322*)(32)(y R y S z -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-ℜ•=222134)(R y Q y y πτ 平均ττ34max =c.薄壁截面假设1:剪应力τ与边界平行,与剪应力谐调. 假设2:沿薄壁t,τ均匀分布. 剪应力公式:zz tI QS *=τ学会运用“剪应力流”概念确定截面上剪应力(de)方向. 三.梁(de)内力方程,内力图,挠度,转角遵守材料力学中对剪力 Q 和弯矩 M (de)符号规定.在梁(de)横截面上,总是假定内力方向与规定方向一致,从统一(de)坐标原点出发划分梁(de)区间,且把梁(de)坐标原点放在梁(de)左端(或右端),使后一段(de)弯矩方程中总包括前面各段.均布荷载 q 、剪力Q 、弯矩M 、转角θ、挠度 y 间(de)关系:由: ,M dxyd EI =22 Q dx dM =, q dx dQ = 有 )()(x q dxyd EI x Q dx dMdxy d EI ===4433设坐标原点在左端,则有:q: q dxyd EI =44, q 为常值Q : A qx dxyd EI +=33:M B Ax x q dx y d EI ++=2222 :θC Bx x A x qdx dy EI +++=2326:y D Cx x B x A x q y EI ++++=⋅2342624 其中A 、B 、C 、D 四个积分常数由边界条件确定. 例如,如图示悬臂梁:则边界条件为:430080600000lq D y lq C B M A Q l x l x x x =→=-=→=θ=→==→=====|||| 8624434ql x ql x q y EI +-=⋅EIql yx 84==截面法求内力方程:内力是梁截面位置(de)函数,内力方程是分段函数,它们以集中力偶(de)作用点,分布(de)起始、终止点为分段点;1)在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;2)在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3)剪力等于脱离梁段上外力(de)代数和.脱离体截面以外另一端,外力(de)符号同剪力符号规定,其他外力与其同向则同号,反向则异号;4)弯矩等于脱离体上(de)外力、外力偶对截面形心截面形心(de)力矩(de)代数和.外力矩及外力偶(de)符号依弯矩符号规则确定.梁内力及内力图(de)解题步骤:1)建立坐标,求约束反力;2)划分内力方程区段;3)依内力方程规律写出内力方程;4)运用分布荷载q、剪力Q、弯矩M(de)关系作内力图;关系:()()()()()()⎪⎩⎪⎨⎧+=+====⎰⎰dcdcCDCDxdxQMMxdxqQQxQdxdMxqdxdQdxMd,22规定:①荷载(de)符号规定:分布荷载集度q向上为正;②坐标轴指向规定:梁左端为原点,x轴向右为正.剪力图和弯矩图(de)规定:剪力图(de) Q轴向上为正,弯矩图(de) M轴向下为正.5)作剪力图和弯矩图:①无分布荷载(de)梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率(﹨);Q<0,有负斜率(/);②有分布荷载(de)梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率(﹨),M 图下凹(︶);q>0,Q图有正斜率(/),M图上凸(︵);③ Q=0(de)截面,弯矩可为极值;④集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图(de)斜率也突变,弯矩图有尖角;⑤集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥在剪力为零,剪力改变符号,和集中力偶作用(de)截面(包括梁固定端截面),确定最大弯矩(maxM);⑦指定截面上(de)剪力等于前一截面(de)剪力与该两截面间分布荷载图面积值(de)和;指定截面积上(de)弯矩等于前一截面(de)弯矩与该两截面间剪力图面积值(de)和.共轭梁法求梁(de)转角和挠度:要领和注意事项:1)首先根据实梁(de)支承情况,确定虚梁(de)支承情况2)绘出实梁(de)弯矩图,作为虚梁(de)分布荷载图.特别注意:实梁(de)弯矩为正时,虚分布荷载方向向上;反之,则向下.3)虚分布荷载()x q (de)单位与实梁弯矩()xM单位相同()mKN⋅若为,虚剪力(de)单位则为2mKN⋅,虚弯矩(de)单位是3mKN⋅4)由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等.计算时需要这些图形(de)面积和形心位置.叠加法求梁(de)转角和挠度:各荷载对梁(de)变形(de)影响是独立(de).当梁同时受n 种荷载作用时,任一截面(de)转角和挠度可根据线性关系(de)叠加原理,等于荷载单独作用时该截面(de)转角或挠度(de)代数和.四. 应力状态分析 1.单向拉伸和压缩应力状态划分为单向、二向和三向应力状态.是根据一点(de)三个主应力(de)情况而确定(de). 如:x σ=σ1,032==σσ 单向拉伸有:EXX σε=,x z Y v εεε-==主应力只有x σ=σ1,但就应变,三个方向都存在.若沿 α 和 2π+α 取出单元体,则在四个截面上(de)应力为: ⎪⎪⎩⎪⎪⎨⎧ασ-=τασ=σασ=τασ=σπ+απ+ααα22222222Sin Sin Sin Cos x x x x ,, 看起来似乎为二向应力状态,其实是单向应力状态.2.二向应力状态. 有三种具体情况需注意1)已知两个主应力(de)大小和方向,求指定截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ασ-σ=τασ-σ+σ+σ=σαα22222212121Sin Cos由任意互相垂直截面上(de)应力,求另一任意斜截面上(de)应力⎪⎪⎩⎪⎪⎨⎧ατ+ασ-σ=τατ-ασ-σ+σ+σ=σαα2222222Cos Sin Sin Cos x y xx yx Y x由任意互相垂直截面上(de)应力,求这一点(de)主应力和主方向⎪⎪⎩⎪⎪⎨⎧σ-στ-=ατ-σ-σ±σ+σ=⎭⎬⎫σσyx xxy x y x tg 222202221)((角度 α 和 0α 均以逆时针转动为正)2) 二向应力状态(de)应力圆 应力圆在分析中(de)应用:a) 应力圆上(de)点与单元体(de)截面及其上应力一一对应;b) 应力圆直径两端所在(de)点对应单元体(de)两个相互垂直(de)面; c)应力圆上(de)两点所夹圆心角(锐角)是应力单元对应截面外法线间夹角(de)两倍2;d) 应力圆与正应力轴(de)两交点对应单元体两主应力;e)应力圆中过圆心且平行剪应力轴而交于应力圆(de)两点为最大、最小剪应力及其作用面.极点法:确定主应力及最大(小)剪应力(de)方向和作用面方向.3) 三方向应力状态,三向应力圆,一点(de)最大应力(最大正应力、最大剪应力)广义虎克定律:弹性体(de)一个特点是,当它在某一方向受拉时,与它垂直(de)另外方向就会收缩.反之,沿一个方向缩短,另外两个方向就拉长. 主轴方向:[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=ε213313223211111v E v E v E )( 或()()()()[]()()()()[]()()()()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧ε+ε+ε+-+=σε+ε+ε--+=σε+ε+ε--+=σ213313223211121112111211v v v V E v v v v E v v v v E非主轴方向:()[]()[]()[]⎪⎪⎪⎩⎪⎪⎪⎨⎧σ+σ-σ=εσ+σ-σ=εσ+σ-σ=εy x z z x z y y z y x x v E v E v E 111体积应变:()32132121σσσεεε++-=++Ev五. 强度理论1.计算公式.强度理论可以写成如下统一形式:[]σσ≤r其中:r σ:相当应力,由三个主应力根据各强度理论按一定形式组合而成.[]σ:许用应力,[]nσσ=,0σ:单向拉伸时(de)极限应力,n :安全系数.1)最大拉应力理论(第一强度理论)11σ=σr , 一般:[]nbσσ=2) 最大伸长线应变理论(第二强度理论)()3212σσσσ+-=v r ,一般:[]nbσσ=3) 最大剪应力理论(第三强度理论)313σσσ+=r , 一般:[]nsσσ=4) 形状改变比能理论(第四强度理论)()()()[]213232221421σσσσσσσ-+-+-=r , 一般:[]nsσσ=5) 莫尔强度理论[][]31σσσ-σ=σ-+M , []n+=σσ, 0+σ:材料抗拉极限应力强度理论(de)选用:1)一般,脆性材料应采用第一和第二强度理论;塑性材料应采用第三和第四强度理论.2)对于抗拉和抗压强度不同(de)材料,可采用最大拉应力理论3)三向拉应力接近相等时,宜采用最大拉应力理论;4)三向压应力接近相等时,宜应用第三或第四强度理论.六.分析组合形变(de)要领材料服从虎克定律且杆件形变很小,则各基本形变在杆件内引起(de)应力和形变可以进行叠加,即叠加原理或力作用(de)独立性原理.分析计算组合变形问题(de)要领是分与合:分:即将同时作用(de)几组荷载或几种形变分解成若干种基本荷载与基本形变,分别计算应力和位移.合:即将各基本变形引起(de)应力和位移叠加,一般是几何和.分与合过程中发现(de)概念性或规律性(de)东西要概念清楚、牢记.斜弯曲:平面弯曲时,梁(de)挠曲线是荷载平面内(de)一条曲线,故称平面弯曲;斜弯曲时,梁(de)挠曲线不在荷载平面内,所以称斜弯曲.斜弯曲时几个角度间(de)关系要清楚:ϕ力作用角(力作用平面):α斜弯曲中性轴(de)倾角:斜弯曲挠曲线平面(de)倾角:θϕ=αtg I I tg y zϕ=θtg I I tg yzθ=α∴即:挠度方向垂直于中性轴一般,α≠ϕθ≠ϕ或即:挠曲线平面与荷载平面不重合.强度刚度计算公式:[]σ≤⎪⎪⎭⎫ ⎝⎛ϕ+ϕ=σsin cos max max c z zW W W M 22z y f f f +=ϕ==cos zz y y EI pl EI l P f 3333ϕ==sin yy z z EI pl EI l P f 3333拉(压)与弯曲(de)组合:拉(压)与弯曲组合,中性轴一般不再通过形心,截面上有拉应力和压应力之区别偏心拉压问题,有时要求截面上下只有一种应力,这时载荷(de)作用中心与截面形心不能差得太远,而只能作用在一个较小(de)范围内这个范围称为截面(de)核心.强度计算公式及截面核心(de)求解:[]σ≤±=σzW M A N max minmax012020=++yp zp iz z iy y⎪⎪⎩⎪⎪⎨⎧-=-=pyzpz y z i a y i a 22扭转与弯曲(de)组合形变:机械工程中常见(de)一种杆件组合形变,故常为圆轴. 分析步骤:根据杆件(de)受力情况分析出扭矩和弯矩和剪力.找出危险截面:即扭矩和弯矩均较大(de)截面.由扭转和弯曲形变(de)特点,危险点在轴(de)表面.剪力产生(de)剪应力一般相对较小而且在中性轴上(弯曲正应力为零).一般可不考虑剪力(de)作用.弯扭组合一般为复杂应力状态,应采用合适(de)强度理论作强度分析,强度计算公式:[]σ≤τ+σ=σ2234r[]σ≤⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=σ2234P T r W M A P[]σ≤τ+σ=σ2243r[]σ≤⎪⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛=σ2243PT r W M A P 扭转与拉压(de)组合:杆件内最大正应力与最大剪应力一般不在横截面或纵截面上,应选用适当强度理论作强度分析.强度计算公式[]σ≤+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=τ+σ=σ22222231244T T r M M WW M W M[]σ≤+=τ+σ=σ2222475013T r M M W.七.超静定问题:总结:分析步骤关键点:变形协调条件—力力—简单超静定梁问题拉压压杆的超静定问⎪⎭⎪⎬⎫求解简单超静定梁主要有三个步骤:1) 解得超静定梁(de)多余约束而以其反力代替;2) 求解原多余约束处由已知荷载及“多余”约束反力产生(de)变形; 3)由原多余支座处找出变形协调条件,重立补充方程.能量法求超静定问题:⎰⨯=ldx U 022刚度内力⎰⎰⎰⎰A +I M +EI M +EA N =ρτl l l ldx G kQ dx G dx dx U 002202022222卡氏第一定理:应变能对某作用力作用点上该力作用方向上(de)位移(de)偏导数等于该作用力,即:i iP U=δ∂∂注1:卡氏第一定理也适用于非线性弹性体; 注2:应变能必须用诸荷载作用点(de)位移来表示.卡氏第二定理:线弹性系统(de)应变能对某集中荷载(de)偏导数等于该荷载作用点上沿该荷载方向上(de)位移,即i iP Uδ=∂∂*若系统为线性体,则:U U=*注1: 卡氏第二定理仅适用于线弹性系统;卡氏第二定理(de)应变能须用独立荷载表示.注2: 用卡氏定理计算,若得正号,表示位移与荷载同向;若得负号,表示位移与荷载反向.计算(de)正负与坐标系无关.八.压杆稳定性(de)主要概念压杆失稳破坏时横截面上(de)正应力小于屈服极限(或强度极限),甚至小于比例极限.即失稳破坏与强度不足(de)破坏是两种性质完全不同(de)破坏.临界力是压杆固有特性,与材料(de)物性有关(主要是E),主要与压杆截面(de)形状和尺寸,杆(de)长度,杆(de)支承情况密切相关.计算临界力要注意两个主惯性平面内惯矩I和长度系数μ(de)对应.压杆(de)长细比或柔度表达了欧拉公式(de)运用范围.细长杆(大柔度杆)运用欧拉公式判定杆(de)稳定性,短压杆(小柔度杆)只发生强度破坏而一般不会发生失稳破坏;中长杆(中柔度杆)既有强度破坏又有较明显失稳现象,通常根据实验数据处理这类问题,直线经验公式是最简单实用(de)一种.折剪系数ψ 是柔度 λ (de)函数,这是因为柔度不同,临界应力也不同.且柔度不同,安全系数也不同.压杆稳定性(de)计算公式:欧拉公式及ψ系数法(略)九. 动荷载、交变应力及疲劳强度 1.动荷载分析(de)基本原理和基本方法:1)动静法,其依据是达朗贝尔原理.这个方法把动荷(de)问题转化为静荷(de)问题.2) 能量分析法,其依据是能量守恒原理.这个方法为分析复杂(de)冲击问题提供了简略(de)计算手段.在运用此法分析计算实际工程问题时应注意回到其基本假设逐项进行考察与分析,否则有时将得出不合理(de)结果.构件作等加速运动或等角速转动时(de)动载荷系d k 为:stdd k σσ=这个式子是动荷系数(de)定义式,它给出了 d k (de)内涵和外延. d k (de)计算式,则要根据构件(de)具体运动方式,经分析推导而定.构件受冲击时(de)冲击动荷系数 d k 为:stdst d d k ∆∆σσ==这个式子是冲击动荷系数(de)定义式,其计算式要根据具体(de)冲击形式经分析推导而定.两个d k 中包含丰富(de)内容.它们不仅能给出动(de)量与静(de)量之间(de)相互关系,而且包含了影响动载荷和动应力(de)主要因素,从而为寻求降低动载荷对构件(de)不利影响(de)方法提供了思路和依据.2.交变应力与疲劳失效基本概念:应力循环,循环周期,最大、最小循环应力,循环特征(应力比),持久极限,条件持久极限,应力集中系数,构件(de)尺寸系数,表面质量系数,持久极限曲线等.应力寿命曲线:表示一定循环特征下标准试件(de)疲劳强度与疲劳寿命之间关系(de)曲线,称应力寿命曲线,也称S —N 曲线:持久极限曲线:构件(de)工作安全系数:m a r k n σψ+σβεσ=σσ=σσσ-σ1max构件(de)疲劳强度条件为:nn ≥σ十.平面图形(de)几何性质:意义总结:计算公式、物理心主惯矩及其计算公式惯性主轴、主惯矩、形惯矩、惯积的转轴公式公式惯矩、惯积的平行移轴性积及其求解惯性矩、极惯性矩、惯静矩、形心及其求解⎪⎪⎪⎭⎪⎪⎪⎬⎫1.静矩:平面图形面积对某坐标轴(de)一次矩.定义式:⎰=Ay zdA S ,⎰=Az ydA S量纲为长度(de)三次方.2. 惯性矩:平面图形对某坐标轴(de)二次矩.⎰=Ay dA z I 2,⎰=Az dA y I 2量纲为长度(de)四次方,恒为正.相应定义:惯性半径AI i y y =,AI i zz=为图形对y 轴和对 z轴(de)惯性半径.3. 极惯性矩:⎰=Ap dA I 2ρ因为222zy +=ρ所以极惯性矩与(轴)惯性矩有关系:()z y Ap I I dA z y I +=+=⎰224. 惯性积:⎰=Ayz yzdA I定义为图形对一对正交轴y 、z轴(de)惯性积.量纲是长度(de)四次方. yz I 可能为正,为负或为零. 5. 平行移轴公式⎪⎩⎪⎨⎧+=+=+=abA II A b I I A a I I C C CC z y yzz z y y 226. 转轴公式:αα2sin 2cos 22211yz zy zy Ay I I I I I dA z I ---+==⎰αα2sin 2cos 221yz zy zy z I I I I I I +--+=αα2cos 2sin 211yz zy z y I I I I +-=7. 主惯性矩(de)计算公式:()2242120yzz y z y y I I I I I I +-++=()2242120yzz y zy z I I II I I +--+=截面图形(de)几何性质都是对确定(de)坐标系而言(de),通过任意一点都有主轴.在强度、刚度和稳定性研究中均要进行形心主惯性矩(de)计算.。

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域有着至关重要的作用。

以下是对材料力学主要知识点的总结。

一、基本概念1、外力:作用在物体上的力,包括载荷和约束力。

2、内力:物体内部各部分之间相互作用的力。

3、应力:单位面积上的内力。

4、应变:物体在受力时发生的相对变形。

二、轴向拉伸与压缩1、轴力:杆件沿轴线方向的内力。

轴力的计算通过截面法,即假想地将杆件沿某一截面切开,取其中一部分为研究对象,根据平衡条件求出截面处的内力。

2、拉压杆的应力正应力计算公式为:σ = N / A,其中 N 为轴力,A 为横截面面积。

应力在横截面上均匀分布。

3、拉压杆的变形纵向变形:Δl = Nl / EA,其中 E 为弹性模量,l 为杆件长度。

横向变形:Δd =μΔl,μ 为泊松比。

三、剪切与挤压1、剪切:在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。

2、剪切力:平行于横截面的内力。

3、切应力:τ = Q / A,Q 为剪切力,A 为剪切面面积。

4、挤压:连接件在接触面上相互压紧的现象。

5、挤压应力:σbs = Pbs / Abs,Pbs 为挤压力,Abs 为挤压面面积。

四、扭转1、扭矩:杆件受扭时,横截面上的内力偶矩。

扭矩的计算同样使用截面法。

2、圆轴扭转时的应力横截面上的切应力沿半径线性分布,最大切应力在圆周处,计算公式为:τmax = T / Wp,T 为扭矩,Wp 为抗扭截面系数。

3、圆轴扭转时的变形扭转角:φ = TL / GIp,G 为剪切模量,Ip 为极惯性矩。

五、弯曲内力1、平面弯曲:梁在垂直于轴线的平面内发生弯曲变形,且外力和外力偶都作用在该平面内。

2、剪力和弯矩剪力:梁横截面上切向分布内力的合力。

弯矩:梁横截面上法向分布内力的合力偶矩。

材料力学重点总结

材料力学重点总结

材料力学重点总结材料力学是研究材料在外力作用下的力学性能及其相互关系的学科。

它是工程力学的重要分支之一,对于了解材料的力学特性以及工程结构的设计和优化具有重要意义。

以下是材料力学的重点总结。

一、材料的应力和应变1.应力:指材料内部的内力,由外力作用引起,分为正应力和剪应力。

正应力指垂直于截面的力与截面面积的比值,剪应力指与截面平行的截面积的比值。

2.应变:指材料在外力作用下的变形程度,分为线性弹性应变和非线性塑性应变。

线性弹性应变指应力与应变呈线性关系,非线性塑性应变指应力与应变不呈线性关系。

3.弹性模量:指材料在弹性阶段内应力与应变之间的比值,用于衡量材料的刚度。

二、材料的弹性力学行为1.长度-应力关系:根据胡克定律,应力与应变成正比,比例系数为弹性模量。

2.应力-应变关系:应力与应变呈线性关系,斜率为弹性模量。

当材料处于线性弹性阶段时,可以使用胡克定律进行分析和计算。

3.杨氏模量:指材料在线性弹性阶段内应力与应变沿任意方向之比,衡量材料的各向同性。

三、材料的塑性力学行为1.屈服强度:指材料开始发生塑性变形的临界应力值。

在应力达到屈服强度后,材料开始发生塑性应变。

2.延伸率和断裂应变:延伸率是材料拉伸至破坏前的变形倍数,断裂应变是材料发生破坏时的应变。

3.曲线弹性模量:由于塑性变形引起曲线弹性阶段的模量发生变化,称为曲线弹性模量。

四、材料的断裂力学行为1.断裂韧性:指材料在断裂前吸收的能量。

韧性高的材料能够承受较大的变形和吸能。

2.断裂强度:指材料在断裂前所能承受的最大应力值。

断裂强度高的材料具有较好的抗拉强度。

3.断裂模式:材料断裂具有不同的模式,如拉断、剪断、脱层、断裂面韧裂等。

五、材料的疲劳力学行为1.疲劳强度:指材料在循环载荷下发生疲劳破坏的临界应力水平。

疲劳强度与材料的强度和韧性都有关。

2.疲劳寿命:指材料在特定应力水平下能够循环载荷的次数。

疲劳寿命与材料的疲劳强度和循环载荷有关。

3.疲劳断口特征:材料在发生疲劳破坏时产生的断裂面特征,如河床样貌、斜粒子形貌等。

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

(完整版)材料力学必备知识点

(完整版)材料力学必备知识点

材料力学必备知识点1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。

2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。

3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。

4、 低碳钢:含碳量在0.3%以下的碳素钢。

5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。

>5%的材料称为塑性材料: <5%的材料称为脆性材料8、 失效:断裂和出现塑性变形统称为失效9、 应变能:弹性固体在外力作用下,因变形而储存的能量10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。

12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力13、三种形式的梁:简支梁、外伸梁、悬臂梁14、组合变形:由两种或两种以上基本变形组合的变形15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。

16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。

材料力学知识点总结

材料力学知识点总结

p
F A
F cos cos A
将应力 pα 分解为两个分量:
沿截面法线方向的正应力 p cos cos2
2.符号的规定 (1)α 角
沿截面切线方向的切应力
p
sin
2
sin2
(2)正应力: 拉伸为正 压缩为负
(3)切应力 对研究对象任一点取矩
三、强度条件 杆内的最大工作应力不超过材料的许用应力
A ,断口处的最小横截面积为 A1 .
l1 l 100%
伸长率
l
A A1 100%
断面收缩率
A
≧5%的材料,称作塑性材料
<5%的材料,称作脆性材料
§2-5 拉压杆的变形计算
*补充*
一、 纵向变形
1. 纵向变形 Δl l1 l
Δl 2. 纵向应变 l
姚小宝
二、横向变形
1. 横向变形 b b1 b
§1-3 力、应力、应变和位移的基本概念
一、 外力
体积力
1. 按作用方式分
表面力
集中力
分布力 静载荷 2. 按随时间变化分
交变载荷 动载荷
冲击载荷 二、 内力
1. 定义: 指由外力作用所引起的、物体内相邻部分之间相互作用力(附加内力)。 2. 内力的求法 —— 截面法 步骤:
① 截开: 在所求内力的截面处,假想地用截面将杆件一分为二. ②代替: 任取一部分,其弃去部分对留下部分的作用,用作用在截 面上相应的内力(力或力偶)代替. ③平衡: 对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面 上的未知内力(此时截开面上的内力对所留部分而言是外力).
§1-2 变形固体的基本假设 一、连续性假设: 物质密实地充满物体所在空间,毫无空隙。 二、均匀性假设: 物体内,各处的力学性质完全相同。 三、各向同性假设: 组成物体的材料沿各方向的力学性质完全相同。 四、小变形假设: 材料力学所研究的构件在载荷作用下的变形与原始尺寸

材料力学知识点总结

材料力学知识点总结

材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。

以下是对材料力学主要知识点的总结。

一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。

在拉伸或压缩时,杆件横截面上的内力称为轴力。

轴力的正负规定为:拉伸时轴力为正,压缩时轴力为负。

通过实验可以得到材料在拉伸和压缩时的应力应变曲线。

低碳钢的拉伸应力应变曲线具有明显的四个阶段:弹性阶段、屈服阶段、强化阶段和局部变形阶段。

弹性阶段内应力与应变成正比,遵循胡克定律;屈服阶段材料出现明显的塑性变形;强化阶段材料抵抗变形的能力增强;局部变形阶段试件在某一局部区域产生显著的收缩,直至断裂。

对于拉伸和压缩杆件,其横截面上的正应力计算公式为:$\sigma =\frac{N}{A}$,其中$N$为轴力,$A$为横截面面积。

而纵向变形量$\Delta L$可以通过公式$\Delta L =\frac{NL}{EA}$计算,其中$E$为材料的弹性模量,$L$为杆件长度。

二、剪切与挤压剪切是指在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。

在剪切面上的内力称为剪力。

剪切面上的平均切应力计算公式为:$\tau =\frac{Q}{A}$,其中$Q$为剪力,$A$为剪切面面积。

挤压是在连接件与被连接件之间,在接触面上相互压紧而产生的局部受压现象。

挤压面上的应力称为挤压应力,其计算公式为:$\sigma_{jy} =\frac{F_{jy}}{A_{jy}}$,其中$F_{jy}$为挤压力,$A_{jy}$为挤压面面积。

三、扭转扭转是指杆件受到一对大小相等、方向相反且作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线产生相对转动。

圆轴扭转时,横截面上的内力是扭矩。

扭矩的正负规定:右手螺旋法则,拇指指向截面外法线方向为正,反之为负。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学总结一、基本变形轴向拉压扭转弯曲外力外力合力作用线沿杆轴线力偶作用在垂直于轴的平面内外力作用线垂直杆轴,或外力偶作用在杆轴平面内力轴力:N规定:拉为“+”压为“-”扭转:T规定:矩矢离开截面为“+”反之为“-”剪力:Q规定:左上右下为“+”弯矩:M规定:左顺右逆为“+”微分关系:qdxdQ;QdxdM应力几何方面变形现象:平面假设:应变规律:dxld常数变形现象:平面假设:应变规律:dxd弯曲正应力弯曲剪应力变形现象:平面假设:应变规律:y应力公式ANPITtWTmaxZIM yZWMmaxbIQSbIQSzzzmaxmax*应力分布应用条件等直杆外力合力作用线沿杆轴线圆轴应力在比例极限内平面弯曲应力在比例极限内应力-应变关系E(单向应力状态)G(纯剪应力状态)强度条件nANumaxmax塑材:su脆材:bumaxmaxtWT弯曲正应力1.ctmax2.ctccmactt max弯曲剪应力bISQzmaxmaxmax轴向拉压扭转弯曲刚度条件max180PGIT注意:单位统一yy maxmax变形EAN dxl d ;EANL LEA —抗拉压刚度ZGIT dx d PGITL GI p —抗扭刚度EIx M x )()(1EIx M y)(''EI —抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩形A=bh 6;1223bh W bhI ZZ实心圆A=42d 16;3234dW dI tP32;6434dW dI ZZ空心圆)1(422DA)1(16)1(324344dW d I tP)1(6444dI Z )1(3243dW Z其它公式(1)'(2))1(2E G剪切(1)强度条件:AQ A —剪切面积(2)挤压条件:bsJbsbsA P A j —挤压面积矩形:A Q23max圆形:A Q 34max环形:AQ 2maxmax均发生在中性轴上二、还有:(1)外力偶矩:)(9549m N n N m N —千瓦;n —转/分(2)薄壁圆管扭转剪应力:tr T 22(3)矩形截面杆扭转剪应力:hb G T hb T32max;三、截面几何性质(1)平行移轴公式:;2A a I I ZCZ abAI I cc Y Z YZ(2)组合截面:1.形心:ni ini ci i cA y A y 11;ni ini cii cA z A z 112.静矩:ci i Zy A S ;cii y z A S 3. 惯性矩:iZ ZI I )(;iy yI I )(四、应力分析:(1)二向应力状态(解析法、图解法)a .解析法:b.应力圆::拉为“+”,压为“-”:使单元体顺时针转动为“+”:从x 轴逆时针转到截面的法线为“+”2sin 2cos 22xyx y x 2cos 2sin 2xyxyxxtg 2222minmax22xy x y xc :适用条件:平衡状态(2)三向应力圆:1m a x;3min ;231maxxyxnD'DAcB(3)广义虎克定律:)(13211E )(1zy xxE )(11322E )(1xz y y E )(12133E)(1yx z z E*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态1.纯剪切应力状态:1,02,32.一种常见的二向应力状态:2231222234r 2243r 五、强度理论破坏形式脆性断裂塑性断裂强度理论第一强度理论(最大拉应力理论)莫尔强度理论第三强度理论(最大剪应力理论)第四强度理论(形状改变比能理论)破坏主要因素单元体内的最大拉应力单元体内的最大剪应力单元体内的改变比能破坏条件b1smaxfsfuu 强度条件131适用条件脆性材料脆性材料塑性材料塑性材料*相当应力:r11r ,313r ,][212132322214r 13x六、材料的力学性质脆性材料<5%塑性材料≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段强度指标bs,塑性指标,Etg拉压扭低碳钢断口垂直轴线剪断s b铸铁拉断断口垂直轴线b剪断拉断断口与轴夹角45o b七.组合变形类型斜弯曲拉(压)弯弯扭弯扭拉(压)简图公式)sincos(yZ IzIyMWMAP][4223r][3224r][4)(223NMr][3)(224NMr强度条件)sincos(maxmaxyZ WWM][WMAP maxmaxmax][圆截面][223ZWTMr][75.0224ZWTMr22)(4)(3tZ WTANWMr][22)(4)(4tZ WTANWMr][中性轴tgIIZytgyZyZyZeiAeIy2*bsαe4545o中性轴ZαMp滑移线与轴线45,剪断只有s,无b八、压杆稳定欧拉公式:2min2)(l EI P cr,22Ecr,应用范围:线弹性范围,cr <p ,>p柔度:iul ;E;ba s,柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓>p ——大柔度杆:22Ecro <<p ——中柔度杆:cr=a-b <0——小柔度杆:cr =s稳定校核:安全系数法:w Icr n P P n ,折减系数法:][AP 提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度;断裂特征:断裂前无显著塑性变形;断口特征:断口成光滑区和粗糙区。

循环特征maxmin r;平均应力2minmaxm;应力幅度2minmax材料疲劳极限:材料经无限次应力循环而不发生疲劳破坏的应力极限值——N=107:1条件疲劳极限:(有色金属)无水平渐近线:N=(5-7)107对应的1构件疲劳极限:考虑各种因素101k;101k影响构件疲劳极限因素:应力集中;尺寸;表面质量。

影响材料疲劳极限因素:循环特性;变形形式;材料。

提高构件疲劳强度的主要措施:减缓应力集中;提高表面光洁度;增强表面强度。

croPcr =s22Ecrcr=a-b临界应力。

相关文档
最新文档