材料力学知识点总结教学内容
(完整版)材料力学重点总结
(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3。
材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
(完整版)材料力学各章重点内容总结
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学主要知识点归纳
材料力学主要知识点一、基本概念1、构件正常工作的要求:强度、刚度、稳定性。
2、可变形固体的两个基本假设:连续性假设、均匀性假设。
另外对于常用工程材料(如钢材),还有各向同性假设。
3、什么是应力、正应力、切应力、线应变、切应变。
杆件截面上的分布内力集度,称为应力。
应力的法向分量σ称为正应力,切向分量τ称为切应力。
杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。
4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。
5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。
6、强度理论及其相当应力(详见材料力学ⅠP229)。
7、截面几何性质A 、截面的静矩及形心①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=Ay xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。
B 、极惯性矩、惯性矩、惯性积、惯性半径① 极惯性矩:⎰=A P dA I 2ρ② 对x 轴惯性矩:⎰=A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=Axy xydA I ④ 惯性半径:A I i x x =,A I i y y =。
C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b为y c 距y 轴距离。
② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,b 为截面形心距y 轴距离。
二、杆件变形的基本形式1、轴向拉伸或轴向压缩:A 、应力公式 AF =σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。
C 、应变公式E σε=D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。
材料力学知识点总结免费版
材料力学知识点总结材料力学是研究物质内部力学行为以及材料的变形和破坏的学科。
它是工程领域中非常重要的基础学科,涉及材料的结构、性能和应用等方面。
本文将从基本概念、力学性质、变形与破坏等方面对材料力学的知识点进行总结。
1.弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的变形与恢复过程。
弹性力学主要关注材料的弹性性质,即材料在外力作用下是否能够发生恢复性变形。
弹性力学的基本理论包括胡克定律、泊松比等。
2.塑性力学塑性力学研究材料的塑性行为,即材料在外力作用下会发生永久性变形的能力。
塑性力学主要关注材料的塑性应变、塑性流动规律等。
常见的塑性变形方式包括屈服、硬化、流变等。
3.破裂力学破裂力学研究材料的破裂行为,即材料在外力作用下发生破裂的过程。
破裂力学主要关注材料的断裂韧性、断口形貌等。
常见的破裂失效方式包括断裂、断裂韧性减小、疲劳等。
4.疲劳力学疲劳力学研究材料在交变应力作用下的疲劳失效行为。
疲劳力学主要关注材料的疲劳寿命、疲劳强度等。
材料在交变应力作用下会逐渐积累微小损伤,最终导致疲劳失效。
5.断裂力学断裂力学研究材料在应力集中区域的破裂行为。
断裂力学主要关注材料的应力集中系数、应力集中因子等。
在材料中存在裂纹等缺陷时,应力集中会导致裂纹扩展,最终引发断裂失效。
6.成形加工力学成形加工力学研究材料在加工过程中的变形行为。
成形加工力学主要关注材料的流变性质、加工硬化等。
常见的成形加工方式包括挤压、拉伸、压缩等。
7.热力学力学热力学力学研究材料在高温条件下的力学行为。
热力学力学主要关注材料的热膨胀、热应力等。
材料在高温条件下,由于热膨胀不均匀等因素,会产生热应力,从而影响材料的力学性能。
通过以上对材料力学的知识点的总结,我们可以了解到材料力学对工程领域的重要性。
在工程实践中,需要根据材料的力学性质来设计和制造材料的结构,以保证其性能和安全性。
因此,掌握材料力学的基本概念和原理对于工程师和科研人员来说是至关重要的。
材料力学各章重点内容总结
材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
“材料力学”重点归纳
“材料力学”重点归纳
第一章静力学基础
掌握:静力学基本概念和定理:力、力偶、平衡力系、等效力系、合力投影定理、合力矩定理、力线平移定理、静力学的基本任务等。
重点掌握:掌握各种力系的简化和平衡方程应用。
了解材料力学的发展沿革,理解本课程的任务、内容、目的。
第二章材料力学绪论
掌握:了解材料力学的基本任务和杆件的基本变形。
重点掌握:材料力学的基本概念:弹性变形、塑性变形、破坏、强度、刚度、稳定性、内力、应力、应变等。
第三章应力分析和应变分析理论
掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应变张量、偏斜应力张量、偏斜应变张量等概念。
应力分析理论、应变分析理论。
重点掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应力分析理论。
第四章固体材料的弹性本构关系和塑性本构关系
掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、主应力空间、屈服函数、常用屈服条件、常用强度理论等。
重点掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、常用屈服条件和强度理论等。
第五章材料力学实验
了解和掌握金属材料单轴拉伸和压缩力学实验的原理和方法。
材料力学知识点总结
材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域的设计和分析具有重要意义。
以下是对材料力学主要知识点的总结。
一、基本概念1、外力与内力外力是指物体受到的来自外部的作用力,包括集中力、分布力等。
内力则是物体内部各部分之间的相互作用力,当物体受到外力作用时,内力会随之产生以抵抗外力。
2、应力与应变应力是单位面积上的内力,它反映了材料内部受力的强弱程度。
应变是物体在受力作用下形状和尺寸的相对变化,分为线应变和切应变。
3、杆件的基本变形杆件在受力作用下主要有四种基本变形形式:拉伸(压缩)、剪切、扭转和弯曲。
二、拉伸与压缩1、轴力与轴力图轴力是指杆件沿轴线方向的内力。
通过绘制轴力图,可以直观地表示出轴力沿杆件轴线的变化情况。
2、横截面上的应力在拉伸(压缩)情况下,横截面上的应力均匀分布,其大小等于轴力除以横截面面积。
3、材料在拉伸与压缩时的力学性能通过拉伸试验,可以得到材料的强度指标(屈服强度、抗拉强度)和塑性指标(伸长率、断面收缩率)。
不同材料具有不同的力学性能,如低碳钢的屈服和强化阶段,铸铁的脆性等。
4、胡克定律在弹性范围内,应力与应变成正比,即σ =Eε ,其中 E 为弹性模量。
5、拉伸(压缩)时的变形计算根据胡克定律,可以计算杆件在拉伸(压缩)时的变形量。
三、剪切1、剪切内力与剪切应力剪切内力通常用剪力表示,剪切应力则是单位面积上的剪力。
2、剪切实用计算在工程中,通常采用实用计算方法来确定剪切面上的平均应力。
四、扭转1、扭矩与扭矩图扭矩是指杆件在扭转时横截面上的内力偶矩。
扭矩图用于表示扭矩沿杆件轴线的变化。
2、圆轴扭转时的应力与变形圆轴扭转时,横截面上的应力分布呈线性规律,其最大应力发生在圆周处。
扭转角的计算与材料的剪切模量、扭矩和轴的长度等因素有关。
五、弯曲1、剪力与弯矩弯曲内力包括剪力和弯矩,它们的计算和绘制剪力图、弯矩图是弯曲分析的重要内容。
材料力学知识点总结(重、难点部分)
第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
材料力学知识点归纳总结(完整版)
材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
材料力学知识点总结
材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性等问题的一门学科。
它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。
以下是对材料力学主要知识点的总结。
一、拉伸与压缩在拉伸和压缩的情况下,我们主要关注杆件的内力、应力和变形。
内力是指杆件在外力作用下,其内部各部分之间相互作用的力。
通过截面法可以求出内力。
应力则是单位面积上的内力。
正应力计算公式为σ = N / A ,其中 N 为轴力,A 为横截面面积。
对于拉伸和压缩变形,其变形量Δl 可以通过公式Δl = Nl / EA 计算,其中 E 为材料的弹性模量,l 为杆件长度。
二、剪切与挤压剪切是指在一对相距很近、大小相同、指向相反的横向外力作用下,杆件的横截面发生相对错动的变形。
剪切应力τ = Q / A ,其中 Q 为剪力,A 为剪切面面积。
挤压是连接件在接触面上相互压紧的现象,挤压应力σbs = Fbs /Abs ,Fbs 为挤压力,Abs 为挤压面面积。
三、扭转当杆件受到绕轴线的外力偶作用时,会发生扭转。
扭矩 T 可以通过外力偶矩计算得到。
圆轴扭转时的切应力分布规律是沿半径线性分布,最大切应力在圆轴表面。
扭转角φ 可以通过公式φ = Tl / GIp 计算,G 为材料的切变模量,Ip 为极惯性矩。
四、弯曲弯曲是指杆件在垂直于轴线的横向力或作用于轴线平面内的力偶作用下,轴线由直线变为曲线的变形。
弯矩是弯曲内力的一种,通过截面法可以求出。
弯曲应力的分布与截面形状有关,对于矩形截面,最大正应力在截面边缘。
挠度和转角是弯曲变形的两个重要参数,可以通过积分等方法求解。
五、应力状态与强度理论一点的应力状态可以用应力单元体来表示。
常用的强度理论有第一强度理论(最大拉应力理论)、第二强度理论(最大伸长线应变理论)、第三强度理论(最大切应力理论)和第四强度理论(形状改变比能理论)。
强度理论用于判断材料在复杂应力状态下是否发生破坏。
材料力学重点总结
材料力学重点总结材料力学是研究材料在外力作用下的力学性能及其相互关系的学科。
它是工程力学的重要分支之一,对于了解材料的力学特性以及工程结构的设计和优化具有重要意义。
以下是材料力学的重点总结。
一、材料的应力和应变1.应力:指材料内部的内力,由外力作用引起,分为正应力和剪应力。
正应力指垂直于截面的力与截面面积的比值,剪应力指与截面平行的截面积的比值。
2.应变:指材料在外力作用下的变形程度,分为线性弹性应变和非线性塑性应变。
线性弹性应变指应力与应变呈线性关系,非线性塑性应变指应力与应变不呈线性关系。
3.弹性模量:指材料在弹性阶段内应力与应变之间的比值,用于衡量材料的刚度。
二、材料的弹性力学行为1.长度-应力关系:根据胡克定律,应力与应变成正比,比例系数为弹性模量。
2.应力-应变关系:应力与应变呈线性关系,斜率为弹性模量。
当材料处于线性弹性阶段时,可以使用胡克定律进行分析和计算。
3.杨氏模量:指材料在线性弹性阶段内应力与应变沿任意方向之比,衡量材料的各向同性。
三、材料的塑性力学行为1.屈服强度:指材料开始发生塑性变形的临界应力值。
在应力达到屈服强度后,材料开始发生塑性应变。
2.延伸率和断裂应变:延伸率是材料拉伸至破坏前的变形倍数,断裂应变是材料发生破坏时的应变。
3.曲线弹性模量:由于塑性变形引起曲线弹性阶段的模量发生变化,称为曲线弹性模量。
四、材料的断裂力学行为1.断裂韧性:指材料在断裂前吸收的能量。
韧性高的材料能够承受较大的变形和吸能。
2.断裂强度:指材料在断裂前所能承受的最大应力值。
断裂强度高的材料具有较好的抗拉强度。
3.断裂模式:材料断裂具有不同的模式,如拉断、剪断、脱层、断裂面韧裂等。
五、材料的疲劳力学行为1.疲劳强度:指材料在循环载荷下发生疲劳破坏的临界应力水平。
疲劳强度与材料的强度和韧性都有关。
2.疲劳寿命:指材料在特定应力水平下能够循环载荷的次数。
疲劳寿命与材料的疲劳强度和循环载荷有关。
3.疲劳断口特征:材料在发生疲劳破坏时产生的断裂面特征,如河床样貌、斜粒子形貌等。
(完整版)材料力学知识点总结
材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学复习总结知识点
……
δn1X1 + δn2X2 +…+ δnnXn+ ΔnF = fn
4. 莫尔积分,图乘法,求系数δij,ΔiF 5. 求力法方程 6. 画内力图
六、动荷问题
1. 构件做等加速直线运动和等速转动
三、组合变形
1. 斜弯曲(平面弯曲组合) 2. 弯曲与拉(压) 3. 偏心拉(压)
4. 弯扭(拉扭):
r 3 2 42 , r4 2 32
r3M W 2 T 2, r4M 2 W 0 .7T 5 2
四、压杆稳定
1. 欧拉公式:
Fcr
2EI (l)2
动静法 能量法
变形比较法步骤: 1. 静不定次数 2. 建立相当系统 3. 补充方程
平衡方程(建立) 几何方程(补充) 物理方程(沟通) 4. 求解
等效载荷法步骤: 1. 能量守恒 2. 动荷因数 3. 等效载荷 4. 力学响应
三、不作重点要求内容
2.4.4 2.8
3
4.3.1 4.7 4.8 4.9 4.10
扭转
弯曲
外力
变 形
纵向 , E
E
横向 '
, G
G
当 p有
l FN l EA
当 P有
Tl G IP
纯弯曲:
1M EI
横力弯曲: 1 M(x)
(x) EI
位
EA 为拉压刚度。
GIp 为扭转刚度。
EI 为弯曲刚度。
移 静不定问题(三方面): 平衡关系 (受力图); 变形关系 (变形图);
材料力学章节重点和难点[整理]
材料力学章节重点和难点第一章绪论1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。
2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。
3.难点:第二章杆件的内力1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。
2.重点:剪力方程和弯矩方程、剪力图和弯矩图。
3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。
第三章杆件的应力与强度计算1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。
2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。
3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;第四章杆件的变形简单超静定问题1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。
2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。
3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。
第五章应力状态分析? 强度理论1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。
2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。
3.难点:主应力方位确定。
第六章组合变形1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算;2.重点: 弯扭组合变形。
3.难点:截面核心的概念第七章压杆稳定1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。
材料力学知识点总结
p
F A
F cos cos A
将应力 pα 分解为两个分量:
沿截面法线方向的正应力 p cos cos2
2.符号的规定 (1)α 角
沿截面切线方向的切应力
p
sin
2
sin2
(2)正应力: 拉伸为正 压缩为负
(3)切应力 对研究对象任一点取矩
三、强度条件 杆内的最大工作应力不超过材料的许用应力
A ,断口处的最小横截面积为 A1 .
l1 l 100%
伸长率
l
A A1 100%
断面收缩率
A
≧5%的材料,称作塑性材料
<5%的材料,称作脆性材料
§2-5 拉压杆的变形计算
*补充*
一、 纵向变形
1. 纵向变形 Δl l1 l
Δl 2. 纵向应变 l
姚小宝
二、横向变形
1. 横向变形 b b1 b
§1-3 力、应力、应变和位移的基本概念
一、 外力
体积力
1. 按作用方式分
表面力
集中力
分布力 静载荷 2. 按随时间变化分
交变载荷 动载荷
冲击载荷 二、 内力
1. 定义: 指由外力作用所引起的、物体内相邻部分之间相互作用力(附加内力)。 2. 内力的求法 —— 截面法 步骤:
① 截开: 在所求内力的截面处,假想地用截面将杆件一分为二. ②代替: 任取一部分,其弃去部分对留下部分的作用,用作用在截 面上相应的内力(力或力偶)代替. ③平衡: 对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面 上的未知内力(此时截开面上的内力对所留部分而言是外力).
§1-2 变形固体的基本假设 一、连续性假设: 物质密实地充满物体所在空间,毫无空隙。 二、均匀性假设: 物体内,各处的力学性质完全相同。 三、各向同性假设: 组成物体的材料沿各方向的力学性质完全相同。 四、小变形假设: 材料力学所研究的构件在载荷作用下的变形与原始尺寸
材料力学知识点总结
材料力学知识点总结材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科,它是工程力学的重要组成部分,对于机械、土木、航空航天等工程领域都有着至关重要的作用。
以下是对材料力学主要知识点的总结。
一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。
在拉伸或压缩时,杆件横截面上的内力称为轴力。
轴力的正负规定为:拉伸时轴力为正,压缩时轴力为负。
通过实验可以得到材料在拉伸和压缩时的应力应变曲线。
低碳钢的拉伸应力应变曲线具有明显的四个阶段:弹性阶段、屈服阶段、强化阶段和局部变形阶段。
弹性阶段内应力与应变成正比,遵循胡克定律;屈服阶段材料出现明显的塑性变形;强化阶段材料抵抗变形的能力增强;局部变形阶段试件在某一局部区域产生显著的收缩,直至断裂。
对于拉伸和压缩杆件,其横截面上的正应力计算公式为:$\sigma =\frac{N}{A}$,其中$N$为轴力,$A$为横截面面积。
而纵向变形量$\Delta L$可以通过公式$\Delta L =\frac{NL}{EA}$计算,其中$E$为材料的弹性模量,$L$为杆件长度。
二、剪切与挤压剪切是指在一对相距很近、大小相等、方向相反的横向外力作用下,杆件的横截面沿外力作用方向发生相对错动的变形。
在剪切面上的内力称为剪力。
剪切面上的平均切应力计算公式为:$\tau =\frac{Q}{A}$,其中$Q$为剪力,$A$为剪切面面积。
挤压是在连接件与被连接件之间,在接触面上相互压紧而产生的局部受压现象。
挤压面上的应力称为挤压应力,其计算公式为:$\sigma_{jy} =\frac{F_{jy}}{A_{jy}}$,其中$F_{jy}$为挤压力,$A_{jy}$为挤压面面积。
三、扭转扭转是指杆件受到一对大小相等、方向相反且作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线产生相对转动。
圆轴扭转时,横截面上的内力是扭矩。
扭矩的正负规定:右手螺旋法则,拇指指向截面外法线方向为正,反之为负。
材料力学复习总结知识点
r1, r2, r3, r4
三、压杆稳定
1. 欧拉公式:
Fcr (2lE)I2
(适用范围:细长杆)
2. 压杆的柔度:
细长杆
P
cr
2E 2
中长杆
0 P
cr ab
长度因数(反应约况 束) 情
l
i
i l
截面形状、大小 杆长
σ σcr=σs
临界应力总图
σs
A
粗短杆
σcr=a−bλ
σP
B 中长
一、基本变形(2)
基本变形 拉(压)
扭转
弯曲
外力
应力
FN A
拉 (+)
圆轴
T IP
τ
(平面假设)
d4 I P 32
Wt
d3 16
My IZ
FQ S Z * IZb
平面假设
矩形:
IZ
b
h3 ,
12
WZ
bh2 6
圆形:
IZ
d4,
64
WZ 3d2 3
στ
一、基本变形(3)
基本变形 拉(压)
不同,因而两梁的剪力图和弯矩图不一定相同。
第2章 拉伸、压缩与剪切
6. 两根几何尺寸、支撑条件完全相同的静定梁,只要所受 的载荷相同,则两梁所对应的截面的挠度和转角相同,而 与梁的材料是否相同无关。 7. 若单元体的σx=σy=τxy=50Mpa,则该单元体必定处于二向 应力状态。
第2章 拉伸、压缩与剪切
《材料力学》课程总结
材料力学基本框架
基概本述概念
拉压 剪切 扭转
四种基本变形
弯曲-内力 弯曲-应力 弯曲-变形
应力状态 综组合合知变识形 压杆稳定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学总结一、基本变形
二、还有:
(1)外力偶矩:)(9549
m N n
N
m •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:t
r T
22πτ=
(3)矩形截面杆扭转剪应力:h
b G T
h b T 32max ;βϕατ=
=
三、截面几何性质
(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===
n
i i
n
i ci
i c A
y
A y 1
1
; ∑∑===
n
i i
n
i ci
i c A
z
A z 1
1
2.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(
四、应力分析:
(1)二向应力状态(解析法、图解法)
a . 解析法: b.应力圆:
σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”
α:从x 轴逆时针转到截面的 法线为“+”
ατασσσσσα2sin 2cos 2
2
x y
x y
x --+
+=
ατασστα2cos 2sin 2
x y
x +-=
y
x x
tg σστα--
=220 22
min
max 22
x y x y
x τσσσσσ+⎪⎪⎭
⎫
⎝
⎛-±+=
c :适用条件:平衡状态
(2)三向应力圆:
1max σσ=; 3min σσ=;2
3
1max σστ-=
x
(3)广义虎克定律:
[])(13211σσνσε+-=E []
)(1
z y x x E σσνσε+-=
[])(11322σσνσε+-=E []
)(1
x z y y E σσνσε+-=
[])(12133σσνσε+-=E []
)(1
y x z z E σσνσε+-=
*适用条件:各向同性材料;材料服从虎克定律
(4)常用的二向应力状态 1.纯剪切应力状态:
τσ=1 ,02=σ,τσ-=3
2.一种常见的二向应力状态:
22
3122τσσ
σ+⎪⎭
⎫
⎝⎛±=
2234τσσ+=r
2243τσσ+=r
五、强度理论
*相当应力:r σ
11σσ=r ,313σσσ-=r ,()()()][2
12
132322214σσσσσσσ-+-+-=
r σx
σ
六、材料的力学性质
脆性材料 δ<5% 塑性材料 δ≥5%
低碳钢四阶段: (1)弹性阶段
(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,
塑性指标 δψ,
E tg ==σ
α
七.组合变形
ε
八、压杆稳定
欧拉公式:2
min
2)
(l EI P cr μπ=
,2
2λ
πσE cr =
,应用范围:线弹性范围,σcr <σp ,λ>λp
柔度:i
ul =
λ;ρ
ρσπ
λE
=;b
a s σλ-=
0,
柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓
λ>λp ——大柔度杆:22
λ
πσE cr =
λo <λ<λp ——中柔度杆:σcr=a-b λ
λ<λ0——小柔度杆:σcr =σs
稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=A
P
提高杆件稳定性的措施有:
1、减少长度
2、选择合理截面
3、加强约束
4、合理选择材料
九、交变应力
金属疲劳破坏特点:
应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
循环特征 σσm ax
m in =r ;
平均应力 2
min max σσσ+
=m ;
应力幅度2
min max σσσα-
=
材料疲劳极限:材料经无限次应力循环而不发生疲劳破坏的应力极限值——N=107:1-σ 条件疲劳极限:(有色金属)无水平渐近线:N=(5-7)⨯107对应的1-σ
构件疲劳极限:考虑各种因素 δβ
εσσ
σ101
--=k ; ττ
β
εττ101--=k 影响构件疲劳极限因素:应力集中;尺寸;表面质量。
影响材料疲劳极限因素:循环特性;变形形式;材料。
提高构件疲劳强度的主要措施:减缓应力集中;提高表面光洁度;增强表面强度。
σ
λ
o P 临界应力。