等腰直角三角形模型、三垂直模型

合集下载

三垂直模型

三垂直模型

三垂直模型知识导航三垂直模型是经典的全等三角形模型之一,综合性较强。

解题方法通常是根据三垂直倒角来证明题目中有一对边相等的两个全等三角形。

一线三等角是三垂直模型的变式,包括一线三等锐角、一线三直角、一线三等钝角,这类型题型通常是利用三垂直模型原理进行倒角,证明两个三角形全等。

【核心考点】三垂直模型1. 如图,AC CE =,90ACE ∠=︒,AB BD ⊥,ED BD ⊥,6AB cm =,2DE cm =,则BD等于( )A .6cmB .8cmC .10cmD .4cm【解答】 解:AB BD ⊥,ED BD ⊥,90B D ACE ∴∠=∠=∠=︒,90BAC ACB ∴∠+∠=︒,90ACB ECD ∠+∠=︒, BAC ECD ∴∠=∠,在Rt ABC ∆与Rt CDE ∆中, B D BAC DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, Rt ABC Rt CDE(AAS)∴∆≅∆,2BC DE cm ∴==,6CD AB cm ==, 268BD BC CD cm ∴=+=+=,故选:B .2. 如图,已知ABC CDE ∆≅∆,90B D ∠=∠=︒,且B ,C ,D 三点在同一条直线.(1)试说明:BD AB ED =+.(2)试判定ACE ∆的形状, 并说明理由 .【解答】证明:(1)Rt ABC Rt CDE ∆≅∆,BC DE ∴=,AB CD =, BD CD CB =+, BD AB ED ∴=+.(2)结论:ACE ∆是等腰直角三角形 . 理由:Rt ABC Rt CDE ∆≅∆,90B D ∠=∠=︒,ACB CED ∴∠=∠,BAC ECD ∠=∠,AC EC =, 90BAC ACB ∠+∠=︒, 90ECD ACB ∴∠+∠=︒, 90ACB ∴∠=︒,ACE ∴∆是等腰直角三角形 .3. 已知在平面直角坐标系中,ABC ∆的顶点A 、C 分别在y 轴、x 轴上,90ACB ∠=︒,AC BC =.如图,当(0,2)A -,(1,0)C ,点B 在第四象限时,则点B 的坐标为_______.【解答】解:作BD x ⊥轴,90ACO CAO ∠+∠=︒,90ACO BCD ∠+∠=︒, CAO BCD ∴∠=∠,在AOC ∆和CDB ∆中, 90AOC CDB CAO BCDAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AOC CDB AAS ∴∆≅∆,1DB OC ∴==,2CD AO ==, 3OD ∴=,∴点B 的坐标为(3,1)-.故答案为(3,1)-.4. 如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为2,3,m ,A ,B ,N ,E ,F 五点在同一直线上,则正方形CNHM 的边长m 是多少?【解答】解:四边形ABCD 、EFGH 、NHMC 都是正方形,90CNB ENH ∴∠+∠=︒,又90ENH NHE ∠+∠=︒,CNB EHN ∴∠=∠,在CBN ∆和NEH ∆中, CBN NEH CNB NHE CN NH ∠=∠⎧⎪∠=∠⎨⎪=⎩CBN NEH ∴∆≅∆, HE BN b ∴==,故在Rt CBN ∆中,222BC BN CN +=, 又2a =,3b =,m ∴=则正方形CNHM 的边长m5. 已知:在平面直角坐标系中,等腰直角ABC ∆顶点A 、C 分别在y 轴、x 轴上,且90ACB ∠=︒,AC BC =.(1)如图1,当(0,2)A -,(1,0)C ,点B 在第四象限时,先写出点B 的坐标,并说明理由. (2)如图2,当点C 在x 轴正半轴上运动,点(0,)A a 在y 轴正半轴上运动,点(,)B m n 在 第四象限时,作BD y ⊥轴于点D ,试判断a ,m ,n 之间的关系,请证明你的结论.【解答】解:(1)点B 的坐标为(3,1)-. 理由如下:作BD x ⊥轴于D ,90BOC BDC ∴∠=︒=∠, 90OAC ACO ∴∠+∠=︒, 90ACB ∠=︒,AC BC =, 90ACO BCD ∴∠+∠=︒, OAC BCD ∴∠=∠,在AOC ∆和CDB ∆中,90OAC BCDAOC CDB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AOC CDB AAS ∴∆≅∆,AO CD ∴=,OC BD =,(0,2)A -,(1,0)C ,2AO CD ∴==,1OC BD ==,3OD ∴=,B 在第四象限,∴点B 的坐标为(3,1)-;(2)0a m n ++=. 证明:作BE x ⊥轴于E ,90BEC AOC ∴∠=∠=︒, 1290∴∠+∠=︒, 90ACB ∠=︒, 1390∴∠+∠=︒, 23∴∠=∠,在CEB ∆和AOC ∆中,23BEC AOC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEB AOC AAS ∴∆≅∆,AO CE a ∴==,BE CO =, BE x ⊥轴于E ,//BE y ∴轴,BD y ⊥轴于点D ,EO y ⊥轴于点O ,EO BD m ∴==, BE n ∴=-,a m n ∴+=-,0a m n ∴++=.6. 如图1,ABC ∆中,90BAC ∠=︒,AB AC =,直线l 经过点A ,分别过点B ,C 作直线l 的垂线,垂足分别为D ,E ,求证:DE BD CE =+;(1)将直线l 绕点A 逆时针旋转到直线l 与BC 相交,且45BAD ∠<︒(如图2)时,其它条件不变,请你探索DE ,BD ,CE 之间的数量关系,并证明之;(2)继续旋转,使4590BAE ︒<∠<︒(如图3),其它条件不变,此时(1)中的结论还成立吗?若成立,给出证明;若不成立,DE ,BD ,CE 之间又怎样的数量关系?(不需证明).【解答】证明:如图1,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒, 90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒, ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =.DE AD AE =+, DE CE BD ∴=+;(1)DE CE BD =-理由:如图2,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒,90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒,ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =DE AD AE =-, DE CE BD ∴=-;(2)DE BD CE =-.理由:如图3,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒, 90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒, ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =DE AE AD =-, DE BD CE ∴=-.7. 如图所示,已知ABC ∆中,90ABC ∠=︒,AB BC =,三角形的顶点分别在相互平行的三条直线1l 、2l 、3l 上,且115∠=︒,则2∠=_________度.【解答】解:123////l l l ,13∴∠=∠,24∠=∠, 1234∴∠+∠=∠+∠. 90ABC ∠=︒,AB BC =, 45BAC BCA ∴∠=∠=︒. 34BAC ∠+∠=∠, 3445∴∠+∠=︒, 1245∴∠+∠=︒. 115∠=︒, 230∴∠=︒.故答案为:30.8.问题背景:(1)如图①,已知ABC∠=︒,AB AC=,直线m经过点A,BAC∆中,90=+.BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE BD CE拓展延伸:(2)如图②,将(1)中的条件改为:在ABC=,D、A、E∆中,AB AC 三点都在直线m上,并且有BDA AEC BAC∠=∠=∠请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图③,在ACB-,=,点C的坐标为(2,0)∆中,90∠=︒,AC BCACB点A的坐标为(6,3)-,请直接写出B点的坐标.【解答】(1)证明:BD AD ⊥,90ABD BAD ∴∠+∠=︒,90BAC ∠=︒,90CAE BAD ∴∠+∠=︒,ABD CAE ∴∠=∠,在ABD ∆和CAE ∆中,90ABD CAEADB CEA AB CA∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABD CAE AAS ∴∆≅∆AE BD ∴=,AD CE =,DE AD AE BD CE ∴=+=+;(2)解:DE BD CE =+,理由如下:在ABD ∆中,180ABD ADB BAD ∠=︒-∠-∠, 180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠, ABD CAE ∴∠=∠,在ABD ∆和CAE ∆中,ABD CAEBDA AEC AB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD CAE AAS ∴∆≅∆AE BD ∴=,AD CE =,DE AD AE BD CE ∴=+=+;(3)解:如图③,作AE x ⊥轴于E ,BF x ⊥轴于F , 由(1)可知,AEC CFB ∆≅∆,3CF AE ∴==,4BF CE OE OC ==-=, 1OF CF OC ∴=-=,∴点B 的坐标为(1,4).。

等腰直角三角形模型三垂直模型

等腰直角三角形模型三垂直模型

全等三角形的经典模型(一)题型一:等腰直角三角形模型思路导航等腰直角三角形数学模型思路:⑴利用特殊边特殊角证题(AC=BC或90° 45 ,45).如图1;⑵常见辅助线为作高,利用三线合一的性质解决问题•如图2;图3 图4典题精练【例1】已知:如图所示,Rt△ ABC中,AB=AC, BAC 90° O为BC的中点, ⑴写出点O到厶ABC的三个顶点A、B、C的距离的关系(不要求证明)⑵如果点M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.试判断△ OMN的形状,并证明你的结论.⑶如果点M、N分别在线段CA、AB的延长线上移动,且在移动中保持AN=CM,试判断⑵中结论是否依然成立,如果是请给出证明.【解析】⑴OA=OB=OC⑵连接OA,••• OA=OC BAO C 45° AN=CM• △ ANO 也厶CMO•ON=OMNOA MOCNOA BON MOC BON90NOM90• △ OMN 是等腰直角三角形⑶也ONM依然为等腰直角三角形,证明:•••/ BAC=90°, AB=AC, O 为BC 中点•••/ BAO = Z OAC=Z ABC=Z ACB=45°,••• AO = BO=OC,•••在△ ANO和厶CMO中,AN CMBAO CAO CO•△ ANO ◎△ CMO (SAS)•ON = OM, / AON= / COM ,又•••/ COM / AOM =90°,•△ OMN为等腰直角三角形.【例2】两个全等的含30°, 60°角的三角板ADE和三角板ABC,如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M ,连接ME , MC .试判断△ EMC的形状,并说明理由.【解析】△ EMC是等腰直角三角形.证明:连接AM .由题意,得DE AC, DAE BAC 90°, DAB 90°•△ DAB为等腰直角三角形•••• DM MB ,MMDE MAC 105° , ••• △ EDM 也△CAM . ••• EM MC, DME AMC .又 EMC EMA AMC EMA DME 90°. • CM EM ,• △ EMC 是等腰直角三角形.• △ ABM CAF . • AM CF . 在 △ ADM 和△ CDF 中, AD CD DAM C AM CF• △ ADM ◎△ CDF . •- ADB CDF .证法二:如图,作 CM AC 交AF 的延长线于 M . T AF BD , • 3 2 90° •/ BAC 90° , • 1 2 90° • 13.在△ ACM 和△ BAD 中,13AC ABACM BAD 90°• △ ACM ◎△ BAD . • M ADB , AD CM••• AD DC , • CM CD . 在△ CMF 和△ CDF 中, CF CFMCF DCF 45° CM CD【例3】 已知: 点,A 求证: 如图,△ ABC 中,AB AC , \F BD 于E ,交BC 于F ,连接BACDF .ADBCDF . 【解析】 证法一 ':如图,过点 A 作AN BC 于N,交••• AB AC , BAC 90° ,• 3DAM 45°.••• C 45 ° • 3 C .••• AF BD , 1BAE 90°••• BAC 90° , • 2 BAE 90° .• 12 .在△ ABM 和△ CAF 中,1 2AB AC3 CACM••• △ CMF ◎△ CDF • ••• M CDF ••• ADB CDF •【例4】 如图,等腰直角 △ ABC 中,AC BC , ACB 90°, P 为△ ABC 内部一点,满足PB PC , AP AC ,求证:BCP 15 •【解析】补全正方形ACBD ,连接DP ,易证△ ADP 是等边三角形, DAP 60 , BAD 45 ,• BAP 15 , PAC 30 , • ACP 75 ,• BCP 15 •【探究对象】等腰直角三角形添补成正方形的几种常见题型在解有关等腰直角三角形中的一些问题, 若遇到不易解决或解法比较复杂时, 可将等腰直角三角形引辅助线转化成正方形,再利用正方形的一些性质来解,常常可以起到化难为易的效果, 从而顺利地求解。

三垂直模型及练习题

三垂直模型及练习题
的结论并证明。
2. 如图 1,等腰 Rt△ABC 中,AB=CB,∠ABC=90º,点 P 在线段 BC 上(不与 B、C 重合), 以 AP 为腰长作等腰直角△PAQ,QE⊥AB 于 E ,连 CQ 交 AB 于 M。 (1)求证:M 为 BE 的中点
(2)若 PC=2PB,求 PC 的值 MB
1
2
变式 1:如图,在 R t △ABC 中,∠ACB=45º,∠BAC=90º,AB=AC,点 D 是 AB 的中点,AF⊥CD
于 H 交 BC 于 F,BE∥AC 交 AF 的延长线于 E,求证:BC 垂直且平分 DE.
变式 2:等腰 Rt△ABC 中,AC=AB,∠BAC=90°,点 D 是 AC 的中点,AF⊥BD 于点 E, 交 BC 于点 F,连接 DF,求证:∠1=∠2。
9
6、如图,在等腰 Rt△ABC 中,∠ACB=90°,D 为 BC 的中点,DE⊥AB,垂足为 E,过点 B 作 BF∥AC 交 DE 的延长线于点 F,连接 CF. (1)求证:AD⊥CF; (2)连接 AF,求证:AF=CF.
8
7、已知:如图所示,在△ABC 中,AB=AC,∠BAC=90°,D 为 AC 中点,AF⊥BD 于点 E,交 BC 于 F,连接 DF . 求证:∠ADB=∠CDF .
变式 1、已知:如图所示,在△ABC 中,AB=AC,AM=CN,AF⊥BM 于 E,交 BC 于 F, 连接 NF . 求证:(1)∠AMB=∠CNF;(2)BM=AF+FN .
变式 2、在变式 1 的基础上,其他条件不变,只是将 BM 和 FN 分别延长交于点 P, 求证:(1)PM=PN;(2)PB=PF+AF .
★模型一 等腰三垂直全等模型
(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:

三角形全等11大解题模型汇总

三角形全等11大解题模型汇总

三角形全等11大解题模型汇总类别 1:角平分线模型应用模型 1:角平分性质模型:辅助线:过点 G 作 GE ⊥射线 AC【例题详解】①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1图2①2 (提示:作 DE ⊥AB 交 AB 于点 E)②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.模型2:角平分线+垂线,等腰三角形比呈现辅助线:延长ED 交射线OB 于F 辅助线:过点E 作EF∥射线OB【例题详解】已知:如图2,在中ABC ∆,,,AD AB D BC AD BAC =∠且于交的角平分线)(21.AC AB AM M AD AD CM +=⊥求证:的延长线于交作分析:此题很多同学可能想到延长线段CM,但很快发现与要证明的结论毫无关系。

而此题突破口就在于 AB=AD,由此我们可以猜想过 C 点作平行线来构造等腰三角形.证明:过点 C 作 CE∥AB 交 AM 的延长线于点 E.例题变形:如图,21∠=∠,的中点为AC B ,.,N FB AN M FB CM 于于⊥⊥模型3:角分线,分两边,对称全等要记全两个图形的辅助线都是在射线OA 上取点B ,使OB=OA ,从而使OAC ∆≌△OBC.【例题详解】①、在△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P,BQ 平分∠ABC 交AC 于Q,求证:AB+BP=BQ+AQ。

思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。

2)解题思路:本题要证明的是AB+BP=BQ+AQ。

形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。

可过O 作BC 的平行线。

【中考数学专题】三大变换之旋转(三垂直模型)

【中考数学专题】三大变换之旋转(三垂直模型)

【中考数学专题】三大变换之旋转(三垂直模型)上一篇我们了解了关于手拉手模型的一些内容,同样作为模型,但“三垂直”的定位和“手拉手”并不相同,“手拉手”本身可以作为问题,而“三垂直”更多地作为一种方法来帮助解决问题,因而我们要了解的侧重点也会有所调整,依然有三点:(1)三垂直模型的构成;(2)什么条件下考虑构造三垂直;(3)构造三垂直能带来什么.01三垂直模型的构成△ABC是等腰直角三角形,一条直线过点C,分别过A、B向该直线作垂线,垂足分别为D、E,则△ADC≌△CEB.【小结】尝试用文字来描述三垂直模型:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型.(等腰、直角、作垂直)【思考】“等腰、直角、作垂直”在证明全等中所发挥的作用是什么?等腰——可得一组对应边相等;直角+作垂直——可得两组角对应相等.【弱化条件】(1)如果没有等腰?依然可以构造三垂直,只不过得到的是三垂直相似,而非三垂直全等.如图,有△ADC∽△CEB.特别地,若点C为BD中点,则△ADC∽△CEB∽△ACB.(2)如果没有直角?直角与作垂直是配套的,最终的结果是有三个直角,其价值不在于它们是特殊角,而是它们都相等,所以即便没有直角,换成三个相等的角亦可,即“一线三等角”模型举个关于一线三等角的例题:2018遵义中考-对称章节里见过看个例子就可以了,今儿不聊一线三等角的事.02什么条件下构造三垂直?根据问题一的分析已经很明显了,可以没有等腰,但需要有直角,当然如果是等腰直角那就再好不过了.那看到有直角就考虑构造三垂直?当然也不是,起码问题得和直角相关,并且这个直角是斜着的.引例1-几何图中的构造三垂直引例2-坐标系中的构造三垂直【小结】尤其是在坐标系中,构造三垂直可以帮助计算点坐标或直线解析式,并且触发条件除了直角之外,也可以是其他确定的角,比如45°角.引例3-45°角构造三垂直全等【小结】设计坐标系中构造三垂直,尽可能让直角顶点是已知点,会简便计算,如上题中的第一种作图优于第二种.除了45°之外,坐标系中出现其他的确定角,亦可构造三垂直.引例4-已知角构造三垂直相似这其实本身不应该是一个问题,而是对前文的思考.三垂直是如何帮助我们解决问题的?构造三垂直全等,一方面可以得到相等线段,在几何图形中作等量代换.另外在坐标系中构造三垂直全等,可实现“化斜为直”,用水平或竖直线段刻画图中的点与线,会更方便计算.继续来看相关中考真题:2019宜昌中考2017苏州园区模拟2019十堰中考2019无锡中考2019沈阳中考2016河南中考(居然有备用卷)【写在最后】知其然,知其所以然;知其用,知其何以用.来源:有一点数学,作者刘岳。

解题技巧专题:利用等腰三角形的“三线合一”作辅助线压轴题三种模型全攻略(解析版)

解题技巧专题:利用等腰三角形的“三线合一”作辅助线压轴题三种模型全攻略(解析版)

解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】【类型一等腰三角形中底边有中点时,连中线】【类型二等腰三角形中底边无中点时,作高线】【类型三巧用“角平分线+垂线合一”构造等腰三角形】【典型例题】【类型一等腰三角形中底边有中点时,连中线】1如图,在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,过D 作直线DE 交直线AB 与E ,过D 作直线DF ⊥DE ,并交直线AC 与F .(1)若E点在线段AB 上(非端点),则线段DE 与DF 的数量关系是;(2)若E 点在线段AB 的延长线上,请你作图(用黑色水笔),此时线段DE 与DF 的数量关系是,请说明理由.【答案】(1)DE =DF(2)图见解析,DE =DF ,理由见解析【分析】(1)连接AD ,先根据等腰直角三角形的性质可得AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,再根据垂直的定义、等量代换可得∠BDE =∠ADF ,然后根据三角形全等的判定证出△BDE ≅△ADF ,根据全等三角形的性质即可得出结论;(2)分①当点E 在线段AB 的延长线上,且在BC 的下方时,②当点E 在线段AB 的延长线上,且在BC 的上方时两种情况,参考(1)的思路,根据三角形全等的判定与性质即可得出结论.【详解】(1)解:如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,∴∠BDE +∠ADE =90°,∵DF ⊥DE ,∴∠ADF+∠ADE =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠B =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ,故答案为:DE =DF .(2)解:DE =DF ,理由如下:①如图,当点E 在线段AB 的延长线上,且在BC 的下方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD ,∠ABD =∠DAC =45°,AD ⊥BC ,∴∠DBE =∠DAF =135°,∠ADF +∠BDF =90°,∵DF ⊥DE ,∴∠BDE +∠BDF =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠DBE =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ;②如图,当点E 在线段AB 的延长线上,且在BC 的上方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =CD ,∠ACD =∠DAB =45°,AD ⊥BC ,∴∠DCF =∠DAE =135°,∠ADE +∠CDE =90°,∵DF ⊥DE ,∴∠CDF +∠CDE =90°,∴∠ADE =∠CDF ,在△ADE 和△CDF 中,∠DAE =∠DCFAD =CD ∠ADE =∠CDF,∴△ADE ≅△CDF ASA ,∴DE =DF ;综上,线段DE 与DF 的数量关系是DE =DF ,故答案为:DE =DF .【点睛】本题考查了等腰直角三角形的性质、三角形全等的判定与性质等知识点,通过作辅助线,构造全等三角形是解题关键.【变式训练】1如图,在等腰直角三角形ABC 中,∠C =90°,AC =a ,点E 为边AC 上任意一点,点D 为AB 的中点,过点D 作DF ⊥DE 交BC 于点F .求证:CE +CF为定值.【答案】证明见解析【分析】连接CD ,证明△CDE ≌△BDF ,得CE =BF ,进一步证明CE +CF =BC =AC =a ,从而得到结论.【详解】证明:连接CD ,如图,∵△ABC 是等腰直角三角形,且D 为AB 的中点,∴CD ⊥AB ,CD 平分∠ACB ,AD =BD =CD∴∠DCA =∠DCB =∠DBC =45°又DE ⊥DF∴∠EDC +∠FDC =90°而∠FDC +∠FDB =90°∴∠EDC =∠FDB在△CDE 和△BDF 中,∠DCE =∠DBFCD =CD∠EDC =∠BDF∴△CDE ≌△BDF∴CE =BF∵BC =AC =a ∴CE +CF =BE +CF =BC =AC =a ,故:CE +CF 为定值.【点睛】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,证明CE =BF 是解答此题的关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC ,点P 是斜边AB 的中点,点D ,E 分别在边AC ,BC 上,连接PD ,PE ,若PD ⊥PE.(1)求证:PD =PE ;(2)若点D ,E 分别在边AC ,CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,△PBE 是否能成为等腰三角形?若能,请直接写出∠PEB 的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时∠PEB 的度数为22.5°或67.5°或90°或45°【分析】(1)连接PC ,根据等腰直角三角形的性质可得∠DCP =45°=∠B ,从而得到CP =BP ,再由PD ⊥PE ,可得∠DPC =∠EPB ,可证得△DPC ≌△EPB ,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得∠ECP =45°=∠ABC =∠A =∠ACP ,从而得到CP =AP ,再由∵PD ⊥PE ,CP ⊥AB ,可得∠APD =∠CPE ,可证得△APD ≌△CPE ,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC,∵∠ACB =90°,AC =BC ,∴∠A =∠B =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠DCP =45°=∠B ,∴CP =BP ,∵PD ⊥PE ,∴∠DPC +∠CPE =∠CPE +∠EPB =90°,∴∠DPC =∠EPB ,在△DPC 和△EPB 中,∠DCP =∠BPC =PB ∠DPC =∠EPB,∴△DPC ≌△EPB ASA ,∴PD =PE ;(2)解:PD =PE 仍成立,理由如下:连接CP,∵∠C =90°,AC =BC ,∴∠A =∠ABC =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠ECP =45°=∠ABC =∠A =∠ACP ,∴CP =AP ,又∵PD ⊥PE ,CP ⊥AB ,∴∠DPE =∠CPA =90°,∴∠DPE +∠CPD =∠CPA +∠CPD ,∴∠APD =∠CPE ,在△APD 和△CPE 中,∠PAD =∠PCEPC =PA ∠APD =∠CPE,∴△APD ≌△CPE ASA ,∴PD =PE ;(3)解:△PBE 能成为等腰三角形,①当BE =BP ,点E 在CB 的延长线上时,则∠E =∠BPE ,又∵∠E +∠BPE =∠ABC =45°,∴∠PEB =22.5°;②当BE =BP ,点E 在CB 上时,则∠PEB =∠BPE =12180°-45° =67.5°;③当EP =EB 时,则∠B =∠BPE =45°,∴∠PEB =180°-∠B -∠BPE =90°;④当EP =PB ,点E 和C 重合,∴∠PEB =∠B =45°;综上所述,△PBE 能成为等腰三角形,∠PEB 的度数为22.5°或67.5°或90°或45°.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3在Rt△ABC中,AC=BC,∠ACB=90°,点O为AB的中点.(1)若∠EOF=90°,两边分别交AC,BC于E,F两点.①如图1,当点E,F分别在边AC和BC上时,求证:OE=OF;②如图2,当点E,F分别在AC和CB的延长线上时,连接EF,若OE=6,则S△EOF=.(2)如图3,若∠EOF=45°,两边分别交边AC于E,交BC的延长线于F,连接EF,若CF=3,EF=5,试求AE的长.【答案】(1)①见解析;②18(2)2【分析】(1)①由“ASA”可证△AOE≌△COF,可得OE=OF;②由“ASA”可证△COE≌△BOF,可得OE=OF=6,即可求解;(2)由“ASA”可证△COF≌△AOH,可得CF=AH=3,OF=OH,由“SAS”可证△EOF≌△EOH.,可得EF=EH=5,即可求解.【详解】(1)①证明:如图1,连接OC,∵AC=BC,∠ACB=90°,∴∠=∠B=45°.∵点O为AB的中点,∴∠AOC=∠EOF=90°,∴△AOC和△BOC是等腰直角三角形,∴AO=CO=BO,∴∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF;②解:如图2,连接OC,同理可证:AO=CO=BO,∠ABC=∠ACO=45°,∴∠OCE=∠OBF=135°,∵∠AOC=∠EOF=90°,∴∠COE=∠BOF,∴△COE≌△BOF(ASA),∴OE=OF=6,×OE⋅OF=18,∴SΔEOF=12故答案为:18;(2)解:如图3,连接CO,过点O作HO⊥FO,交CA的延长线于点H,∵AC=BC,∠ACB=90°,点O为AB的中点,∴AO=CO=B0,∠AOC=∠FOH=90°,∠BAC=∠BCO=45°,∴.∠COF=∠AOH,∠OCF=∠OAH=135°,∴△COF≌△AOH(ASA),∴CF=AH=3,OF=OH,∵∠EOF=45°,∠FOH=90°,∴∠EOF=∠EOH=45°,又∵OF=OH,EO=EO,∴△EOF≌△EOH(SAS),∴EF=EH=5,∴.AE=EH-AH=2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】1如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当AD=CD时,过点C作CM⊥AD于点M,如果DM=2,求CD-BD的值.【答案】(1)见解析(2)4【分析】(1)过A作AH⊥BC于点H,根据三线合一可得:BH=CH,DH=EH,即可证明;(2)过A作AH⊥BC于点H,易证△AHD≌△CMD,可得MD=DH,即可求解.【详解】(1)证明:如图过A作AH⊥BC于点H,∵AB=AC,AH⊥BC,∴BH=CH,∵AD=AE,∴DH=EH,∴BD=CE;(2)解:过A作AH⊥BC于点H,在△AHD 和△CMD 中,∠CDM =∠ADH∠CMD =∠AHD =90°CD =AD∴△AHD ≌△CMD AAS ,∴DH =MD ,∴CD -BD =CH +DH -BH -DH =2DH =2MD =4.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质“三线合一”,熟练掌握全等三角形的判定方法是解题的关键.【变式训练】1如图,△ADB 与△BCA 均为等腰三角形,AD =AB =CB ,且∠ABC =90°,E 为DB 延长线上一点,∠DAB =2∠EAC.(1)若∠EAC =20°,求∠CBE 的度数;(2)求证:AE ⊥EC ;(3)若BE =a ,AE =b ,CE =c ,求△ABC 的面积(用含a ,b ,c 的式子表示).【答案】(1)20°(2)见解析(3)12a 2+12bc 【分析】(1)先,是等腰三角形性质与三角形内角和定理求出∠D =∠DBA =70°,即可由∠CBE =180°-∠DBA -∠ABC 求解;(2)过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,证明△BAF ≌△CBG AAS ,得出AF =BG ,BF =CG ,进而求得∠AEF =∠ACB =45°,∠CEG =∠AEF =45°,即可得出∠AEC =90°,从而得出结论;(3)由(2)可知CG =BF ,AF =EF ,从而有CG =BF =EF -BE =AF -BE ,再根据S △ABC =S △AEB +S △AEC -S △BEC ,则有S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG =12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC ,即可求解.【详解】(1)解:∵∠EAC =20°,∠DAB =2∠EAC ,∴∠BAD =40°,∵AD =AB ,∴∠D =∠DBA =12180°-∠BAD =12180°-40° =70°,又∵∠ABC =90°,∴∠CBE =180°-70°-90°=20°.(2)证明:过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,∴∠AFB =∠ABC =∠CGB =90°,又∵AD =AB =CB ,∴∠BAC =∠ACB =45°,∠FAB =12∠DAB =∠CAE ,∵∠FAB +∠FBA =∠FBA +∠CBG =90°,∴∠FAB =∠CBG =∠CAE ,∴在△BAF 和△CBG 中,∠BAF =∠CBG∠AFB =∠CGB AB =BC,∴△BAF ≌△CBG AAS ,∴AF =BG ,BF =CG ,∵∠CBG =∠CAE ,设AE 、BC 交于点O ,则∠AEF =180°-∠CBG -∠BOE∠ACB =180°-∠CAE -∠AOC又∠BOE =∠AOC ,∴∠AEF =∠ACB =45°,∴AF =EF =BG ,BF =CG ,∴BF =EG =CG ,∴∠CEG =∠AEF =45°,∴∠AEC =90°,∴AE ⊥EC .(3)解:由(2)可知CG =BF ,AF =EF ,∴CG =BF =EF -BE =AF -BE ,∵S △ABC =S △AEB +S △AEC -S △BEC ,∴S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG .=12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC =12a 2+12bc .【点睛】本题考查等腰三角形的性质与判定,等腰直角三角形的性质,三角形内角和,三角形外角性质,全等三角形的判定与性质,三角形面积,属三角形综合题目,难度适中.2已知OP 平分∠MON ,如图1所示,点B 在射线OP 上,过点B 作BA ⊥OM 于点A ,在射线ON 上取一点C ,使得BC =BO .(1)若线段OA =3cm ,求线段OC 的长;(2)如图2,点D 是线段OA 上一点,作∠DBE ,使得∠DBE =∠ABO ,∠DBE 的另一边交ON 于点E ,连接DE .①∠OBC =2∠DBE 是否成立,请说明理由;②请判断三条线段CE ,OD ,DE 的数量关系,并说明理由.【答案】(1)6cm(2)①∠OBC =2∠DBE 成立,理由见解析;②CE =OD +DE ,理由见解析【分析】(1)如图所示,过点B作BH⊥OC于H,由三线合一定理得到OC=2OH,由角平分线的定义得到∠BOA=∠BOH,进一步证明△BAO≌△BHO,得到OH=OA=3cm,则OC=2OH=6cm;(2)①如图所示,过点B作BH⊥OC于H,由三线合一定理得到∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,则∠OBH=∠OBA,由∠DBE=∠ABO,即可推出∠OBC=2∠OBH=2∠DBE;②如图所示,在CE上截取CQ=OD,连接BQ,先证明∠BOD=∠BCQ,进而证明△BOD≌△BCQ,得到BD=BQ,∠OBD=∠CBQ,进一步证明∠EBQ=∠EBD,从而证明△EBD≌△EBQ,得到DE=QE,由CE=CQ+QE可证明CE=OD+DE.【详解】(1)解:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴OH=CH,即OC=2OH,∵OP平分∠MON,∴∠BOA=∠BOH,∵BA⊥OM,BH⊥OC,∴∠BAO=∠BHO=90°,又∵OB=OB,∴△BAO≌△BHO AAS,∴OH=OA=3cm,∴OC=2OH=6cm(2)解:①∠OBC=2∠DBE成立,理由如下:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴∠OBH=∠CBH,即∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,∴∠OBH=∠OBA,∵∠DBE=∠ABO,∴∠DBE=∠OBH,∴∠OBC=2∠OBH=2∠DBE;②CE=OD+DE,理由如下:如图所示,在CE上截取CQ=OD,连接BQ,∵OB=BC,∴∠BOC=∠BCO,∵△BAO≌△BHO,∴∠BOA=∠BOH,∴∠BOD=∠BCQ,∴△BOD≌△BCQ SAS,∴BD=BQ,∠OBD=∠CBQ,∠OBC,∵∠DBE=12∠OBC,∴∠OBD+∠ODE=12∴∠CBQ+∠ODE=1∠OBC,∴∠EBQ =12∠OBC ,∴∠EBQ =∠EBD ,又∵EB =EB ,∴△EBD ≌△EBQ SAS ,∴DE =QE ,∵CE =CQ +QE ,∴CE =OD +DE .【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,正确作出辅助线构造全等三角形是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】1如图,在△ABC 中,AD 平分∠BAC ,E 是BC 的中点,过点E 作FG ⊥AD 交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF =AG ;(2)BF =CG .【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明△AHF ≌△AHG ,即可得出AF =AG ;(2)过点C 作CM ∥AB 交FG 于点M ,由△AHF ≌△AHG 可得∠AFH =∠G ,根据平行线的性质得出∠CMG =∠AFH ,可得∠CMG =∠G ,进而得出CM =CG ,再根据据ASA 证明△BEF ≌△CEM ,得出BF =CM ,等量代换即可得到BF =CG .【详解】(1)证明:∵AD 平分∠BAC ,∴∠FAH =∠GAH ,∵FG ⊥AH ,∴∠AHF =∠AHG =90°,在△AHF 和△AHG 中,∠FAH =∠GAHAH =AH ∠AHF =∠AHG,∴△AHF ≌△AHG ASA,∴AF =AG ;(2)证明:过点C 作CM ∥AB 交FG 于点M ,∵△AHF ≌△AHG ,∴∠AFH =∠G ,∵CM ∥AB ,∴∠CMG =∠AFH ,∴∠CMG =∠G ,∴CM =CG ,∵E 是BC 的中点,∴BE =CE ,∵CM ∥AB ,∴∠B =∠ECM ,在△BEF 和△CEM 中,∠B =∠ECMBE =CE ∠BEF =∠CEM,∴△BEF ≌△CEM ASA ,∴BF =CM ,∴BF =CG .【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1如图所示,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若BD =1,BC =3,求:线段AC的长.【答案】5【分析】延长BD 交AC 于点E ,由题意可推出BE =AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC =CE ,AE =BE =2BD ,根据BD =1,BC =3,即可求出AC 的长度.【详解】解∶延长BD 交AC 于点E ,∵∠A =∠ABD ,∴BE =AE ,∵BD ⊥CD ,∴BE ⊥CD ,∴∠BDC =∠EDC =90°,∴∠BCD +∠EBC =∠ECD +∠BEC =90°,∵CD 平分∠ACB ,∴∠BCD =∠ECD ,∴∠EBC =∠BEC ,∴BC =CE,∵BE ⊥CD ,∴BE =2BD ,∵BD =1,BC =3,∴BE =2,CE =3,∴AE =BE =2,∴AC =AE +EC =2+3=5.【点睛】本题主要考查等腰三角形的判定与性质,解题的关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.2如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3(2)a -b(3)14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得出AE =AC =5,再利用BE =AB -AE 即可求得答案;(2)利用SAS 证明△AED ≌△ACD ,得出∠AED =∠C ,ED =CD ,由题意可得出BE =AB -AE =a -b ,再利用等角对等边证得DE =BE ,即可得出答案;(3)延长AC 、BG 交于H ,先证明△ABG ≌△AHG ,得出:BG =GH ,S △ABG =S △AHG ,利用等底等高的两个三角形面积相等可得S △CBG =S △CGH ,设S △CBG =S △CGH =x ,即可得出答案.【详解】(1)解:∵AD 平分∠BAC ,∴∠EAF =∠CAF ,∵CE ⊥AD ,∴∠AFE =∠AFC =90°,在△AEF 和△ACF 中,∠EAF =∠CAFAF =AF ∠AFE =∠AFC,∴△AEF ≌△ACF ASA ∴AE =AC =5,∵AB =8,∴BE =AB -AE =8-5=3;故答案为:3.(2)解:∵AD 平分∠BAC ,∴∠EAD =∠CAD ,在△AED 和△ACD 中,AE =AC∠EAD =∠CAD AD =AD,∴△AED ≌△ACD SAS ,∴∠AED =∠C ,ED =CD ,∵AE =AC ,AB =a ,AC =b ,∴BE =AB -AE =a -b ,在△BDE 中,∠AED =∠B +∠BDE ,∴∠C =∠B +∠BDE ,∵∠C =2∠B ,∴∠B =∠BDE ,∴DE =BE =a -b ,∴CD =a -b ;(3)解:如图,延长AC 、BG 交于H ,∵AD 平分∠BAC ,∴∠BAG =∠HAG ,∵BG ⊥AD ,∴∠AGB =∠AGH =90°,在△ABG 和△AHG 中,∠BAG =∠HAGAG =AG ∠AGB =∠AGH,∴△ABG ≌△AHG ASA ,∴BG =GH ,S △ABG =S △AHG ,∴S △CBG =S △CGH ,设S △CBG =S △CGH =x ,∵S △ACG =7,∴S △AGH =S △ACG +S △CGH =7+x ,∴S △ABG =S △AHG =7+x ,∴S △ABH =27+x =14+2x ,∴S △ABC =S △ABH -S △CBG +S △CGH =14+2x -x +x =14.【点睛】本题考查了角平分线定义,三角形面积,全等三角形的判定和性质,等腰三角形判定和性质等,熟练掌握全等三角形的判定和性质是解题关键.3△ABC 中,∠ACB =90°,AC =BC ,点D 是BC 边上的一个动点,连接AD 并延长,过点B 作BF ⊥AD 交AD 延长线于点F.(1)如图1,若AD 平分∠BAC ,AD =6,求BF 的值;(2)如图2,M 是FB 延长线上一点,连接AM ,当AD 平分∠MAC 时,试探究AC 、CD 、AM 之间的数量关系并说明理由;(3)如图3,连接CF ,①求证:∠AFC =45°;②S △BCF =354,S △ACF =21,求AF 的值.【答案】(1)3(2)AC +CD =AM ,理由见解析(3)①证明见解析;②12【分析】(1)如图,分别延长AC ,BF 交于点E .证明△ADC ≌△BEC ASA ,得到BE =AD =6,再证明△ABF ≌△AEF ,即可得到BF =EF =12BE =3;(2)如图,分别延长BF ,AC 交于点E ,由(1)可得△ACD ≌△BCE ,得CD =CE ,再证△AFM ≌△AFE 得到AM =AE ,由此可得结论;(3)如图所示,在AD 上截取AH =BF ,证明△ACH ≌△BCF ,得到CH =CF ,∠ACH =∠BCF ,进一步证明∠HCF =90°,则∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,则△CGH 、△CGF 都是等腰直角三角形,可得GH =GF =GC ,由全等三角形的性质得到S △ACH =S △BCF =354则S △CHF =S △ACF -S △ACH =494,据此求出HF =7,则CG =3.5,进一步求出AH =5则AF =AH +HF =12.【详解】(1)解:如图,分别延长AC ,BF 交于点E .∵BF ⊥AD ,∴∠AFB =∠ACB=90°,又∵∠ADC =∠BDF ,∴∠DAC =∠EBC .在△ADC 和△BEC 中,∠DAC =∠EBCAC =BC∠ACD =∠BCE =90°∴△ADC ≌△BEC ASA .∴BE =AD =6;∵BF ⊥AD ,∴∠AFB =∠AFE =90°,∵AD 平分∠BAC ,∴∠BAF =∠EAF .在△ABF 和△AEF 中,∠BAF =∠EAFAF =AF∠AFB =∠AFE∴△ABF ≌△AEF ASA .∴BF =EF =12BE =3;(2)解:AC +CD =AM ,理由如下:如图所示,延长MF ,AC 交于点E .由(1)可得,△ADC ≌△BCE ,∴CD =CE .∵BF ⊥AD ,∴∠AFM =∠AFE =90°,∵AF 平分∠MAE ,∴∠MAF =∠EAF .在△AMF 和△AEF 中,∠MAF =∠EAFAF =AF∠AFM =∠AFE∴△AFM ≌△AFE ASA .∴AM =AE .∵AE =AC +CE =AC +CD .∴AC +CD =AM .(3)解:①如图所示,在AD 上截取AH =BF ,在△ACH 和△BCF 中,AH =BF∠CAH =∠CBF AC =BC,∴△ACH ≌△BCF SAS ,∴CH =CF ,∠ACH =∠BCF ,∵∠ACH +∠BCH =90°,∴∠BCF +∠BCH =90°,即∠HCF =90°,∴∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,∴∠GCH =GCF =45°,∴△CGH 、△CGF 都是等腰直角三角形,∴GH =GF =GC ,∵△ACH ≌△BCF ,∴S △ACH =S △BCF =354∴S △CHF=S △ACF -S △ACH =494,∴12HF ⋅CG =494,即12HF ⋅12HF =494,∴HF =7,∴CG=3.5,∴1 2AH×3.5=354,∴AH=5,∴AF=AH+HF=12.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,三角形内角和定理,三角形面积,等腰直角三角形的性质与判定等等,正确作出辅助线构造全等三角形是解题的关键.4(2022春·河北石家庄·八年级校考期中)(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP平分∠MON.点A为OM上一点,过点A作AC⊥OP,垂足为C,延长AC交ON于点B,可根据证明△AOC≌△BOC,则AO=BO,AC= BC(即点C为AB的中点).(2)【类比解答】如图2,在△ABC中,CD平分∠ACB,AE⊥CD于E,若∠EAC=63°,∠B=37°,通过上述构造全等的办法,可求得∠DAE=.(3)【拓展延伸】如图3,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究BE和CD的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取∠ACB的角平分线CD;②过点A作AD⊥CD于D.已知BC=13,AC=10,△ABC面积为20,则划出的△ACD的面积是多少?请直接写出答案.【答案】(1)ASA(2)26°(3)BE=12CD,证明见解析(4)△ACD的面积是10013【分析】(1)证△AOC≌△BOC(ASA),得AO=BO,AC=BC即可;(2)延长AE交BC于点F,由问题情境可知,AC=FC,再由等腰三角形的性质得∠EFC=∠EAC=63°,然后由三角形的外角性质即可得出结论;(3)拓展延伸延长BE、CA交于点F,证△ABF≌△ACD(ASA),得BF=CD,再由问题情境可知,BE=FE =12BF ,即可得出结论;(4)实际应用延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,则S △ACD =S △ECD ,再由三角形面积关系得S △ACE =1013S △ABC =20013,即可得出结论.【详解】(1)解:∵OP 平分∠MON ,∴∠AOC =∠BOC ,∵AC ⊥OP ,∴∠ACO =∠BCO ,∵OC =OC ,∴△AOC ≌△BOC (ASA ),∴AO =BO ,AC =BC ,故答案为:ASA ;(2)解:如图2,延长AE 交BC 于点F ,由可知,AC =FC ,∴∠EFC =∠EAC =63°,∵∠EFC =∠B +∠DAE ,∴∠DAE =∠EFC -∠B =63°-37°=26°,故答案为:26°;(3)解:BE =12CD ,证明如下:如图3,延长BE 、CA 交于点F ,则∠BAF =180°-∠BAC =90°,∵BE ⊥CD ,∴∠BED =90°=∠BAC ,∵∠BDC =∠ABF +∠BED =∠ACD +∠BAC ,∴∠ABF =∠ACD ,又∵AB =AC ,∴△ABF ≌△ACD (ASA ),∴BF =CD ,由问题情境可知,BE =FE =12BF ,∴BE =12CD ;(4)解:如图4,延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,∴S △ACD =S △ECD ,∵S △ABC =20,∴S △ACE =1013S △ABC =20013,∴S △ACD =12S △ACE =10013,答:△ACD 的面积是10013.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、三角形的外角性质、角平分线定义以及三角形面积等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。

中考数学几何经典模型之“三垂直模型”.doc

中考数学几何经典模型之“三垂直模型”.doc

中考数学几何经典模型之“三垂直模型”两个全等的三角形△ACD≌△BEC,拼成如图形状,使得A、C、B三点共线。

条件:△ACD≌△BEC结论:1、△DCE是等腰直角三角形2、AB=AD+BE二、模型变形:条件:△ABD≌△BEC结论:1、BD⊥CE2、AC=BE-AD三、模型应用:在下列各图中构造出三垂直模型:1、△OCD为等腰直角三角形2、四边形OABC为正方形“三垂直模型”是一个应用非常广泛的模型,它可以应用在三角形,矩形,平面直角坐标系,网格,一次函数,反比例函数,三角函数,二次函数以及圆等诸多的中考重要考点之中,所以掌握好这一模型会使你在中考中技高一筹,下面看一道典型例题,从这道题大家可以体会到“三垂直模型”的强大之处。

例题分析:如图,在△ABC中,∠C=90°,D、E分别为BC、AC上一点,BD=AC,DC=AE,BE与AD交于点P,求∠ADC+∠BEC.如图,过点B作BF⊥BC,且BF=AE=CD,连接AF,∠FBC=90°∵∠C=90°,∴AC⊥BC,∠FBC=∠DCA.∴BF∥AC,∴四边形AFBE为平行四边形.∴∠BFA=∠AEB.在△BDF和△CAD中,BF=CD∠FBC=∠DCABD=CA∴△BDF≌△CAD(SAS).∴∠BFD=∠ADC,∠BDF=∠DAC,DF=DA.∵∠ADC+∠DAC=90°,∴∠ADC+∠BDF=90°,∴∠ADF=90°,∴∠DFA=∠DAF=45°.∵∠AEB+∠BEC=180°,∴∠AFB+∠BEC=180°,∴∠BFD+∠DFA+∠BEC=180°,∴∠ADC+∠AFD+∠BEC=180°,∠ADC+∠BEC=135°.故答案为:135.。

三垂直全等模型

三垂直全等模型

三垂直全等模型模型 三垂直全等模型如图:∠D =∠BCA =∠E =90°,BC =AC .结论:Rt △BCD ≌Rt △CAE .模型分析说到三垂直模型,不得不说一下弦图,弦图的运用在初中直角三角形中占有举足轻重的地位,很多利用垂直求角,勾股定理求边长,相似求边长都会用到从弦图支离出来的一部分几何图形去求解.图①和图②就是我们经常会见到的两种弦图. 图①图②三垂直图形变形如下图③、图④,这也是由弦图演变而来的.图③A图④DE ABC例1 如图,AB ⊥BC ,CD ⊥BC ,AE ⊥DE ,AE =DE ,求证:AB +CD =BC . DAB证明:∵AE ⊥DE ,AB ⊥BC ,DC ⊥BC ,∴∠AED =∠B =∠C =90°.∴∠A +∠AEB =∠AEB +∠CED =90°.∴∠BAE =∠CED .在△ABE 和△ECD 中,B C A CED AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ABE ≌△ECD . A∴AB =EC ,BE =CD .∴AB +CD =EC +BE =BC.例2 如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,AD =2.5cm ,BE =0.8cm ,则DE 的长为多少? EDA解答:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°.∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEB ≌△ADC .∴BE =DC =0.8cm ,CE =AD =2.5cm .∴DE =CE -CD =2.5-0.8=1.7cm .例3 如图,在平面直角坐标系中,等腰Rt △ABC 有两个顶点在坐标轴上,求第三个顶点的坐标. xy图①BA (0,3)C (-2,0)O x y 图②C (0,3)A O B (-1,0)解答:(1)如图③,过点B 作BD ⊥x 轴于点D .∴∠BCD +∠DBC =90°.由等腰Rt △ABC 可知,BC =AC ,∠ACB =90°,∴∠BCD +∠ACO =90°.∴∠DBC =∠ACO .在△BCD 和△CAO 中,BDC AOC DBC ACO BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△CAO .∴CD =OA ,BD =OC .∵OA =3,OC =2.∴CD =3,BD =2.∴OD =5.∴B (-5,2). xy图③BA (0,3)C (-2,0)OD(2)如图④,过点A 作AD ⊥y 轴于点D .在△ACD 和△CBO 中,ADC COB DAC OCB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBO .∴CD =OB ,AD =CO .∵B (-1,0),C (0,3)∴OB =1,OC =3.∴AD =3,OD =2.∴OD =5.∴A (3,2). xy图④C (0,3)A OB (-1,0)D1.如图,正方形ABCD ,BE =CF .求证:(1)AE =BF ;(2)AE ⊥BF .FA证明:(1)∵四边形ABCD 是正方形,∴AB =BD ,∠ABC =∠BCD =90°.在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCF .∴AE =BF .(2)∵△ABE ≌△BCF .∴∠BAE =∠CBF .∵∠ABE =90°,∴∠BAE +∠AEB =90°.∴∠CBF +∠AEB =90°.∴∠BGE =90°,∴AE ⊥BF .2.直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别是5和11,则b 的面积是_____. c b aD A解答:∵a 、b 、c 都是正方形,∴AC =CD ,∠ACD =90°.∵∠ACB +∠DCE =∠ACB +∠BAC =90°,∴∠BAC =∠DCE .在△ABC 和△CBE 中,ABC CED BAC DCE AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△CDE .∴AB =CE ,BC =DE .在Rt △ABC 中,2AC =2AB +2BC =2AB +2DE即b S =a S +c S =5+11=16.3.已知,△ABC 中,∠BAC =90°,AB =AC ,点P 为BC 上一动点(BP <CP ),分别过B 、C 作BE ⊥AP 于E 、CF ⊥AP 于F .(1)求证:EF =CF -BE ;(2)若P 为BC 延长线上一点,其它条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.FC A BPP解答:∵BE ⊥AP ,CF ⊥AP ,∴∠AEB =∠AFC =90°.∴∠F AC +∠ACF =90°,∵∠BAC =90°,∴∠BAE +∠F AC =90°,∴∠BAE =∠ACF .在△ABE 和△CAF 中,AEB AFC BAE ACF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE -AF ,∴EF =CF -BE .(2)如图,EF =BE +CF .理由:同(1)易证△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE +AF ,∴EF = BE + CF . FA4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,设∠BCD =α,以D 为旋转中心,将 腰DC 绕点D 逆时针旋转90°至DE .(1)当α=45°时,求△EAD 的面积;(2)当α=45°时,求△EAD 的面积;(3)当0°<α<90°,猜想△EAD 的面积与α大小有无关系?若有关,写出△EAD 的面积S 与α的关系式;若无关,请证明结论.D解答:(1)1;(2)1;(3)过点D 作DG ⊥BC 于点G ,过点E 作EF ⊥AD 交AD 延长线于点F .∵AD ∥BC ,DG ⊥BC ,∴∠GDF =90°.又∵∠EDC =90°,∴∠1=∠2.在△CGD 和△EFD 中,12DGE DFE CD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCG ≌△DEF∴EF =CG ,∵AD ∥BC ,AB ⊥BC ,AD =2,BC =3,∴BG =AD =2,∴CG =1.∴EAD S =12AD ·EF =1. ∴△EAD 的面积与α大小无关. 12FD5.向△ABC 的外侧作正方形ABDE 、正方形ACFG ,过A 作AH ⊥BC 于H ,AH 的反向延长线与EG 交于点P . 求证:BC =2AP . PE AG解答:过点G 作GM ⊥AP 于点M ,过点E 作EN ⊥AP 交AP 延长线于点N .∵四边形ACFG 是正方形,∴AC =AG ,∠CAG =90°.∴∠CAH +∠GAM =90°.又∵AH ⊥BC ,∴∠CAH +∠ACH =90°.∴∠ACH =∠GAM .在△ACH 和△GAM 中,AHC GMA ACH GAM AC GA ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ACH ≌△GAM∴CH =AM ,AH =GM .同理可证△ABH ≌△EAN∴BH =AN ,AH =EN .∴EN =GM .在△EPN 和△GPM 中, EPN GPM ENP GMP EN GM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EPN ≌△GPM . ∴NP =MP ,∴BC =BH +CH=AN +AM=AP +PN +AP -PM =2AP . P EAG M。

全等之一线三等角模型(含答案)

全等之一线三等角模型(含答案)

全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌(1)(2)1.如图,正方形的顶点在直线上,,于点,于点.求证:≌.若,求点到直线的距离.2.如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .(1)(2)3.如图,在中,,,于点,于点,,.求证:.求线段的长度.4.如图,点在线段上,,,,且,,,,求的度数.5.如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则 .6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .(1)(2)7.如图,,,,,垂足分别为,.证明:≌.若,,求的长.(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .A. B. C. D.10.如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)(3)12.如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:A. B. C. D.13.如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).14.如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 15.如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图图图图(1)(2)(3)17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)(1)(2)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:①如图①,若,,则;(填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图全等之一线三等角模型1. 一线三垂直【核心考点】:只要出现等腰直角三角形,可以过直角点作一条直线,然后过°顶点作该直线的垂线,构造三垂直模型.必有如下全等三角形:【经典图形】:【变式图形】:由得由得≌≌【备注】【教法指导】通过例1.1可以详细给学生示范一下三垂直模型的书写过程,其中倒角用的是“同角的余角相等”,提醒书生注意1.如图,正方形的顶点在直线上,,于点,于点.(1)(2)(1)(2)【解析】【标注】求证:≌.若,求点到直线的距离.【答案】(1)(2)证明见解析..∵四边形是正方形,,,∴,,,∴,,∴,∴在与中,,∴≌.过作,∵四边形是正方形,,∴,,,,∴,,,∴在与中,,∴≌,∴,∴在中,,,,∴点到直线的距离.【知识点】正方形与全等综合2.【解析】【标注】如图,直线经过正方形的顶点,分别过正方形的顶点、作于点,于点,若,,则的长为 .【答案】∵四边形是正方形,∴,,∵则是直角三角形,∴,,又∵,∴,在和中,,∴≌,∴,∴.【知识点】三垂直模型3.如图,在中,,,于点,于点,,.(1)(2)(1)(2)【解析】【标注】求证:.求线段的长度.【答案】(1)(2)证明见解析..∵,,,∴,,∴,在和中,,∴≌,∴.∵≌,∴,,∴.【知识点】三垂直模型4.【解析】如图,点在线段上,,,,且,,,,求的度数.【答案】.连接、.∵,,.∴.【标注】在和中,∴≌∴,,∴.∴为等腰三角形.同理可得为等腰三角形.∴..【能力】分析和解决问题能力【知识点】SAS【知识点】全等三角形的性质5.【解析】【标注】如图,是等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则.【答案】由三垂直模型易证≌,∴.【知识点】坐标与距离;三垂直模型6.如图,为等腰直角三角形,点坐标为,点坐标为,过作轴的垂线,垂足为点,则点坐标为 .【解析】【标注】【答案】由三垂直模型易证≌,∴,,∴点坐标为,故答案为:.【知识点】根据坐标描点、根据点写坐标;三垂直模型(1)(2)7.(1)【解析】如图,,,,,垂足分别为,.证明:≌.若,,求的长.【答案】(1)(2)证明见解析..∵,,,∴,∴,,∴,在和中,(2)【标注】,∴≌.∵≌,∴,,∴().【知识点】一线三等角模型(1)(2)(3)8.在中,,,直线经过点,且于,于.当直线绕点旋转到图①的位置时,求证:.图当直线绕点旋转到图②的位置时.求证:.图当直线绕点旋转到图③的位置时,试问:、、有怎样的等量关系?请写出这个等量关系,并加以证明.图【答案】(1)(2)(3)证明见解析.证明见解析..(1)(2)(3)【解析】【标注】∵中,,∴,又直线经过点,且于,于,∴,∴,∴,在和中,,∴≌(),∴,,∴.∵中,,直线经过点,且于,于,∴,,而,∴≌,∴,,∴.∵中,,直线经过点,且于,于,∴,,∴,∵,∴≌,∴,,∴;、、之间的关系为.【能力】推理论证能力【能力】运算能力【知识点】AAS【知识点】全等三角形的对应边与角9.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知,.则两条凳子的高度之和为 .【解析】【标注】【答案】由题意可得:,,,在和中,,∴(),故,,则两条凳子的高度之和为:.故答案为:.【知识点】全等三角形实际生活中的应用A. B. C. D.10.方法一:【解析】如图,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积是( ).【答案】A ∵,,∴,∵在和中,,方法二:【标注】∴≌(),同理 ≌(),∴,,,,∵梯形的面积,,,∴图中实线所围成的图形的面积.∵且,,,,,∴,,≌,∴,.同理证得≌得,.故,故.故选:.【知识点】三垂直模型(1)(2)11.如图,中,,,是过点的一条直线,且点,在的同侧时,于,于.求证:.变成如图,,在的异侧时,,,关系如何?并加以证明.(1)(2)【解析】【标注】【答案】(1)(2)证明见解析...∵,,,∴,∴,∴.∵,在和中,,∴≌,∴,,∴.∵,∴.成立.∵,,,∴.∵,,∴.∵,在和中,,∴≌,∴,.∵,∴.【能力】推理论证能力【能力】分析和解决问题能力【知识点】全等三角形的性质【知识点】AAS(1)(2)(3)12.(1)【解析】如图所示,已知、为直线上两点,点为直线上方一动点,连接、,另以、为边向外作正方形和正方形,过点作于点,过点作于点.如图,当点恰好在直线上时,(此时与重合),试说明.如图,当、两点都在直线的上方时,试探求三条线段、、之间数量关系,并说明理由.如图,当点在直线的下方时,线段,、之间的数量关系又如何?请写出你的结论,并说明理由.【答案】(1)(2)(3)证明见解析...∵四边形和为正方形,(2)(3)∴,,,∴,∵,∴,∴,∵,∴≌(),∴.,理由如下:过点作于,∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.,理由如下:过点作于,【标注】∵,∴,∴,∵四边形为正方形,∴,,∴,∴,∴≌(),∴,同理得:,∵,∴.【知识点】正方形与全等综合2. 一线三等角【核心考点】:只要在一条直线上出现三个角相等,一般都可以构造全等三角形解决问题.【经典图形】:【备注】【教法指导】注意三个相等的角度可以在直线同侧,也可以在直线异侧.A. B. C. D.13.【解析】如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段,要使点恰好落在上,则的长是( ).【答案】B如图所示∵,,∴,∵为等边三角形,∴,∵线段绕点逆时针旋转得到线段,【标注】要使点恰好落在上,∴,,∵,,∴,在和中,∵,∴≌,∴.故选.【知识点】等边三角形的性质14.【解析】【标注】如图,已知中,点为上一点,,两点分别在边,上,若,,,,则.ACBFDE 【答案】∵,,∴,在和中,,∴≌,∴,∵,,∴.【知识点】一线三等角模型15.【解析】【标注】如图,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .【答案】∵,∴与等高,底边比值为,∴与面积比为,又的面积为,∴与面积分别为和.∵,∴.∵,,∴.在和中,,∴≌.∴,∴.【知识点】三角形的周长与面积问题16.感知:如图①,点在正方形的边上,于点,于点,可知≌.(不要求证明)拓展:如图②,点,分别在的边,上.点,在内部的射线上,,分别是,的外角.已知,,求证:≌.【解析】【标注】应用:如图③,在等腰三角形中,,.点在边上,,点,在线段上,.若的面积为,则与的面积之和为 .图图图【答案】见解析拓展:证明:∵,∴.∵,,又,∴.在和中,,∴≌.应用:解:∵,∴.∵,,,∴.在和中,,∴≌.∴.∵在中,,∴.∵,∴.∴.【知识点】全等三角形实际生活中的应用17.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.图图图(1)(2)(3)图(1)【解析】如图,已知:在中,,,直线经过点,直线,直线,垂足分别为点、.求证:.组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图,将()中的条件改为:在中,,、、三点都在直线上,并且有(其中为任意锐角或钝角),请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图,是角平分线上的一点,且和均为等边三角形,、分别是直线上点左右两侧的动点(、、互不重合),在运动过程中线段的长度始终为,连接、.若,则周长是 .(请直接写出答案)【答案】(1)(2)(3)证明见解析.证明见解析.如图,∵直线,直线,∴,∵,∴,∵,∴,在与中,,∴≌,∴,,∴,∴.图(2)图(3)【标注】.如图,证明如下:∵,∴,∴,在和中,,∴≌,∴,,∴,∴.∵≌,∴,,∵和均为等边三角形,∴,,∴,即,在和中,,∴≌,∴且,∵,∴,∴,∴是等边三角形,∴.【知识点】多解或多种判定混合(1)18.如图,是经过顶点的一条直线,,、分别是直线上两点,且.若直线经过的内部,且、在直线上,请解决下面两个问题:21(2)【标注】①如图①,若,,则 ; (填“”、“”、“”);图②如图②,若,请添加一个关于与关系的条件 ,使①中的两个结论仍然成立,并证明这两个结论.图如图③,若直线经过的外部,,请提出、、三条线段数量关系的合理猜想(不要求证明).图【答案】(1)(2)();.,先证明,再证明≌..【知识点】全等三角形的性质。

中考数学难点突破与经典模型精讲练全等三角形中的一线三垂直模型(解析版)

中考数学难点突破与经典模型精讲练全等三角形中的一线三垂直模型(解析版)

专题03 全等三角形中的一线三垂直模型【模型展示】【已知】如图,ABC ∆为等腰直角三角形,DE CE DE AD ⊥⊥, 【证明】由BAD CBE ABD CBE ABD BAD ∠=∠⇒︒=∠+∠︒=∠+∠90,90,同理BCE ABD ∠=∠,在ABD ∆和BCE ∆中,⇒⎪⎪⎩⎪⎪⎨⎧∠=∠=∠=∠BCEABD BCAB CBE BAD ABD BCE ∆≅∆.,ABD BCE DE AD CE ∆≅∆=+【模型证明】BE△MN于E,则有以下结论成立:△△ADC△△CEB;△DE=AD+BE【证明】:△证明:△AD△DE,BE△DE,△△ADC=△BEC=90°,△△ACB=90°,△△ACD+△BCE=90°,△DAC+△ACD=90°,△△DAC=△BCE,在△ADC和△CEB中△△ADC△△CEB(AAS).△证明:由(1)知:△ADC△△CEB,△AD=CE,CD=BE,△DC+CE=DE,△DE=AD+BE.【结论二】(其他形状一线三垂直)△DE=AD﹣BE△DE =BE ﹣AD【题型演练】一、单选题1.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为( )A .40cmB .48cmC .56cmD .64cm【答案】C【详解】由等腰直角三角形的性质可得△ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【分析】解:由题意得△ADC =△CEB =△ACB =90°,AC =CB ,△△ACD =90°﹣△BCE =△CBE ,在△ACD 和△CBE 中, ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD △△CBE (AAS ),△CD =BE =3a ,AD =CE =4a ,△DE =CD +CE =3a +4a =7a ,△a =8cm ,△7a =56cm ,△DE =56cm ,故选C .【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.2.如图,点P ,D 分别是△ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为( )A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【详解】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==BDE ∴∆的面积12BD EF =⋅,142=⨯⨯=,故选:A .【点睛】本题考查了等边三角形的性质,全等三角形、勾股定理,解题的关键是根据题目的已知条件并结合图形添加适当的辅助线.3.如图,AC =CE ,△ACE =90°,AB △BD ,ED △BD ,AB =6cm ,DE =2cm ,则BD 等于( )A .6cmB .8cmC .10cmD .4cm【答案】B【分析】根据题意证明ABC CDE △≌△即可得出结论.【详解】解:△AB △BD ,ED △BD ,△90ABC CDE ∠=∠=︒,△△ACE =90°,△90ACB DCE ∠+∠=︒,△90ACB BAC ∠+∠=︒,△BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=, △()ABC CDE AAS ≌,△6cm AB CD ==,2cm BC DE ==,△268cm BD BC CD =+=+=,故选:B .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理以及性质定理是解本题的关键.二、填空题4.如图,已知ABC 是等腰直角三角形,△ACB =90°,AD △DE 于点D ,BE △DE 于点E,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD △DE ,BE △DE ,△ADC =△CEB =90°,则△DAC +△DCA =90°,△ABC 是等腰直角三角形,△ACB =90°,可得AC =CB ,推出△DAC =△ECB ,即可证明△DAC △△ECB 得到CE =AD =5,CD =BE =8,由此求解即可.【详解】解:△AD △DE ,BE △DE ,△△ADC =△CEB =90°,△△DAC +△DCA =90°,△△ABC 是等腰直角三角形,△ACB =90°,△△DCA +△BCE =90°,AC =CB△△DAC =△ECB ,△△DAC △△ECB (AAS ),△CE =AD =5,CD =BE =8,△DE =CD +CE =13,故答案为:13.【点睛】本题主要考查了全等三角形的性质与判定,垂线的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5.如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:△BE △l ,CF △l ,△△AEB =△CF A =90°.△△EAB +△EBA =90°.又△△BAC =90°,△△EAB +△CAF =90°.△△EBA =△CAF .在△AEB 和△CF A 中△△AEB =△CF A ,△EBA =△CAF ,AB =AC ,△△AEB △△CF A .△AE =CF ,BE =AF .△AE +AF =BE +CF .△EF =BE +CF .△2,5==BE CF ,△257EF =+=;故答案为:7.【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等.三、解答题6.已知:如图,AB △BD ,ED △BD ,C 是BD 上的一点,AC △CE ,AB =CD ,求证:BC =DE .【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【详解】证明:△AB △BD ,ED △BD ,AC △CE (已知)△△ACE =△B =△D =90°(垂直的意义)△△BCA +△DCE +△ACE =180°(平角的意义)△ACE =90°(已证)△△BCA +△DCE =90°(等式性质)△△BCA +△A +△B =180°(三角形内角和等于180°)△B =90°(已证)△△BCA +△A =90°(等式性质)△△DCE =△A (同角的余角相等)A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,△△ABC △△CDE (ASA )△BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.7.在△ABC 中,△ACB =90°,AC =BC ,直线MN 经过点C ,且AD △MN 于D ,BE △MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:△△ADC △△CEB ;△DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,AD =5,BE =2,求线段DE 的长.【答案】(1)△证明见解析;△证明见解析;(2)DE =3【分析】(1)△由已知可知,AD △MN ,BE △MN ,得到90ADC CEB ∠=∠=︒,再根据三角形内角和与平角性质,得到CAD BCE ∠=∠,即可证明ADC CEB △≌△(AAS );△根据ADC CEB △≌△,得到AD CE =,DC BE =,即可证明DE =AD +BE .(2)由已知可知,AD △MN ,BE △MN ,得到90ADC CEB ∠=∠=︒,再根据90CAD ACD ∠+∠=︒、90ACD BCE ∠+∠=︒,得到CAD BCE ∠=∠,可证明ADC CEB △≌△,得到CE AD =,CD BE =,即可求出DE 长.(1)△证明:△AD △MN ,BE △MN ,90ACB ∠=︒△90ADC CEB ACB ∠=∠=∠=︒,△180CAD ADC ACD ∠+∠+∠=︒,180ACD ACB BCE ∠+∠+∠=︒,△CAD BCE ∠=∠,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADC CEB △≌△(AAS );△证明:△ADC CEB △≌△,△AD CE =,DC BE =,△DE CE DC AD BE =+=+;(2)证明:△AD △MN ,BE △MN ,△90ADC CEB ∠=∠=︒,△90CAD ACD ∠+∠=︒,△90ACB ∠=︒,△90ACD BCE ∠+∠=︒△CAD BCE ∠=∠,在ADC △和CEB △中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ADC CEB △≌△(AAS ),△5CE AD ==,2CD BE ==,△523DE CE CD =-=-=.【点睛】本题主要考查了三角形全等的判定与性质,根据已知准确找到符合全等的条件是解题关键.8.(1)课本习题回放:“如图△,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =, 1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图△,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN ∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌.(3)拓展应用:如图△,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB △△ADC ,根据全等三角形的性质解答即可;(2)由条件可得△BEA =△AFC ,△4=△ABE ,根据AAS 可证明△ABE △△CAF ; (3)先证明△ABE △△CAF ,得到ACF ∆与BDE ∆的面积之和为△ABD 的面积,再根据2CD BD =故可求解.【详解】解:(1)△BE △CE ,AD △CE ,△△E =△ADC =90°,△△EBC +△BCE =90°.△△BCE +△ACD =90°,△△EBC =△DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CEB △△ADC (AAS ),△BE =DC ,CE =AD =2.5cm .△DC =CE −DE ,DE =1.7cm ,△DC =2.5−1.7=0.8cm ,△BE =0.8cm故答案为:0.8cm ;(2)证明:△△1=△2,△△BEA =△AFC .△△1=△ABE +△3,△3+△4=△BAC ,△1=△BAC ,△△BAC =△ABE +△3,△△4=△ABE .△△AEB =△AFC ,△ABE =△4,AB =AC ,△△ABE △△CAF (AAS ).(3)△BED CFD BAC ∠=∠=∠△△ABE +△BAE =△F AC +△BAE =△F AC +△ACF△△ABE =△CAF ,△BAE =△ACF又AB AC =△△ABE △△CAF ,△ABE CAF S S =△ACF ∆与BDE ∆的面积之和等于ABE ∆与BDE ∆的面积之和,即为△ABD 的面积, △2CD BD =,△ABD 与△ACD 的高相同 则13ABD ABC S S =△△=5 故ACF ∆与BDE ∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.9.问题背景:(1)如图△,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图△,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图△,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可; (2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【详解】(1)证明:△BD m ⊥,CE m ⊥,△90ADB CEA ∠=∠=︒,△90BAC ∠=︒,△90BAD CAE ∠+∠=︒,△90BAD ABD ∠+∠=︒,△ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADB CEA ≌,△AE BD =,AD CE =,△DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+ ,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,△180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,△ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== △ABD CAE ≌,△AE BD =,AD CE =,△DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F ,由(1)可知,AEC CFB ≌,△3CF AE ==,4BF CE OE OC ==-=,△1OF CF OC =-=,△点B 的坐标为()1,4B .【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.10.如图,在ABC 中,AB BC =.(1)如图△所示,直线NM 过点B ,AM MN ⊥于点M ,⊥CN MN 于点N ,且90ABC ∠=︒.求证:MN AM CN =+.(2)如图△所示,直线MN 过点B ,AM 交MN 于点M ,CN 交MN 于点N,且AMB ABC BNC ∠=∠=∠,则MN AM CN =+是否成立?请说明理由.【答案】(1)见解析;(2)MN AM CN =+仍然成立,理由见解析【分析】(1)首先根据同角的余角相等得到BAM CBN ∠=∠,然后证明()AMB BNC AAS ≅△△,然后根据全等三角形对应边相等得到AM BN =,BM CN =,然后通过线段之间的转化即可证明MN AM CN =+;(2)首先根据三角形内角和定理得到MAB CBN ∠=∠,然后证明()AMB BNC AAS ≅△△,根据全等三角形对应边相等得到MN MB BN =+,最后通过线段之间的转化即可证明MN AM CN =+.【详解】证明:(1)△AM MN ⊥,⊥CN MN ,△90AMB BNC ∠=∠=︒,△90ABM BAM ∠+∠=︒,△90ABC ∠=︒,△90ABM CBN ,△BAM CBN ∠=∠,在AMB 和BNC 中,AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△()AMB BNC AAS ≅△△,△AM BN =,BM CN =,△BN MB MN +=,△MN AM CN =+;(2)MN AM CN =+仍然成立,理由如下:△180AMB MAB ABM ABM ABC CBN ∠+∠+∠=∠+∠+∠=︒,△AMB ABC ∠=∠,△MAB CBN ∠=∠,在AMB 和BNC 中,AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△()AMB BNC AAS ≅△△,△AM BN =,NC MB =,△MN MB BN =+,△MN AM CN =+.【点睛】此题考查了全等三角形的性质和判定,同角的与相等,三角形内角和定理等知识,∠=∠.解题的关键是根据同角的余角相等或三角形内角和定理得到BAM CBN11.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足△BDA =△AEC=△BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由△BDA=△BAC=△AEC=90°得到△BAD+△EAC=△BAD+△DBA=90°,进而得到△DBA=△EAC,然后结合AB=AC得证△DBA△△EAC,最后得到DE=BD+CE;(2)由△BDA=△BAC=△AEC=α得到△BAD+△EAC=△BAD+△DBA=180°﹣α,进而得到△DBA=△EAC,然后结合AB=AC得证△DBA△△EAC,最后得到DE=BD+CE.(1)解:DE=BD+CE,理由如下,△△BDA=△BAC=△AEC=90°,△△BAD+△EAC=△BAD+△DBA=90°,△△DBA=△EAC,△AB=AC,△△DBA△△EAC(AAS),△AD=CE,BD=AE,△DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,△△BDA=△BAC=△AEC=α,△△BAD +△EAC =△BAD +△DBA =180°﹣α,△△DBA =△EAC ,△AB =AC ,△△DBA △△EAC (AAS ),△BD =AE ,AD =CE ,△DE =AD +AE =BD +CE ;【点睛】本题是三角形综合题,考查了全等三角形的判定与性质、直角三角形的性质,解题的关键是熟练掌握全等三角形的判定与性质.12.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF △DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF △△BCD ,得DF =DC ,ADF BCD ∠=∠,再证△FDC =90°即可得垂直; (2)先证△ADF △△BCD ,得DF =DC ,ADF BCD ∠=∠,再证△FDC =90°即可得垂直.(1)解:△90,ABC FA AB ∠=⊥,△90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,△△ADF △△BCD ,△DF =DC ,ADF BCD ∠=∠,△△BDC +△BCD =90°,△△BDC +△ADF =90°,△△FDC =90°,即DF △DC .(2)△90,ABC FA AB ∠=⊥,△90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,△△ADF △△BCD ,△DF =DC ,ADF BCD ∠=∠,△△BDC +△BCD =90°,△△BDC +△ADF =90°,△△FDC =90°,即DF △DC .【点睛】本题考查全等三角形的判定与性质,解题关键是能判断哪两个三角形全等.13.(1)如图1,已知:在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m ,CE △直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意钝角,请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)见解析;(2)成立,见解析【分析】(1)根据AAS 可证明△ADB △△CEA ,可得AE =BD ,AD =CE ,可得DE =BD +CE .(2)由已知条件可知△BAD +△CAE =180α︒-,△DBA +△BAD =180α︒-,可得△DBA =△CAE ,结合条件可证明△ADB △△CEA ,同(1)可得出结论.【详解】(1)如图1,△ BD △ 直线m ,CE △直线m ,△△BDA =△CEA =90°,△△BAC =90°,△△BAD +△CAE =90°△△BAD +△ABD =90°,△△CAE =△ABD ,在△ADB 和△CEA 中,BDA CEA CAE ABD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADB △△CEA (AAS ),△AE =BD ,AD =CE ,△DE =AE +AD =BD +CE ;(2)如图2,△△BDA =△BAC =α,△△DBA +△BAD =△BAD +△CAE =180α︒-,△△DBA =△CAE ,在△ADB 和△CEA 中,BDA CEA CAE ABD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADB △△CEA (AAS ),△AE =BD ,AD =CE ,△DE =AE +AD =BD +CE ;【点睛】本题主要考查了全等三角形的判定和性质,由条件证明三角形全等得到BD =AE ,CE =AD 是解题的关键.14.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由△BDA =△BAC =△AEC =90°得到△BAD +△EAC =△BAD +△DBA =90°,进而得到△DBA =△EAC ,然后结合AB =AC 得证△DBA △△EAC ,最后得到DE =BD +CE ;(2)由△BDA =△BAC =△AEC =α得到△BAD +△EAC =△BAD +△DBA =180°﹣α,进而得到△DBA =△EAC ,然后结合AB =AC 得证△DBA △△EAC ,最后得到DE =BD +CE ;(3)由△BAD >△CAE ,△BDA =△AEC =△BAC ,得出△CAE =△ABD ,由AAS 证得△ADB △△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.(1)解:DE =BD +CE ,理由如下,△△BDA =△BAC =△AEC =90°,△△BAD +△EAC =△BAD +△DBA =90°,△△DBA =△EAC ,△AB =AC ,△△DBA △△EAC (AAS ),△AD =CE ,BD =AE ,△DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,△△BDA =△BAC =△AEC =α,△△BAD +△EAC =△BAD +△DBA =180°﹣α,△△DBA =△EAC ,△AB =AC ,△△DBA △△EAC (AAS ),△BD =AE ,AD =CE ,△DE =AD +AE =BD +CE ;(3)解:△△BAD <△CAE ,△BDA =△AEC =△BAC ,△△CAE =△ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABD △△CAE (AAS ),△S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,△S △ABC =12BC •h =12,S △ABF =12BF •h ,△BC =3BF ,△S △ABF =4,△S △ABF =S △BDF +S △ABD =S △+S △ACE =4,△△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.15.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C 且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:△ADC △CEB △;△DE AD BE =+;(2)当直线MN 烧点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)△证明见解析;△证明见解析(2)证明见解析(3)DE BE AD =-(或者对其恒等变形得到AD BE DE =-,BE AD DE =+),证明见解析【分析】(1)△根据AD MN ⊥,BE MN ⊥,90ACB ∠=︒,得出CAD BCE ∠=∠,再根据AAS即可判定ADC CEB ∆≅∆;△根据全等三角形的对应边相等,即可得出CE AD =,CD BE =,进而得到DE CE CD AD BE =+=+;(2)先根据AD MN ⊥,BE MN ⊥,得到90ADC CEB ACB ∠=∠=∠=︒,进而得出CAD BCE ∠=∠,再根据AAS 即可判定ADC CEB ∆≅∆,进而得到CE AD =,CD BE =,最后得出DE CE CD AD BE =-=-;(3)运用(2)中的方法即可得出DE ,AD ,BE 之间的等量关系是:DE BE AD =-或恒等变形的其他形式.(1)解:△AD MN ⊥,BE MN ⊥,90ADC ACB CEB ∴∠=∠=︒=∠,90CAD ACD ∴∠+∠=︒,90BCE ACD ∠+∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;△ADC CEB ∆≅∆,CE AD ∴=,CD BE =,DE CE CD AD BE ∴=+=+;(2)证明:AD MN ⊥,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆;CE AD ∴=,CD BE =,DE CE CD AD BE ∴=-=-;(3)证明:当MN 旋转到题图(3)的位置时,AD ,DE ,BE 所满足的等量关系是:DE BE AD =-或AD BE DE =+或BE AD DE =+.理由如下:AD MN ⊥,BE MN ⊥,90ADC CEB ACB ∴∠=∠=∠=︒,CAD BCE ∴∠=∠,在ADC ∆和CEB ∆中,CAD BCE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADC CEB AAS ∴∆≅∆,CE AD ∴=,CD BE =,DE CD CE BE AD ∴=-=-(或者对其恒等变形得到AD BE DE =+或BE AD DE =+).【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论.16.(1)如图1,在△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD △直线m ,CE △直线m ,垂足分别为点D 、E .求证:△ABD △△CAE ;(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC =α,其中α为任意锐角或钝角.请问结论△ABD △△CAE 是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为△BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD ,CE ,若△BDA =△AEC =△BAC ,求证:△DEF 是等边三角形.【答案】(1)见详解;(2)成立,理由见详解;(3)见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得90BDA CEA ∠=∠=︒,而90BAC ∠=︒,根据等角的余角相等得CAE ABD ∠=∠,然后根据“AAS ”可判断ADB CEA ∆∆≌;(2)利用BDA BAC α∠=∠=,则180DBA BAD BAD CAE ∠∠∠∠α+=+=︒-,得出CAE ABD ∠=∠,然后问题可求证;(3)由题意易得,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,由(1)(2)易证ADB CEA ∆∆≌,则有AE BD =,然后可得FBD FAE ∠=∠,进而可证DBF EAF ∆∆≌,最后问题可得证.【详解】(1)证明:BD ⊥直线m ,CE ⊥直线m ,90BDA CEA ∴∠=∠=︒,90BAC ∠=︒,90BAD CAE ∴∠+∠=︒,90BAD ABD ∠+∠=︒,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;解:(2)成立,理由如下:α∠=∠=BDA BAC ,180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE ,CAE ABD ∴∠=∠,在ADB ∆和CEA ∆中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆∆≌;(3)证明:△△ABF 和△ACF 均为等边三角形,△,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒,△△BDA =△AEC =△BAC =120°,△180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒,△CAE ABD ∠=∠,△()ADB CEA AAS ∆∆≌,△AE BD =,△,FBD FBA ABD FAE FAC CAE∠=∠+∠∠=∠+∠,△FBD FAE∠=∠,△DBF EAF∆∆≌(SAS),△,FD FE BFD AFE=∠=∠,△60BFA BFD DFA AFE DFA DFE∠=∠+∠=∠+∠=∠=︒,△△DFE是等边三角形.【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.17.已知△ABC中,△ACB=90°,AC=BC.BE、AD分别与过点C的直线垂直,且垂足分别为D,E.学习完第十二章后,张老师首先让同学们完成问题1:如图1,若AD=2.5cm,DE=1.7cm,求BE的长;然后,张老师又提出问题2:将图1中的直线CE绕点C旋转到△ABC的外部,BE、AD与直线CE的垂直关系不变,如图2,猜想AD、DE、BE三者的数量关系,并给予证明.【答案】BE的长为0.8cm;DE=AD+BE.【分析】如图1,由“AAS”可证△ACD△△CBE,可得AD=CE=2.5cm,BE=CD,由线段的和差关系可求解;如图2,由“AAS”可证△ACD△△CBE,可得AD=CE,BE=CD,即可求解.【详解】解:如图1,△△ACB=△BEC=△ADC=90°,△△ACD+△BCE=90°=△ACD+△CAD,△△BCE=△CAD,在△ACD和△CBE中,BEC ADCBCE CADBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD△△CBE(AAS),△AD=CE=2.5cm,BE=CD,△DE=1.7cm,△BE =CD =CE -DE =2.5-1.7=0.8cm ,△BE 的长为0.8cm ;如图2,DE =AD +BE ,理由如下:△△ACB =△BEC =△ADC =90°,△△ACD +△BCE =90°=△ACD +△CAD ,△△BCE =△CAD ,在△ACD 和△CBE 中,BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ACD △△CBE (AAS ),△AD =CE ,BE =CD ,△DE =AD +BE .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,灵活运用这些性质解决问题是解题的关键.18.在△ABC 中,△ACB =90°,AC =BC ,且AD △MN 于D ,BE △MN 于E .(1)直线MN 绕点C 旋转到图(1)的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图(2)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN 绕点C 旋转到图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系(不写证明过程).【答案】(1)证明见详解(2)DE +BE =AD .理由见详解(3)DE =BE -AD (或AD =BE -DE ,BE =AD +DE 等).理由见详解.【分析】(1)根据题意由垂直得△ADC =△BEC =90°,由同角的余角相等得:△DAC =△BCE ,因此根据AAS 可以证明△ADC △△CEB ,结合全等三角形的对应边相等证得结论;(2)由题意根据全等三角形的判定定理AAS 推知△ACD △△CBE ,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换证得DE +BE =AD ;(3)由题意可知DE 、AD 、BE 具有的等量关系为:DE =BE -AD (或AD =BE -DE ,BE =AD +DE等).证明的方法与(2)相同.(1)证明:如图1,△AD △MN ,BE △MN ,△△ADC =△BEC =90°,△△DAC +△ACD =90°,△△ACB =90°,△△ACD +△BCE =90°,△△DAC =△BCE ,在△ADC 和△CEB 中,△ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ADC △△CEB ;△DC =BE ,AD =EC ,△DE =DC +EC ,△DE =BE +AD .(2)解:DE +BE =AD .理由如下:如图2,△△ACB =90°,△△ACD +△BCE =90°.又△AD △MN 于点D ,△△ACD +△CAD =90°,△△CAD =△BCE .在△ACD 和△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ACD △△CBE (AAS ),△CD =BE ,AD =CE ,△DE +BE =DE +CD =EC =AD ,即DE +BE =AD .(3)解:DE =BE -AD (或AD =BE -DE ,BE =AD +DE 等).理由如下:如图3,易证得△ADC △△CEB ,△AD =CE ,DC =BE ,△DE=CD-CE=BE-AD,即DE=BE-AD.【点睛】本题属于几何变换综合题,考查等腰直角三角形和全等三角形的性质和判定,熟练掌握全等三角形的四种判定方法是关键:SSS、SAS、AAS、ASA;在证明线段的和与差时,利用全等三角形将线段转化到同一条直线上得出结论.。

中考必会几何模型:三垂直全等模型

中考必会几何模型:三垂直全等模型

三垂直全等模型模型三垂直全等模型如图:∠D=∠BCA=∠E=90°,BC=AC.结论:Rt△BCD≌Rt△CAE.模型分析说到三垂直模型,不得不说一下弦图,弦图的运用在初中直角三角形中占有举足轻重的地位,很多利用垂直求角,勾股定理求边长,相似求边长都会用到从弦图支离出来的一部分几何图形去求解.图①和图②就是我们经常会见到的两种弦图.图①图②三垂直图形变形如下图③、图④,这也是由弦图演变而来的.图③图④DEABC例1如图,AB⊥BC,CD⊥BC,AE⊥DE,AE=DE,求证:AB+CD=BC.D证明:∵AE⊥DE,AB⊥BC,DC⊥BC,∴∠AED=∠B=∠C=90°.∴∠A+∠AEB=∠AEB+∠CED=90°.∴∠BAE=∠CED.在△ABE和△ECD中,AB C A CED AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ECD .∴AB =EC ,BE =CD .∴AB +CD =EC +BE =BC.例2 如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,AD =2.5cm ,BE =0.8cm ,则DE 的长为多少?EDAB解答:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°.∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEB ≌△ADC .∴BE =DC =0.8cm ,CE =AD =2.5cm .∴DE =CE -CD =2.5-0.8=1.7cm .例3 如图,在平面直角坐标系中,等腰Rt △ABC 有两个顶点在坐标轴上,求第三个顶点的坐标.xy图①BA (0,3)C (-2,0)O解答:(1)如图③,过点B 作BD ⊥x 轴于点D .∴∠BCD +∠DBC =90°.由等腰Rt △ABC 可知,BC =AC ,∠ACB =90°,∴∠BCD +∠ACO =90°.∴∠DBC =∠ACO .在△BCD 和△CAO 中,BDC AOC DBC ACO BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△CAO .∴CD =OA ,BD =OC .∵OA =3,OC =2.∴CD =3,BD =2.∴OD =5.∴B (-5,2).(2)如图④,过点A 作AD ⊥y 轴于点D .在△ACD 和△CBO 中,ADC COB DAC OCB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBO .∴CD =OB ,AD =CO .∵B (-1,0),C (0,3)∴OB =1,OC =3.∴AD =3,OD =2.∴OD =5.∴A (3,2). 跟踪练习1.如图,正方形ABCD ,BE =CF .求证:(1)AE =BF ;(2)AE ⊥BF .F证明:(1)∵四边形ABCD 是正方形,∴AB =BD ,∠ABC =∠BCD =90°.在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCF .∴AE =BF .(2)∵△ABE ≌△BCF .∴∠BAE =∠CBF .∵∠ABE =90°,∴∠BAE +∠AEB =90°.∴∠CBF +∠AEB =90°.∴∠BGE =90°,∴AE ⊥BF .2.直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别是5和11,则b 的面积是_____.解答:∵a 、b 、c 都是正方形,∴AC =CD ,∠ACD =90°.∵∠ACB +∠DCE =∠ACB +∠BAC =90°,∴∠BAC =∠DCE .在△ABC 和△CBE 中,ABC CED BAC DCE AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△CDE .∴AB =CE ,BC =DE .在Rt △ABC 中,2AC =2AB +2BC =2AB +2DE即b S =a S +c S =5+11=16.3.已知,△ABC 中,∠BAC =90°,AB =AC ,点P 为BC 上一动点(BP <CP ),分别过B 、C 作BE ⊥AP 于E 、CF ⊥AP 于F .(1)求证:EF =CF -BE ;(2)若P 为BC 延长线上一点,其它条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.P解答:∵BE ⊥AP ,CF ⊥AP ,∴∠AEB =∠AFC =90°.∴∠F AC +∠ACF =90°,∵∠BAC =90°,∴∠BAE +∠F AC =90°,∴∠BAE =∠ACF .在△ABE 和△CAF 中,AEB AFC BAE ACF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE -AF ,∴EF =CF -BE .(2)如图,EF =BE +CF .理由:同(1)易证△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE +AF ,∴EF = BE + CF .4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,设∠BCD =α,以D 为旋转中心,将 腰DC 绕点D 逆时针旋转90°至DE .(1)当α=45°时,求△EAD 的面积;(2)当α=45°时,求△EAD 的面积;(3)当0°<α<90°,猜想△EAD 的面积与α大小有无关系?若有关,写出△EAD 的面积S 与α的关系式;若无关,请证明结论.EADB解答:(1)1;(2)1;(3)过点D 作DG ⊥BC 于点G ,过点E 作EF ⊥AD 交AD 延长线于点F .∵AD ∥BC ,DG ⊥BC ,∴∠GDF =90°.又∵∠EDC =90°,∴∠1=∠2.在△CGD 和△EFD 中,12DGE DFE CD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCG ≌△DEF∴EF =CG ,∵AD ∥BC ,AB ⊥BC ,AD =2,BC =3,∴BG =AD =2,∴CG =1.∴EADS =12AD ·EF =1. ∴△EAD 的面积与α大小无关.5.向△ABC 的外侧作正方形ABDE 、正方形ACFG ,过A 作AH ⊥BC 于H ,AH 的反向延长线与EG 交于点P . 求证:BC =2AP .PFD E AG解答:过点G 作GM ⊥AP 于点M ,过点E 作EN ⊥AP 交AP 延长线于点N . ∵四边形ACFG 是正方形,∴AC =AG ,∠CAG =90°.∴∠CAH +∠GAM =90°.又∵AH ⊥BC ,∴∠CAH +∠ACH =90°.∴∠ACH =∠GAM .在△ACH 和△GAM 中,AHC GMAACH GAM AC GA∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ACH ≌△GAM∴CH =AM ,AH =GM .同理可证△ABH ≌△EAN∴BH =AN ,AH =EN .∴EN =GM .在△EPN 和△GPM 中,EPN GPMENP GMP EN GM∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△EPN ≌△GPM .∴NP =MP ,∴BC =BH +CH=AN +AM=AP +PN +AP -PM=2AP .。

初中数学模型3-一线三垂直模型构造全等三角形

初中数学模型3-一线三垂直模型构造全等三角形

例6
如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE =2,矩形的周长为16,则AE的长是( )
解析: ∵矩形ABCD中,EF⊥EC, ∴∠DEC+∠DCE=90°,∠DEC+∠AEF=90° ∴∠AEF=∠DCE, 又∵EF=EC ∴△AEF≌△DCE(AAS) ∴AE=CD ∵矩形的周长为16,即2CD+2AD=16, ∴CD+AD=8 ∴AD-2+AD=8 AD=5 ∴AE=AD-DE=5-2=3.
例4
如图,在△ABC中,∠ABC=45°,点F是△ABC的高AD、 BE的交点,已知CD=4 ,AF=2,则线段BC的长为( )
解析: ∵AD是△ABC的高 ∴∠ADB=90° ∵∠ABC=45° ∴∠BAD=45° ∴∠ABC=∠BAD ∴AD=BD ∵∠CAD+∠AFE=90°,∠CAD+∠C=90°,∠AFE=∠BFD ∴∠AFE=∠C 在△BDF和△ADC中 ∠CAD=∠FBD
AD=BD ∠BDF=∠ADC ∴△BDF≌△ADC(ASA) ∴DF=CD=4 ∴AD=AF +DF=2+4=6=BD ∴BC=BD+CD=6+4=10
例5
如图所示,直线α经过正方形ABCD的顶点A,分别过 顶点B,D作DE⊥α于 点F,若DE=4,BF=3,则EF的长为 ()
解析: ∵ABCD是正方形 ∴AB=AD,∠ABC=∠BAD=90° ∵∠BAF+∠ABF=∠BAF+∠DAE ∴∠ABF=∠DAE 在△AFB和△AED中 ∠ABF=∠DAE,∠ AFB=∠AED,AB=AD ∴△AFB≌△AED ∴AF=DE=4,BF=AE=3 ∴EF=AF+AE=4+3=7

一线三垂直与一线三等角(解析版)

一线三垂直与一线三等角(解析版)

一线三垂直与一线三等角一、基础知识回顾1)三角形内角和定理:三角形三个内角和等于180°2)1平角=180度二、模型的概述:1)一线三垂直模型[模型概述]只要出现等腰直角三角形,可以过直角点作一条直线,然后过45°顶点作直线的垂线,构造三垂直,所得两个直角三角形全等。

根据全等三角形倒边,得到线段之间的数量关系。

基础构造1构造2一线三垂直模型一:如图AB⊥BC,AB=BC,CE⊥DE,AD⊥DE,则∆ABD≌∆BCE,DE= AD+EC证明:∵CE⊥DE,AD⊥DE,AB⊥BC∴∠CEB=∠ADB=∠ABC=90°∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3在∆ABD和∆BCE中,∠1=∠3∠CEB=∠ADB=90°AB=BC∴∆ABD≌∆BCE(AAS)∴AD=BE,EC=BD则DE=BE+BD=AD+EC一线三垂直模型二:如图AB⊥BC,AB=BC,CE⊥DE,AD⊥DE,则∆ABD≌∆BCE,DE= AD-EC证明:∵CE⊥DE,AD⊥DE,AB⊥BC∴∠CEB=∠ADB=∠ABC=90°∴∠A+∠ABD=90°,∠ABD+∠CBE=90°∴∠A=∠CBE在∆ABD和∆BCE中,∠A=∠CBE∠CEB=∠ADB=90°AB=BC∴∆ABD≌∆BCE(AAS)∴AD=BE,EC=BD则DE=BE-BD=AD-EC一线三垂直其它模型1)图1,已知∠AOC=∠ADB=∠CED=90°,AB=DC,得∆ADB≌∆DEC2)图2,延长DE交AC于点F,已知∠DBE=∠ABC=∠EFC=90°,AC=DE,得∆ABC≌∆DBE图1图22)一线三等角模型[模型概述]三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。

一线三等角类型:(同侧)已知∠A=∠CPD=∠B=∠α,CP=PD(异侧)已知∠EAC=∠ABD=∠DPC=∠α,CP=PD证明:以右图为例∵∠ACP+∠A+∠CPA=180°,∠DPB+∠CPD+∠CPA=180°而∠CAP=∠CPD=∠PBD=∠α∴∠ACP=∠DPB又∵CP=PD∴∆ACP≌∆BPD(AAS)【基础过关练】1.如下图所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=6cm,AD=9cm,则BE的长是()A.6cmB.1.5cmC.3cmD.4.5cm【答案】C【分析】本题可通过全等三角形来求BE的长.△BEC和△CDA中,已知了一组直角,∠CBE和∠ACD同为∠BCE的余角,AC=BC,可据此判定两三角形全等;那么可得出的条件为CE=AD,BE=CD,因此只需求出CD的长即可.而CD的长可根据CE即AD的长和DE的长得出,由此可得解.【详解】解:∵∠ACB=90°,BE⊥CE,∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;∴∠ACD=∠CBE,又AC=BC,∴△ACD≌△CBE;∴EC=AD,BE=DC;∵DE=6cm,AD=9cm,则BE的长是3cm.故选C.【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.2.如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于()A.3B.2C.94D.92【答案】A【分析】根据等腰三角形的性质得到∠B=∠C,推出∠BAD=∠CDE,根据线段垂直平分线的性质得到AD=ED,根据全等三角形的性质得到CD=AB=9,BD=CE,即可得到结论.【详解】解:∵AB=AC=9,∴∠B=∠C,∵∠ADE=∠B,∠BAD=180°-∠B-∠ADB,∠CDE=180°-∠ADE-∠ADB,∴∠BAD=∠CDE,∵AE的中垂线交BC于点D,∴AD=ED,在△ABD与△DCE中,∠BAD=∠CDE ∠B=∠CAD=ED,∴△ABD≌△DCE(AAS),∴CD=AB=9,BD=CE,∵CD=3BD,∴CE=BD=3故选:A.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,全等三角形的性质,属于基础题.3.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cmB.8cmC.10cmD.4cm【答案】B【分析】根据题意证明△ABC≌△CDE即可得出结论.【详解】解:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,∵∠ACE=90°,∴∠ACB+∠DCE=90°,∵∠ACB+∠BAC=90°,∴∠BAC=∠DCE,在△ABC和△CDE中,∠ABC=∠CDE=90°∠BAC=∠DCE AC=CE,∴△ABC≌△CDE(AAS),∴AB=CD=6cm,BC=DE=2cm,∴BD=BC+CD=2+6=8cm,故选:B.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理以及性质定理是解本题的关键.4.如图,△ABC中,AC=BC,∠ACB=90°,A(0,3),C(1,0),则点B的坐标为________.【答案】(4,1)【分析】如图,过点B作BD⊥x轴于D,根据点A、点C坐标可得OA、OC的长,根据同角的余角相等可得∠OAC=∠DCB,利用AAS可证明△OAC≌△DCB,根据全等三角形的性质可得BD= OC,CD=OA,即可求出OD的长,进而可得答案.【详解】如图,过点B作BD⊥x轴于D,∵A(0,3),C(1,0),∴OA=3,OC=1,∵∠ACB=90°,∴∠OCA+∠DCB=90°,∵∠OAC+∠OCA=90°,∴∠OAC=∠DCB,在△OAC和△DCB中,∠AOC=∠CDB ∠OAC=∠DCB AC=BC,∴△OAC≌△DCB,∴BD=OC=1,CD=OA=3,∴OD=OC+CD=4,∴点B坐标为(4,1).故答案为:(4,1)【点睛】本题考查坐标与图形及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.5.如图,△ABC 为等腰直角三角形AC =BC ,若A (-3,0),C (0,2),则点B 的坐标为_________.【答案】(2,-1)【分析】过点B 作BT ⊥y 轴于点T .证明△AOC ≅△CTB ,可得结论.【详解】解:如图中,过点B 作BT ⊥y 轴于点T .∵A (-3,0),C (0,2),∴OA =3,OC =2,∵∠AOC =∠ACB =∠CTB =90°,∴∠ACO +∠BCT =90°,∠BCT +∠CBT =90°,∴∠ACO =∠CBT ,在△AOC 和△CTB 中,∠AOC =∠CTB∠ACO =∠CBT AC =CB,∴△AOC ≅△CTB (AAS ),∴AO =CT =3,BT =CO =2,∴OT =CT -CO =1,∴B (2,-1),故答案为:(2,-1).【点睛】本题考查了坐标与图形,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.6.如图所示,△ABC 中,AB =AC ,∠BAC =90°.直线l 经过点A ,过点B 作BE ⊥l 于点E ,过点C 作CF ⊥l 于点F .若BE =2,CF =5,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:∵BE⊥l,CF⊥l,∴∠AEB=∠CFA=90°.∴∠EAB+∠EBA=90°.又∵∠BAC=90°,∴∠EAB+∠CAF=90°.∴∠EBA=∠CAF.在△AEB和△CFA中∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,∴△AEB≌△CFA.∴AE=CF,BE=AF.∴AE+AF=BE+CF.∴EF=BE+CF.∵BE=2,CF=5,∴EF=2+5=7;故答案为:7.【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等.7.如图,一个等腰直角三角形ABC物件斜靠在墙角处(∠O=90°),若OA=50cm,OB=28cm,则点C离地面的距离是____cm.【答案】28【分析】作CD⊥OB于点D,依据AAS证明ΔAOB≅ΔBDC,GMF,再根据全等三角形的性质即可得到结论.【详解】解:过点C作CD⊥OB于点D,如图,∴∠CDB=∠AOB=90°∵ΔABC是等腰直角三角形∴AB=CB,∠ABC=90°∴∠ABO+∠CBD=90°又∠CBD+∠BCD=90°∴∠ABO=∠BCD在ΔABO和ΔBCD中,∠AOB=∠BDC ∠ABO=∠BCD AB=CB∴ΔABO≅ΔBCD(AAS)∴CD=BO=28cm故答案为:28.【点睛】本题主要考查了等腰直角三角形的性质、三角形全等的判定与性质,正确作出辅助线构造全等三角形是解答本题的关键.8.如图,AB=BC,AB⊥BC,AE⊥BD于F,BC⊥CD,求证:EC=AB-CD.【答案】见解析【分析】利用ASA证明出△ABE≌△BCD,在通过等量代换进行解答.【详解】证明:∵AB⊥BC,CD⊥BC,∴∠ABC=∠ACD=90°∴∠AEB+∠A=90°∵AE⊥BD∴∠BFE=90°∴∠AEB+∠FBE=90°∴∠A=∠FBE,又∵AB=BC,∴△ABE≌△BCD,∴AB=BC,BE=CD,∴EC=BC-BE=AB-CD【点睛】本题考查了三角形全等的判定及性质,解题的关键是掌握三角形的判定定理,再利用等量代换的思想来间接证明.【提高测试】1.如图,在平面直角坐标系中,点A、B分别在x轴的负半轴和正半轴上,以AB为边向上作正方形ABCD,四边形OEFG是其内接正方形,若直线OF的表达式是y=2x,则S正方形ABCDS正方形OEFG的值为()A.43B.85C.169D.94【答案】B【分析】根据正方形性质易得△GBO≅△FCG,从而可得CG=BO、FC=GB,设OB=a,BG=b,可得F点坐标为(a-b,a+b),根据F点在直线OF上,可求出a=3b,然后即可根据正方形面积和勾股定理求出面积比.【详解】解:在正方形ABCD,正方形OEFG中,∠OBG=∠OGF=∠GCF=90°,FG=OG,∴∠OGB+∠GOB=∠OGB+∠CGF=90°,∴∠GOB=∠CGF,在△GBO和△FCG中,∠OBG=∠GCF ∠GOB=∠FGC OG=FG∴△GBO≅△FCG(AAS)∴CG=BO、FC=GB,设CG=BO=a、FC=GB=b,∴BC=BG+CG=a+b,HF=OB-FC=a-b,∴点F坐标为(a-b,a+b),∵直线OF的表达式是y=2x,∴2(a-b)=a+b,∴a=3b,∴S正方形ABCD=BC2=(a+b)2=(3b+b)2=16b2,S正方形OEFG=OG2=OB2+BG2=a2+b2=(3b)2+b2=10b2,∴S正方形ABCDS正方形OEFG=16b210b2=85,故选B.【点睛】本题主要考查了一次函数与几何综合,解题关键是根据正方形性质求证△GBO≅△FCG (AAS),从而用参数表示点F坐标,再直线OF解析式求出线段之间关系.2.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S 是______.【答案】50【分析】易证△AEF ≌△BAG ,△BCG ≌△CDH 即可求得AF =BG ,AG =EF ,GC =DH ,BG =CH ,即可求得梯形DEFH 的面积和△AEF ,△ABG ,△CGB ,△CDH 的面积,即可解题.【详解】解:∵∠EAF +∠BAG =90°,∠EAF +∠AEF =90°,∴∠BAG =∠AEF ,∵在△AEF 和△BAG 中,∠F =∠AGB =90°∠AEF =∠BAG AE =AB,∴△AEF ≌△BAG (AAS ),同理△BCG ≌△CDH ,∴AF =BG ,AG =EF ,GC =DH ,BG =CH ,∵梯形DEFH 的面积=12(EF +DH )•FH =80,S △AEF =S △ABG =12AF •AE =9,S △BCG =S △CDH =12CH •DH =6,∴图中实线所围成的图形的面积S =80-2×9-2×6=50,故答案为:50.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF ≌△BAG ,△BCG ≌△CDH 是解题的关键.3.已知直线l 经过正方形ABCD 的顶点A ,过点B 和点D 分别作直线的垂线BM 和DN ,垂足分别为点M 、点N ,如果BM =5,DN =3,那么点M 和点N 之间的距离为_______.【答案】8或2##2或8【分析】根据正方形的性质得出∠NAD =∠MBA ,再利用全等三角形的判定得出△ABM ≌△AND ,进而求出MN 的值,注意分类讨论.【详解】如图1,在正方形ABCD 中,∵∠NAD +∠BAM =90°,∠ABM +∠BAM =90°,∴∠NAD =∠MBA ,∵在△ABM 和△DAN 中,∠AMB =∠AND∠ABM =∠NADAB =AD∴△ABM ≌△DAN (AAS ),∴AM =DN =3,BM =AN =5,∴MN =AM +AN =3+5=8,如图2,在正方形ABCD 中,∵∠DAN +∠BAM =90°,∠ABM +∠BAM =90°,∴∠NAD =∠MBA ,∵在△ABM 和△DAN 中,∠AMB =∠DNA∠ABM =∠NADAB =AD∴△ABM ≌△DAN (AAS ),∴AM =DN =3,BM =AN =5,∴MN =AN -AM =5-3=2,综上:MN =8或2.故答案为:8或2.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,将直线l 与正方形ABCD 的位置分类讨论是解题关键.4.如图,已知△ABC 中,AB =AC ,∠BAC =90°,分别过B 、C 向过A 的直线作垂线,垂足分别为E 、F .(1)如图1,过A 的直线与斜边BC 不相交时,直接写出线段EF 、BE 、CF 的数量关系是______;(2)如图2,过A 的直线与斜边BC 相交时,探究线段EF 、BE 、CF 的数量关系并加以证明;(3)在(2)的条件下,如图3,直线FA 交BC 于点H ,延长BE 交AC 于点G ,连接BF 、FG 、HG ,若∠AHB =∠GHC ,EF =CF =6,EH =2FH ,四边形ABFG 的面积是90,求△GHC的面积.【答案】(1)数量关系为:EF =BE +CF ;(2)数量关系为:EF =BE -CF .证明见详解;(3)S △GHC =15.【分析】(1)数量关系为:EF =BE +CF .利用一线三直角得到∠BEA =∠AFC =90°,∠EBA =∠FAC ,再证△EBA ≌△FEC (AAS )可得BE =AF ,AE =CF即可;(2)数量关系为:EF=BE-CF.先证∠BEA=∠AFC=90°,∠EBA+∠EAB=90°,∠EAB+∠FAC==90°,可得∠EBA=∠FAC,再证△EBA≌△FEC(AAS),可得BE=AF,AE=CF即可;(3)先由(2)结论EF=BE-CF;EF=CF=6,求出BE=AF=12,由EH=2FH,可求FH=2,EH=4,利用对角线垂直的四边形面积可求BG=2×90AF =18012=15,再求EG=3,AH=10,分别求出S△ACF=12AF⋅FC=36,S△HCF=12HF⋅FC=6,S△AGH=12AH⋅EG=15,利用面积差即可求出.【详解】解:(1)数量关系为:EF=BE+CF.∵BE⊥EF,CF⊥EF,∠BAC=90°,∴∠BEA=∠AFC=90°,∠EBA+∠EAB=90°,∠EAB+∠FAC=180°-∠BAC=90°,∴∠EBA=∠FAC,∵在△EBA和△FEC中,∠AEB=∠CFA ∠EBA=∠FAC AB=CA,∴△EBA≌△FAC(AAS),∴BE=AF,AE=CF,∴EF=AF+AE=BE+CF;(2)数量关系为:EF=BE-CF.∵BE⊥AF,CF⊥AF,∠BAC=90°,∴∠BEA=∠AFC=90°,∠EBA+∠EAB=90°,∠EAB+∠FAC==90°,∴∠EBA=∠FAC,∵在△EBA和△FEC中,∠AEB=∠CFA ∠EBA=∠FAC AB=CA,∴△EBA≌△FAC(AAS),∴BE=AF,AE=CF,∴EF=AF-AE=BE-CF;(3)∵EF=BE-CF;EF=CF=6,∴BE=AF=EF+CF=6+6=12,∵EH=2FH,EH+FH=EF=6,∴2FH+FH=6,解得FH=2,∴EH=2FH=4,S四边形ABFG=12AF⋅BG=90,∴BG=2×90AF =18012=15,∴EG=BG-BE=15-12=3,AH=AE+EH=6+4=10,∵S△ACF=12AF⋅FC=12×12×6=36,S△HCF=12HF⋅FC=12×2×6=6,S△AGH=12AH⋅EG=12×10×3=15,∴S△GHC=S△ACF-S△HCF-S△AGH=36-6-15=15.【点睛】本题考查图形变换探究线段和差问题,感知,探究以及应用,三角形全等判定与性质,三角形面积,四边形面积,与三角形高有关的计算,掌握图形变换探究线段和差问题,感知,探究以及应用,三角形全等判定与性质,三角形面积,四边形面积,与三角形高有关的计算是解题关键.5.如图1所示,已知△ABC中,∠ACB=90°,AC=BC,直线m经过点C,过A、B两点分别作直线m的垂线,垂足分别为E、F.(1)如图1,当直线m在A、B两点同侧时,求证:EF=AE+BF;(2)若直线m绕点C旋转到图2所示的位置时(BF<AE),其余条件不变,猜想EF与AE,BF有什么数量关系?并证明你的猜想;(3)若直线m绕点C旋转到图3所示的位置时(BF>AE)其余条件不变,问EF与AE,BF的关系如何?直接写出猜想结论,不需证明.【答案】(1)见解析;(2)EF=AE-BF,理由见解析;(3)EF=BF-AE,理由见解析【分析】(1)先证得∠AEC=∠BFC=90°,∠EAC=∠FCB,根据AAS证△EAC≌△FCB,推出CE =BF,AE=CF即可;(2)类比(1)证得对应的两个三角形全等,由此可推出CE=BF,AE=CF,再根据EF=CF-CE即可得到EF=AE-BF;(3)类比(1)证得对应的两个三角形全等,由此可推出CE=BF,AE=CF,再根据EF=CE-CF即可得到EF=BF-AE.【详解】(1)证明:∵AE⊥EF,BF⊥EF,∠ACB=90°,∴∠AEC=∠BFC=∠ACB=90°,∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,∠AEC=∠CFB ∠EAC=∠FCB AC=BC,∴△EAC≌△FCB(AAS),∴CE=BF,AE=CF,∵EF=CF+CE,∴EF=AE+BF;(2)解:EF=AE-BF,理由如下:∵AE⊥EF,BF⊥EF,∠ACB=90°,∴∠AEC=∠BFC=∠ACB=90°,∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,∠AEC=∠CFB ∠EAC=∠FCB AC=BC,∴△EAC≌△FCB(AAS),∴CE=BF,AE=CF,∵EF=CF-CE,∴EF=AE-BF;(3)解:EF=BF-AE,理由如下:∵AE⊥EF,BF⊥EF,∠ACB=90°,∴∠AEC=∠BFC=∠ACB=90°,∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,∠AEC=∠CFB ∠EAC=∠FCB AC=BC,∴△EAC≌△FCB(AAS),∴CE=BF,AE=CF,∵EF=CE-CF,∴EF=BF-AE.【点睛】本题考查了全等三角形的判定与性质,主要涉及到了全等三角形的判定与性质,等量代换等知识点,难度不大,熟练掌握全等三角形的判定与性质是解决本题的关键.6.如图1,在平面直角坐标中,点A0,m,B m,0,C0,-m,其中m>0,点P为线段OA上任意一点,连接BP,CE⊥BP于E,AD⊥BP于D.(1)求证:AD=BE;(2)当m=3时,若点N-3,0,请你在图1中连接CD,EN交于点Q.求证:EN⊥CD;(3)若将“点P为线段OA上任意一点”,改为“点P为线段OA延长线上任意一点”,其他条件不变,连接CD,EN⊥CD,垂足为F,交y轴于点H,交x轴于点N,请在图2中补全图形,求点N的坐标(用含m的代数式表示).【答案】(1)见解析;(2)见解析;(3)见解析,-m,0【分析】(1)先根据点A0,m,得到OA=OB=OC=m,则由三线合一定理得,C0,-m,B m,0到,AB=BC,证明∠ABC=90°,推出∠CBE=∠BAD即可证明△ABD≅△BCE,得到AD=BE;(2)先根据点N-3,0,得到OA=OB=OC=ON=3,则AC=BN=6,再证明∠DAC=∠EBN,即可利用SAS证明△DAC≅△EBN得到∠ACD=∠BNE,再由∠NGF=∠CGO,可以推出∠NFG =∠COG=90°,即CD⊥EN;(3)同样先证明∠CBE=∠BAD,推出△ABD≅△BCE,得到AD=BE,即可得到∠CAD=∠NBE,再由∠NOH=∠CFH=90°,∠OHN=∠FHC,得到∠ACD=∠BNE,则△ACD≅△BNE,推出AC =BN=2m.【详解】证明:(1)如图1,∵点A0,m,C0,-m,,B m,0∴OA=OB=OC=m,∵OB⊥AC,∴AB=BC,∵∠AOB=∠AOC=90°,∴∠BAC=∠BCA=∠ABO=∠CBO=45°,∴∠ABC=90°,∵AD⊥BP,CE⊥BP,∴∠ABC=∠D=∠CEB=90°∴∠ABD+∠CBE=∠ABD+∠BAD=90°,∴∠CBE=∠BAD,∴△ABD≅△BCE AAS,∴AD=BE;(2)如图2,由(1)得△ABD≅△BCE,∴AD=BE,∵m=3,点N-3,0,∴OA=OB=OC=ON=3,∴AC=BN=6,∵∠CBE=∠BAD,∠BAC=∠CBO=45°,∴∠BAD-∠BAC=∠CBE-∠CBO,∴∠DAC=∠EBN,又∵BE=AD,AC=BN,∴△DAC≅△EBN SAS∴∠ACD=∠BNE,∵∠NGF=∠CGO,∴∠NFG=∠COG=90°,∴CD⊥EN;(3)如图3,由(1)得OA=OB=OC=m,AB=BC,∠BAC=∠CBO=45°,∠ABC=90°,∵AD⊥BP,CE⊥BP,∴∠ABC=∠ADB=∠CEB=90°,∵∠ABD+∠CBE=∠ABD+∠BAD=90°,∴∠CBE=∠BAD,∴△ABD≅△BCE AAS,∴AD=BE,∵∠BAC+∠BAD=∠CBO+∠CBE,∴∠CAD=∠NBE,∵EN⊥CD,x轴⊥y轴,∴∠NOH=∠CFH=90°,∵∠OHN=∠FHC,∴∠ACD=∠BNE,∴△ACD≅△BNE AAS∴AC=BN=2m,∴点N的坐标为-m,0.【点睛】本题主要考查了坐标与图形,全等三角形的性质与判定,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.7.在平面直角坐标系中,点A的坐标为4,0,点B为y轴正半轴上的一个动点,以B为直角顶点,AB为直角边在第一象限作等腰Rt △ABC.(1)如图1,若OB =3,则点C 的坐标为______;(2)如图2,若OB =4,点D 为OA 延长线上一点,以D 为直角顶点,BD 为直角边在第一象限作等腰Rt △BDE ,连接AE ,求证:AE ⊥AB ;(3)如图3,以B 为直角顶点,OB 为直角边在第三象限作等腰Rt △OBF .连接CF ,交y 轴于点P ,求线段BP 的长度.【答案】(1)点C (3,7);(2)证明见详解过程;(3)2.【分析】(1)如图1,过点C 作CH ⊥y 轴,由“AAS ”可证△ABO ≌△BCH ,可得CH =OB =3,BH =AO =4,可求解;(2)过点E 作EF ⊥x 轴于F ,由“AAS ”可证△ABO ≌△BCH ,可得BO =DF =4,OD =EF ,由等腰直角三角形的性质可得∠BAO =45°,∠EAF =∠AEF =45°,可得结论;(3)由(1)可知△ABO ≌△BCG ,可得BO =GC ,AO =BG =4,再由“AAS ”可证△CPG ≌△FPB ,可得PB =PG =2.(1)如图1,过点C 作CH ⊥y 轴于H ,∴∠CHB =∠ABC =∠AOB =90°,∴∠BCH +∠HBC =90°=∠HBC +∠ABO ,∴∠ABO =∠BCH ,在△ABO 和△BCH 中,∠CHB =∠AOB∠BCH =∠ABO BC =AB,∴△ABO ≌△BCH (AAS ),∴CH =OB =3,BH =AO =4,∴OH =7,∴点C (3,7),故答案为:(3,7);(2)过点E 作EF ⊥x 轴于F ,∴∠EFD =∠BDE =∠BOD =90°,∴∠BDO +∠EDF =90°=∠BDO +∠DBO ,∴∠DBO =∠EDF ,在△BOD 和△DFE 中,∠BOD =∠EFD∠DBO =∠EDF BD =ED,∴△BOD ≌△DFE (AAS ),∴BO =DF =4,OD =EF ,∵点A 的坐标为(4,0),∴OA =OB =4,∴∠BAO =45°,∵OA =DF =4,∴OD =AF =EF ,∴∠EAF =∠AEF =45°,∴∠BAE =90°,∴BA ⊥AE ;(3)过点C 作CG ⊥y 轴G ,由(1)可知:△ABO ≌△BCG ,∴BO =GC ,AO =BG =4,∵BF =BO ,∠OBF =90°,∴BF =GC ,∠CGP =∠FBP =90°,又∵∠CPG =∠FPB ,∴△CPG ≌△FPB (AAS ),∴BP =GP ,∴BP =12BG =2.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,添加恰当辅助线构造直角三角形是本题的关键.8.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明∶DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+ BD;(3)由△ADB≌△CEA得BD=AE,∠DBA=∠CAE,由△ABF和△ACF均等边三角形,得∠ABF =∠CAF=60°,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(2)成立.证明如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(SAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.∴△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.9.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D,E.求证:DE=BD+CE.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由条件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG的中点.【详解】解:(1)证明:如图1中,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.理由:如图2中,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,在△ADB和△CEA中,∠BDA=∠AEC ∠DBA=∠CAE AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=∠GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI 和△GNI 中,∠GIN =∠EIMEM =GN ∠GNI =∠EMI,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点.∴S △AEI =12S △AEG =3.5.故答案为:3.5.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.10.如图,在ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E .(1)当∠BDA =115°时,∠EDC =______°,∠AED =______°;(2)线段DC 的长度为何值时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,求∠BDA 的度数;若不可以,请说明理由.【答案】(1)25°,65°;(2)2,理由见详解;(3)可以,110°或80°.【分析】(1)利用邻补角的性质和三角形内角和定理解题;(2)当DC =2时,利用∠DEC +∠EDC =140°,∠ADB +∠EDC =140°,求出∠ADB =∠DEC ,再利用AB =DC =2,即可得出△ABD ≌△DCE .(3)当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【详解】解:(1)∵∠B =40°,∠ADB =115°,∴∠BAD =180°-∠B -∠ADB =180°-115°-40°=25°,∵AB =AC ,∴∠C =∠B =40°,∵∠EDC =180°-∠ADB -∠ADE =25°,∴∠DEC =180°-∠EDC -∠C =115°,∴∠AED =180°-∠DEC =180°-115°=65°;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∠ADB=∠DEC ∠B=∠CAB=DC∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.【点睛】本题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题.11.综合与探究:在平面直角坐标系中,已知A(0,a),B(b,0)且a,b满足(a-3)2+|a-2b-1|=(1)求A,B两点的坐标(2)已知△ABC中AB=CB,∠ABC=90°,求C点的坐标(3)已知AB=10,试探究在x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)A (0,3)、B (1,0);(2)C (4,1);(3)存在,P 1(1-10,0),P 2(1+10,0),P 3(-1,0)【分析】(1)由平方数和绝对值的非负性可得a -3=0,a -2b -1=0,从而求得a =3,b =1,即可得到A ,B 两点的坐标.(2)过点C 向x 轴作垂线,垂足为D ,结合已知条件可构造一线三等角模型,即可证明ΔAOB ≅ΔBDC ,则CD =OB =1,BD =OA =3,易得点C 的坐标.(3)若△ABP 是以AB 为腰的等腰三角形,则需分两种情况讨论:①BP =BA =10,则P 在B 的左侧,P 1-10,0 ;P 在B 右侧,P 1+10,0 ;②AP =AB ,则易证OP =OB =1,故P -1,0 .【详解】解:(1)∵a 、b 满足(a -3)2+|a -2b -1|=0.∴a -3=0,a -2b -1=0,∴a =3,b =1,∴A (0,3)、B (1,0);(2)如图,过点C 向x 轴作垂线,垂足为D ,则∠AOB =∠ABC =∠BDC =90°,∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2在ΔAOB 和ΔBDC 中,∵∠AOB =∠BDC∠1=∠2AB =BC∴ΔAOB ≅ΔBDC∴CD =0B =1,BD =OA =3,∴C (4,1).(3)若AB 为腰,则分两种情况讨论:①当BP =BA =10时,若P 在B 的左侧,则OP =BP -OB =10-1,∴P 1-10,0 ;若P 在B 的右侧,则OP =OB +BP =1+10,∴P 1+10,0 ;②当AP =AB =10时,∵AO ⊥BP ,∴由等腰三角形三线合一可知OP =OB =1,∴P -1,0 .综上所述,存在P 1(1-10,0),P 2(1+10,0),P 3(-1,0).【点睛】本题考查点的坐标,等腰三角形的性质,掌握一线三等角证全等及等腰三角形的存在性的方法为解题关键.12.如图,在△ABC 中,AB =BC .(1)如图①所示,直线NM过点B,AM⊥MN于点M,CN⊥MN于点N,且∠ABC=90°.求证:MN=AM+CN.(2)如图②所示,直线MN过点B,AM交MN于点M,CN交MN于点N,且∠AMB=∠ABC=∠BNC,则MN=AM+CN是否成立?请说明理由.【答案】(1)见解析;(2)MN=AM+CN仍然成立,理由见解析【分析】(1)首先根据同角的余角相等得到∠BAM=∠CBN,然后证明△AMB≅△BNC AAS,然后根据全等三角形对应边相等得到AM=BN,BM=CN,然后通过线段之间的转化即可证明MN= AM+CN;(2)首先根据三角形内角和定理得到∠MAB=∠CBN,然后证明△AMB≅△BNC AAS,根据全等三角形对应边相等得到MN=MB+BN,最后通过线段之间的转化即可证明MN=AM+CN.【详解】证明:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠ABM+∠BAM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,在△AMB和△BNC中,∠AMB=∠BNC ∠BAM=∠CBN AB=BC,∴△AMB≅△BNC AAS,∴AM=BN,BM=CN,∵BN+MB=MN,∴MN=AM+CN;(2)MN=AM+CN仍然成立,理由如下:∵∠AMB+∠MAB+∠ABM=∠ABM+∠ABC+∠CBN=180°,∵∠AMB=∠ABC,∴∠MAB=∠CBN,在△AMB 和△BNC 中,∠AMB =∠BNC∠BAM =∠CBN AB =BC,∴△AMB ≅△BNC AAS ,∴AM =BN ,NC =MB ,∵MN =MB +BN ,∴MN =AM +CN .【点睛】此题考查了全等三角形的性质和判定,同角的与相等,三角形内角和定理等知识,解题的关键是根据同角的余角相等或三角形内角和定理得到∠BAM =∠CBN .13.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC = ,BC =AE .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;(深入探究)(3)如图,已知四边形ABCD 和DEGF 为正方形,△AFD 的面积为S 1,△DCE 的面积为S 2,则有S 1 S 2(填“>、=、<”)【答案】(1)DE ;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,进而可得∠BAF =∠ADH ,然后可证△ABF ≌△DAH ,则有AF =DH ,进而可得DH =EQ ,通过证明△DHG ≌△EQG 可求解问题;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,由题意易得∠ADC =∠90°,AD =DC ,DF =DE ,然后可得∠ADO =∠DCM ,则有△AOD ≌△DMC ,△FOD ≌△DNE ,进而可得OD =NE ,通过证明△ENP ≌△CMP 及等积法可进行求解问题.【详解】解:(1)∵△ABC ≌△DAE ,∴AC =DE ;(2)分别过点D和点E作DH⊥FG于点H,EQ⊥FG于点Q,如图所示:∴∠DAH+∠ADH=90°,∵∠BAD=90°,∴∠BAF+∠DAH=90°,∴∠BAF=∠ADH,∵BC⊥AF,∴∠BFA=∠AHD=90°,∵AB=DA,∴△ABF≌△DAH,∴AF=DH,同理可知AF=EQ,∴DH=EQ,∵DH⊥FG,EQ⊥FG,∴∠DHG=∠EQG=90°,∵∠DGH=∠EGQ∴△DHG≌△EQG,∴DG=EG,即点G是DE的中点;(3)S1=S2,理由如下:如图所示,过点D作DO⊥AF交AF于O,过点E作EN⊥OD交OD延长线于N,过点C作CM⊥OD交OD延长线于M∵四边形ABCD与四边形DEGF都是正方形∴∠ADC=∠90°,AD=DC,DF=DE∵DO⊥AF,CM⊥OD,∴∠AOD=∠CMD=90°,∠OAD+∠ODA=90°,∠CDM+∠DCM=90°,又∵∠ODA+∠CDM=90°,∴∠ADO=∠DCM,∴△AOD≌△DMC,∴S△AOD=S△DMC,OD=MC,同理可以证明△FOD≌△DNE,∴S△FOD=S△DNE,OD=NE,∴MC=NE,∵EN⊥OD,CM⊥OD,∠EPN=∠CMP,∴△ENP≌△CMP,∴S△ENP=S△CMP,∵S△ADF=S△AOD+S△FOD,S△DCE=S△DCM-S△CMP+S△DEN+S△ENP,∴S△DCE=S△DCM+S△DEN=S△AOD+S△FOD,∴S△DCE=S△ADF即S1=S2.【点睛】本题主要考查全等三角形的性质与判定、直角三角形的两个锐角互余及等积法,熟练掌握全等三角形的判定条件是解题的关键.14.已知:CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F是直线CD上两点,∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,∠BCD>∠ACD.①如图1,∠BCA=90°,∠α=90°,写出BE,EF,AF间的等量关系: .②如图2,∠α与∠BCA具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA的数量关系 .(2)如图3.若直线CD经过∠BCA的外部,∠α=∠BCA,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.【答案】(1)①EF=BE-AF;②∠α+∠BCA=180°,理由见解析;(2)不成立,EF=BE+AF,证明见解析【分析】(1)①求出∠BEC=∠AFC=90°, ∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE =CF,CE=AF即可得出结论;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可得出结论;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可得出结论.【详解】(1)①EF、BE、AF的数量关系:EF=BE-AF,证明:当α=90°时,∠BEC=∠CFA=90°,∵∠BCA=90°,∴∠BCE+∠ACF=90°,∵∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∵AC=BC,∴△BCE≌△CAF,∴BE=CF,CE=AF,∵CF=CE+EF,∴EF=CF-CE=BE-AF;②∠α与∠BCA关系:∠α+∠BCA=180°当∠α+∠BCA=180°时,①中结论仍然成立;理由是:如题图2,∵∠BEC=∠CFA=∠α, ∠CBE+∠BCE+∠BEC=180°,∠α+∠ACB=180°,∴∠ACB=∠CBE+∠BCE又∵∠ACB=∠ACF+∠BCE∴∠CBE=∠ACF,在△BCE和△CAF中,∠BEC=∠CFA ∠CBE=∠ACF BC=AC∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF-CE=BE-AF;故答案为:∠α+∠BCA=180°;(2)EF、BE、AF的数量关系:EF=BE+AF,理由如下∵∠BEC=∠CFA=∠α, ∠α=∠BCA,又∵∠EBC+∠BCE+∠BEC=180° , ∠BCE+∠ACF+∠ACB=180° ,∴∠EBC+∠BCE=∠BCE+∠ACF∴∠EBC=∠ACF,在△BEC和△CFA中,∠EBC=∠FCA ∠BEC=∠CFA BC=CA∴△ABE≌△CFA(AAS)∴AF=CE,BE=CF∵EF=CE+CF,∴EF=BE+AF.【点睛】本题考查了全等三角形的性质和判定,证明△BCE≌△CAF是解题的关键.15.通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.求证:BC=AE.[模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.[深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.若BC=21,AF=12,则△ADG的面积为_____________.【答案】[模型呈现]见解析;[模型应用]50;[深入探究]63【分析】[模型呈现]证明△ABC≌△DAE,根据全等三角形的对应边相等得到BC=AE;[模型应用]根据全等三角形的性质得到AP=BG=3,AG=EP=6,CG=DH=4,CG=BG=3,根据梯形的面积公式计算,得到答案;[深入探究]过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,根据全等三角形的性质得到DP=AF=12,EQ=AF=12,AP=BF,AQ=CF,证明△DPG≌△EQG,得到PG= GQ.,进而求出AG,根据三角形的面积公式计算即可.【详解】[模型呈现]证明:∵∠BAD=90°,∴∠BAC+∠DAE=90°,∵BC⊥AC,DE⊥AC,∴∠ACB=∠DEA=90°,∴∠BAC+∠ABC=90°,∴∠ABC=∠DAE,在△ABC和△DAE中,∠ABC=∠DAE ∠ACB=∠DAE BA=AD,∴△ABC≌△DAE(AAS),∴BC=AE;[模型应用]解:由[模型呈现]可知,△AEP≌△BAG,△CBG≌△DCH,∴AP=BG=3,AG=EP=6,CG=DH=4,CG=BG=3,则S实线围成的图形=12(4+6)×(3+6+4+3)-12×3×6-12×3×6-12×3×4-12×3×4=50,故答案为:50;。

专题11 全等三角形中的一线三等角模型(解析版)

专题11 全等三角形中的一线三等角模型(解析版)

专题11全等三角形中的一线三等角模型【模型1】三垂直全等模型【说明】上图三垂直模型中,只要知道一组对应边相等,即可证明两三角形全等。

【模型2】一线三直角全等模型【说明】上图中的两个三角形中三组对应角相等,只要知道一组对应边相等,即可证明两三角形全等。

【模型3】一线三等角与一组对应边相等全等模型【说明】上图中可根据平角的概念和三角形内角和定理可求得的两个三角形中三组对应角相等,只要再知道一组对应边相等,即可证明两三角形全等。

【例1】如图,AC =CE ,∠ACE =90°,AB ⊥BD ,ED ⊥BD ,AB =6cm ,DE =2cm ,则BD 等于()A .6cmB .8cmC .10cmD .4cm【答案】B 【分析】根据题意证明ABC CDE △≌△即可得出结论.【解析】解:∵AB ⊥BD ,ED ⊥BD ,∴90ABC CDE ∠=∠=︒,∵∠ACE =90°,∴90ACB DCE ∠+∠=︒,∵90ACB BAC ∠+∠=︒,∴BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=,∴()ABC CDE AAS ≌,∴6cm AB CD ==,2cm BC DE ==,∴268cm BD BC CD =+=+=,故选:B .【例2】如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【解析】解:∵BE ⊥l ,CF ⊥l ,∴∠AEB =∠CFA =90°.∴∠EAB +∠EBA =90°.又∵∠BAC =90°,∴∠EAB +∠CAF =90°.∴∠EBA =∠CAF .在△AEB 和△CFA 中∵∠AEB =∠CFA ,∠EBA =∠CAF ,AB =AC ,∴△AEB ≌△CFA .∴AE =CF ,BE =AF .∴AE +AF =BE +CF .∴EF =BE +CF .∵2,5==BE CF ,∴257EF =+=;故答案为:7.【例3】(1)观察理解:如图1,∠ACB =90°,AC =BC ,直线l 过点C ,点A ,B 在直线l 同侧,BD ⊥l ,AE ⊥l ,垂足分别为D ,E ,求证:△AEC ≌△CDB .(2)理解应用:如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.(3)类比探究:①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;∥,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆②如图4,直角梯形ABCD中,AD BC时针旋转90°至DE,△AED的面积为.【答案】(1)见解析;(2)见解析;(3)①ED=EA-BD;②1【分析】(1)根据同角的余角相等可得∠A=∠BCD,再利用AAS证得△AEC≌△CDB,即可;(2)分别过点E、G向HI作垂线,垂足分别为M、N,由(1)可证得△EMA≌△AHB,△ANG ≌△CHA ,从而得到EM =GN ,可得到△EMI ≌△GNI ,从而得到EI =IG ,即可求证;(3)①由(1)得:△AEC ≌△CDB ,可得CE =BD ,AE =CD ,即可;②过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据旋转的性质可得根据题意得:∠CDE =90°,CD =DE ,再由(1)可得△CDP ≌△DEQ ,从而得到DP =EQ ,然后根据两平行线间的距离,可得AP =BC ,进而得到PD =1,即可求解.【解析】(1)证明:∵BD ⊥l ,AE ⊥l ,∴∠AEC =∠BDC =90°,又∵∠ACB =90°∴∠A +∠ACE =∠ACE +∠BCD =90°,∴∠A =∠BCD ,在△AEC 和△CDB 中,AEC CDB A BCD AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△CDB (AAS );(2)证明:分别过点E 、G 向HI 作垂线,垂足分别为M 、N,由(1)得:△EMA ≌△AHB ,△ANG ≌△CHA ,∴EM =AH ,GN =AH ,∴EM =GN ,在△EMI 和△GNI 中,90EIM GIN EMI GNI EM GN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△EMI ≌△GNI (AAS );∴EI =IG ,即I 是EG 的中点;(3)解:①由(1)得:△AEC ≌△CDB ,∴CE =BD ,AE =CD ,∵ED =CD -CE ,∴ED =EA -BD ;故答案为:ED =EA -BD②如图,过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据题意得:∠CDE =90°,CD =DE ,由(1)得:△CDP ≌△DEQ ,∴DP =EQ ,直角梯形ABCD 中,AD BC ∥,AB ⊥BC ,∴AB ⊥AD ,∴AB ∥CP ,∴BC ⊥CP ,∵BC =3,∴AP =BC =3,∵AD =2,∴DP =AP -AD =1,∴EQ =1,∴△ADE 的面积为1121122AD EN 创=.故答案为:1一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为()A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【解析】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴=PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==,BDE ∴∆的面积12BD EF =⋅,142=⨯⨯,=故选:A .2.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方的是().A .20013cm 2B .15013cm 2C .10013cm 2D .5013cm 2【答案】A【分析】设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,然后证明△DAC ≌△ECB 得到CD =BE =2x cm ,再利用勾股定理求解即可.【解析】解:设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,由题意得:∠ACB =∠ADC =∠BEC =90°,∴∠ACD +∠DAC =∠ACD +∠BCE =90°,∴∠DAC =∠ECB ,又∵AC =CB ,∴△DAC ≌△ECB (AAS ),∴CD =BE =2x cm ,∵222AC BC AB +=,222AD DC AC +=,∴()()222232220x x +=,∴220013x =,故选A .3.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为()A .40cmB .48cmC .56cmD .64cm【答案】C 【分析】由等腰直角三角形的性质可得∠ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【解析】解:由题意得∠ADC =∠CEB =∠ACB =90°,AC =CB ,∴∠ACD =90°﹣∠BCE =∠CBE ,在△ACD 和△CBE 中,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD=BE=3a,AD=CE=4a,∴DE=CD+CE=3a+4a=7a,∵a=8cm,∴7a=56cm,∴DE=56cm,故选C.二、填空题4.如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ,则OQ的长等于_____.【答案】6【分析】由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.【解析】解:如图,连接PO,并延长交l2于点H,∵l1⊥l3,l2⊥l3,∴l1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,∠=∠⎧⎪∠=∠⎨⎪=⎩PAC BCQ APC BQC AC BC ,∴△ACP ≌△CBQ (AAS ),∴AP =CQ ,PC =BQ ,∴PC +CQ =AP +BQ =PQ,∵AP ∥BQ ,∴∠OAP =∠OBH ,∵点O 是斜边AB 的中点,∴AO =BO ,在△APO 和△BHO 中,∠=∠⎧⎪∠=∠⎨⎪=⎩AOP BOH APO BHO AO BO ,∴△APO ≌△BHO (AAS ),∴AP =BH ,OP =OH ,∴BH +BQ =AP +BQ =PQ ,∴PQ =QH,∵∠PQH =90°,∴PHPQ =12,∵OP =OH ,∠PQH =90°,∴OQ =12PH =6.故答案为:65.如图,已知ABC 是等腰直角三角形,∠ACB =90°,AD ⊥DE 于点D ,BE ⊥DE 于点E ,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD ⊥DE ,BE ⊥DE ,∠ADC =∠CEB =90°,则∠DAC +∠DCA =90°,△ABC 是等腰直角三角形,∠ACB =90°,可得AC =CB ,推出∠DAC =∠ECB ,即可证明△DAC ≌△ECB得到CE =AD =5,CD =BE =8,由此求解即可.【解析】解:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠DAC +∠DCA =90°,∵△ABC 是等腰直角三角形,∠ACB =90°,∴∠DCA +∠BCE =90°,AC =CB∴∠DAC =∠ECB ,∴△DAC ≌△ECB (AAS ),∴CE =AD =5,CD =BE =8,∴DE =CD +CE =13,故答案为:13.三、解答题6.已知:如图,AB ⊥BD ,ED ⊥BD ,C 是BD 上的一点,AC ⊥CE ,AB =CD ,求证:BC =DE.【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【解析】证明:∵AB ⊥BD ,ED ⊥BD ,AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中,A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)7.如图,∠B =∠C =∠FDE =80°,DF =DE ,BF =1.5cm ,CE =2cm ,求BC的长.【答案】3.5【分析】由平角定义及三角形内角和定理解得EDC BFD ∠=∠,继而证明()BFD CDE AAS ≅V V ,得到=1.5,=2BF CD BD CE ==,最后根据线段的和差解题.【解析】解:∠B =∠C =∠FDE =80°,100,100BDF EDC BDF BFD ∴∠+∠=︒∠+∠=︒EDC BFD∴∠=∠在BFD △与CDE △中,B C EDC BFD DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFD CDE AAS ∴≅=1.5,=2BF CD BD CE ∴==2 1.5 3.5BC BD DC ∴=+=+=.8.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.①求证:ABP PCD △△∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.【答案】感知:(1)AEDE;应用:(2)①见解析;②3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分PA=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【解析】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AE DE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD;②BC=12,点P为BC中点,∴BP=PC=6,·∵△ABP∽△PCD,∴AB BPPC CD=,即1066CD=,解得:CD=3.6;拓展:(3)当PA=PD时,△ABP≌△PCD,∴PC=AB=10,∴BP=BC-PC=12-10=2;当AP=AD时,∠ADP=∠APD,∵∠APD =∠B =∠C ,∴∠ADP =∠C ,不合题意,∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B ,∵∠C =∠C ,∴△BCA ∽△ACP ,∴BC AC AC CP =,即121010CP=,解得:253CP =,∴25111233BP BC CP =-=-=,综上所述,当APD △为等腰三角形时,BP 的长为2或113.9.问题背景:(1)如图①,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图③,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【解析】(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADB CEA ≌,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,∵180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,∴ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩===∴ABD CAE ≌,∴AE BD =,AD CE =,∴DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F,由(1)可知,AEC CFB ≌,∴3CF AE ==,4BF CE OE OC ==-=,∴1OF CF OC =-=,∴点B 的坐标为()1,4B .10.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA =∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE.【解析】(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE =AD +AE =BD +CE ;11.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF ⊥DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直;(2)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直.【解析】(1)解:∵90,ABC FA AB ∠=⊥,∴90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵90,ABC FA AB ∠=⊥,∴90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .12.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD +∠EAC =∠BAD +∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【解析】(1)解:DE =BD +CE ,理由如下,∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC •h =12,S △ABF =12BF •h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4,∴△FBD 与△ACE 的面积之和为4.13.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC =,BC =AE .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;(深入探究)(3)如图,已知四边形ABCD 和DEGF 为正方形,△AFD 的面积为S 1,△DCE 的面积为S 2,则有S 1S 2(填“>、=、<”)【答案】(1)DE ;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,进而可得∠BAF =∠ADH ,然后可证△ABF ≌△DAH ,则有AF =DH ,进而可得DH =EQ ,通过证明△DHG ≌△EQG 可求解问题;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,由题意易得∠ADC =∠90°,AD =DC ,DF =DE ,然后可得∠ADO =∠DCM ,则有△AOD ≌△DMC ,△FOD ≌△DNE ,进而可得OD =NE ,通过证明△ENP ≌△CMP 及等积法可进行求解问题.【解析】解:(1)∵ABC DAE △≌△,∴AC DE =;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,如图所示:∴90DAH ADH ∠+∠=︒,∵90BAD ∠=︒,∴90BAF DAH ∠+∠=︒,∴BAF ADH ∠=∠,∵BC AF ⊥,∴90BFA AHD ∠=∠=︒,∵AB DA =,∴△ABF ≌△DAH ,∴AF =DH ,同理可知AF =EQ ,∴DH =EQ ,∵DH ⊥FG ,EQ ⊥FG ,∴90DHG EQG ∠=∠=︒,∵DGH EGQ∠=∠∴△DHG ≌△EQG ,∴DG =EG ,即点G 是DE 的中点;(3)12S S =,理由如下:如图所示,过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M∵四边形ABCD 与四边形DEGF 都是正方形∴∠ADC =∠90°,AD =DC ,DF =DE∵DO ⊥AF ,CM ⊥OD ,∴∠AOD =∠CMD =90°,∠OAD +∠ODA =90°,∠CDM +∠DCM =90°,又∵∠ODA +∠CDM =90°,∴∠ADO =∠DCM ,∴△AOD ≌△DMC ,∴AOD DMC S S =△△,OD =MC ,同理可以证明△FOD ≌△DNE ,∴FOD DNE S S =△△,OD =NE ,∴MC =NE ,∵EN ⊥OD ,CM ⊥OD ,∠EPN =∠CMP ,∴△ENP ≌△CMP ,∴ENP CMP S S △△=,∵,ADF AOD FOD DCE DCM CMP DEN ENP SS S S S S S S =+=-++,∴DCE DCM DEN AOD FOD S S S S S =+=+,∴DCE ADF S S △△=即12S S =.14.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE BD CE =+.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△,则AEI S =△______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【解析】解:(1)证明:如图1中,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中,∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ADB 和△CEA 中,BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N.∴∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∴EM =GN在△EMI 和△GNI 中,GIN EIM EM GN GNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点.∴S △AEI =12S △AEG =3.5.故答案为:3.5.15.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证:△BEC ≌△CDA ;(2)模型应用:①已知直线y =34x +3与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y =2x ﹣5上的一点,若△APD 是不以A 为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.【答案】(1)见解析;(2)137y x =-+;(3)(3,1)或(913),或1923(33,【分析】(1)由条件可求得EBC ACD ∠=∠,利用AAS 可证明BEC CDA ≌;(2)由直线解析式可求得A 、B 的坐标,利用模型结论可得CE BO =,BE AO =,从而可求得C 点坐标,利用待定系数法可求得直线AC 的解析式;(3)分两种情况考虑:如图2所示,当90ADP ∠=︒时,AD PD =,设D 点坐标为(,25)x x -,利用三角形全等得到1128x x -+=,易得D 点坐标;如图3所示,当90APD ∠=︒时,AP PD =,设点P 的坐标为(8,)m ,表示出D 点坐标为(14,8)m m -+,列出关于m 的方程,求出m 的值,即可确定出D 点坐标;如图4所示,当90ADP ∠=︒时,AD PD =时,同理求出D 的坐标.【解析】解:(1)由题意可得,90ACB ADC BEC ∠=∠=∠=︒,∴90EBC BCE BCE ACD ∠+∠=∠+∠=︒,∴EBC ACD ∠=∠,在BEC △和CDA 中EBC ACD E D BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BEC CDA AAS ≌;(2)过点C 作CD x ⊥轴于点D ,如图2,在334y x =+中,令0y =可求得4x =-,令0x =可求得3y =,∴3OA =,4OB =同(1)可证得CDB BOA ≌,∴4CD BO ==,3BD AO ==,∴437OD =+=,∴()7,4C -且()0,3A ,设直线AC 解析式为3y kx =+,把C 点坐标代入可得734k -+=,解得17k =-,∴直线AC 解析式为137y x =-+;(3)如图2,当90ADP ∠=︒时,AD PD =,过点D 作DE OA ⊥于E ,过点D 作DF BC ⊥于F ,同理可得:AED DFP△≌△设D 点坐标为(,25)x x -,则6(25)112AE DF x x ==--=-,∵DE DF EF BC +==,即1128x x -+=,解得3x =,可得D 点坐标(3,1);如图3,当90APD ∠=︒时,AP PD =,过点P 作PE OA ⊥于E ,过点D 作DF PE ⊥于F ,设点P 的坐标为()8,m ,同理可得:APE PDF ≌△△,∴6PF AE m ==-,8DF PE ==,∴D 点坐标为()14,8m m -+,∴()82145m m +=--,得5m =,∴D 点坐标(913),;如图4,当90ADP ∠=︒时,AD PD =时,同理可得ADE DPF △△≌,设(,25)D n n -,则DE PF n ==,25OE n =-,AE DF =则256211DF AE n n ==--=-,∵8DE DF EF OC +===∴2118n n +-=,解得193n =,23253n -=∴D 点坐标1923()33,,综上可知满足条件的点D 的坐标分别为(3,1)或(913),或1923(33,.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

45°45°C BA D CB A题型一:等腰直角三角形模型思路导航等腰直角三角形数学模型思路:⑴利用特殊边特殊角证题(AC=BC 或904545︒︒°,,).如图1; ⑵常见辅助线为作高,利用三线合一的性质解决问题.如图2; ⑶补全为正方形.如图3,4.图1 图2图3 图4全等三角形的经典模型(一)ABCOMN AB COMN典题精练【例1】 已知:如图所示,Rt △ABC 中,AB =AC ,90BAC ∠=°,O 为BC 的中点,⑴写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系(不要求证明)⑵如果点M 、N 分别在线段AC 、AB 上移动,且在移动中保持 AN =CM .试判断△OMN 的形状,并证明你的结论. ⑶如果点M 、N 分别在线段CA 、AB 的延长线上移动,且在移动中保持AN =CM ,试判断⑵中结论是否依然成立,如果是请给出证明. 【解析】 ⑴OA =OB =OC⑵连接OA ,∵OA =OC 45∠=∠=BAO C ° AN =CM ∴△ANO ≌△CMO∴ON =OM∴∠=∠NOA MOC∴90∠+∠=∠+∠=︒NOA BON MOC BON ∴90∠=︒NOM∴△OMN 是等腰直角三角形⑶△ONM 依然为等腰直角三角形, 证明:∵∠BAC =90°,AB =AC ,O 为BC 中点 ∴∠BAO =∠OAC =∠ABC =∠ACB =45°, ∴AO =BO =OC ,∵在△ANO 和△CMO 中, AN CM BAO C AO CO =⎧⎪∠=∠⎨⎪=⎩∴△ANO ≌△CMO (SAS ) ∴ON =OM ,∠AON =∠COM , 又∵∠COM -∠AOM =90°, ∴△OMN 为等腰直角三角形.【例2】 两个全等的含30,60角的三角板ADE 和三角板ABC ,如图所示放置,,,E A C 三点在一条直线上,连接BD ,取BD 的中点M ,连接ME ,MC .试判断EMC △的形状,并说明理由.【解析】EMC △是等腰直角三角形. 证明:连接AM .由题意,得,90,90.DE AC DAE BAC DAB =∠+∠=∠= ∴DAB △为等腰直角三角形. ∵DM MB =, MEDCBA ABCOM NMEDCBAFE DCBANM 12A B CDE F3M12A BCDEF 3∴,45MA MB DM MDA MAB ==∠=∠=.∴105MDE MAC ∠=∠=, ∴EDM △≌CAM △.∴,EM MC DME AMC =∠=∠.又90EMC EMA AMC EMA DME ∠=∠+∠=∠+∠=. ∴CM EM ⊥,∴EMC △是等腰直角三角形.【例3】 已知:如图,ABC △中,AB AC =,90BAC ∠=°,D 是AC 的中点,AF BD ⊥于E ,交BC 于F ,连接DF . 求证:ADB CDF ∠=∠. 【解析】 证法一:如图,过点A 作AN BC ⊥于N ,交BD 于M .∵AB AC =,90BAC ∠=°, ∴345DAM ∠=∠=°.∵45C ∠=°,∴3C ∠=∠.∵AF BD ⊥,∴190BAE ∠+∠=°∵90BAC ∠=°,∴290BAE ∠+∠=°. ∴12∠=∠.在ABM △和CAF △中, 123AB AC C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABM CAF △≌△.∴AM CF =. 在ADM △和CDF △中, AD CD DAM C AM CF =⎧⎪∠=∠⎨⎪=⎩∴ADM CDF △≌△. ∴ADB CDF ∠=∠.证法二:如图,作CM AC ⊥交AF 的延长线于M . ∵AF BD ⊥,∴3290∠+∠=°, ∵90BAC ∠=°, ∴1290∠+∠=°, ∴13∠=∠.在ACM △和BAD △中, 1390AC ABACM BAD ∠=∠⎧⎪=⎨⎪∠=∠=⎩° ∴ACM BAD △≌△.∴M ADB ∠=∠,AD CM = ∵AD DC =,∴CM CD =. 在CMF △和CDF △中,PC B A P C B AD 45=⎧⎪∠=∠=⎨⎪=⎩CF CF MCF DCF CM CD ° ∴CMF CDF △≌△.∴M CDF ∠=∠ ∴ADB CDF ∠=∠.【例4】 如图,等腰直角ABC △中,90AC BC ACB =∠=,°,P 为ABC △内部一点,满足 PB PC AP AC ==,,求证:15BCP ∠=︒.【解析】 补全正方形ACBD ,连接DP ,易证ADP △是等边三角形,60DAP ∠=︒,45BAD ∠=︒, ∴15BAP ∠=︒,30PAC ∠=︒,∴75∠=︒ACP , ∴15BCP ∠=︒.【探究对象】等腰直角三角形添补成正方形的几种常见题型 在解有关等腰直角三角形中的一些问题,若遇到不易解决或解法比较复杂时,可将等腰直角三角形引辅助线转化成正方形,再利用正方形的一些性质来解,常常可以起到化难为易的效果,从而顺利地求解。

例4为求角度的应用,其他应用探究如下:【探究一】证角等【备选1】如图,Rt △ABC 中,∠BAC =90°,AB =AC ,M 为AC 中点,连结BM ,作AD ⊥BM 交BC 于点D ,连结DM ,求证:∠AMB =∠CMD .21NFA BCDM E EMDCBA【解析】 作等腰Rt △ABC 关于BC 对称的等腰Rt △BFC ,延长AD 交CF 于点N ,∵AN ⊥BM ,由正方形的性质,可得AN =BM ,易证Rt △ABM ≌Rt △CAN ,∴∠AMB =∠CND ,CN =AM , ∵M 为AC 中点,∴CM =CN ,∵∠1=∠2,可证得△CMD ≌△CND , ∴∠CND =∠CMD , ∴∠AMB =∠CMD .【探究二】判定三角形形状【备选2】如图,Rt △ABC 中,∠BAC = 90°,AB =AC ,AD =CE ,AN ⊥BD 于点M ,延长BD 交NE 的延长线于点F ,试判定△DEF 的形状.ABCD E FNMKHM NFE D C BA【解析】 作等腰Rt △ABC 关于BC 对称的等腰Rt △BHC ,可知四边形ABHC 为正方形,延长AN 交HC 于点K , ∵AK ⊥BD ,可知AK =BD ,易证:Rt △ABD ≌Rt △CAK , ∴∠ADB =∠CKN ,CK =AD , ∵AD =EC ,∴CK =CE ,易证△CKN ≌△CEN ,∴∠CKN =∠CEN ,易证∠EDF =∠DEF ,∴△DEF 为等腰三角形.【探究三】利用等积变形求面积 【备选3】如图,Rt △ABC 中,∠A =90°,AB =AC ,D 为BC 上一点,DE ∥AC ,DF ∥AB ,且BE =4,CF =3,求S 矩形DF AE .GMN FED C B AF EDCB A【解析】 作等腰Rt △ABC 关于BC 的对称的等腰Rt △GCB ,可知四边形ABGC 为正方形,分别延长FD 、ED 交BG 、CG 于点N 、M , 可知DN =EB =4,DM =FC =3, 由正方形对称性质,可知S 矩形DF AE =S 矩形DMGN =DM ·DN =3 4=12.【探究四】求线段长【备选4】如图,△ABC 中,AD ⊥BC 于点D ,∠BAC =45°,BD =3,CD =2,求AD 的长.GFED CBADCBA【分析】此题若用面积公式结合勾股定理再列方程组求解是可以的,但解法太繁琐,本题尽管已知条件不是等腰直角三角形,但∵∠BAC =45°,若分别以AB 、AC 为对称轴作Rt △ADB 的对称直角三角形和Rt △ADC 的对称直角三角形,这样就出现两边相等且夹角为90°的图形,满足等腰直角三角形的条件,然后再引辅助线使之转化为正方形.【解析】 以AB 为轴作Rt △ADB 的对称的Rt △AEB ,再以AC 为轴作Rt △ADC 的对称的Rt △AFC .可知BE =BD =3,FC =CD =2,延长EB 、FC 交点G ,∵∠BAC =45°, 由对称性,可得∠EAF =90°,且AE =AD =AF , 易证四边形AFGE 为正方形,且边长等于AD , 设AD =x ,则BG =x -3,CG =x -2,在Rt △BCG 中,由勾股定理,得()()222235x x -+-=, 解得x =6,即AD =6.【探究五】求最小值【备选5】如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,M 为AC 的中点,P 为斜边AB 上的动点,求PM +PC 的最小值.M PDBCAMPB C A【解析】 将原图形通过引辅助线化归为正方形,即作Rt △ACB 关于AB 对称的Rt △ADB ,可知四边形ACBD 为正方形,连接CD ,可知点C 关于AB 的对称点D ,连接MD 交AB 于点P ,连接CP ,则PM +PC 的值为最小,最小值为:PM +PC =DM=C 1ABC ED D E(C )B AC 1C 1AB C ED C 1AB CEDEDCBA 21题型二:三垂直模型常见三垂直模型例题精讲【引例】 已知AB ⊥BD ,ED ⊥BD ,AB =CD ,BC =DE ,⑴求证:AC ⊥CE ;⑵若将△CDE 沿CB 方向平移得到①②③④等不同情形,1AB C D =,其余条件不变,试判断AC ⊥C 1E 这一结论是否成立?若成立,给予证 明;若不成立,请说明理由.① ② ③ ④【解析】 ⑴∵AB ⊥BD ,ED ⊥BD∴90∠=∠=︒B D 在ABC △与CDE△中 =⎧⎪∠=∠⎨⎪=⎩AB CDB D BC DE ∴ABC CDE △≌△(SAS )∴1∠=∠E ∵290∠+∠=︒E∴90∠=︒ACE ,即AC ⊥CE⑵ 图①②③④四种情形中,结论永远成立,证明方法与⑴完全类似,只要证明1ABC C DE △≌△∴1∠=∠ACB C ED∵1190∠+∠=︒C ED DC E∴190∠+∠=︒DC E ACBxx∴AC⊥C1E典题精练【例5】正方形ABCD中,点A、B的坐标分别为()010,,()84,,点C在第一象限.求正方形边长及顶点C的坐标.(计算应用:在直角三角形中,两条直角边的平方和等于斜边的平方.)【解析】过点C作CG⊥x轴于G,过B作BE⊥y轴于E,并反向延长交CG于F 点A、B的坐标分别为()010,,()84,∴BE=8,AE=6,∴AB=10∵四边形ABCD是正方形,∴AB=BC∵1390∠+∠=︒2390∠+∠=︒∴12∠=∠∵90AEB BFC∠=∠=︒∴△AEB≌△BFC∴CF=BE=8,BF=AE=6∴CG=12EF=14∴C(14,12),正方形的边长为10【点评】此题中三垂直模型:【例6】如图所示,在直角梯形ABCD中,90ABC∠=︒,AD BC∥,AB BC=,E是AB的中点,CE BD⊥.⑴求证:BE AD=;⑵求证:AC是线段ED的垂直平分线;⑶DBC△是等腰三角形吗?请说明理由.【解析】⑴∵90ABC∠=︒,BD EC⊥,∴9090ECB DBC ABD DBC∠+∠=︒∠+∠=︒,,∴ECB ABD∠=∠,∵90ABC DAB∠=∠=︒,AB BC=,∴BAD CBE△≌△,∴AD BE=.⑵∵E是AB中点,∴EB EA=由⑴得:AD BE=,∴AE AD=AB CDEM∵AD BC∥,∴45CAD ACB∠=∠=︒,∵45BAC∠=︒,∴BAC DAC∠=∠由等腰三角形的性质,得:EM MD AM DE=⊥,即AC是线段ED的垂直平分线.⑶DBC△是等腰三角形,CD BD=由⑵得:CD CE=,由⑴得:CE BD=∴CD BD=,∴DBC△是等腰三角形.巅峰突破【例7】⑴如图1,△ABC是等边三角形,D、E分别是AB、BC上的点,且BD=CE,连接AE、CD相交于点P.请你补全图形,并直接写出∠APD的度数= ;⑵如图2,Rt△ABC中,∠B=90°,M、N分别是AB、BC上的点,且AM=BC、BM=CN,连接AN、CM相交于点P.请你猜想∠APM= °,并写出你的推理过程.【解析】⑴图略,60°⑵45°证明:作AE⊥AB且AE CN BM==.可证EAM△≌MBC△∴ME MC=,.AME BCM∠=∠∵90,CMB MCB∠+∠=︒∴90.CMB AME∠+∠=︒∴90.EMC∠=︒∴EMC△是等腰直角三角形,45.MCE∠=︒又△AEC ≌△CAN(SAS)∴.ECA NAC∠=∠∴EC∥AN.∴45.APM ECM∠=∠=︒EABCMNP图2图1P NMCB ACB AE D CBAABC DEF 复习巩固题型一 等腰直角三角形模型 巩固练习【练习1】 如图,△ACB 、△ECD 均为等腰直角三角形,则图中与△BDC 全等的三角形为_________.【解析】 △AEC【练习2】 如图,已知Rt ABC △中90ACB ∠=°,AC BC =,D 是BC 的中点,CE AD ⊥,垂足为E .BF AC ∥,交CE 的延长线于点F .求证:2AC BF =.【解析】 ∵90ACB ∠=°,BF AC ∥,∴90ACD CBF ∠=∠=°, 90ADC CAD ∠+∠=°. ∵CE AD ⊥,∴90FCB ADC ∠+∠=°, ∴CAD FCB ∠=∠. 又∵AC CB =,∴ADC CFB △≌△. ∴DC FB =.∵D 是BC 的中点, ∴2BC BF =, 即2AC BF =. 题型二 三垂直模型 巩固练习【练习3】 已知:如图,四边形ABCD 是矩形(AD >AB ),点E 在BC 上,且AE =AD ,DF ⊥AE ,垂足为F .请探求DF 与AB 有何数量关系?写出你所得到的结论并给予证明.【解析】 经探求,结论是:DF = AB .证明如下:∵四边形ABCD 是矩形,∴ ∠B = 90 , AD ∥BC , ∴ ∠DAF = ∠AEB .∵ DF ⊥AE , ∴ ∠AFD = 90,∵ AE = AD ,∴ABE DFA △≌△. ∴ AB = DF .【练习4】 如图,ABC △中,AC BC =,90BCA ∠=°,D 是AB 上任意一点,AE CD ⊥交CD 延长线于E ,BF CD ⊥于F .求证:EF BF AE =-.【解析】 根据条件,ACE ∠、CBF ∠都与BCF ∠互余,∴ACE CBF ∠=∠. F E D CBAF A DC E B。

相关文档
最新文档