11-12(2)概率统计A(答案)

合集下载

概率统计课后答案

概率统计课后答案

概率统计课后答案2第 一 章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A、B相互独立与A、B互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习题一1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成Ω=正正,正反,反正,反反{(,)(,)(,)(,)}(2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}Ω==i j i j(3)调查城市居民(以户为单位)烟、酒的年支出34 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B 解:(1)()()A B A B AB AB B B ==,5 (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率. 解法一:试验可模拟为m 个红球,n m -个白球,编上号,从中任取k 个构成一组,则总数为kn C ,而全为白球的取法有k mn C -种,故所求概率为k n k mn C C --1.解法二:令i A —第i 人中奖,,.,2,1k i =B —无一人中奖,则kA A AB 21=,注意到 k A ,,A ,A 21不独立也不互斥:由乘法公式)()()()()(11213121-=k k A A A P A A A P A A P A P B P(1)(2)(1)121n m n m n m n m k n n n n k -------+=⋅⋅---+!,1k k n m n m k k n nC C k C C ---同除故所求概率为.6.从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A )的概率是多少?6 解:122585410()C C C P A C -=7.在[]1,1-上任取一点X ,求该点到原点的距离不超过15的概率. 解:此为几何概率问题:]11[,-=Ω,所求事件占有区间]5151[,-,从而所求概率为121525P ⋅==.8.在长度为a 的线段内任取两点,将其分成三段,求它们可以构成一个三角形的概率.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足: 0202()a x a y x y a x y ⎧<<⎪⎪⎪<<⎨⎪+>--⎪⎪⎩从而所求概率=14CDEOAB S S =.9.从区间(0,1)内任取两个数,求这两个数的乘积小于14的概率. 解:设所取两数为,,X Y 样本7 空间占有区域Ω, 两数之积小于14:14XY <,故所求概率 ()()1()()1S S D S D P S Ω--==Ω, 而11411()(1)1(1ln 4)44S D dx x =-=-+⎰,故所求概率为1(1ln4)4+. 10.设A 、B 为两个事件,()0.9P A =,()0.36P AB =,求()P AB . 解:()()()0.90.360.54P A B P A P AB =-=-=;11.设A 、B 为两个事件,()0.7P B =,()0.3P AB =,求()P A B . 解:()()1()1[()()]1[0.70.3]0.6P A B P AB P AB P B P AB ==-=--=--=.12.假设()0.4P A =,()0.7P AB =,若A 、B 互不相容,求()P B ;若A 、B 相互独立,求()P B .解:若A 、B 互不相容,()()()0.70.40.3P B P A B P A =-=-=;若A 、B 相互独立,则由()()()()()P A B P A P B P A P B +=+-可得()P B =0.5. 13.飞机投弹炸敌方三个弹药仓库,已知投一弹命中1,2,3号仓库的概率分别为0.01,0.02,0.03,求飞机投一弹没有命中仓库8的概率.解:设=A {命中仓库},则=A {没有命中仓库},又设=i A {命中第i 仓库})3,2,1(=i 则03.0)(,02.0)(,01.0)(321===A P A P A P ,根据题意321A A A A =(其中321,A A A 两两互不相容) 故123()()()()P A P A P A P A =++=0.01+0.02+0.03=0.06 所以94.006.01)(1)(=-=-=A P A P即飞机投一弹没有命中仓库的概率为0.9414.某市有50%住户订日报,有65%的住户订晚报,有85%的住户至少订这两种报纸中的一种,求同时订这两种报纸的住户的百分比 解: 设=A {用户订有日报},B ={用户订有晚报},则=B A {用户至少订有日报和晚报一种},=AB {用户既订日报又订晚报},已知85.0)(,65.0)(,5.0)(===B A P B P A P ,所以3.085.065.05.0)()()()(=-+=-+=B A P B P A P AB P 即同时订这两种报纸的住户的百分比为30%15.一批零件共100个,次品率为10%,接连9两次从这批零件中任取一个零件,第一次取出的零件不再放回,求第二次才取得正品的概率. 解:设=A {第一次取得次品},=B {第二次取得正品},则=AB {第二次才取得正品},又因为9990)(,10010)(==A B P A P ,则 0909.0999010010)()()(===A B P A P AB P16.设随机变量A 、B 、C 两两独立,A 与B 互不相容. 已知0)(2)(>=C P B P 且5()8P B C =,求()P A B .解:依题意0)(=AB P 且)()()(B P A P AB P =,因此有0)(=A P . 又因25()()()()()3()2[()]8P B C P B P C P B P C P C P C +=+-=-=,解方程085)(3)]([22=+-C P C P 151()[()]()442P C P C P B ==⇒=舍去,,()()()()()0.5.P A B P A P B P AB P B =+-== 17.设A 是小概率事件,即()P A ε=是给定的无论怎么小的正数.试证明:当试验不断地独立重复进行下去,事件A 迟早总会发生(以概率1发生).10 解:设事件i A —第i 次试验中A 出现(1,2,,)i n =,∵(),()1i i P A P A εε==-,(1,2,,)i n =,∴n 次试验中,至少出现A 一次的概率为 1212()1()n n P A A A P A A A =-121()n P A A A =-121()()()n P A P A P A =-⋅⋅⋅(独立性)1(1)n ε=-- ∴12lim ()1n n P A A A →∞=,证毕.18.三个人独立地破译一密码,他们能单独译出的概率分别是15,13,14,求此密码被译 出的概率.解:设A ,B ,C 分别表示{第一、二、三人译出密码},D 表示{密码被译出},则 ()()()1 P D P A B C P A B C ==- 1()1()()() P ABC P A P B P C =-=-42331..5345=-=.19.求下列系统(如图所示)的可靠度,假设元件i 的可靠度为ip ,各元件正常工作或失效相互独立解:(1)系统由三个子系统并联而成,每个子系统可靠度为123p p p ,从而所求概率为31231(1)p p p --;(2)同理得2312[1(1)]p p --.20.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率. 解:设1A —第一第三台机器发生故障,2A —第一第三台机器发生故障,3A —第一第三台机 器发生故障,D —三台机器中至少有一台发生故障,则123()0.1,()0.2,()0.3P A P A P A ===,故 ()()()1 P D P A B C P A B C ==-1()1()()()10.90.80.70.496P A BC P A P B P C =-=-=-⨯⨯=21.设A 、B 为两事件,()0.7P A =,()0.6P B =,()0.4B P A =,求()P A B . 解:由()0.4B P A =得()0.4,()0.12,()()()0.48()P AB P AB P AB P B P AB P A ==∴=-=,()()()()0.82P A B P A P B P AB =+-=.22.设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少?解:设A —某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生算起活到25年以上,()0.4P B =,则所求的概率为 ()()0.4()()0.5()()0.8P AB P B B B P P A A P A P A =====23.某地区历史上从某年后30年内发生特大洪水的概率为80%,40年内发生特大洪水的概率为85%,求已过去了30年的地区在未来10年内发生特大洪水的概率.解:设A —某地区后30年内发生特大洪灾,()0.8P A =,B —某地区后40年内发生特大洪灾,()0.85P B =,则所求的概率为()()0.15()1()1110.250.2()()P BA P B B B P P A A P A P A =-=-=-=-=. 24.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球.1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少?解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+⋅+⋅= (/)()2/92) (/)()/()2/5()5/9P A B P B P B A P AB P A P A ====25.一批产品共有10个正品和2个次品,任取两次,每次取一个,抽出后不再放回,求第二次抽出的是次品的概率.解:设i B 表示第i 次抽出次品,(1,2)i =,由全概率公式2221111()()()()()B B P B P B P P B P B B =+=211021*********⨯+⨯=. 26.一批晶体管元件,其中一等品占95%,二等品占4%,三等品占1%,它们能工作500h 的概率分别为90%,80%,70%,求任取一个元件能工作500h 以上的概率.解:设=iB {取到元件为i 等品}(i =1,2,3) ,=A {取到元件能工作500小时以上}则%1)(%,4)(%,95)(321===B P B P B P %70)(%,80)(%,90)(321===B A P B A P B A P 所以)()()()()()()(332211B A P B P B A P B P B A P B P A P ++==⋅+⋅+⋅=%70%1%80%4%90%950.89427.某药厂用从甲、乙、丙三地收购而来的药材加工生产出一种中成药,三地的供货量分别占40%,35%和25%,且用这三地的药材能生产出优等品的概率分别为0.65,0.70和0.85,求从该厂产品中任意取出一件成品是优等品的概率.如果一件产品是优质品,求它的材料来自甲地的概率解:以B i 分别表示抽到的产品的原材来自甲、乙、丙三地,A={抽到优等品},则有:123()0.35,()0.25,P B P B ==P(B )=0.4,1()0.65,A P B =32()0.7,()0.85A A P P B B ==所求概率为().P A 由全概率公式得:123123()()()()()()()A A A P A P B P P B P P B P B B B=++ 0.650.40.70.350.850.250.7175.=⨯+⨯+⨯=1111()()(|)0.26()0.3624()()0.7175P B A P B P A B B P A P A P A ==== 28.用某种检验方法检查癌症,根据临床纪录,患者施行此项检查,结果是阳性的概率为0.95;无癌症者施行此项检查,结果是阴性的概率为0.90.如果根据以往的统计,某地区癌症的发病率为0.0005.试求用此法检查结果为阳性者而实患癌症的概率.解:设A={检查结果为阳性},B={癌症患者}.据题意有()0.95,()0.90,A A P P B B ==()0.0005,P B =所求概率为().B P A()0.10,()0.9995.AP P B B ==由Bayes 公式得 ()()()()()()()AP B P B B P A A A P B P P B P B B=+ 0.00050.950.00470.47%0.00050.950.99950.10⨯===⨯+⨯29.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率.解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1A A A P P P B B B ===,由于3个射手射击是互相独立的,所以 1()0.40.40.30.60.60.30.60.40.70.324P B =⨯⨯+⨯⨯+⨯⨯=2()0.40.60.30.40.70.40.60.70.60.436P B =⨯⨯+⨯⨯+⨯⨯= 3()0.40.60.70.168P B =⨯⨯=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是(1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===⨯+⨯+⨯=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)i ii P B P A B P B A P B P A B ====∑.30.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率;(2)任取一出厂产品未经调试的概率.解:A ——需经调试 A ——不需调试B ——出厂则%30)(=A P ,%70)(=A P ,%80)|(=A B P ,1)|(=A B P(1)由全概率公式:)()()()()(A B P A P A B P A P B P ⋅+⋅=%941%70%80%30=⨯+⨯=.(2)由贝叶斯公式:9470%94)()()()()(=⋅==A B P A P B P B A P B A P .31.进行一系列独立试验,假设每次试验的成功率都是p ,求在试验成功2次之前已经失败了3次的概率.解:所求的概率为234(1)p p -. 32.10个球中有一个红球,有放回地抽取,每次取一球,求直到第n 次才取k 次()k n ≤红球的概率 解:所求的概率为11191010k n k k n C ---⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭33.灯泡使用寿命在1000h 以上的概率为0.2,求3个灯泡在使用1000h 后,最多只有一个坏了的概率.解:由二项概率公式所求概率为312333(0)(1)0.2(0.2)0.80.104P P C +=+⋅= 34.(Banach 问题)某人有两盒火柴,每盒各有n 根,吸烟时任取一盒,并从中任取一根,当他发现有一盒已经用完时,试求:另一盒还有r 根的概率.解:设试验E —从二盒火柴中任取一盒,A —取到先用完的哪盒,1()2P A =, 则所求概率为将E 重复独立作2n r -次A 发生n 次的概率,故所求的概率为222211()()()222n n n n r n r n rn r n r C P n C -----==.第二章思考题1. 随机变量的引入的意义是什么?答:随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来,其目的是将事件数量化,从而随机事件这个概念实际上是包容在随机变量这个更广的概念内.引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究. 随机变量概念的产生是概率论发展史上的重大事件,随机事件是从静态的观点来研究随机现象,而随机变量的引入则变为可以用动态的观点来研究.2.随机变量与分布函数的区别是什么?为什么要引入分布函数?答:随机变量与分布函数取值都是实数,但随机变量的自变量是样本点,不是普通实数,故随机变量不是普通函数,不能用高等数学的方法进行研究,而分布函数一方面是高等数学中的普通函数,另一方面它决定概率分布,故它是沟通概率论和高等数学的桥梁,利用它可以将高度数学的方法得以引入.3. 除离散型随机变量和连续型随机变量,还有第三种随机变量吗?答:有,称为混合型. 例:设随机变量[]2,0~U X ,令⎩⎨⎧≤≤<≤=.21,1;10,)(x x x x g则随机变量)(X g Y =既非离散型又非连续型. 事实上,由)(X g Y =的定义可知Y 只在[]1,0上取值,于是当0<y 时,0)(=y F Y ;1≥y 时,1)(=y F Y;当10<≤y 时,()2))(()(yy X P y X g P y F Y =≤=≤=于是⎪⎪⎩⎪⎪⎨⎧≥<≤<=.1,1;10,2;0,0)(y y y y y F Y首先Y 取单点{1}的概率021)01()1()1(≠=--==YY F F Y P ,故Y 不是连续型随机变量.其次其分布函数不是阶梯形函数,故Y 也不是离散型随机变量. 4.通常所说“X 的概率分布”的确切含义是什么?答:对离散型随机变量而言指的 是分布函数或分布律,对连续型随机变量而言指的是分布函数或概率密度函数.5.对概率密度()f x 的不连续点,如何由分布函数()F x 求出()f x ?答:对概率密度()f x 的连续点,()()f x F x '=,对概率密度()f x 的有限个不连续点处,可令()f x c =(c 为常数)不会影响分布函数的取值.6.连续型随机变量的分布函数是可导的,“概率密度函数是连续的”这个说法对吗?为什么? 答:连续型随机变量密度函数不一定是连续的,当密度函数连续时其分布函数是可导的,否则不一定可导.习 题1.在测试灯泡寿命的试验中,试写出样本空间并在其上定义一个随机变量.解:每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 样本空间为}0|{≥=Ωt t ,若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=Ωt t 上的函数,即t t X X ==)(是随机变量.2.一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.解:{报童赔钱}⇔{卖出的报纸钱不够成本},而当 0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ⇔{X ≤666}3.若2{}1P X x β<=-,1{}1P X x α≥=-,其中12x x <,求12{}P x X x ≤<.解:1221{}{}{}P x X x P X x P X x ≤<=<-<21{}[1{}]1P X x P X x αβ=<--≥=--.4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=1,110,0,0)(2x x x x x F试求(1)⎭⎬⎫⎩⎨⎧≤21X P (2)⎭⎬⎫⎩⎨⎧≤<-431X P (3)⎭⎬⎫⎩⎨⎧>21X P解:41)21(21)1(==⎭⎬⎫⎩⎨⎧≤F X P ; (2)1690169)1()43(431=-=--=⎭⎬⎫⎩⎨⎧≤<-F F X P ; (3)43)21(121121=-=⎭⎬⎫⎩⎨⎧≤-=⎭⎬⎫⎩⎨⎧>F X P X P .5.5个乒乓球中有2个新的,3个旧的,如果从中任取3个,其中新的乒乓球的个数是 一个随机变量,求这个随机变量的概率分布律和分布函数,并画出分布函数的图形. 解:设X 表示任取的3个乒乓球中新的乒乓球的个数,由题目条件可知,X 的所有可能取值为0,1,2,∵33351{0}10C P X C ===,1223356{1}10C C P X C ===,2133353{2}10C C P X C ===∴随机变量X 的概率分布律如下表所示: 由()k kx xF x P ≤=∑可求得()F x 如下:0 ,0{0} ,01(){0}{1} ,12{0}{1}{2} x P X x F x P X P X x P X P X P X <=≤<==+=≤<=+=+= ,2x ⎧⎪⎪⎨⎪⎪≥⎩X0 1 2 P0.10.60.30 ,00.1 ,010.7 ,121 ,2x x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩,()F x 的图形如图所示.6.某射手有5发子弹,射击一次命中率为0.9,如果他命中目标就停止射击,命不中就一直射击到用完5发子弹,求所用子弹数X 的概率分布 解:7 .一批零件中有9个合格品与3个废品,安装机器时,从这批零件中任取一个,如果每次取出的废品不再放回,求在取出合格品之前已取出的废品数的分布律.解:设{}ii A =第次取得废品,{}iAi =第次取得合格品,由题意知,废品数X 的可能值为0,1,2,3,事件{0}X =即为第一次取得合格品,事件{1}X =即为第一次取出的零件为废品,而第二次取出的零件为合格品,于是有19{0}()0.7512P X P A ====,21211399{1}()0.2045121144A P X P A A P A P A ====⋅=≈()(),3212311123299{2}()0.0409121110220A A P X P A A A P A P PA A A ===⋅⋅=≈()()()=32412341112123{3}()321910.00451211109220A A A P X P A A A A P A PPPA A A A A A ====⋅⋅⋅=≈()()()()所以X 的分布律见下表8.从101-中任取一个数字,若取到数字)101( =i i 的概率与i 成正比,即 1,2,,10P X i ki i ===(),(),求k .解:由条件 1,2,,10P X i ki i ===(),(),由分布律的性质1011i i p ==∑,应有1011i ki ==∑,155k =.9 .已知随机变量X 服从参数1=λ的泊松分布,试满足条件{}01.0=>N X P 的自然数N . 解:因为{}{}{}99.0101.0),1(~=>-=≤=>N X P N X P Y X P P X 所以从而{}99.0!0==≤∑=-Nk k e N X P λ查附表得4=N10.某公路一天内发生交通事故的次数X 服从泊松分布,且一天内发生一次交通事故的概率与发生两次交通事故的概率相等,求一周内没有交通事故发生的概率. 解:设~()X P λ,由题意:)1(=XP =)2(=X P ,2!2!1λλλλ--=e e ,解得2=λ,所求的概率即为222!0)0(--===e e X P .11 . 一台仪器在10000个工作时内平均发生10次故障,试求在100个工作时内故障不多于两次的概率.解:设X 表示该仪器在100个工作时内故障发生的次数,1~(100,)1000X B ,所求的概率即为)0(=X P ,)1(=X P ,)2(=X P 三者之和.而100个工作时内故障平均次数为=μ1.010001100=⨯,根据Poisson 分布的概率分布近似计算如下:99984.000452.009048.090484.0!2!1!0)2(21=++=++≈≤---μμμμμμe eeX P故该仪器在100个工作时内故障不多于两次的概率为0.99984.12.设[]~2,5X U ,现对X 进行三次独立观察,试求至少有两次观察值大于3的概率. 解:()1,2530 ,x f x ⎧≤≤⎪=⎨⎪⎩其余,令()3A X =>,则()23p P A ==,令Y 表示三次重复独立观察中A 出现次数,则2~3,3Y B ⎛⎫⎪⎝⎭,故所求概率为()21323332121202333327P Y C C ⎛⎫⎛⎫⎛⎫⎛⎫≥=+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.13.设某种传染病进入一羊群,已知此种传染病的发病率为2/3,求在50头已感染的羊群中发病头数的概率分布律.解:把观察一头羊是否发病作为一次试验,发病率3/2=p ,不发病率3/1=q ,由于对50头感染羊来说是否发病,可以近似看作相互独立,所以将它作为50次重复独立试验,设50头羊群中发病的头数为X ,则X (50,2/3)X B ,X 的分布律为{})50,,2,1,0(31325050=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==-k C k X P kkk14.设随机变量X的密度函数为2, 01()0 , x x p x <<⎧=⎨⎩其它,用Y 表示对X 的3次独立重复观察中事件1{}2X ≤出现的次数,求{2}P Y =. 解:(3,)Y p B ,1211{}224p P Xxdx =≤==⎰,由二项概率公式223139{2}()()4464P Y C ===.15.已知X 的概率密度为2,0()0,x ax e x f x x λ-⎧>=⎨≤⎩,试求:(1)、未知系数a ;(2)、X 的分布函数()F x ;(3)、X 在区间1(0,)λ内取值的概率. 解:(1)由⎰+∞-=021dx eax xλ,解得.22λ=a(2) ()()()F x P X x f x dx+∞-∞=≤=⎰,∴当x ≤0时0)(=x F ,当x >0时,222()1(22)2x xxe F x ax edx x x λλλλ--==-++⎰,∴2211(22),0()20, 0x x x F x x λλ⎧-++>⎪=⎨⎪≤⎩ .(3)511(0)()(0)12P X F F e λλ<<=-=-.16.设X 在(1,6)内服从均匀分布,求方程210x Xx ++=有实根的概率.解: “方程210x Xx ++=有实根”即{2}X>,故所求的概率为{2}P X >=45.17.知随机变量X 服从正态分布2(,)N a a ,且Y aX b =+服从标准正态分布(0,1)N ,求,a b .解:由题意222(0)1a b a a a ⎧+=>⎨⋅=⎩解得:1,1a b ==- 18.已知随机变量X 服从参数为λ的指数分布,且X 落入区间(1,2)内的概率达到最大,求λ. 解:2(12)(1)(2)()P X P X P X e e g λλλ--<<=>->=-=令,令()0g λ'=,即022=---λλe e,即021=--λe,∴.2ln =λ19.设随机变量(1,4)X N ,求(0 1.6)P X ≤<,(1)P X <.解:01 1.61(0 1.6)()22P X P X --≤<=≤<1.6101()()0.309422--=Φ-Φ=11(1)()(0)0.52P X -<==Φ=Φ=.20.设电源电压()2~220,25X N ,在200,200240,240X X X ≤<≤>电压三种情形下,电子元件损坏的概率分别为0.1,0.001,0.2,求:(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电压在200~240伏的概率β.解:设()()()123200,200240,240A X A X A X =≤=<≤=>, D —电子元件损坏,则 (1)123,,A A A 完备,由全概率公式()()()()123123D D D P D P A P P A P P A P A A A α⎛⎫⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,今()()()12002200.810.80.21225P A -⎛⎫=Φ=Φ-=-Φ= ⎪⎝⎭, 同理()()()()20.80.820.810.576P A =Φ-Φ-=Φ-=,()310.2120.5760.212P A =--=, 从而()0.062P D α==.(2)由贝叶斯公式()()222D P A P A A P D P D β⎛⎫ ⎪⎝⎭⎛⎫== ⎪⎝⎭0.5760.0010.0090.062⨯==.21.随机变量X 的分布律为求2Y X =的分布律.22.变量X 服从参数为0.7的0-1分布,求2X及22X X-的概率分布.解.X 的分布为易见,2X 的可能值为0和1;而22XX-的可能值为1-和0,由于2{}P Xu =={P X }u =(0,1)u =,可见2X 的概率分布为:由于2{21}{1}0.7P XX P X -=-===,2{20}{0}0.3P XX P X -====,可得22X X-的概率分布为23.X 概率密度函数为21()(1)Xf x x π=+,求2Y X =的概率密度函数()Yf y .解:2y x=的反函数为2y x =,代入公式得22()()()22(4)Y X y y f y f y π'==+.24.设随机变量[]~0,2X U ,求随机变量2Y X =在()0,4内概率密度()Yfy .解法一(分布函数法) 当0y <时,()0,4YF y y =>时()1Y F y =,当04y ≤≤时, ()(YXF y P X F ==从而()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余解法二(公式法)2y x =在()0,2单增,由于反函数x =在()0,4可导,'yx =,从而由公式得()40 ,XY f y f y ⎧=≤≤⎪=⎨⎪⎩其余25.,0)0 ,0x X e x f x x -⎧≥=⎨<⎩(,求XY e =的密度.解法一(分布函数法)因为0X ≥,故1Y >,当1y >时,()()()ln ln Y X F y P X y F y =≤=,()()ln 2111ln ,10 ,1y X Y f y ey y y y f y y -⎧==>⎪∴=⎨⎪≤⎩.解法二(公式法)xy e =的值域()1,+∞,反函数ln x y =,故()()[]21ln ln ' ,10 ,1X Y f y y y y f y y ⎧=>⎪=⎨⎪≤⎩.26.设随机变量X 服从(0,1)上的均匀分布,分别求随机变量XY e =和ln Z X =的概率密度()Yfy 和()Z f z .解:X 的密度为1, 01() x f x ⎧<<⎪=⎨⎪⎩0,若其它, (1)函数xy e =有唯一反函数,ln x y =,且1Y e <<,故(ln )(ln ), 1() X f y y y e f y '⎧<<⎪=⎨⎪⎩0,其它1, 1 y ey ⎧<<⎪=⎨⎪⎩0,其它.(2)在区间(0,1)上,函数ln ln z x x ==-,它有唯一反函数zx e -=,且0Z >,从而()(), () z z X Z f e e f z -->⎧'⎪=⎨⎪⎩z 00,其它0, zz e ->⎧⎪=⎨⎪⎩0,其它.27. 设()Xfx 为X 的密度函数,且为偶函数,求证X-与X 有相同的分布.证:即证Y X =-与X 的密度函数相同,即()()Y X f y f y =.证法一(分布函数法)()()()()()11Y X F y P X y P X y P X y F y =-≤=≥-=-≤-=--,()()()()1Y X X p y p y p y ∴=--⋅-=,得证.证法二(公式法)由于y x =-为单调函数,∴()()()()()'YXX X p y p y y p y p y =--=-=.28.设随机变量X服从正态分布),(2σμN ,,>+∞<<-∞σμ ,)(x F 是X 的分布函数,随机变量)(X F Y =. 求证Y 服从区间]1,0[上的均匀分布.证明:记X 的概率密度为)(x f ,则⎰∞-=xdt t f X F .)()( 由于)(x F 是x 的严格单调增函数,其反函数)(1x F-存在,又因1)(0≤≤x F ,因此Y 的取值范围是]1,0[. 即当10≤≤y 时{}{}{}1()()()Y F y P Y y P F X y P X F y -=≤=≤=≤.)]([1y y F F ==-于是Y 的密度函数为1, 01()0, Y y p y ≤<⎧=⎨⎩其它即Y 服从区间]1,0[上的均匀分布.第 三 章思 考 题1(答:错)2 (答:错) 3答:错)习 题 三1 解:)(}1,1{}1,1{}{已知独立==+-=-===Y X P Y X P Y X P2121212121}1{}1{}1{}1{=⋅+⋅===+-=-==Y P X P Y P X P .由此可看出,即使两个离散随机变量Y X 与相互独立同分布, YX 与一般情况下也不会以概率1相等.2解:由∑∑ijijp =1可得:14.0=b ,从而得:.1,0;2,1,0}{}{},{=======j i j Y P i X P j Y i X P 故Y X ,相互独立.7.035.015.014.006.0}1,1{}0,1{}1,0{}0,0{)1,1(}1,1{=+++===+==+==+====≤≤Y X P Y X P Y X P Y X P F Y X P 3解:)()1,1(11AB P Y X P p ====,121)()(==A B P A P )()0,1(12B A P Y X P p ==== 613241)()(=⋅==A B P A P 因为:,32)(1)(:,1)()(=-==+A B P A B P A B P A B P 所以121)()()()()()()()1,0(21=-=-=-=====AB P B A P AB P AB P B P A B P B A P Y X P p 12812161121122=---=p ,结果如表所示.4 解: X 的边缘分布律为32}2{,31}1{====X P X PY的边缘分布律为21}2{,21}1{====X P Y P1=Y 的条件下X的条件分布为}1{}1,1{}11{=======Y P Y X P Y X P 1}1{}1,2{}12{=======Y P Y X P Y X P2=X 的条件下Y 的条件分布为,32}2{}1,2{}21{=======X P Y X P X Y P ,31}2{}2,2{}22{=======X P Y X P X Y P5 解:(1)由乘法公式容易求得),(Y X 分布律.易知,放回抽样时,61}1{,65}0{,61}1{,65}0{========Y P Y P X P X P且}{}{},{i X P i X j Y P j Y i X P ======.1,0;1,0}{}{=====j i j Y P i X P 于是),(Y X 的分布律为(2)不放回抽样,则,61}1{,65}0{====X P X P ,在第一次抽出正品后,第二次抽取前的状态:正品9个,次品2个.故,112}01{,119}00{======X Y P X Y P又在第一次抽出次品后,第二次抽取前状态:正品10个,次品1个.故111}11{,1110}10{======X Y P X Y P ,且1,0,}{}{},{=======j i i X P i X jY P j Y i X P于是),(Y X 的分布律为放回抽样时,两次抽样互不影响,故彼此相互独立;不放回抽样,第一次抽样对第二次抽样有影响,不相互独立. 6解 ),(y x f =⎪⎩⎪⎨⎧≤≤≤≤--.,0,,,))((1否则d y c b x a d c a b⎪⎩⎪⎨⎧><≤≤-=b x ax b x a ab x f X ,0,1)(, )(y fY=⎪⎩⎪⎨⎧><≤≤-d y cy d y c d c ,0,1随机变量X 及Y 是独立的. 7 解 (1)),(y x f =yx y x F ∂∂∂),(2=)9)(4(6222y x ++π(2)X 的边缘分布函数=+∞=),()(x F x F X )22)(22(12ππππ++x arctg =)22(1xarctg +ππ.由此得随机变量X 的边缘分布密度函数==)()(x F dxdx f X X )4(22x +π同理可得随机变量Y 的边分布函数 =+∞=),()(y F y F Y)32)(22(12y arctg ++ππππ=)32(1yarctg +ππ Y的边缘分布密度函数==)()(y F dy dy f y Y )9(32y +π(3)由(2)知)(x f X )(y f Y =)4(22x +π)9(32y +π=),(y x f ,所以X 与Y 独立.8 解 因为X 与Y 相互独立,所以Y X ,的联合概率密度为∞<<-∞∞<<-∞==+-y x e y f x f y x f y x Y X ,,21)()(),(222π⎰⎰⎰⎰≤+---+--=-====120102110222222222,12121}2{y x r r y x e erdred dxdye Z P πθππ⎰⎰⎰⎰≤+≤----+--=-====41202122121222222222,2121}1{y x r r y x e ee rdr e d dxdye Z P πθππ⎰⎰⎰⎰>+∞-∞--+-=-====420222222222222,2121}0{y x r r y x e e rdr e d dxdye Z P πθππ所以,Z的分布律为:.1}2{,}1{,}0{212212-----==-====eZ P ee Z P e Z P9解:(1)由 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰∞+∞++-==⇒0)43(121A dxdy e A y x ,即 12=⇒A因此),(y x f =,,00,0,12)43(⎪⎩⎪⎨⎧>>+-其它y x e y x(2)X 的边缘概率密度为 当0>x ,)(x f X =⎰∞∞-dy y x f ),(=⎰∞+-0)43(12dy e y x =xe 33-,当0>y ,)(y fY=⎰∞),(dxy x f =⎰∞+-0)43(12dx e y x =ye 44-,可知边缘分布密度为:)(x fX=⎪⎩⎪⎨⎧>-,,0,0,33其它x e x)(y f Y =⎪⎩⎪⎨⎧>-,,00,44其它y e y(3)}20,10{≤<≤<Y X P =⎰⎰--+---=102083)43()1)(1(12e e dxdy e y x10解 因为 ⎰⎰∞+∞-∞+∞-dxdy y x f ),(=1,即⎰⎰=101021dy y xdx c ,6,13121==⋅⋅c c对任意10<<x ,)(x f X =⎰∞+∞-dy y x f ),(=⎰=10226x dy xy , 所以)(x fX =⎩⎨⎧<<,,0,10,2其它x x对任意10<<y ,)(y f Y =⎰∞+∞-dx y x f ),(=⎰=1022,36y dx xy , 所以)(y fY=⎪⎩⎪⎨⎧<<,,0,10,32其它y y故),(y x f =)(x fX)(y f Y ,所以X 与Y 相互独立.11解 由 2ln 12211===⎰e e D x dx xS当21ex ≤≤时,,2121),()(1010xdy dy y x f x f x x X ===⎰⎰其它)(x f X =0.所以:.41)2(=X f 12解(1)X ,Y 的边缘密度为分布密度为:)(x f X =⎰-<<=x x x x dy 10,21 )(y f Y =⎰<<--=111,11y y y dx故)(y x fYX =)(),(y f y x f Y=⎪⎩⎪⎨⎧<-,,0,,11其它x y y)(x y f X Y =)(),(x f y x f X =⎪⎩⎪⎨⎧<<,,0,1,21其它y x x(2)因为)(x f X)(y f Y y -=1≠),(y x f =1,故X 与Y 不相互独立.13证 设X 的概率密度为)(x f ,Y 的概率密度为)(y f ,由于Y X ,相互独立,故),(Y X 的联合密度为),(y x f =)(x f )(y f .于是⎰⎰⎰⎰≤∞+∞-∞+==≤yx x dyy f dx x f dxdy y f x f Y X P )()()()(}{ ⎰⎰⎰⎰>∞+∞-∞+==>yx ydxx f dy y f dxdy y f x f Y X P )()()()(}{ 交换积分次序可得:⎰⎰∞+∞+∞-=xdy y f dx x f )()(⎰⎰∞+∞+∞-ydxx f dy y f )()(所以=≤}{Y X P =>}{Y X P 1-}{Y X P ≤故21}{=≤Y X P . 14解 设)(A P p =,由于Y X ,相互独立同分布,于是有,)(}{}{)(p A P a X P a Y P B P ==≤=≤=则,1)(p B P -=又=)(B A P )(A P +)(B P -)(A P )(B P =p+()1p --p )1p -=9712=+-p p解得:,32,3121==p p因而a 有两个值.由于2121}{)(1-==≤=⎰a dx a X P A P a ,所以,当311=p时,由21-a =31得35=a 当322=p时,由21-a =32得37=a . 15解 (1)Y X +的可能取值为2,3,4.且,41}1{}1{}2{=====+Y P X P Y X P 2141414141}1,2{}2{}1{}3{=⋅+⋅===+====+Y X P Y P X P Y X P,41}2{}2{}4{=====+Y P X P Y X P故有:;41}4{,21}3{,41}2{==+==+==+Y X P Y X P Y X P (2)由已知易得 ;21}42{,21}22{====X P X P 16解 由已知得所以有17证明:对任意的,,,1,021n nk += 我们有∑=-====ki i k Y P i X P k Z P 0}{}{}{(因为X 与Y 相互独立)=∑=-----ki i k n i k i k n i n i i n q p C q p C 0)(2211=∑=-+-ki k n n k i k n i n q p C C 02121)( (利用组合公式 ∑=+-=ki k nm i k n im C C C)=kn n k k nn q p C -++2121即Y X Z +=~),(21p n nb +18解 Y X Z +=在[0,2]中取值,按卷积公式Z 的分布密度为:,)()()()(1dx x z f dx x z f x f z f Y Y X Z -=-=⎰⎰∞+∞-⎩⎨⎧≤≤-≤≤⎩⎨⎧≤-≤≤≤,1,10:,10,10:z x z x x z x 即其中如图,从而:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤==⎰⎰-。

概率统计试卷A及答案

概率统计试卷A及答案

概率统计试卷A及答案2010—2011—2概率统计试题及答案⼀、选择题(每题3分,共30分)1 11 .已知P(A) P(B) P(C) , P(AC) P(BC) , P(AB) 0 求事件A,B,C 4 16全不发⽣的概率1 3(A) 3(B)8(C)2 ?设A、B、C为3个事件?运算关系A B C表⽰事件___________ .(A)A、B、C⾄少有⼀个发⽣(B)A、B、C中不多于⼀个发⽣(C) A , B, C不多于两个发⽣(D) A,⽉,C中⾄少有两个发⽣3?设X的分布律为P{X k} 2 k (k 1,2,),贝U _________________________ .(A) 0的任意实数(B) 31(C) 3(D) 14. 设X为⼀个连续型随机变量,其概率密度函数为f(x),则f(x)必满⾜(A) 0 f (x) 1 ( B)单调不减(C) f (x)dx 1(D) lim f (x) 15. 对正态总体的数学期望⼙进⾏假设检验,如果在显著性⽔平=下接受H。

0,那么在显著性⽔平=下,下列结论正确的是:(A)必接受H。

( B)可能接受也可能拒绝H 0(C)必拒绝H。

( D)不接受,也不拒绝H。

6. 设随机变量X和丫服从相同的正态分布N(0,1),以下结论成⽴的是(A) 对任意正整数k,有E(X k) E(Y k)(B) X Y服从正态分布N(0,2)(C) 随机变量(X ,Y)服从⼆维正态分布(D) E(XY) E(X) E(Y) 7.若正态总体X 的⽅差D (X )1 2未知,检验期望E (X ) 0⽤的统计量是(C) x 0 (n 1) (D)x0 — 1 2n勺2 2X X kX X k1k 18.设⼆维随机变量(X,Y )服从G 上的均匀分布,G 的区域由曲线y x 2与参数落在区间(?1 , ?2 )之内的概率为1 参数落在区间(?1 , ?2)之外的概率为D )对不同的样本观测值,区间(?1 , ?2)的长度相同.、填空题(每题3分,共30 分)1 1 _ _1 n 2-(X i X)2( D)n i 1x 所围, 则(X ,Y )的联合概率密度函数为 (A) f(x,y) 6, (x,y) G0,其他(B) f(x ,y) 1/6, (x,y) G 0, 其他 (C) f(x,y) 2, (x,y) G 0,其他(D )f(x ,y) 1/2, (x,y) G 0, 其他 9 ?样本 X 1, X 2,,X n 来⾃总体N ( 2), 则总体⽅差 2的⽆偏估计为 A ) S 12 七 n (X i X)2( n 2 i 1S ;七(X i n 1 i 1X)2 S41 nf (X i X)10.设(2)是参数的置信度为1 的区间估计,则以下结论正确的是(A)x. n(n 1) (B)1n _2⼆x X kx 0 n- n 2 2 2x X kk 1C )区间( 2)包含参数的概率为11?设P(A) P(B) - , P(A B)—,则P(A|B)3 2 12?设⼀批产品共10件,其中8件正品,2件次品,从中任意抽取3件,则恰有1件是次品的概率是 __________ .13?已知随机变量X在[a, a]上服从均匀分布,且P{X 1}丄,则a _____________ . 3设随机变量X服从(0,3)上的均匀分布,则随机变量丫=X2在(0,9)的概率密度函数为____________ .4.设X ~ N(3,4),丫~N( 5,6),且X 与丫相互独⽴,则X 2Y ~ _____________ . 5?设随机变量X的数学期望为E(X) 、⽅差D(X) 2,则由切⽐雪夫不等式有P X —.4 ------------------6.设随机变量X的分布律为E(2X 1) __________ .7. 已知D(X) 25,D(Y) 36, (X,Y) 0.4,则D(X Y) _______________ .8. 设总体X服从参数为的泊松分布,X1 , X2 , , X100为来⾃总体的⼀个样本,则矩估计量为____________ .9. 设总体X服从正态分布N(m, s2),X1,X2, X3是来⾃总体X的⼀个样本,则X1,X X B的联合概率密度为___________ .10. 设总体X服从正态分布N(m, s2),其中s2未知,现从总体中抽取⼀容量为n的样本,则总体均值的置信度为1 的置信区间为 ________ .,X10是来⾃总体X的⼀个样本且X ~ N (0,0.52)求、设X1,X2,P i24 . ( 0.O5(9) 16 , 2.io(1O) 16,)i 1四、从⼀正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.(已知:(2.33) 0.99, (2.06) 0.98 , t o.8(9) 0.261 ,t o.8(1O) 0.26)五、在肝癌诊断中,有⼀种甲胎蛋⽩法,⽤这种⽅法能够检查出95%勺真实患者,但也有可能将10%勺⼈误诊。

概率论与数理统计 习题参考答案

概率论与数理统计 习题参考答案

概率论与数理统计习题二参考答案1、将一颗骰子抛掷两次,以X 1表示两次所得点数之和,以X 2表示两次得到的点数的最小者,试分别求X 1和X 2的分布律。

解:X 1可取2、3、4、5、6、7、8、9、10、11、123616161)1,1()2(1=×===P X P36261616161)"1,2""2,1(")3(1=×+×=∪==P X P 363616161616161)"1,3""2,2""3,1(")4(1=×+×+×=∪∪==P X P …… 所以X 1的分布律为X 1 2 3 4 5 6 7 8 9 10 11 12 P k 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 X 2可取的数有1、2、3、4、5、6P (X 2=1)=P ()="1,6""1,5""1,4""1,3""1,2""6,1""5,1""4,1""3,1""2,1""1,1"∪∪∪∪∪∪∪∪∪∪3611所以X 2的分布律为 X 2 1 2 3 4 5 6 P k 11/36 9/36 7/36 5/36 3/36 1/36 2、10只产品中有2只是次品,从中随机地抽取3只,以X 表示取出次品的只数,求X 的分布律。

解:X 可取0、1、2{}310380C C X P ==157={}15713102812===C C C X P {}15123101822===C C C X P3、进行重复独立试验。

学应用概率统计大学数学2试卷(A卷)附答案

学应用概率统计大学数学2试卷(A卷)附答案

2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===U ,则()P A B =U ______________.2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________.3. 设二维离散型随机变量),(Y X 的联合分布律为:),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________.4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________.5. 设X 、Y相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及其参数).6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分)1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). A. 0.05B. 0.06C. 0.07D. 0.082. 设A 、B 为两个随机事件,且B A ⊂,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P >C. ()()B A P A P ≤D. ()()B A P A P ≥3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ).A. 21,0()11,0x F x x x ⎧≤⎪=+⎨⎪>⎩ B. 0,0() 1.1,011,1x F x x x <⎧⎪=≤≤⎨⎪>⎩14. 设随机变量()2~2,3X N ,随机变量25Y X =-+, 则~Y ( ). A. (1,41)N B. (1,36)N C. (1,18)N - D. (1,13)N -5. 设某地区成年男子的身高()100,173~N X ,现从该地区随机选出20名男子,则这20名男子身高平均值的方差为( ).A. 100B. 10C. 5D. 0.56. 设12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, X 为样本均值,则不是总体期望μ的无偏估计量的是( ).A. XB. 123X X X +-C. 1230.20.30.5X X X ++D. 1nii X=∑三、计算题(本大题共4小题,共40分)1.(本题8分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求: (1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.2.(本题8分)设离散型随机变量X 只取1,2,3三个可能值,取各相应值的概率分别是21,,4a a -,求:(1) 常数a ; (2) 随机变量X 的分布律; (3) 随机变量X 的分布函数()F x .3.(本题10分)设随机变量X 的密度函数为:()1()2x f x e x -=-∞<<+∞.(1) 求{1}P X <; (2) 求2Y X =的密度函数.4.(本题14分)设随机变量X 与Y 相互独立,它们的密度函数分别为1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他, 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (,)X Y 的联合密度函数; (2) ()P Y X <; (3)()D X Y -.四、解答题(本大题共3小题,每小题8分,共24分)1. 从一台车床加工的一批轴料中抽取15件测量其椭圆度,计算得样本方差220.025s =,已知椭圆度服从正态分布,问该批轴料椭圆度的总体方差与规定的方差200.0004σ=有无显著差异(取检验水平0.05α=)?(20.025(14)26.1χ=, 20.975(14) 5.63χ=, 20.025(15)27.5χ=,20.975(15) 6.26χ=)2. 某粮食加工厂用4种不同的方法贮藏粮食,一段时间后,分别抽样化验其含水率,每种方法重复试验次数均为5次,所得粮食含水率的方差分析表的部分数据如下. (0.05(4,19) 5.01F=,0.01(4,16) 4.77F=,0.01(3,16) 5.29F=) (1) 完成下面的方差分析表.(2) 给出分析结果.3. 有人认为企业的利润水平和它的研究费用间存在着近似的线性关系. 下面是某10个企业的利润水平(x )与研究费用(y )的调查资料:102101=∑=i ix,2390101=∑=i i y ,10661012=∑=i ix ,6243001012=∑=i iy ,25040101=∑=i i i y x建立研究费用y 与企业利润水平x 的回归直线方程.2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3.518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分)则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分) (2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分)2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为(5分)(3) X 的分布函数为 0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分) 3. 解(1)111011{1}{11}12x x P X P X e dx e dx e---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(20xx F y P X y P X dx dx --=<=<<== (8分) 所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分) 4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 (3分)(2){}(,)y xP Y X f x y dxdy <<=⎰⎰330[]xy e dy dx -=⎰⎰ (6分)330(1)x e dx -=-⎰3390181()333x x e e --=+=+()9183e -=+ (8分) (3)解:由密度函数可知~(0,3),~(3)X U Y E (10分)所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+=(14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分)依题意,取统计量:2222(1)~(1)n S n χχσ-=-,15n =. (3分)查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分)计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分)因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异.(8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分) 因此所求回归直线方程为 ˆ24.7725.86yx =-+ (8分)。

应用概率统计大学数学2试卷(A卷)附答案

应用概率统计大学数学2试卷(A卷)附答案

2011-2012学年第 2 学期 考试科目: 大学数学Ⅱ一、填空题(本大题共6小题,每小题3分,共18分)1. 设A 、B 为两个随机事件,已知()0.3,()0.4,()0.5P A P B P A B ===,则()P AB =______________.2. 设随机变量X 服从参数为3的泊松分布,则(1)P X ≥= ______________. 3. 设二维离散型随机变量),(Y X 的联合分布律为:),(Y X 的联合分布函数为),(y x F ,则(1,3)F =______________.4. 设随机变量X 表示100次独立重复射击命中目标的次数,每次命中目标的概率为0.2, 则2X 的数学期望是______________.5. 设X 、Y相互独立,且都服从标准正态分布,则~Z =______________. (要求写出分布及其参数).6. 设由来自总体~(,0.81)X N μ,容量为9的样本得到样本均值5=X ,则未知参数μ的置信度为95%的置信区间为___________________.( 0.025 1.96u =) 二、单项选择题(本大题共6小题,每小题3分,共18分)1. 某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的, 中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱, 则此人赚钱的概率约为( ). ﻩ A. 0.05ﻩB . 0.06ﻩC. 0.07ﻩﻩD . 0.082. 设A 、B 为两个随机事件,且B A ⊂,()0>B P ,则下列选项必然正确的是( ). A. ()()B A P A P < B. ()()B A P A P >C. ()()B A P A P ≤ D. ()()B A P A P ≥ 3. 下列各函数中可以作为某个随机变量X 的分布函数的是( ).1,0x ⎧≤⎪0,0x <⎧⎪C . x x F sin )(= D. 211)(x x F +=4. 设随机变量()2~2,3X N ,随机变量25Y X =-+, 则~Y ( ).A. (1,41)N B . (1,36)N C. (1,18)N - D. (1,13)N -5. 设某地区成年男子的身高()100,173~N X ,现从该地区随机选出20名男子,则这20名男子身高平均值的方差为( ).A . 100 B. 10 C. 5 D . 0.56. 设12,,,n X X X ⋅⋅⋅是取自总体X 的一个样本, X 为样本均值,则不是总体期望μ的无偏估计量的是( ).A . X B. 123X X X +- C. 1230.20.30.5X X X ++ D. 1nii X=∑三、计算题(本大题共4小题,共40分)1.(本题8分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求: (1)一个产品经检查后被认为是合格品的概率; (2)一个经检查后被认为是合格品的产品确是合格品的概率.2.(本题8分)设离散型随机变量X 只取1,2,3三个可能值,取各相应值的概率分别是21,,4a a -,求:(1)常数a ; (2) 随机变量X 的分布律; (3) 随机变量X 的分布函数()F x .3.(本题10分)设随机变量X 的密度函数为:()1()2x f x e x -=-∞<<+∞.(1) 求{1}P X <; (2) 求2Y X =的密度函数.4.(本题14分)设随机变量X 与Y 相互独立,它们的密度函数分别为1,03()30,X x f x ⎧≤≤⎪=⎨⎪⎩其他, 33,0()0,0y Y e y f y y -⎧>=⎨≤⎩ 试求:(1) (,)X Y 的联合密度函数; (2) ()P Y X <; (3)()D X Y -.四、解答题(本大题共3小题,每小题8分,共24分)1. 从一台车床加工的一批轴料中抽取15件测量其椭圆度,计算得样本方差220.025s =,已知椭圆度服从正态分布,问该批轴料椭圆度的总体方差与规定的方差200.0004σ=有无显著差异(取检验水平0.05α=)?(20.025(14)26.1χ=, 20.975(14) 5.63χ=, 20.025(15)27.5χ=,20.975(15) 6.26χ=)2. 某粮食加工厂用4种不同的方法贮藏粮食,一段时间后,分别抽样化验其含水率,每种方法重复试验次数均为5次,所得粮食含水率的方差分析表的部分数据如下. (0.05(4,19) 5.01F=,0.01(4,16) 4.77F=,0.01(3,16) 5.29F=) (1) 完成下面的方差分析表.(2) 给出分析结果.3. 有人认为企业的利润水平和它的研究费用间存在着近似的线性关系. 下面是某10个企业的利润水平(x )与研究费用(y )的调查资料:102101=∑=i ix,2390101=∑=i i y ,10661012=∑=i ix ,6243001012=∑=i iy ,25040101=∑=i i i y x建立研究费用y 与企业利润水平x 的回归直线方程.2011-2012学年第 2 学期 大学数学Ⅱ 华南农业大学期末考试试卷(A 卷)-参考答案 一、1. 0.8; 2. 31e --; 3.518; 4. 416 ; 5. )1(t ; 6. (4.412,5.588) 二、1. B 2. C 3. A 4. B 5. C 6. D 三、1. 解 设A =“任取一产品,经检验认为是合格品” B =“任取一产品确是合格品” 依题意()0.9,()0.1,()0.95,()0.02P B P B P A B P A B ==== (2分)则(1)()()(|)()(|)P A P B P A B P B P A B =+0.90.950.10.020.857.=⨯+⨯=(5分) (2) ()(|)0.90.95(|)0.9977()0.857P B P A B P B A P A ⨯===. (8分)2. 解 (1) 由2114a a -+=得1231().22舍去或a a ==- (3分) (2) X 的分布律为(5分)(3) X 的分布函数为0,10,111,12,1244()113,23,234241111,3,3424x x x x F x x x x x <⎧<⎧⎪⎪⎪≤<⎪≤<⎪⎪⎪==⎨⎨+≤<⎪⎪≤<⎪⎪⎪⎪≥++≥⎩⎪⎩ (8分) 3. 解(1)111011{1}{11}12x x P X P X e dx e dx e---<=-<<===-⎰⎰. (3分)(2)当0y ≤时,()()()20F y P Y y P X y =<=<=; (5分) 当0y >时,()()(2xx F y P X y P X dx dx --=<=<<== (8分) 所以2Y X =的密度函数为0,0()()0y f y F y y ≤⎧⎪'==>. (10分)4. 解 (1)因为随机变量X 与Y 相互独立, ( 1分)所以它们的联合密度函数为:3,03,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其他 (3分)330(1)x e dx -=-⎰3390181()333x x e e --=+=+()9183e -=+ (8分) (3)解:由密度函数可知~(0,3),~(3)X U Y E (10分)所以,22(30)311(),(),12439D X D Y -==== (12分) 由X 与Y 相互独立,得3131()()()4936D X Y D X D Y -=+=+=(14分) 四、1. 解 检验假设 20:0.0004H σ=,21:0.0004H σ≠. (1分)依题意,取统计量:2222(1)~(1)n S n χχσ-=-,15n =. (3分)查表得临界值:220.0252(1)(14)26.1n αχχ-==,220.97512(1)(14) 5.63n αχχ--==, (5分)计算统计量的观测值得: 22140.02521.8750.0004χ⨯==. (6分) 因2220.9750.025(14)(14)χχχ<<,故接受原假设0H ,即认为总体方差与规定的方差无显著差异. (8分) 2. 解 (1)(2) 解 因为F =5.6681>0.01(3,16) 5.29F =,所以拒绝0H ,即认为不同的贮藏方法对粮食含水率的影响在检验水平0.01α=下有统计意义. (8分)3. 解 2.10=x ,239=y (2分)6.252.10101066221012=⨯-=-=∑=x n x l i i xx (3分)6622392.101025040101=⨯⨯-=-=∑=y x n y x l i i i xy (4分)故1662ˆ25.8625.6xy xx l l β==≈;01ˆˆ23925.8610.224.77y x ββ=-=-⨯=- (6分)。

11-12(2)概率统计B(答案)

11-12(2)概率统计B(答案)

东莞理工学院(本科)试卷(B 卷)2011 --2012 学年第二学期一、填空题(共70分 每空2分)2、已知事件A ,B 满足)()(B A P AB P =,且3.0)(=A P ,则=)(B P 0.7 。

3、.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的点数),则这两颗骰子的点数和为5的概率是91。

4、袋中有6只白球,4只红球,从中抽取两只。

如果作不放回抽样,则抽得的两个球颜色不同的概率为158;如果作放回抽样,则抽得的两个球颜色不同的概率为 0.48 。

5、已知某对夫妇有四个小孩,则男孩的个数Y 服从的分布为 )5.0 ,4(B ,恰有两个男孩的概率为83,在已知至少有一个女孩的条件下,至少还有一个男孩的概率为1514。

10、一个系统由100个互相独立起作用的部件组成,各个部件损坏的概率均为 0.2,已知必须有80个以上的部件正常工作才能使整个系统工作,则由中心 极限定理可得,整个系统正常工作的概率为 0.5 。

13、设随机变量X 的概率密度为:⎩⎨⎧≤≤=其它 ,010 ,)(2x kx x f , 则=k 3 .,=2EX 53。

14、设二维随机向量),(Y X 的联合分布密度函数=)(x f XY ⎩⎨⎧≤≤-其它, 00 ,y x e y ,则X 的密度函数=)(x f X ⎩⎨⎧<≥-0,00 ,x x e x ,Y X 与的独立性为不独立。

15、某食品超市的牛奶销售量服从正态分布,每天平均销售200公斤,标准差为20公斤。

如果老板希望牛奶供不应求的概率不超过0.025,则该超市购进的牛奶量至少为239.2公斤。

16、设随机变量X 的概率密度为:⎩⎨⎧≤≤+=其它 ,010 )1()(x x x f θθ,则参数θ的矩估计量=θ XX --112 17、设X 1,X 2,X 3是来自总体X 的简单随机样本,则下列统计量3211X X X T -+=,)(313212X X X T ++=,3213614121X X X T ++=, )(21214X X T +=中, 总体均值的无偏估计量为421,,T T T , 在上述无偏估计量中最有效的一个为 2T18、在假设检验中,显著性水平α=0.01时拒绝H 0,则当显著水平α=0.05时应 拒绝 (拒绝、接收、有时拒绝有时接收)H 0。

概率统计A解答(1)

概率统计A解答(1)

湖州师范学院 2010 — 2011 学年第 一 学期 《概率论与数理统计》期末考试试卷(A 卷)适用班级 090126 090127 考试时间 120 分钟学院 班级 学号 姓名 成绩题号 一 二 三 四 五 六 七 八 九 总分 得分一、填空题 (本题共20分,每空格2分)1.设A 、B 、C 表示三个随机事件,则事件“A 、B 、C 中恰有一个发生”可表示为C B A C B A C B A ++,事件“A 、B 、C 中至少发生二个”可表示为AC BC AB ++。

2.把5本书任意地放在书架上,其中指定的3本书放在一起的概率为103。

3.进行独立重复试验,每次试验成功的概率为p ,则在首次试验成功时共进行了m 次试验的概率为()11--m p p 。

4.若随机变量X 服从正态分布)21,1(N ,则X 的密度函数为=)(x ϕ2)1(1--x e π。

5.一批为产品共20个,其中3个次品,从中任取的3个中次品数不多于一个的概率为32013217317C C C C +。

6.设事件A 、B 、A ⋃B 的概率分别为p 、q 、r ,则=)(AB P r q p -+,=)(B A P q r -。

7.若随机变量X 服从泊松分布,)2()1(===X P X P ,则=≤)1(X P 23-e8.进行独立重复试验,每次试验事件A 发生的概率为p ,则在n 次试验中事得分件A 恰好发生()n k k ≤≤0次的概率为()kn kk np p C --1。

9.已知随机变量X 服从标准正态分布)1,0(N ,=≤)96.1(X P 0.975, 则=<)96.1(X P 0.95 。

10.加工在全产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是相互独立的,则经过三道工序生产出的产品是废品的概率是 0.316 。

11.设随机变量X 服从参数为p n ,的二项分布,则=EX np ,DX =()p np -1。

天津科技大学2011-2012学年第一学期《概率论与数理统计》(多概)期末考试试题(A卷)参考答案及评分标准

天津科技大学2011-2012学年第一学期《概率论与数理统计》(多概)期末考试试题(A卷)参考答案及评分标准

4
2011-2012 学年第一学期《概率论与数理统计》 (多概)期末考试试题(A 卷)参考答案及评分标准
查表得 1 / 2 ( n 1)
2 2 2 02..975 (8) 2.18, / 2 ( n 1) 0.025 (8) 17.53 , 7 分
而 0.975 (8) 2.18
九、某种虾的身长 X (单位:cm)服从正态分布 N ( , 2 ) ,现在随机抽取 9 只,算得平
均身长为 x 6 (cm) ,样本标准差 s 0.5745 (cm),求 的置信水平为 0.95 的置信区间. (本题 8 分) 解:由于 未知,故 的置信区间为 ( x
s t / 2 n
2
2
~(
(B) F ( n,n)
1) (C) F ( n,
(D) F (1,n)
三、某灯泡厂有甲、乙两条生产线,它们各自出产的灯泡中寿命大于 2500 小时的分别占有
80%和 90%,从它们出产的灯泡中各自随机地抽取一个, (1)求两个灯泡寿命都大于 2500 小 时的概率; (2)求两个灯泡中至少有一个寿命大于 2500 小时的概率. (本题 8 分)
8000 0.2 40 . 3 分
P(8100 X n 10000) P( X n np np (1 p )
8100 8000 40
X n np np (1 p )

10000 8000 )5分 40
P(2.5
50) (50) (2.5) 7 分 1 0.9938 0.0062 . 8 分
解:用 A, B 分别表示从甲、乙两个流水线上的产品中抽取的灯泡寿命大于 2500 小时,则 它们相互独立. 2 分 (1) P( AB) 3 分 P( A) P( B) 4 分 0.8 0.9 0.72 ; 5 分 (2) P( A

18-19-2概率统计A(A卷)答案

18-19-2概率统计A(A卷)答案

南京林业大学试卷(A 卷)(答案)课程 概率统计A 2018~2019学年第2学期3分,共15分),A B ,若0()1,0()1P A P B <<<<,且(|)1P A B =,则(|)P B A = 1 . X 的概率密度为()f x ,且()3E X =,则(1)()x f x dx +∞-∞-=⎰2 .X ~(0,1)N ,Y ~(2,1)N -,且X 和Y 独立,21Z X Y =-+,则2()E Z = 14 . X ~2(,)N μσ,12,,,n X X X (1n >)为其样本,X 和2S 分别是样本均值和样本μ的置信度为1α-的置信区间为/2/2((1),(1))X n X n αα-+-.y a bx =+,通过对样本观测值计算得y bˆ1.6,3,3===,则y 关于x 的线性回归方程是 3 1.8y x =-. 3分,共15分),A B 为任意事件,则关于()P AB 有( D ).)()()P AB P A ≥ (B )()()()P AB P A P B = )()()()P AB P A P B ≥+ (D )1()[()()]2P AB P A P B ≤+ X 的分布函数为()F x ,12,X X 为其样本,又{}12max ,Y X X =,则Y 的分布函数为 A ).)2()F y (B )2[1()]F y - (C )21()F y - (D )1()F y -设随机变量X 的概率密度是21,0()20,xe xf x -⎧>⎪=⎨⎪⎩其它,用切比雪夫不等式估计概率(|2|3)P X =-≥,有( C ).题号 一 二 三 四 总分 得分(A )59p ≤(B )59p ≥ (C )49p ≤ (D )49p ≥ 4.设总体X ~(,1)N μ,12,,,n X X X (1n >)为其样本,X 是样本均值,则以下统计量服 从2χ分布的是( D ). (A )1()nii Xμ=-∑ (B )212()n X X - (C )2()X μ- (D )21()ni i X X =-∑5.在假设检验问题中,显著性水平α意义是( A ). (A )在0H 成立的条件下,经检验0H 被拒绝的概率 (B )在0H 成立的条件下,经检验0H 被接受的概率 (C )在0H 不成立的条件下,经检验0H 被拒绝的概率 (D )在0H 不成立的条件下,经检验0H 被接受的概率 三、计算下列各题(第1-5题每题12分,第6题10分,共70分)1.设随机变量X 的分布律为21312XPa b-,且()0E X =.试求:(1),a b 的值;(2)X 的分布函数;(3)()D X .解:(1)由()130,1/2E X a b a b =-++=+=解得1/4a b ==,从而X 的分布律2131/21/41/4XP -(4分)(2)0,21/2,21()3/4,131,3x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩(8分)(3)()0E X =,222()9/2,()()()9/2 4.5E X D X E X E X ==-==. (12分)2.设随机变量,X Y 相互独立,且X 的分布律为12(0),(1)33P X P X ====,Y 的概率密度2,01()0,y y f y <<⎧=⎨⎩其他,求:(1)(())P Y E Y ≤;(2)3()2P X Y +≤.解: (1)12/32()22/3,(())24/9E Y y dy P Y E Y ydy ==≤==⎰⎰,(6分)(2)333((0)(|0)(1)(|1)222P X Y P X P X Y X P X P X Y X +≤==+≤=+=+≤=13211211()()132323342P Y P Y =≤+≤=⨯+⨯=. (12分)3.对于上题中的随机变量Y ,求2Z Y =的概率密度()Z f z . 解:由于2(01)z y y =<<严格单调,反函数y =连续可导且z y '=()(0,1)R Z = (6分)由公式得011,01()0,0,Z z z f z ⎧<<<<⎧⎪==⎨⎨⎩⎪⎩其他其他. (12分)4.设(,)X Y 的概率密度,01,1(,)0,xk x y ey f x y ⎧<<<<⎪=⎨⎪⎩其它,求:(1)k 的值;(2)求关于X和Y 的边缘概率密度,并判断X 与Y 是否独立;(3)求(2)P Y <.解:(1)由规范性111/21ekxdx dy k y==⎰⎰得2k =; (4分)(2)12()(,)2eX xf x f x y dy dy x y+∞-∞===⎰⎰,(01)x <<, 1021()(,)Y x f y f x y dx dx y y+∞-∞===⎰⎰,(1)y e <<, 由于(,)()()X Y f x y f x f y =, 故X 与Y 相互独立; (8分)(3)(2)P Y <12:211(,)2ln 2D y f x y d xdx dy yσ<===⎰⎰⎰⎰. (12分)5.设总体X 的概率密度233,0(,)0,x x f x θθθ⎧<<⎪=⎨⎪⎩其他,其中θ为未知参数,又设12,,,nX X X 为来自总体X 容量为n 的样本,试求:(1)θ的矩估计量ˆθ;(2)θ的最大似然估计量ˆLθ.解:(1)31333()4E X x dx θθμθ===⎰,解得143θμ=,从而4ˆ3X θ=; (6分)(2)22331133()nnni ini i x L xθθθ====∏∏,1ln ()ln 33ln 2ln nii L n n xθθ==-+∑,由于ln ()30d L nd θθθ=-<,故()L θ单调减少,又0,max(),1,2,,i i x x i n θθ<<>= ,故12ˆmax(,,,)L nX X X θ= . (12分)6.某厂生产的某种铝材长度X ~2(,)N μσ,其均值μ设定为240cm .现从该厂抽取9件产品,测得239.5x =cm ,20.16s =,试判断该厂这批铝材的长度是否满足设定要求?(取0.05α=).(附:0.05(8) 1.86t =,0.025(8) 2.31t =) 解:由题意,即在0.05α=下检验假设00:240H μμ==vs 10:H μμ≠(2分)检验统计量X T =,拒绝域/2||(1)T t n α-(7分)又0.025239.5240|| 3.75(8) 2.310.4/3t t -==>=,从而拒绝0H ,认为不满足设定要求.(10分)。

概率论与数理统计习题解答

概率论与数理统计习题解答

第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数;(4)测量一汽车通过给定点的速度. 解 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生; (2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生; (6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B C A B C A B CA B CA B C A B CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立?(3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立? 解 所求的事件表示如下(1)事件AB 表示该生是三年级男生,但不是运动员.(2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的.(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB 解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3,所以 P (AB )=0.4, 故()P AB= 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)= 18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC)1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B 的事件数为1111112a b b a a b A A A A A A +=, 则2211222()()a b a ba ba bA A A AP A P B A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则 333333101016()()120720或者====C A P A P A C A .(2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求: (1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语} 根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2)()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+1()()()P A P B P AB =--+433532541100100100100=--+=9. 罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求:(1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率; (3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则 3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C .(3) 设C={取三颗子中至少的一颗黑子} ()1()0.745=-=P C P A .(4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则 500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE 的概率p. 解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有 2222770.000794A A p A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率. 解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法.设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以()11i i i P A p i=-=+123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A = 123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36 由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品}, C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A C C C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式40()()(|)0.196===∑i i i P B P A P B A由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B故20()(|)0.588===∑i i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05. 因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数},0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻(1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?解 设5台设备在同一时刻是否工作是相互独立的, 因此本题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1-p=0.9, 故(1) 223155(2)(0.1)(0.9)0.0729===P P C(2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=第二章 随机变量及其分布1. 有10件产品,其中正品8件,次品两件,现从中任取两件,求取得次品数X 的分律. 解 X 的分布率如下表所示:2. 进行某种试验,设试验成功的概率为34,失败的概率为14,以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 解 X 的分布律为:113(),1,2,3,44k P X k k -⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭X 取偶数的概率:2113{}(2)4411116331165116k k P X P X k -∞∞∞⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫==⨯=⎪-⎝⎭∑∑∑k=1k=1k=1为偶数 3. 从5个数1,2,3,4,5中任取三个为数123,,x x x .求:X =max (123,,x x x )的分布律及P(X ≤4); Y =min (123,,x x x )的分布律及P(Y>3). 解 基本事件总数为:3510C =,X 345(1)X 的分布律为:P(X ≤4)=P(3)+P(4)=0.4 (2)Y 的分布律为P(X>3) =04. C 应取何值,函数f(k) =!kC k λ,k =1,2,…,λ>0成为分布律?解 由题意, 1()1k f x ∞==∑, 即0110(1)1!!!0!kkk k k k CC C C e k k k λλλλλ∞∞∞===⎛⎫==-=-= ⎪⎝⎭∑∑∑ 解得:1(1)C e λ=-5. 已知X的分布律 X -112P162636求:(1)X 的分布函数;(2)12P X ⎛⎫< ⎪⎝⎭;(3)312P X ⎛⎫<≤ ⎪⎝⎭.解 (1) X 的分布函数为()()k k x xF x P X x p ≤=≤=∑0,11/6,11()1/2,121,2x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩;(2) 11(1)26P X P X ⎛⎫<==-= ⎪⎝⎭(3)31()02P X P ⎛⎫<≤=∅= ⎪⎝⎭6. 设某运动员投篮投中的概率为P =0.6,求一次投篮时投中次数X解 X 的分布函数0()0.60111x F x x x ≤⎧⎪=<≤⎨⎪>⎩7. 对同一目标作三次独立射击,设每次射击命中的概率为p ,求:(1)三次射击中恰好命中两次的概率;(2)目标被击中两弹或两弹以上被击毁,目标被击毁的概率是多少? 解 设A={三次射击中恰好命中两次},B=目标被击毁,则(1) P(A) =2232233(2)(1)3(1)P C p p p p -=-=-(2) P(B) =22323333233333(2)(3)(1)(1)32P P C p p C p p p p --+=-+-=-8. 一电话交换台每分钟的呼唤次数服从参数为4的泊松分布,求:(1)每分钟恰有6次呼唤的概率;(2)每分钟的呼唤次数不超过10次的概率. 解(1) P(X=6) =6440.104!6!k e e k λλ--==或者P(X=6) =!kek λλ-446744!!k k k k e e k k ∞∞--===-∑∑= 0.21487 – 0.11067 =0.1042.(2) P(X ≤10)104401144110.00284!!kkk k e e k k ∞--====-=-∑∑ = 0.997169. 设随机变量X 服从泊松分布,且P(X =1)=P(X =2),求P(X =4) 解 由已知可得,12,1!2!e e λλλλ--=解得λ=2, (λ=0不合题意)422,(4)4!P X e -==因此= 0.0910. 商店订购1000瓶鲜橙汁,在运输途中瓶子被打碎的概率为0.003,求商店收到的玻璃瓶,(1)恰有两只;(2)小于两只;(3)多于两只;(4)至少有一只的概率. 解 设X={1000瓶鲜橙汁中由于运输而被打破的瓶子数},则X 服从参数为n=1000, p=0.003的二项分布,即X~B(1000, 0.003), 由于n 比较大,p 比较小,np=3, 因此可以用泊松分布来近似, 即X~π(3). 因此(1) P(X=2)2330.2242!e -==(2)323(2)1(2)110.80080.1992!k k P X P X e k ∞-=<=-≥=-=-=∑(3)333(2)(2)0.5768!k k P X P X e k ∞-=>=>==∑(4)313(1)0.9502!k k P X e k ∞-=≥==∑11. 设连续型随机变量X 的分布函数为20,0(),011,1x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:(1)系数k ;(2)P(0.25<X<0.75);(3)X 的密度函数;(4)四次独立试验中有三次恰好在区间(0.25,0.75)内取值的概率.解 (1) 由于当0≤x ≤1时,有F(x )=P(X ≤x )=P(X<0)+P(0≤X ≤x )=k x 2 又F(1) =1, 所以k ×12=1因此k=1.(2) P(0.25<X<0.75) = F(0.75)-F(0.25) = 0.752-0.252=0.5 (3) X 的密度函数为2,01()'()0,x x f x F x Other ≤≤⎧==⎨⎩(4) 由(2)知,P(0.25<X<0.75) = 0.5, 故P{四次独立试验中有三次在(0.25, 0.75)内} =334340.5(10.5)0.25C --=.12. 设连续型随机变量X 的密度函数为1()0,1x F x x ⎧<⎪=⎨⎪≥⎩求:(1)系数k ;(2)12P X⎛⎫<⎪⎝⎭;(3)X 的分布函数.解 (1)由题意,()1f x dx +∞-∞=⎰, 因此111()arcsin 111kf x dx k x k k ππ+∞+-∞-====-=⎰⎰解得:(2)1/21/21/21111arcsin 1/22663P x x ππππ--⎛⎫⎛⎫<===-= ⎪ ⎪-⎝⎭⎝⎭⎰ (3) X 的分布函数1()()1/2arcsin /11111/xx F x f x dx x x x k ππ-∞<-⎧⎪==+-≤≤⎨⎪>⎩=⎰解得:13. 某城市每天用电量不超过100万千瓦时,以Z 表示每天的耗电率(即用电量除以100万千瓦时),它具有分布密度为212(1),01()0,x x x F x ⎧-<<=⎨⎩其他若该城市每天的供电量仅有80万千瓦时,求供电量不够需要的概率是多少?如每天供电量为90万千瓦时又是怎样的?解 如果供电量只有80万千瓦,供电量不够用的概率为: P(Z>80/100)=P(Z>0.8)=120.812(1)0.0272x x dx -=⎰如果供电量只有80万千瓦,供电量不够用的概率为:P(Z>90/100)=P(Z>0.9)=120.912(1)0.0037x x dx -=⎰ 14. 某仪器装有三只独立工作的同型号电子元件,其寿命(单位 小时)都服从同一指数分布,分布密度为6001,0()6000,xe x F x x⎧<⎪=⎨⎪≥⎩试求在仪器使用的最初200小时以内,至少有一只电子元件损坏的概率.解 设X 表示该型号电子元件的寿命,则X 服从指数分布,设A={X ≤200},则 P(A)=1200600311600x e dx e--=-⎰设Y={三只电子元件在200小时内损坏的数量},则所求的概率为:100303331(1)1(0)1()(1())1()1P Y P Y C P A P A e e--≥=-==--=-=-15. 设X 为正态随机变量,且X ~N(2,2σ),又P(2<X<4) = 0.3,求P(X<0) 解 由题意知()222422(24)00.3X P X P σσσσ---⎛⎫⎛⎫<<=<<=Φ-Φ= ⎪ ⎪⎝⎭⎝⎭即20.30.50.8σ⎛⎫Φ=+= ⎪⎝⎭故20222(0)10.2X P X P σσσσ---⎛⎫⎛⎫⎛⎫<=<=Φ=-Φ= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭16. 设随机变量X 服从正态分布N(10,4),求a ,使P(|X -10|<a ) = 0.9.解 由于()()10|10|10222a X a P X a P a X a P --⎛⎫-<=-<-<=<<⎪⎝⎭210.9222a a a -⎛⎫⎛⎫⎛⎫=Φ-Φ=Φ-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以0.952a ⎛⎫Φ= ⎪⎝⎭查表可得, 2a =1.65即 a = 3.3 17. 设某台机器生产的螺栓的长度X 服从正态分布N(10.05,0.062),规定X 在范围(10.05±0.12)厘米内为合格品,求螺栓不合格的概率.解 由题意,设P 为合格的概率,则()10.05(|10.05|0.12)0.1210.050.12220.06X P P X P X P -⎛⎫=-<=-<-<=-<< ⎪⎝⎭(2)(2)2(2)120.977210.9544=Φ-Φ-=Φ-=⨯-=则不合格的概率=1-P = 0.045618. 设随机变量X 服从正态分布N(60,9),求分点x 1,x 2,使X 分别落在(-∞,x 1)、(x 1,x 2)、(x 2,+∞)的概率之比为3:4:5. 解 由题,111116060603()()0.253333456060()1()0.75,33x x X P X x P x x ---⎛⎫<=<=Φ== ⎪++⎝⎭--Φ-=-Φ=查表可得1600.673x --=解得, x 1 = 57.9922260606034()()0.5833333345x x X P X x P ---+⎛⎫<=<=Φ== ⎪++⎝⎭又查表可得2600.213x -=解得, x 2 =60.63. 19. 已知测量误差X (米)服从正态分布N(7.5, 102),必须进行多少次测量才能使至少有一次误差的绝对值不超过10米的概率大于0.98?解 设一次测量的误差不超过10米的概率为p , 则由题可知107.57.5107.5(10)101010(0.25)( 1.75)(0.25)1(1.75)0.598710.95990.5586X p P X P ----⎛⎫=<=<< ⎪⎝⎭=Φ-Φ-=Φ-+Φ=-+=设 Y 为n 次独立重复测量误差不超过10米出现的次数,则Y~B(n, 0.5586)于是 P(Y ≥1)=1-P(X=0)=1-(1-0.5586)n ≥0.98 0.4414n ≤0.02, n ≥ln(0.02)/ln(0.4414) 解得:n ≥4.784取n=5, 即,需要进行5次测量. 20.设随机变量X 的分布列为X -2 023P17173727试求:(1)2X 的分布列;(2)x 2的分布列. 解 (1) 2X 的分布列如下(2) x 2的分布列21. 设X 服从N(0,1)分布,求Y=|X |的密度函数. 解 y=|x|的反函数为,0h(y)=,x x x x -<⎧⎨≥⎩, 从而可得Y=|X|的密度函数为: 当y>0时,222212())|yy yY X X f y f yyf yy e e ---=--+=+=当y ≤0时,()Y f y =0 因此有 22,0()0,0yY e y f y y ->=≤⎩22. 若随机变量X 的密度函数为23,01()0,x x f x ⎧<<=⎨⎩其他求Y =1x的分布函数和密度函数.解 y=1x在(0,1)上严格单调,且反函数为 h(y)=1y,y>1, h ’(y)=21y -222411113()[()]|()|3Y X X f y f h y h y f y y y yy⎛⎫⎛⎫⎛⎫'==-== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭因此有43,1()0,Y y y f y other ⎧>⎪=⎨⎪⎩Y 的分布函数为:433131,1()10,y Y y y dy y y y F y other---⎧=-=->⎪=⎨⎪⎩⎰23. 设随机变量X 的密度函数为22,0(1)()0,0x x f x x π⎧>⎪+=⎨⎪≤⎩试求Y =lnX 的密度函数.解 由于ln y x =严格单调,其反函数为(),'()y y h y e h y e ==且,则2()[()]|()|()2(1)2,()y yY X X yy y y f y f h y h y f e e e e y e e ππ-'===+=-∞<<+∞+24. 设随机变量X 服从N(μ,2σ)分布,求Y =x e 的分布密度.解 由于x y e =严格单调,其反函数为1()ln ,'(),h y y h y ==且yy>0,则221(ln )21()[()]|()|(ln ),0Y X X y f y f h y h y f y yy μσ--'===>当0y ≤时()0Y f y =因此221(ln )2,0()0,y Y y f y y μσ--⎧>=≤⎩25. 假设随机变量X 服从参数为2的指数分布,证明:Y =21x e --在区间(0, 1)上服从均匀分布.解 由于21x y e -=-在(0, +∞)上单调增函数,其反函数为:1()ln(1),01,2h y y y =--<<并且1'()2(1)h y y =-,则当01y << 12(ln(1))2()[()]|()|11(ln(1))22(1)1212(1)Y X X y f y f h y h y f y y ey ---'==---==-当y ≤0或y ≥1时,()Y f y =0.因此Y 在区间(0, 1)上服从均匀分布. 26. 把一枚硬币连掷三次,以X 表示在三次中正面出现的次数,Y 表示三次中出现正面的次数与出现反面的次数之差的绝对值,试求(X ,Y )的联合概率分布.解 根据题意可知, (X ,Y)可能出现的情况有:3次正面,2次正面1次反面, 1次正面2次反面, 3次反面, 对应的X,Y 的取值及概率分别为P(X=3, Y=3)=18P(X=2,Y=1)=223113228C ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭P(X=1, Y=1)=3113113228C -⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭P(X=0, Y=3)=31128⎛⎫= ⎪⎝⎭ 于是,(X ,Y )的联合分布表如下:27. 在10件产品中有2件一级品,7件二级品和1件次品,从10件产品中无放回抽取3件,用X 表示其中一级品件数,Y 表示其中二级品件数,求: (1)X 与Y 的联合概率分布; (2)X 、Y 的边缘概率分布; (3)X 与Y 相互独立吗?解 根据题意,X 只能取0,1,2,Y 可取的值有:0,1,2,3,由古典概型公式得:(1) 271310(,),ij k ijC C Cp P X i Y j C====其中,3,0,1,2,i j k i ++==0,1,2,3j =0,1k =,可以计算出联合分布表如下jp(2) X,Y 的边缘分布如上表(3) 由于P(X=0,Y=0)=0, 而P(X=0)P(Y=0)≠0, P(X=0,Y=0)≠P(X=0)P(Y=0), 因此X,Y 不相互独立.28. 袋中有9张纸牌,其中两张“2”,三张“3”,四张“4”,任取一张,不放回,再任取一张,前后所取纸牌上的数分别为X 和Y ,求二维随机变量(X, Y)的联合分布律,以及概率P(X +Y>6)解 (1) X,Y 可取的值都为2,3,4, 则(X,Y)的联合概率分j p(2) P(X+Y>6) = P(X=3, Y=4) + P(X=4, Y=3) + P(X=4,Y=4)=1/6+1/6+1/6=1/2.29. 设二维连续型随机变量(X, Y)的联合分布函数为(,)arctan arctan 23x y F x y A B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭,求:(1)系数A 、B 及C ; (2)(X, Y)的联合概率密度; (3)X ,Y 的边缘分布函数及边缘概率密度;(4)随机变量X 与Y 是否独立?解 (1) 由(X, Y)的性质, F(x, -∞) =0, F(-∞,y) =0, F(-∞, -∞) =0, F(+∞, +∞)=1, 可以得到如下方程组:arctan 022arctan 023022122x A B C y A B C A B C A B C ππππππ⎧⎛⎫⎛⎫+-= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫-+=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪--= ⎪ ⎪⎪⎝⎭⎝⎭⎪⎛⎫⎛⎫⎪++= ⎪ ⎪⎪⎝⎭⎝⎭⎩解得:21,,,22A B C πππ===(2)2222(,)6(,)(4)(9)F x y f x y x y x y π∂==∂∂++ (3) X 与Y 的边缘分布函数为:211()(,)arctan arctan 222222X x x F x F x ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 211()(,)arctan arctan 222322Y y y F y F y ππππππ⎛⎫⎛⎫⎛⎫=+∞=++=+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭X 与Y 的边缘概率密度为:'22()()(4)X X f x F x x π==+'23()()(9)Y Y f y F y y π==+(4) 由(2),(3)可知:(,)()()X Y f x y f x f y =, 所以X ,Y 相互独立.30. 设二维随机变量(X, Y)的联合概率密度为-(x+y)e ,0,(,)0,x f x y ⎧<<+∞=⎨⎩其他(1)求分布函数F(x, y);(2)求(X ,Y)落在由x =0,y =0,x +y =1所围成的三角形区域G 内的概率.解 (1) 当x>0, y>0时,()0(,)(1)(1)y xu v x y F x y e dudv e e -+--==--⎰⎰否则,F (x, y ) = 0.(2) 由题意,所求的概率为11()10((,))(,)120.2642Gxx y P x y G f x y dxdydx e dy e --+-∈===-=⎰⎰⎰⎰31. 设随机变量(X ,Y )的联合概率密度为-(3x+4y)Ae ,0,0,(,)0,x y f x y ⎧>>=⎨⎩其他求:(1)常数A ;(2)X ,Y 的边缘概率密度;(3)(01,02)P X Y <≤<≤.解 (1) 由联合概率密度的性质,可得(34)00(,)1/12x y f x y dxdy Ae dxdy A +∞+∞+∞+∞-+-∞-∞===⎰⎰⎰⎰ 解得 A=12.(2) X, Y 的边缘概率密度分别为:(34)30123,0()(,)0,x y x X edy e x f x f x y dy other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰ (34)40124,0()(,)0,x y y Y edx e y f y f x y dx other +∞-+-+∞-∞⎧=>⎪==⎨⎪⎩⎰⎰(3) (01,02)P x y <≤<≤21(34)03812(1)(1)x y edxdye e -+--==--⎰⎰32. 设随机变量(X ,Y )的联合概率密度为2,01,02,(,)30,xyx x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其他求 P(X +Y ≥1).解 由题意,所求的概率就是(X,Y)落入由直线x=0 ,x=1, y=0, y=2, x+y=1围的区域G 中, 则122012310((,))(,)3456532672G x P x y G f x y dxdyxy dx x dy x x x dx -∈==+=++=⎰⎰⎰⎰⎰33. 设二维随机变量(X, Y)在图2.20所示的区域G 上服从均匀分布,试求(X, Y)的联合概率密度及边缘概率密度.解 由于(X, Y)服从均匀分布,则G的面积A 为:2112001(,)()6x x GA f x y dxdy dx dy x x dx ===-=⎰⎰⎰⎰⎰,(X, Y)的联合概率密度为:6,01(,)0,x f x y other ≤<⎧=⎨⎩.X,Y 的边缘概率密度为:2266(),01()(,)0,x xX dy x x x f x f x y dy other +∞-∞⎧=-≤<⎪==⎨⎪⎩⎰⎰ ),01()(,)0,yY dy y y f y f x y dx other +∞-∞⎧=≤<⎪==⎨⎪⎩⎰34. 设X 和Y 是两个相互独立的随机变量,X 在(0, 0.2)上服从均匀分布,Y 的概率密度是55,0()0,0y y e y f y y -⎧ >=⎨≤⎩求:(1)X 和Y 和联合概率密度; (2)P(Y ≤X).解 由于X 在(0, 0.2)上服从均匀分布,所以()1/0.25X f x == (1) 由于X ,Y 相互独立,因此X, Y 525,0,00.2(,)()()0,y X Y e y x f x y f x f y other -⎧><<==⎨⎩(2) 由题意,所求的概率是由直线x=0, 所围的区域,如右图所示, 因此0.2500.2511()(,)255111xy Gx P Y X f x y dxdy dx e dye dx e e ----≤===-=+-=⎰⎰⎰⎰⎰35. 设(X ,Y )的联合概率密度为1,01,02(,)20,x y f x y ⎧ ≤≤≤≤⎪=⎨⎪⎩其他求X 与Y中至少有一个小于12的概率.解 所求的概率为0.50.5120.50.511()()22111,221(,)15128P X Y P XY f x y dxdydxdy +∞+∞⎛⎫<< ⎪⎝⎭⎛⎫=-≥≥ ⎪⎝⎭=-=-=⎰⎰⎰⎰ 36. 设随机变量X 与Y 相互独立,且X -113 Y -3 1P1215310P 1434求二维随机变量(X ,Y )的联合分布律.解 由独立性,计算如下表37. 设二维随机变量(X ,Y )的联合分布律为X 1 2 3Y116191182abc(1)求常数a ,b ,c 应满足的条件;(2)设随机变量X 与Y 相互独立,求常数a ,b ,c. 解 由联合分布律的性质,有:11116918a b c +++++=, 即 a + b + c =12133-= 又,X, Y 相互独立,可得 111::::6918a b c =从而可以得到: 121,,399a b c ===38. 设二维随机变量(X ,Y )的联合分布函数为22232,0,1,1(,),0,01,10,x x y x x y F x y x y x⎧ >>⎪+⎪⎪= ><≤⎨+⎪⎪ ⎪⎩其他, 求边缘分布函数()x F x 与()y F y ,并判断随机变量X 与Y 是否相互独立.解 由题意, 边缘分布函数2222lim,0()(,)110,0y X x x x F x F x x x x →+∞⎧=>⎪=+∞=++⎨⎪≤⎩下面计算F Y (y )2332220,0()(,)lim ,011lim1,11Y x x y x y F y F y y y xx y x →+∞→+∞⎧⎪≤⎪⎪=+∞==<≤⎨+⎪⎪=>⎪+⎩可以看出,F(x,y)= F x (x ) F Y (y ), 因此,X ,Y 相互独立.39.设二维随机变量(X ,Y )的联合分布函数为132,1,1(,)0,ye x yf x y x -⎧ ≥≥⎪=⎨⎪ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <1时, ()0X f x =当x ≥1时,113331222()1yy X f x e dy e x x x+∞--+∞-===⎰再计算()Y f y , 当y <1时, ()0Y f y =当y ≥1时, 11132121()1y y yY f y e dx e e x x+∞---+∞-===⎰可见, (,)()()X Y f x y f x f y =,所以随机变量X, Y 相互独立40.设二维随机变量(X ,Y )的联合分布函数为,(,)0,x y x y f x y + 0≤,≤1,⎧=⎨ ⎩其他,求边缘概率密度()X f x 与()Y f y ,并判断随机变量X 与Y 是否相互独立.解 先计算()X f x , 当x <0或者x >1时, ()0X f x = 当1≥x ≥0时,1212011()02X f x x y dy xy y x =+=+=+⎰ 再计算()Y f y , 当y <0或者y >1时, ()0Y f y = 当1≥y ≥0时, 120111()022Y f y x ydx xy x y =+=+=+⎰ 由于11(,)()()22X Y f x y x y f x f y x y ⎛⎫⎛⎫=+≠=++ ⎪⎪⎝⎭⎝⎭,所以随机变量X,Y 不独立41.设二维随机变量(X ,Y )的联合分布函数为22,00(,)0,x y e x y f x y --⎧ >,>=⎨ ⎩其他求随机变量Z =X -2Y 的分布密度. 解 先求Z 的分布函数F(z ) :2()()(2)(,)D X Y zF z P Z z P X Y z f x y dxdy -≤=≤=-≤=⎰⎰当z<0时,积分区域为:求得2220()2zz yx y F z dy e dx +∞+---=⎰⎰224122z y y z z e e dy e +∞----=-=⎰ 当z ≥0时,积分区域为:2200()2z yx yF z dy e dx +∞+--=⎰⎰ 2401212yy zz eedy e +∞----=-=-⎰由此, 随机变量Z 的分布函数为11,02()1,02zz e z F z e z -⎧-≥⎪⎪=⎨⎪<⎪⎩ 因此, 得Z 的密度函数为:1,02()1,02zz e z f z e z -⎧≥⎪⎪=⎨⎪<⎪⎩42. 设随机变量X 和Y 独立,X ~2()N μ,σ,Y 服从[-b ,b ](b>0)上的均匀分布,求随机变量Z =X +Y 的分布密度. 解 解法一 由题意,22()21()()()2z y a bX Y F z f z y f y dy dy bσ---+∞-∞-=-=⋅⎰⎰令)/,,[,],z y a t dy dt y b b σσ--==-∈-(则()()()2211()22z b az b at z b a z b aF z e dt b bσσσσ+----+---==Φ-Φ⎰ 解法二22()()(),()1()221122111212X Yz bz bF z f x f z x dx-b<z-x<b,z-b<x<z+bx aF z dxbz bx a z b a z b az bb ba zb a z bba z bbσσσσσσσ+∞-∞+-=-∴--=⋅+-⎛+---⎫⎛⎫⎛⎫⎛⎫=Φ=Φ-Φ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫--⎛-+⎫⎛⎫⎛⎫=-Φ--Φ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭-+⎛⎫=Φ ⎪⎝⎭⎰⎰a z bσ⎛--⎫⎛⎫-Φ ⎪⎪⎝⎭⎝⎭43.设X服从参数为12的指数分布,Y服从参数为13的指数分布,且X与Y独立,求Z=X+Y的密度函数.解由题设,X~12120,0(),0X xxf xe x-≤⎧⎪=⎨>⎪⎩, Y~13130,0(),0Y xxf ye x-≤⎧⎪=⎨>⎪⎩并且,X,Y相互独立,则()()()Z X YF z f x f z x dx+∞-∞=-⎰由于()Xf x仅在x>0时有非零值,()Yf z x-仅当z-x>0,即z>x时有非零值,所以当z<0时,()Xf x=0, 因此()Zf z=0.当z>0时,有0>z>x, 因此1132()11()23z z xxZF z e e dx---=⎰1633216zz zz xe dx e e----==-⎰44.设(X,Y)的联合分布律为X0 1 2 3Y0 0 0.05 0.08 0.121 0.01 0.09 0.12 0.152 0.02 0.11 0.13 0.12求:(1)Z=X+Y的分布律;(2)U=max(X,Y)的分布律;(3)V=min(X,Y)的分布律.解(1) X+Y的可能取值为:0,1,2,3,4,5,且有P(Z=0)=P(X=0,Y=0) = 0P(Z=1)=P(X=1,Y=0) + P(X=0,Y=1) = 0.06P(Z=2)=P(X=2,Y=0) + P(X=0,Y=2) + P(X=1,Y=1) = 0.19 P(Z=3)=P(X=3,Y=0) + P(X=1,Y=2) + P(X=2,Y=1) = 0.35 P(Z=4)=P(X=2,Y=2) + P(X=3,Y=1) = 0.28P(Z=5)=P(X=3,Y=2) = 0.12同理,U=max(X,Y)的分布如下U∈{0,1,2,3}同理,V=min(X,Y)的分布分别如下V∈{0,1,2}第三章 随机变量的数字特征1. 随机变量X 的分布列为X -1 0 1212P13161611214求E(X),E(-X +1),E(X 2) 解 111111136261243()1012E X =-⨯+⨯+⨯+⨯+⨯=111111236261243(1)((1)1)(01)(1)(11)(21)E X -+=--+⨯+-+⨯+-+⨯+-+⨯+-+⨯=或者1233(1)()(1)()11E X E X E E X -+=-+=-+=-+=22222235111111362612424()(1)(0)()(1)(2)E X -=-⨯+⨯+⨯+⨯+⨯=2. 一批零件中有9件合格品与三件废品,安装机器时从这批零件中任取一件,如果取出的废品不再放回,求在取得合格品以前已取出的废品数的数学期望. 解 设取得合格品之前已经取出的废品数为X, X 的取值为0, 1, 2, 3, A k 表示取出废品数为k 的事件, 则有:1391121230(),0,1,2,3,66()()0.3220k k k kk k C C P A k C C E X k P A -==∙==⋅==∑3. 已知离散型随机变量X 的可能取值为-1、0、1,E(X)=0.1,E(X 2)=0.9,求P(X=-1),P(X =0),P(X =1). 解 根据题意得:2222()1(1)0(0)1(1)0.1()(1)(1)0(0)1(1)0.9E X P X P X P X E X P X P X P X =-=-+=+===-=-+=+==可以解得 P(X =-1)=0.4, P(X=1)=0.5,P(X=0) = 1- P(X =-1) - P(X=1) = 1-0.4-0.5=0.14. 设随机变量X 的密度函数为2(1),()x x f x - 0<<1,⎧=⎨ 0, ⎩其他.求E(X). 解 由题意,11()()2(1)3E X xf x dx x xdx ∞-∞==-=⎰⎰,5. 设随机变量X 的密度函数为,0()x e x f x x -⎧ ≥,=⎨ 0, <0.⎩求E(2X),E(2x e -). 解(2)2()2x E X xf x dx xe dx ∞∞--∞==⎰⎰()()0002|20|2x x x xe e dx e∞-∞--∞=+=-=⎰ 22230()()11|33Xx x xx E ee f x dxee dx e ∞---∞∞---∞===-=⎰⎰6. 对球的直径作近似测量,其值均匀分布在区间[a ,b ]上,求球的体积的数学期望.解 由题意,球的直接D~U(a,b), 球的体积V=()3432D π因此,341()()32bax E V Vf x dx dx b aπ∞-∞⎛⎫== ⎪-⎝⎭⎰⎰ 4220|()()24()24x a b a b b a ππ∞==++-7. 设随机变量X ,Y 的密度函数分别为22,0()x X e x f x x -⎧ >,=⎨ 0, ≤0.⎩44,0()y Y e y f y y -⎧ >,=⎨ 0, <0.⎩求E(X +Y),E(2X -3Y 2). 解()()(E X Y E X E Y+=+240()()24113244X Y x y x f x dx y f y dyxe dx ye dy+∞+∞-∞-∞+∞+∞--=+=+=+=⎰⎰⎰⎰22222400(23)2()3()2()3()223435188X Y xy E X Y E X E Y x f x dx y f y dyxedx y e dy+∞+∞-∞-∞+∞+∞---=-=-=-=-=⎰⎰⎰⎰8. 设随机函数X 和Y 相互独立,其密度函数为2,1()X x x f x 0≤≤,⎧=⎨ 0, .⎩其他5,5() 5y Y e y f y y -⎧ >,=⎨ 0, ≤.⎩(-)求E(XY).解 由于XY 相互独立, 因此有()()()12(5)05(5)(5)5(5)()()()()()225320553225(01)(6)433X Y y y y y E XY E X E Y x f x dx y f y dyx dx ye dyye e dy e +∞+∞-∞-∞+∞--+∞------===⎛⎫⎛+∞⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛+∞⎫=---- ⎪ ⎪ ⎪⎝⎭⎝⎭=-----=-⨯-=⎰⎰⎰⎰⎰9. 设随机函数X 的密度为()f x <,= 0, ≥⎩x 1x 1. 求E(X), D(X). 解11()()0E X x f x dx +∞-∞-===⎰⎰π2211222110001012()()2222211()arcsin |1422E X x f x dx x +∞-∞-====-=-+=-+=-+=⎰⎰⎰⎰⎰⎰ππππππππ()221()()()2D XE X E X =-=10.设随机函数X 服从瑞利(Rayleigh)分布,其密度函数为2222,0()x x e x f x x σ-⎧ >,⎪=σ⎨⎪ 0, ≤0.⎩其中σ>0是常数,求E(X),D(X). 解22222222()()x x x E X x f x dx edx xdeσσσ--+∞+∞+∞-∞===-⎰⎰⎰2222222222200/00222x x x u u x xe e dx e dxedu σσσσππσσσ---+∞+∞+∞-=⎛⎫+∞=--= ⎪⎝⎭−−−→===⎰⎰⎰222222222222222222322222002220()()2202220x x x x x x u u ux E X x f x dx edx x dex e xe dx xe dx e du eσσσσσσσσσσ=+∞+∞+∞---∞+∞+∞---+∞--===-⎛+∞⎫=--= ⎪⎝⎭+∞−−−→==-=⎰⎰⎰⎰⎰⎰()22222()()()2(2)22D X E X E X ππσσσ⎛⎫=-=-=- ⎪ ⎪⎝⎭11. 抛掷12颗骰子,求出现的点数之和的数学期望与方差.解 掷1颗骰子,点数的期望和方差分别为: E(X) = (1+2+3+4+5+6)/6= 7/2 E(X 2)=(12+22+32+42+52+62)/6=91/6 因此 D(X) = E(X 2)-(E(X)) 2 = 35/12掷12颗骰子, 每一颗骰子都是相互独立的, 因此有: E(X 1+X 2+…+X 12)=12E(X) = 42D(X 1+X 2+…+X 12) =D(X 1)+D(X 2)+…+D(X 12)=12D(X)=35 12. 将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球,将一只球装入与球同号码的盒子中,称为一个配对,记X 为配对的个数,求E(X), D(X).解 (1)直接求X 的分布律有些困难,我们引进新的随机变量X k1,0,k k X k ⎧=⎨⎩第只球装入第k 号盒子第只球没装入第k 号盒子,则有:1nkk X X ==∑,X k 服0-1分布因此:11(0)11,(1),kk P X p P X p n n==-=-===()11111(),()11()1k k nnk k k k E X p D X nn n E X E X E X n n ==⎛⎫===- ⎪⎝⎭⎛⎫===⋅= ⎪⎝⎭∑∑(2)k j X X 服从0-1分布,则有11(1)(1)(1)(1,1),()k j k j k j n n n n P X X P X X E X X --======1()n k k D X D X =⎛⎫= ⎪⎝⎭∑()112222(,)1112(()()())11112(1)1111112111(1)nk k j k k jnk j k j k k jk j n D X Cov X X E X X E X E X n n n n n n n C n n n n n n =<=<<=+⎛⎫=-+- ⎪⎝⎭⎛⎫=-+- ⎪-⎝⎭⎛⎫-⎛⎫=-+-=-+-= ⎪ ⎪-⎝⎭⎝⎭∑∑∑∑∑故,E(X)=D(X)=1. 我们知道,泊松分布具有期望与方差相等的性质,可以认定,X 服从参数为1的泊松分布. 13. 在长为l 的线段上任意选取两点,求两点间距离的数学期望及方差.解 设所取的两点为X,Y , 则X,Y 为独立同分布的随机变量, 其密度函数为11,01,01(),(),0,0,X Y x x f x f y l l other other ⎧⎧≤≤≤≤⎪⎪==⎨⎨⎪⎪⎩⎩ 21,0,1(,)()(),0,Y Y x y f x y f x f y l other ⎧≤≤⎪==⎨⎪⎩依题意有()(,)E X Y x y f x y dxdy +∞+∞-∞-∞-=-⎰⎰()()2200011l xl l x x y dydx y x dydx l l=-+-⎰⎰⎰⎰ 222220011222llx l x dx lx dx ll =+-+⎰⎰322322110032262l l x l x lx x l l ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭663l l l =+= ()22()(,)E X Y x yf x y dxdy +∞+∞-∞-∞-=-⎰⎰()22001l lx y dxdy l=-⎰⎰ ()222003222012103l l l dx x xy y dy ll yx y xy dxl =-+⎛⎫=-+ ⎪⎝⎭⎰⎰⎰ 3222033222213111032316ll x l xl dx l ll x l x l x ll =-+⎛⎫=-+⎪⎝⎭=⎰ D(X -Y) = E((X -Y)2)-(E(X -Y))2 = 2221116918l l l -= 14.设随机变量X 服从均匀分布,其密度函数为12,()2x f x ⎧0<<,⎪=⎨⎪0, .⎩其他,求E(2X 2),D(2X 2). 解12222201(2)2()2()226E X E X x f x dx x dx +∞-∞====⎰⎰ 124442011()()2,()8012E X x f x dx x dx E X +∞-∞====⎰⎰ ()()22242111(2)4()4()()48014445D X D XE X E X ⎛⎫==-=⨯-=⎪⎝⎭ 15. 设随机变量X 的方差为2.5,试利用切比雪夫不等式估计概率(()7.5)P X E X -≥ 的值.。

11-12概率统计A(答案).doc

11-12概率统计A(答案).doc

东莞理工学院(本科)试卷(A卷)2011 -2012学年第二学期一'填空题(共70分每空2分)1、A、B是两个随机事件,已知P(A) = 0.3 , P(B) = 0.5。

若A与B互不相容,则P(A + J B)= 08;若A与B相互独立,则P(A + B)= 0.65 ;若P(A-B) = 0.1,则P( A | B ) = 0.42、一个袋子中有大小相同的红球3只,白球2只,若从中不放回地任取2只,设X为取到的白球的个数,则P(X = 1) = 0.6 , EX =0,83、三个人独立破译一个密码,他们单独破译的概率分别为丄,丄,丄,则此密码3 4 5能被破译的概率为0. 6 。

4、在区间[0,1]±等可能任取两个数,则这两个数之和小于彳的概率为彳。

5、已知某对夫妇有三个小孩,在已知至少有一个女孩的条件下,至少还有一个男孩的概率为°。

2_6、有甲乙两台设备生产相同的产品,甲生产的产品占60%,次品率为10%;乙生产的产品占40%,次品率为20%。

(1)若随机地从这批产品中抽出一件,抽到次品的概率为0.14 ; (2)若随机地从这批产品中抽出一件,检验出为次品,则该次品属于甲厂生产的概率是°。

2_7、、某公司业务员平均每见两个客户可以谈成一笔生意,他一天见了六个客户,设他谈成的生意为X笔,则X服从的分布为B(6, 0.5),他正好谈成两笔生意的概率为d, DX = 1. 5 o648、设顾客在某银行的窗口等待的服务时间X (以分钟计)服从指数分布E(5), X的密度函数为y = 2x + i的概率密度函数为:f y(y)=<V-12 1< v<30,其它。

囂『则,X的密度Q-x~3 ,则参数&的矩估其它-、0.2e~a2t, /〉0 j(t) = <0, ?<0若等待超过10分钟他就离开,他去一次银行没办成事就离开的概率为£2;他一个月要去银行5次,则他至少有一次没办成事就离开的概率为1-(1-eV9、假设某公路上每分钟通过的汽车数可以用泊松(Poisson)分布P(10)来描述。

概率论与数理统计(A)期末复习资料

概率论与数理统计(A)期末复习资料

《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。

概率统计习题期末复习2011-2012-2

概率统计习题期末复习2011-2012-2

概率统计1,一个人的血型为 O 、A 、B 、AB 的概率分别是0.1; 0.2;0.3;0.4.现任选4人,则4人血型全不相同的概率为:)(A 0.0024; )(B 40024.0; )(C 0. 24; )(D 224.0.2,下列结论哪一个不正确)(A 设A,B 为任意两个事件,则A B A B -=; )(B 若A B =,则A,B 同时发生或A,B 同时不发生; )(C 若A B ⊂,且B A ⊂,则A B =;)(D 若A B ⊂,则A-B 是不可能事件。

3,对于任意二个随机事件B A ,,其中1)(,0)(≠≠A P A P ,则下列选项中必定成立的是( ) (A) ()()A B P A B P = 是B A ,独立的充分必要条件;(B) ()()A B P A B P = 是B A ,独立的充分条件非必要条件; (C) ()()A B P A B P = 是B A ,独立的必要条件非充分条件; (D) ()()A B P A B P = 是B A ,独立的既非充分条件也非必要条件.4,A,B,C 两两独立,且111,,A A B B C C ⊂⊂⊂,则(A )A 与BC 独立;(B )1A 与1B 独立;(C )1C 与1B 可能不独立;(D )B 与C 互斥5,红双喜公司为世乒赛生产比赛用球. 自动包装机把白色和黄色的乒乓球混装,每盒装12只,每盒装白球的个数X 服从离散型均匀分布(即X 取各可能值的概率相等)。

为检查某一盒子中装有白球的数量,从盒中任取一球。

(1)求从盒中取到的球为白球的概率; (2) 如果发现从盒中取到的球是白球,求此盒全是白球的概率.6,对任意常数)(,,b a b a <,已知随机变量X 满足(),()P X a P X b αβ≤=≥=.记()b X a P p ≤<=,则下列选项中必定成立的是(A))(1βα+-=p ;(B) )(1βα+-≥p ; (C) )(1βα+-≠p ;(D) )(1βα+-≤p .7,测量某目标的距离时发生的误差X (单位为m )具有概率密度320022401)(x ex f -=π,试求在3次测量中至少有1次误差的绝对值不超过30m 的概率?8,在区间(0,1)中随机取出两个实数Y X ,,记{}5,6A X Y B X Y ⎧⎫===+<⎨⎬⎩⎭,则()A P = ,()B P = .9,盒中有4个红球4个黑球,不放回抽取4次,每次取1个,X=头2次抽中红球数,Y=4次共抽中红球数,求(1)二维随机变量),(Y X 的联合分布律:(2)给定1X =,Y 的条件分布律。

2018~2019(二)概率统计试卷(理工类)A卷答案

2018~2019(二)概率统计试卷(理工类)A卷答案

������ − ������
U=
~������(0,1)
������/√������
������ − ������ W = {u|U > ������ } = u ������ > 1.64
√������
代入样本值
33.85 − 32 1.85
u=
=
= 1.83
√102/√100 √1.02
标准答案
(2)L(x, θ) = ∏
=( )
������ = min(������ , ������ , … , ������ )
(六)(10)设随机变量 X~B(100,0.2)(二项分布),用中心极限定理求 P(X>10)。
解 : P(X > 10) = P 0. .99989
>
= 1−Φ
()
()
= 1 − Φ(−2.5) = Φ(2.5) =
3������ − 6������ + 3, 0 < ������ < 1
������ (������) =
0,
其它
同理:
������ (������) = ������(������, ������)������������ = 6(1 − ������)������������ = 6(1 − ������)������
(2)D(X) = E(X − ������) = ������(������ − + − ������) = ������(������ − ) + 2������ ������ −
− ������ +
������( − ������) = ������(������ − ) + − ������ ������ ������ − + ( − ������)

11-12(2)概率统计D(答案)

11-12(2)概率统计D(答案)

东莞理工学院(本科)试卷(D 卷)2011 --2012 学年第二学期《概率论与数理统计》试卷(答案)开课单位:计算机学院数学教研室 ,考试形式:闭卷,允许带 计算器 入场一、选择填空题(共70分 每空21、设A 、B 为两个事件,P(A)=0.5,P(A-B)=0.2,则P(B A )为( C ) (A )0.2 (B )0.3 (C )0.7 (D )0.82、A 、B 是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A 与B 互不相容,则P (B A )等于( D ) (A) 0 (B) 42.0 (C) 88.0 (D)13、已知P(A)=0.5,P(B)=0.6,且A 与B 相互独立,则)(B A P 等于( C ) (A )0.6 (B )0.7 (C )0.8 (D )0.94、事件A 、B 相互独立,)(A P =0.3,)(A B P =0.6,则)(A P +)(B P 等于( C ) (A )0.5 (B )0.3 (C )0.9 (D )15、设A 、B 为两个事件,则B A -表示( D ) (A )“A发生且B 不发生” (B )“A、B 都不发生” (C )“A、B 都发生”(D )“A不发生或者B 发生”6、 某事件发生的概率为10,如果试验10次,则该事件(D )(A )一定会发生1次 ( B ) 一定会发生10次 (C ) 至少会发生1次 (D )发生的次数是不确定的 7、已知离散型随机变量X 概率函数为1)(+==i pi X P ,1 ,0=i ,则p 的值为( A )(A )(-1+5)/2 ( B )(1+5)/2 ( C )(-l ±5)/2 ( D ) 1/2 8、某大学统计系06级3班共有60名同学。

至少有2名同学生日相同的概率为( D ) (一年按365天计算)(A ) 6060!365(B ) 6036560365P ( C )!36560365P ( D ) 60365601365P -9、 红星游乐园入口处的每辆汽车的载客人数服从2λ=的泊松分布,今任意观察一辆到达公园门口的汽车,车中无乘客的概率为(A )(A ) 2e- (B ) 2 (C ) 2e ( D )!22-e10、某食品超市的牛奶销售量服从正态分布,每天平均销售200公斤,标准差为20公斤。

2011-2012学年第一学期统计学试卷A及答案

2011-2012学年第一学期统计学试卷A及答案

4.为检验广告媒体和广告方案对产品销售量的影响,一家营销公司做了一项实
验,考察三种广告方案和两种广告媒体,获得的销售量数据如下:
A
广告方案
B
C
报纸 10 12 22 15 12 20
广告媒体
电视 12 10 26 28 20 16
(1)写出检验广告方案和广告媒体及其交互作用的假设。
(2)完成下面的方差分析表。
0.405285 96 141 237
22148 120
2.一种汽车配件的长度要求为12厘米,高于或低于改标准均被认为是不合格 的汽车生产企业在购进配件时,通常经过招标,然后对中标的配件提供商提供的 样品进行检验,以决定是否采购,现对一个配件提供商提供的10个样本进行检验, 结果如下(单位:厘米)。
A. 由于x与y之间的线性关系引起的y的变化部分
B. 除了x对y的线性影响之外的其他因素对y变差的影响
C. 由于x与y之间的非线性关系引起的y的变化部分
D. 由于x与y之间的函数关系引起的y的变化部分
17.已知回归平方和SSR=4863,残差平方和SSE=282,则判定系数R2=(
)。
A.94.52%
的有关结果:
方差分析表
df
SS
MS
F
回归分析
残差
2196005

总计
19 18221598 —

Significance F 1.05354E-09 — —
Intercept X Variable 1
参数估计表 Coefficients 标准误差
268.5646259 127.479726 5.194491112 0.45322762
2012 年 1 月 5 日

(完整版)概率统计章节作业答案

(完整版)概率统计章节作业答案

第一章 随机事件与概率一、单项选择题1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是( B ).A. AB ={出现奇数点}B. AB ={出现5点}C. B ={出现5点}D. A B =ΩU2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ).A. ()A B B A +-=B. ()A B B A B A AB +-=-=-C. ()A B B A B -+=+D.AB AB A +=3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为( D ).A.1212A A A A UB.12A AC.12A AD.12A A U4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为( A ).A.123A A AB.123A A A ++C.123A A AD.123A A A5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是( A).A.(|)0P A B =B. (|)0P B A =C. ()0P AB =D. ()1P A B =U6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B =( D ).A. 0.2B. 0.4C. 0.6D. 0.87.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则( C ).A.()1P A B =UB.()()()P AB P A P B =C. ()0P AB =D.()0P AB >8.设P (A )=0, B 为任一事件, 则 ( C ).A.A =ΦB.A B ⊂C.A 与B 相互独立D. A 与B 互不相容9.已知P (A )=0.4, P (B )=0.5, 且A B ⊂,则P (A |B )= ( C ).A. 0B. 0.4C. 0.8D. 110.设A 与B 为两事件, 则AB = ( B ).A.A BB. A B UC. A B ID. A B I11.设事件A B ⊂, P (A )=0.2, P (B )=0.3,则()P A B =U ( A ).A. 0.3B. 0.2C. 0.5D. 0.4412.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )=( D ).A. 0.08B. 0.4C. 0.2D. 013.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ).A.()()P A B P A =UB.A B ⊂C. P (A )=P (B )D. P (AB )=P (A )14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ).A. 0.4B. 0.2C. 0.25D. 0.7515.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为( A ).A.37B.0.4C. 0.25D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ).A. 0.48B. 0.75C. 0.6D. 0.817.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为( A ).A. 0.125B. 0.25C. 0.5D. 0.418.一批产品的合格品率为96%,而合格品中有75%是优质品,从该批产品中任取一件恰好是优质品的概率为( A ).A. 0.72B. 0.75C. 0.96D. 0.7819.设有10个产品,其中7个正品,3个次品,现从中任取4个产品,则这4个都是正品的概率为( C ).A. 710B. 44710C. 47410C C D. 4710⨯ 20.设有10个产品,其中8个正品,2个次品,现从中抽取3次,每次任取1个,取后放回,则取到的3个产品都是正品的概率为( C ).A. 810B. 38310C C C. 33810 D. 38310C 21.某人打靶的命中率为0.4,现独立地射击5次,则5次中恰有2次命中的概率为( C ).A. 20.4B. 30.6C. 22350.40.6CD. 23250.40.6C22.随机地抛掷质地匀称的6枚骰子,则至少有一枚骰子出现6点的概率为( D ).A.15615()66CB.156151()66C - C.15651()66C D.651()6- 23.把3个不同的球分别放在3个不同的盒子中,则出现2个空盒的概率为(A ).A. 19B. 12C. 23D. 13 24.从1,2,3,4,5,6六个数字中,等可能地、有放回地连续抽取4个数字,则取到的4个数字完全不同的概率为( A ).A.518B.4!6!C.4446AAD.44!625.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为( D ).A. p2B. (1-p)2C. 1-2pD. p(1-p)二、填空题1.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为18/35 .2.甲乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为1/16 .3.设袋中有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为0.25 .4.从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为0.0486 .5.甲乙丙三人各自独立地向一目标射击一次,三人的命中率分别是0.5,0.6,0.7,则目标被击中的概率为0.94 .6.甲袋中装有两白一黑共3个球,乙袋中装有一白两黑共3个球,从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,则取到白球的概率为5/12 .7.设事件A与B互不相容,P(A)=0.2, P(B)=0.3, 则()P A BU= 0.5 .8.设事件A与B相互独立,且P(A+B)=0.6, P(A)=0.2, 则P(B)= 0.5 .9.设()0.3,(|)0.6P A P B A==,则P(AB)= 0.42 .10.设11()()(),()(),()046P A P B P C P AB P AC P BC======,则P(A+B+C)=5/12 .11.已知P (A )=0.7, P (A -B )=0.3, 则()P AB = 0.6 .12.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为 0.25 .13.已知P (A )=0.4, P (B )=0.8, P (B|A )=0.25, 则P (A|B )= 0.125 .14.设111(),(|),(|)432P A P B A P A B ===,则()P A B U = 1/3 . 15.一批产品的废品率为4%,而正品中的一等品率为60%,从这批产品中任取一件是一等品的概率为 0.576 .16.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为 0.7 .三、计算题1.设P (A )=0.4, P (B )=0.2, (|)0.3P B A =, 求P (AB )以及P (A |B ).解:由(|)0.3P B A =得:()0.3,()P AB P A =即()()0.31()P B P AB P A -=-, 解得:P (AB )=0.02. 从而, ()0.02(|)0.1()0.2P AB P A B P B ===.2.已知,()0.2,()0.3,A B P A P B ⊂==求:(1)(),()P A P B ;(2)P (AB );(3)()P AB ;(4) ()P A B U ;(5)P (B -A ).(1)由概率的性质,知()1()0.8,P A P A =-=()1()0.7P B P B =-=;(2)因为A B ⊂,所以AB A =,P (AB )=P (A )=0.2; (3)()P AB =P (A -AB )=P (A )-P (AB )=P (A )-P (A )=0;(4) 因为A B ⊂,所以A B B =U , ()P A B U =P (B )=0.3;或者,()P A B U =P (A )+P (B )-P (AB )=0.2+0.3-0.2=0.3;3.若事件A 与B 互不相容,P (A )=0.6, P (A+B )=0.9, 求:(1)()P AB ;(2)(|)P A B ;(3)()P AB .解:(1) 因A 与B 互不相容,故AB =Φ,P (AB )=0,所以()P AB =1-P (AB )=1;(2) 因A 与B 互不相容,由加法公式:P (A+B )=P (A )+P (B ),得P (B )=0.3,从而 (|)P A B =()()()0.661()0.77()P AB P A P AB P B P B -===-; (3) ()P AB =1()1()10.90.1P AB P A B -=-+=-=.4.已知事件A 与B 相互独立,且P (A )=0.4, P (A+B )=0.6, 求(1)P (B );(2) ()P AB ;(3)P (A|B ).解:(1)因为事件A 与B 相互独立,所以P (AB )=P (A )P (B ),()()()()()()()()P A B P A P B P AB P A P B P A P B +=+-=+-0.6=0.4+P (B )-0.4P (B ),解得:P (B )=13; (2) 因为事件A 与B 相互独立,所以A 与B 也相互独立,故()P AB =4()()15P A P B =; (3) 因为事件A 与B 相互独立,所以P (A|B )=P (A )=0.4.四、应用题 1.一批产品共有50个,其中40个一等品、6个二等品、4个三等品,现从中任取3个产品,求3个产品中至少有2个产品等级相同的概率.解:设A “3个产品中至少有2个产品等级相同”,A “3个产品等级都不同”,由古典概率定义,得111406435012()0.049245C C C P A C ==≈,从而 ()10.0490.951P A =-=.2.10把钥匙中有3把能打开门,现从中任取2把,求能打开门的概率.解:A “取出2把钥匙能打开门”,由古典概率知:1123732108()15C C C P A C +==.3.将5双不同的鞋子混放在一起,从中任取4只,求这4只鞋子至少能配成一双的概率.解:A “4只鞋子中至少能配成一双”,则A “4只鞋子都不同”.由古典概率得:41111522224108()21C C C C C P A C ==,故13()1()21P A P A =-=. 4.从0,1,2,3这4个数中任取3个进行排列,求取得的三个数字排成的数是三位数且是偶数的概率.解:A “排成的数是三位数且是偶数”,A 0“排成的三位数末位是0”,A 2“排成的三位数末位是2”,则A =A 0+A 2,且A 0与A 2互不相容,因为230342!1(),3!4C P A C ==11222341(),3!6C C P A C == 所以,015()()()12P A P A P A =+=. 5.一批零件共100个,次品率为10%,每次从中任取一个零件,取出的零件不再放回去,求下列事件的概率:(1)第三次才取得合格品;(2)如果取得一个合格品后就不再取零件,在三次内取得合格品.解:设A i “第i 次取到合格品”(i =1,2,3),则(1)第三次才取到合格品的概率为:12312131210990()()(|)(|)0.00831009998P A A A P A P A A P A A A ==⨯⨯≈. (2)A “三次内取得合格品”,则112123A A A A A A A =++,所求概率为: 112123()()()()P A P A P A A P A A A =++1121121312()()(|)()(|)(|)P A P A P A A P A P A A P A A A =++90109010990100100991009998=+⨯+⨯⨯0.9993.≈ 6.盒子中有8个红球和4个白球,每次从盒子中任取一球,不放回地抽取两次,试求:(1) 两次取出的都是红球的概率;(2)在第一次取出白球的条件下,第二次取出红球的概率;(3)第二次取到红球的概率.解:A 1“第一次取出的是红球”,A 2“第二次取出的是红球”,则(1)由乘法公式得,两次取出的都是红球的概率为:121218714()()(|)121133P A A P A P A A ==⨯=; (2)在第一次取出白球的条件下,第二次取出红球的概率为:218(|)11P A A =; (3)由全概率公式得,第二次取到红球的概率为:2121121()()(|)()(|)P A P A P A A P A P A A =+7.某工厂有三台设备生产同一型号零件,每台设备的产量分别占总产量的25%,35%,40%,而各台设备的废品率分别是0.05,0.04,0.02,今从全厂生产的这种零件中任取一件,求此件产品是废品的概率.解:设A i “第i 台设备生产的零件”(i =1,2),B “产品是废品”,由题意知:P (A 1)=25%,P (A 2)=35%,P (A 3)=40%,P (B |A 1)=0.05, P (B |A 2)=0.04, P (B |A 3)=0.02,由全概率公式得,产品是废品的概率为:112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++25%0.0535%0.0440%0.020.0345=⨯+⨯+⨯=.8.两台车床加工同一种零件,加工出来的零件放在一起,已知第一台出现废品的概率是0.03,第二台出现废品的概率是0.02,且第一台加工的零件比第二台加工的零件多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的是废品,求它是由第二台车床加工的概率.解:设B “零件是合格品”,A “第一台车床加工的零件”,则A “第二台车床加工的零件”,由题意知:21(),()33P A P A ==. (1)由全概率公式得:()()(|)()(|)P B P A P B A P A P B A =+21(10.03)(10.02)0.97333=⨯-+⨯-≈; (2)由贝叶斯公式得,如果取出的是废品,求它是由第二台车床加工的概率为:10.02()()(|)3(|)0.252.921()()13P A B P A P B A P A B P B P B ⨯====--9.已知5%的男人和0.25%的女人是色盲,假设男人女人各占一半.现随机地挑选一人,求:(1)此人恰是色盲的概率是多少?(2)若随机挑选一人,此人是色盲,问他是男人的概率多大?(3)若随机挑选一人,此人不是色盲,问他是男人的概率多大?解:设B “色盲患者”,A “随机挑选一人是男人”,由题设知:11(),(),(|)5%,(|)0.25%22P A P A P B A P B A ====,则 (1)由全概率公式得,随机挑选一人是色盲的概率为:()()(|)()(|)P B P A P B A P A P B A =+115%0.25%0.0262522=⨯+⨯=; (2)由贝叶斯公式得,随机选一人是色盲,他是男人的概率为:15%()()(|)2(|)0.952()()0.02625P AB P A P B A P A B P B P B ⨯===≈; (3)由贝叶斯公式得,随机选一人不是色盲,他是男人的概率为:195%()()(|)2(|)0.48781()0.97375()P AB P A P B A P A B P B P B ⨯===≈-. 10.现有10张考签,其中4张是难签,甲、乙、丙三人抽签考试(取后不放回),甲先乙次丙最后,求下列事件的概率:(1)甲乙都抽到难签;(2)甲没有抽到难签,而乙抽到难签;(3)甲乙丙都抽到难签;(4)证明:甲乙丙抽到难签的机会均等.解:设A ,B ,C 分别表示“甲、乙、丙抽到难签”,则(1)甲乙都抽到难签的概率为:432()()(|)10915P AB P A P B A ==⨯=; (2)甲没有抽到难签,而乙抽到难签的概率为:644()()(|)10915P AB P A P B A ==⨯=; (3)甲乙丙都抽到难签的概率为:4321()()(|)(|)109830P ABC P A P B A P C AB ==⨯⨯=; (4)由古典概率知,甲抽到难签的概率为:4()0.410P A ==. 由全概率公式得,乙抽到难签的概率为:()()(|)()(|)P B P A P B A P A P B A =+43640.4109109=⨯+⨯=. 丙抽到难签的概率为:()()(|)()(|)()(|)()(|)P C P AB P C AB P AB P C AB P AB P C AB P AB P C AB =+++ 4326434636541098109810981098=⨯⨯+⨯⨯+⨯⨯+⨯⨯=0.4. 得,P (A )=P (B )=P (C )=0.4,所以,甲乙丙抽到难签的机会均等,各占40%.11.三个人向同一敌机射击,设三人命中飞机的概率分别为0.4,0.5和0.7.若三人中只有一人击中,飞机被击落的概率为0.2;若有两人击中,飞机被击落的概率为0.6;若三人都击中,则飞机必被击落.求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且0()(10.4)(10.5)(10.7)0.09P A =-⨯--=,1()0.4(10.5)(10.7)(10.4)0.5(10.7)(10.4)(10.5)0.70.36P A =⨯-⨯-+-⨯⨯-+-⨯-⨯=, 2()0.40.5(10.7)0.4(10.5)0.7(10.4)0.50.70.41P A =⨯⨯-+⨯-⨯+-⨯⨯=, 3()0.40.50.70.14P A =⨯⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====.故,由全概率公式得,飞机被击落的概率为:00112233()()(|)()(|)()(|)()(|)P B P A P B A P A P B A P A P B A P A P B A =+++ 0.0900.360.20.410.60.1410.458=⨯+⨯+⨯+⨯=.12.在上题中,假设三人的射击水平相当,命中率都是0.6,其他条件不变,再求飞机被击落的概率.解:设A i 表示“三人中恰有i 人击中飞机”,i =0,1,2,3.B “飞机被击落”. A 0, A 1, A 2, A 3构成完备事件组,且由贝努里公式得:00303()0.60.40.064P A C =⨯⨯=,1213()0.60.40.288P A C =⨯⨯=, 2223()0.60.40.432P A C =⨯⨯=,3333()0.60.216P A C =⨯=.由题设知:0123(|)0,(|)0.2,(|)0.6,(|)1P B A P B A P B A P B A ====. 故由全概率公式得,飞机被击落的概率为:30()()(|)i i i P B P A P B A ==∑0.06400.2880.20.4320.60.21610.5328=⨯+⨯+⨯+⨯=13.已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率为0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品,它确实是合格品的概率.解:设A “产品是合格品”,B “经检查产品被判为合格品”,且由题意知:P (A )=95%, ()195%5%,(|)10.020.98,(|)0.03P A P B A P B A =-==-==.则(1)由全概率公式得,任意抽查一个产品,它被判为合格品的概率为: ()()(|)()(|)P B P A P B A P A P B A =+ 95%0.985%0.030.9325=⨯+⨯=;(2)由贝叶斯公式得,一个经检查被判为合格的产品,它确实是合格品的概率为:()0.950.98(|)0.9984()0.9325P AB P A B P B ⨯==≈. 14.一个工人看管三台机床,在一小时内机床不需要工人看管的概率第一台为0.9,第二台为0.8,第三台为0.7,且三台机床是否需要看管彼此独立.求在一小时内三台机床中最多有一台需要工人看管的概率.解:设A i “第i 台机床需要看管”,i =1,2,3. “三台机床中最多有一台需要工人看管”表示为123123123123A A A A A A A A A A A A +++,且这4个事件两两互不相容,由加法与独立性知,所求的概率为: 123123123123()P A A A A A A A A A A A A +++ 123123123123()()()()P A A A P A A A P A A A P A A A =+++123123123123()()()()()()()()()()()()P A P A P A P A P A P A P A P A P A P A P A P A =+++0.10.80.70.90.20.70.90.80.30.90.80.70.902=⨯⨯+⨯⨯+⨯⨯+⨯⨯=15.加工某一零件共需经过三道工序,设第一、第二、第三道工序的次品率分别是2%,3%,5%.假定各道工序是互不影响的,问加工出来的零件的次品率是多少?解:设A i “第i 道工序加工出次品”,i =1,2,3.则加工出来的零件是次品表示为A 1+A 2+A 3,且A 1,A 2,A 3相互独立,从而123,,A A A 也相互独立. 所求概率为:123123123(++)1()1()()()P A A A P A A A P A P A P A =-=- 1(12%)(13%)(15%)0.09693=----=.16.甲、乙、丙三人独立地破译一密码,他们各自能破译出的概率分别是0.4,0.6,0.7,求此密码被破译的概率.解:设A ,B ,C 分别表示“甲、乙、丙破译出密码”,则A+B+C 表示“密码被破译”,且A ,B ,C 相互独立,从而,,A B C 也相互独立,故所求概率为:(++)1()1()()()P A B C P A B C P A P B P C =-=- 1(10.4)(10.6)(10.7)0.928=----=.17.有甲、乙两批种子,发芽率分别为0.8和0.7,各在两批中随机取一粒,求: (1)两粒种子都能发芽的概率; (2)至多有一粒种子能发芽的概率; (3)至少有一粒种子能发芽的概率.解:设A ,B 分别表示“甲、乙种子发芽”,由题设知:()0.8,()0.7,()10.80.2,()10.70.3P A P B P A P B ===-==-=. (1)两粒种子都能发芽的概率为:()()()0.80.70.56P AB P A P B ==⨯=; (2)至多有一粒种子能发芽的概率为:()()()()P AB AB A B P AB P AB P A B ++=++ ()()()()()()P A P B P A P B P A P B =++ 0.80.30.20.70.20.30.44=⨯+⨯+⨯=; (3)至少有一粒种子能发芽的概率为:()()()()()()()()P A B P A P B P AB P A P B P A P B =+-=+-U0.80.70.80.70.94=+-⨯=.18.一批产品有70%的一级品,进行重复抽样检查,共抽取5件样品,求: (1)取出5件样品中恰有2件一级品的概率p 1; (2)取出5件样品中至少有2件一级品的概率p 2; (3)取出5件样品中至少有一件一级品的概率p 3.解:该问题是参数p =0.7的5重贝努里试验,由贝努里公式得: (1)取出5件样品中恰有2件一级品的概率p 1=22350.70.30.1323C ⨯⨯=; (2)取出5件样品中至少有2件一级品的概率为:p 2=55520.70.3k k k k C -=⨯⨯∑=005145510.70.30.70.30.96922C C -⨯⨯-⨯⨯=; (3)取出5件样品中至少有一件一级品的概率为: p 3=55510.70.3k k k k C -=⨯⨯∑=005510.70.30.99757C -⨯⨯=.19.一射手对一目标独立地射击4次,若至少命中一次的概率为8081, 求射手射击一次命中目标的概率..解:设射手射击一次命中目标的概率为p ,由贝努里定理知,4次射击中至少有一次命中目标的概率为:41(1)p --,由题设知:4801(1)81p --=,解得:23p =.20.一射手对一目标独立地射击, 每次射击命中率为p , 求射击到第4次时恰好两次命中的概率.解:射手射击到第4次恰好有两次命中目标,即第四次命中,而前三次中恰有一次命中,由贝努里定理知,所求概率为:12223(1)3(1)P pC p p p p =-=-. 五、证明题1.设0<P (B )<1,证明事件A 与B 相互独立的充分必要条件是(|)(|)P A B P A B =. 证:必要性 设事件A 与B 相互独立,则P (AB )=P (A )P (B ),P (A|B )=P (A ), 又()()()()()(|)()1()1()()P AB P A AB P A P A P B P A B P A P B P B P B --====--, 所以,(|)(|)P A B P A B =.充分性 若(|)(|)P A B P A B =,则()()()()()()1()1()()P AB P AB P A AB P A P AB P B P B P B P B --===--, 对上式两端化简,得:()()()P AB P A P B =,所以A 与B 相互独立2.证明条件概率的下列性质:(1)若P (B )>0,则0(|)1,(|)1,(|)0P A B P B P B ≤≤Ω=Φ=;(2)若A 与B 互不相容,()0P C >,则(|)(|)(|)P A B C P A C P B C =+U ; (3)(|)1(|)P A B P A B =-. 证:(1)因为()(|)()P AB P A B P B =,而0()()P AB P B ≤≤,所以,0(|)1P A B ≤≤,且()()(|)1()()P B P B P B P B P B ΩΩ===,()()(|)0()()P B P P B P B P B ΦΦΦ===; (2)若A 与B 互不相容,则AC 与BC 也互不相容,从而 ()()()(|)(|)(|)()()P AC BC P AC P BC P A B C P A C P B C P C P C +===+U U ;(3)由性质(2)得:(|)(|)(|)P A A B P A B P A B =+U ,又A A =ΩU ,由性质(1)知,(|)1P B Ω=,所以,(|)(|)1P A B P A B +=,即(|)1(|)P A B P A B =-第二章 随机变量及其概率分布 一、单项选择题1.设随机变量X 的分布律为则P {X <1}=( C ).A. 0B. 0.2C. 0.3D. 0.5 2.设随机变量X 的概率分布为 则a =( D ).A. 0.2B. 0.3C. 0.1D. 0.43.设随机变量X 的概率密度为2,1(),0,1cx f x x x ⎧>⎪=⎨⎪≤⎩则常数c =( D ).A. 1-B.12 C. -12D. 1 4.设随机变量X 的概率密度为3,01(),0,ax x f x ⎧≤≤⎪=⎨⎪⎩其它则常数a =( D ).A.14 B. 12C. 3D. 4 5.下列函数中可作为某随机变量的概率密度函数的是 (A ).A.2100,1000,100x x x ⎧>⎪⎨⎪≤⎩ B.10,00,0x xx ⎧>⎪⎨⎪≤⎩ C. 1,020,x -≤≤⎧⎨⎩其它D.113,2220,x ⎧≤≤⎪⎨⎪⎩其它6.设函数()f x 在区间[,]a b 上等于sin x ,而在此区间外等于0;若()f x 可以作为某连续型随机变量的概率密度函数,则区间[,]a b 为 ( A ).A. [0,]2πB. [0,]πC. [,0]2π-D. 3[0,]2π7.下列函数中,可以作为某随机变量X 的分布函数的是 ( C ).A. 0,00.3,01()0.2,121,2x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩B. 0.5,0()0.8,011,1x x F x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,00.1,05()0.6,561,6x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩ D. 0,2()sin ,021,0x F x x x x ππ⎧<-⎪⎪⎪=-≤<⎨⎪≥⎪⎪⎩8.设()F x 是随机变量X 的分布函数,则 ( B ). A. ()F x 一定连续 B. ()F x 一定右连续 C. ()F x 是不增的 D. ()F x 一定左连续9.设()()F x P X x =≤是随机变量X 的分布函数,则下列结论错误的是(D ).A.()F x 是定义在(,)-∞+∞上的函数B.lim ()lim ()1x x F x F x →+∞→-∞-=C.()()()P a X b F b F a <≤=-D.对一切实数x ,都有0<()F x <110.设随机变量的概率分布为2()(),(1,2,3...)3k P X k a k ===,则常数a =( B ).A. 1B. 12C. 2D. 12-11.已知随机变量X 的分布律为()F x 是X 的分布函数,则F (2.5)=( B ). A. 0.7 B. 0.8 C. 0.1 D. 112.随机变量X 的概率密度2,01()0,x x f x <<⎧=⎨⎩其它,则11{}22P X -≤≤=( A ).A.14B.13C.12D.3413.已知随机变量X 的分布律为 若随机变量Y =X 2,则P {Y =1}=( C ).A. 0.1B. 0.3C. 0.4D. 0.2 14.设随机变量X ~B (4, 0.2),则P {X >3}=( A ).A. 0.0016B. 0.0272C. 0.4096D. 0.819215.设随机变量X ~N (1,4),Y =2X +1,Y ~ ( C). A. N (1, 4) B. N (0, 1) C. N (3, 16) D. N (3, 9) 16.设2~(,)X N μσ,()x Φ是N (0, 1)的分布函数,则()P a X b ≤≤= ( D ). A.()()b a Φ-Φ B.()()b a Φ+ΦC.22()()b a μμσσ--Φ-Φ D.()()b a μμσσ--Φ-Φ17.设X ~N (-1,4),()x Φ是N (0, 1)的分布函数,则P (-2<X <0)= ( A ).A.12()12Φ- B.(0)(2)Φ-Φ- C.1(2)2Φ- D.(2)(0)Φ-Φ18.设X ~N (0,1),()x ϕ是X 的概率密度函数,则(0)ϕ= (C ). A. 0 B. 0.5C.D. 1 19.设X 服从均匀分布U[0,5],Y =3X +2,则Y 服从 ( B ). A. U[0, 5] B. U[2, 17] C. U[2, 15] D. U[0, 17] 20.某种商品进行有奖销售,每购买一件有0.1的中奖率.现某人购买了20件该商品,用随机变量X 表示中奖的件数,则X 的分布为 ( D ).A.正态分布B.指数分布C.泊松分布D.二项分布 21.设X 服从参数2λ=的泊松分布,()F x 是X 的分布函数,则下列正确的选项是 ( B ).A.2(1)F e -=B.2(0)F e -=C.P (X =0)=P (X =1)D.2(1)2P X e -≤= 22.设X 服从参数λ的泊松分布,且2(1)(3)3P X P X ===,则λ= ( C ). A. 1 B. 2 C. 3 D. 4二、填空题1.若2()1P X x β≤=-,1()1P X x α≥=-,其中x 1<x 2, 则12()P x X x ≤≤= 1 .2.设随机变量X 的概率分布为记Y =X 2, 则P (Y =4)= 0.5 .3.若X 是连续型随机变量, 则P (X =1)= 0 .4.设随机变量X 的分布函数为F (x ), 已知F (2)=0.5, F (-3)=0.1, 则(32)P X -<≤= 0.4 .5.设随机变量X的分布函数为212()xt F x edt --∞=⎰,则其密度函数为 .6.设连续型随机变量X 的分布函数为0,0()sin ,021,2x F x x x x ππ⎧⎪<⎪⎪=≤<⎨⎪⎪≥⎪⎩, 其密度函数为()f x ,则()6f π= 1/2 .7.设随机变量X 的分布函数为1,0()0,x e x F x x -⎧-≥=⎨<⎩, 则当x >0时, X 的概率密度()f x = 1 . .8.设随机变量X 的分布律为则(01)P X ≤≤= 0.6 .9.设随机变量X ~N (3, 4), 则(45)P X <<= 0.148 . (其中(1)0.8413,(0.5)0.6915Φ=Φ=)10.设随机变量X 服从参数为6的泊松分布, 写出其概率分布律 P(X=K)=6K/K! K=0,1,2,3 .11.若随机变量X ~B (4, 0.5), 则(1)P X ≥= 15/16 .12.若随机变量X ~U (0, 5),且Y =2X ,则当010y ≤≤时, Y 的概率密度()Y f y = 1/10 .13.设随机变量X ~N (0, 4),则(0)P X ≥= 0.5 .14.设随机变量X ~U (-1, 1),则1(||)2P X ≤= 0.5 .15.设随机变量X 在[2, 4]上服从均匀分布,则(23)P X <<= 0.5 .16.设随机变量X ~N (-1, 4),则1~2X Y +=N(0,1) . 17.设随机变量X 的分布律为(),0,1,2, (3)k aP X k k ===,则a = 2/3 .18.设连续型随机变量X 的概率密度为1,02()0,kx x f x +<<⎧=⎨⎩其它,则k =-1/2 .19.若随机变量X ~N (1, 16),Y =2X -1,则Y ~ N(1,64) . 20.若随机变量X ~U (1, 6),Y =3X +2,则Y ~ U(5,20) . 三、计算题1.设连续型随机变量X 的分布函数为20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩,求X 的概率密度函数.解:由分布函数与概率密度函数之间的关系()()F x f x '=知,当0<x <1时, 2()()2f x x x '==,当1x ≥或0x ≤时,()f x =0,所以,X 的概率密度为2,01()0,x x f x <<⎧=⎨⎩其它.2.设X 服从参数p =0.2的0-1分布,求X 的分布函数及P (X <0.5). 解:X 的分布律为当0x <时,()()F x P X x =≤=0;当01x ≤<时,()()F x P X x =≤=(0)0.8P X ==;当1x ≥时,()()F x P X x =≤=(0)(1)0.80.21P X P X =+==+=.所以,X 的分布函数为0,0()0.8,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩;而P (X <0.5)= P (X =0)=0.8.3.设随机变量X ~U (a , b ),求X 的密度函数与分布函数.解:X 的密度函数为1,()0,a xb f x b a ⎧<<⎪=-⎨⎪⎩其它;分布函数()()x F x f t dt -∞=⎰,当x a <时,()()xF x f t dt -∞=⎰00xdt -∞==⎰;当a x b ≤<时,()()x F x f t dt -∞=⎰10a xax adt dt b a b a-∞-=+=--⎰⎰; 当x b ≥时,()()x F x f t dt -∞=⎰1001abx ab dt dt dt b a-∞=++=-⎰⎰⎰.所以,X 的分布函数为0,(),1,x a x a F x a x b b ax b <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩.4.设随机变量X ~N (3, 4),求:(1)P (2<X <3);(2) P (-4<X <10);(3) P (|X|>2);(4)P (X >3).解:(1)P (2<X <3)=3323(3)(2)()()22F F ---=Φ-Φ(0)(0.5)=Φ-Φ- (0)[1(0.5)]=Φ--Φ=0.1915;(2) P (-4<X <10)=10343(10)(4)()()22F F -----=Φ-Φ=(3.5)( 3.5)2(3.5)1Φ-Φ-=Φ-=0.9996; (3) P (|X|>2)=1(||2)P X -≤=1(22)1[(2)(2)]P X F F --≤≤=---=23231[()()]22----Φ-Φ=(0.5)(2.5)1Φ-Φ+=0.6977; (4)P (X >3)=1(3)P X -≤=331(3)1()1(0)2F --=-Φ=-Φ=0.5.5.已知随机变量X 的密度函数为2,01()0,kx x f x ⎧<<=⎨⎩其它,求:(1)常数k ;(2)分布函数;(3)(10.5)P X -<<..解:(1)因为()1f x dx +∞-∞=⎰,所以123100|133k kkx dx x ===⎰,故k =3. 即随机变量X 的概率密度为23,01()0,x x f x ⎧<<=⎨⎩其它;(2)当0x <时,()()xF x f t dt -∞=⎰=0,当01x ≤<时,()()xF x f t dt -∞=⎰=023003xdt t dt x -∞+=⎰⎰,当1x ≥时,()()x F x f t dt -∞=⎰=012010301xdt t dt dt -∞++=⎰⎰⎰所以,随机变量X 的分布函数为30,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩;(3)(10.5)P X -<<3(0.5)(1)0.500.125F F =--=-=;6.设随机变量X 的概率密度为,011(),1220,x x f x x <<⎧⎪⎪=≤<⎨⎪⎪⎩其它,求X 的分布函数.解:当0x <时,()()xF x f t dt -∞=⎰=0;当01x ≤<时,()()xF x f t dt -∞=⎰=020102xdt tdt x -∞+=⎰⎰;当12x ≤<时,()()x F x f t dt -∞=⎰=010111022x dt tdt dt x -∞++=⎰⎰⎰;当2x ≥时,()()x F x f t dt -∞=⎰=01201210012xdt tdt dt dt -∞+++=⎰⎰⎰⎰.所以,随机变量X 的分布函数为20,01,012()1,1221,2x x x F x x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.7.设随机变量X~,01()2,120,x x f x x x ≤<⎧⎪=-≤<⎨⎪⎩其它,求:(1)1()2P X ≥;(2)13()22P X <<.解:(1)1()2P X ≥=+1211122()(2)f x dx xdx x dx ∞=+-⎰⎰⎰=2122112117|(2)|228x x x +-=; (2)13()22P X <<=3312211122()(2)f x dx xdx x dx =+-⎰⎰⎰=32122112113|(2)|224x x x +-=.8.设随机变量X 在[0,5]上服从均匀分布,求方程24420x Xx X +++=有实根的概率.解:X ~1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它,而方程24420x Xx X +++=有实根的充分必要条件是21616(2)0X X ∆=-+≥,即220X X --≥,故所求概率为:2{20}(1)(2)P X X P X P X --≥=≤-+≥=0+5215dx ⎰=0.6.9.设随机变量X 的分布律为求:(1)Y =2X 的分布律;(2)Z =|X |的概率分布;(3)X 2的分布律.解:(1)由X 的分布律知,Y 的取值为-2,0,2,4.且(2)(1)0.1P Y P X =-==-=,(0)(0)0.2P Y P X ====, (2)(1)0.3P Y P X ====,(4)(2)0.4P Y P X ====. 所以,Y 的分布律为(2)Z =|X |的取值为0,1,2.2(0)(0)0.2P X P X ====,2(1)(1)(1)0.4P X P X P X ===-+==,2(4)(2)0.4P X P X ====.所以,X 2的分布律为:10.设X ~U [0,4], Y =3X +1,求Y 的概率密度.解:X ~1,04()40,x f x ⎧≤≤⎪=⎨⎪⎩其它,Y =3X +1的取值范围是[1,13].Y 的分布函数131()()(31)()()3y Y y F y P Y y P X y P X f x dx --∞-=≤=+≤=≤=⎰ 当1y <时,有103y -<,13()00y Y F y dx --∞==⎰;当113y ≤<时,有1043y -≤<,103011()0412y Y y F y dx dx --∞-=+=⎰⎰; 当13y ≥时,有143y -≥,1043041()0014y Y F y dx dx dx --∞=++=⎰⎰⎰.11.已知随机变量X ~N (1,4),Y =2X +3,求Y 的概率密度..解:X~2(1)8(),()x f x x --=-∞<<+∞,建立Y 的分布函数与X 的分布函数之间的关系.因为:33()()(23)()()22Y X y y F y P Y y P X y P X F --=≤=+≤=≤=, 两边对y 求导:3313()()()()2222Y X X y y y f y F f ---''=⋅=223(1)(5)2832y y -----==,即Y ~N (5,16).12.已知X 服从参数1λ=的指数分布,Y =2X -1,求Y 的概率密度.解:由题设知,X ~,0()0,0x e x f x x -⎧>=⎨≤⎩,方法1 11()()(21)()()22Y X y y F y P Y y P X y P X F ++=≤=-≤=≤=, 两边对y 求导:1111()()()()2222Y X X y y y f y F f +++''=⋅=, 又因为12121,012,1()210,10,02y y X y e y e y f y y +-+-⎧+>⎧⎪+⎪⎪>-==⎨⎨+⎪⎪≤-⎩≤⎪⎩,所以,Y 的概率密度为:121,1()20,1y Y e y f y y +-⎧>-⎪=⎨⎪≤-⎩.四、应用题1.一批零件中有10个合格品和2个废品,安装机器时,从这批零件中任取一个,如果每次取出废品后不再放回,用X 表示在取得合格品以前已取出的废品的个数,求:(1)随机变量X 的分布律;(2)随机变量X 的分布函数.解:(1)随机变量X 的可能取值为0,1,2,且105(0)126P X ===,2105(1)121133P X ==⨯=,21101(2)12111066P X ==⨯⨯=, 得到X 的分布律为:(2)X 的可能取值0,1,2将分布函数F (x )的定义域(,)-∞+∞分为四部分: 当0x <时,()()0F x P X x =≤=,当01x ≤<时,()()F x P X x =≤5(0)6P X ===,当12x ≤<时,()()F x P X x =≤65(0)(1)66P X P X ==+==, 当2x ≤时,()()F x P X x =≤(0)(1)(2)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,05,016()65,12661,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.2.袋中有标号为1,2,2,3,3,3的六个球,从中任取一个球,求所取出的球的号码X 的概率分布及分布函数..解:X 的可能取值为1,2,3.且1(1)6P X ==,21(2)63P X ===,31(3)62P X ===, 所以,X 的概率分布为:当1x <时,()()0F x P X x =≤=,当12x ≤<时,()()F x P X x =≤1(1)6P X ===,当23x ≤<时,()()F x P X x =≤1(1)(2)2P X P X ==+==, 当3x ≥时,()()F x P X x =≤(1)(2)(3)1P X P X P X ==+=+==. 从而得到X 的分布函数为:0,11,126()1,2321,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩3. 袋中有标号为1,2,2,3,3,3的六个球,从中任取两个球,X 表示取出的两个球的最大号码,求X 的概率分布..解:X 的所有可能的取值为2,3.且112122261(2)5C C C P X C +===,112333264(3)5C C C P X C +===, 从而得到X 的概率分布为:4.设一批产品共1000个,其中40个是次品,随机抽取100个样品,按下列两种方式抽样,分别求样品中次品数X 的概率分布.(1)不放回抽样; (2)有放回抽样.解:(1)不放回抽样,X 的可能取值为0,1,2,…,40.{X =k }表示100个样品中恰好有k 个次品,则100401000401001000()k kC C P X k C --==,得到X 的概率分布为: 100409601001000(),0,1,2,...,40.k kC C P X k k C -=== (2)有放回抽样,X 的可能取值为0,1,2,…,100.由于有放回抽样,抽取100个样品可看作进行了100重贝努里试验,且每次抽到次品的概率都是0.04,抽到正品的概率为0.96,X ~B (100,0.04).则X 的概率分布为:100100()0.040.96,0,1,2,...,100.kk k P X k C k -===5.抛掷一枚质地不均匀的硬币,每次正面出现的概率为13,连续抛掷10次,以X 表示正面出现的次数,求X 的分布律.由题设知,X ~B (10,13). 则X 的分布律为:101012()()(),0,1,2,...,10.33k k kP X k C k -===6.有一繁忙的交通路口,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事故的概率为0.0001.在某天的该段时间内有1000辆汽车经过,问出事故的次数不小于2的概率.解:设X 表示1000辆汽车通过路口时出事故的次数,由题意知,X ~B (1000,0.0001).由于n =1000很大,p =0.0001很小,故利用泊松分布近似代替二项分布计算.其中,10000.00010.1np λ==⨯=,0.10.1(),0,1,2,...!k P X k e k k -=≈=, 查泊松分布表可得,所求概率为:7.以电话交换台每分钟收到的呼唤次数服从参数为4的泊松分布,求: (1)每分钟恰有4次呼唤的概率; (2)每分钟的呼唤次数至少有4次的概率.解:设X 表示电话交换台每分钟收到的呼唤次数,由题意知,X ~P (4),其分布律为:44(),0,1,2...!k P X k e k k -===,则(1)每分钟恰有4次呼唤的概率444(4)0.1953674!P X e -===;(2)每分钟的呼唤次数至少有4次的概率444(4)0.56653!k k P X e k ∞-=≥==∑8.袋中装有8个球,其中3个红球、5个白球,现从袋中任取3个球,求取出红球数的概率分布.解:X 表示取出3个球中含有红球的个数,则X 的可能取值为0,1,2,3. 且35385(0)28C P X C ===,12353815(1)28C C P X C ===,21353815(2)56C C P X C ===,33381(3)56C P X C ===,于是,X 的概率分布为:9.已知某类电子元件的寿命X (单位:小时)服从指数分布,其概率密度为110001,0()10000,0x e x f x x -⎧>⎪=⎨⎪≤⎩, 一台仪器装有3个此种类型的电子元件,其中任意一个损坏时仪器便不能正常工作,假设3个电子元件损坏与否相互独立.试求:(1)一个此类电子元件能工作1000小时以上的概率p 1; (2)一台仪器能正常工作到1000小时以上的概率p 2. 解:(1)一个此类电子元件能工作1000小时以上的概率为:p 1=11110001000100010001(1000)|1000x x P X e dx e e --+∞+∞-≥==-=⎰; (2)一台仪器能正常工作到1000小时以上,需要这3个电子元件的寿命都在1000小时以上,由独立性知,所求概率为:p 2=33[(1000)]P X e -≥=.10.公共汽车车门的高度是按男子与车门顶碰头的机会在0.01以下来设计的.设男子身高X 服从170μ=(厘米),6σ=(厘米)的正态分布,即2~(170,6)X N .问车门高度应如何确定?解:设车门高度为h 厘米,由题意知,()0.01P X h >≤,即()0.99P X h ≤≥. 因为X ~N (170,36),所以170()()()0.996h P X h F h -≤==Φ≥, 查表得:(2.33)0.99010.99Φ=>,所以1702.336h -=,解得h =183.98. 设计车门的高度为183.98厘米时,可使男子与车门碰头的机会不超过0.01.五、综合题1.设10件产品中有2件次品,现进行连续无放回抽样,直至取到正品为止,求:(1)抽样次数X 的概率分布; (2)X 的分布函数F (x ); (3)(2),(13)P X P X >-<<. .解:(1)X 的可能取值为1,2,3.且84(1)105P X ===,288(2)10945P X ==⨯=,2181(3)109845P X ==⨯⨯=. 所以,X 的概率分布为:(2)当1x <时,()()0F x P X x =≤=, 当12x ≤<时,4()()(1)5F x P X x P X =≤===, 当23x ≤<时,44()()(1)(2)45F x P X x P X P X =≤==+==, 当3x ≥时,()()(1)(2)(3)1F x P X x P X P X P X =≤==+=+==. 所以,X 的分布函数为:0,14,125()44,23451,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩;(3)(2)(1)(2)(3)1P X P X P X P X >-==+=+==; 或(2)1(2)1(2)101P X P X F >-=-≤=-=-=.8(13)(2)45P X P X <<===.2.司机通过某高速路收费站等候的时间X (单位:分钟)服从参数15λ=的指数分布.(1)求某司机在此收费站等候时间超过10分钟的概率p ;(2)若该司机一个月要经过此收费站两次,用Y 表示等候时间超过10分钟的次数,写出Y 的分布律,并求(1)P Y ≥.解:(1)由题设知,151,0~()50,0x e x X f x x -⎧>⎪=⎨⎪≤⎩,则司机在此收费站等候时间超过10分钟的概率为:125101(10)5x p P X e dx e -+∞-=>==⎰; (2)由题意知,2~(2,)Y B e -,Y 的分布律为:22222222()()(1)(1),0,1,2.k k k k k k P Y k C e e C e e k ------==-=-= 2224(1)1(0)1(1)2P Y P Y e e e ---≥=-==--=-.3.甲乙丙三人独立地等1,2,3路公共汽车,他们等车的时间(单位:分钟)都服从[0,5]上的均匀分布,求三人中至少有两人等车不超过2分钟的概率.解:设一个人等车的时间为X ,由题设知,X ~U [0,5],其密度函数:1,05()50,x f x ⎧≤≤⎪=⎨⎪⎩其它. 则一个人等车不超过2分钟的概率为:221(2)()0.45p P X f x dx dx -∞=≤===⎰⎰. 设Y 表示三人中等车时间不超过2分钟的人数,则Y ~B (3,0.4),则三人中至少有两人等车不超过2分钟的概率为:223333(2)(2)(3)0.40.60.4P Y P Y P Y C C ≥==+==+=0.352.4.设测量距离时产生的随机误差X ~N (0,102)(单位:米),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知(1.96)0.975.Φ=(1)求每次测量中误差绝对值大于19.6的概率p ; (2)问Y 服从何种分布,并写出其分布律;(3)求三次测量中至少有一次误差绝对值大于19.6的概率. 解:(1) p =(||19.6)1(||19.6)P X P X >=-≤019.601(||)1[2(1.96)1]1010X P --=-≤=-Φ-=0.05. (2)由题意知,Y ~B (3, 0.05),Y 的分布律为:33()0.050.95,0,1,2,3.k k k P X k C k -===(3)三次测量中至少有一次误差绝对值大于19.6的概率为: 3(1)1(0)10.95P Y P Y ≥=-==-=0.142625.5.设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从参数110λ=的指数分布.某顾客在窗口等待服务,若超过10分钟,他就离开.他一个月要到银行5次,以Y 表示他未等到服务而离开窗口的次数.(1)写出Y 的分布律;(2)求该顾客一个月至少有一次未等到服务而离开窗口的概率.解:(1)由题设知,等待服务的时间X ~1101,0()100,0x e x f x x -⎧>⎪=⎨⎪≤⎩,顾客离开银行的概率为:1110101(10)10x p P X e dx e -+∞-=>==⎰.由题意知,Y ~B (5,e -1),其分布律为:1155()()(1),0,1,...,5.k k k P Y k C e e k ---==-=(2)所求概率为(1)P Y ≥=151(0)1(1)P Y e --==--0.899≈.6.设连续型随机变量X 的分布函数为:20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩,求:(1)系数A ; (2)X 的概率密度; (3)(0.30.7)P X <≤; (4)Y =X 2的概率密度.解:(1)由F (x )的连续性知,11lim ()lim ()(1)x x F x F x F -+→→==,有21lim 1x Ax -→=,得1A =; (2)X 的概率密度2,01()()0,x x f x F x <<⎧'==⎨⎩其它;(3)(0.30.7)P X <≤22(0.7)(0.3)0.70.30.4F F =-=-=,或(0.30.7)P X <≤=0.720.70.30.32|0.4xdx x ==⎰; (4)因为20Y X =≥,所以,当0y <时,()()0Y F y P Y y =≤=, 当01y ≤<时,2()()()(Y F y P Y y P X y P X =≤=≤=≤≤()f x dx xdx y ===,当1y ≥时,101()(()21Y F y P X f x dx xdx dx =≤≤==+=⎰所以,X 的分布函数为:0,0(),011,1Y y F y y y y <⎧⎪=≤<⎨⎪≥⎩,X 的概率密度为:1,01()0,Y y f y <<⎧=⎨⎩其它.7.连续型随机变量X 的分布函数为()arctan ,()F x A B x x =+-∞<<+∞,求:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
服从分布 , 服从分布 , 服从分布,从分布,服从分布
二、计算题(每题6分,共24分)
得分
1、 发报机以0.8和0.2的概率发出信号0和1。由于随机干扰的存在,当 发出信号0时,接收机收到信号0的概率为0.8;当发出信号1时,接收机收 到信号0的概率为0.3。 (1)求接收机收到信号0的概率(3分); (2)求当接收机收到信号0时,发报机是发出信号0的概率(3分)。 解:令{发出信号0},{发出信号1 },={收到信号0}
一、填空题(共70分 每空2分)
得分
1、A、B是两个随机事件,已知,。若A与B 互不相容,则 0.8;若A与B 相互独立,则 0.65 ;若 ,则P( A | B ) = 0.4 。
2、一个袋子中有大小相同的红球3只,白球2只,若从中不放回地任取2 只,设为取到的白球的个数,则= 0.6 , 0.8 。
17、设X1,X2,X3是来自总体X的简单随机样本,则下列统计量中 ,总体均值的无偏估计量为,其中最有效的一个为
18、在假设检验中,随着显著性水平
的增大,拒绝H0的可能性将会增大(增大、减小、不变)。
19、来自总体的简单随机样本,是来自总体 的简单随机样本,且两个总 体相互独立。这两组样本的样本均值分别记为。写出下列统计量的分 布:
13、已知E(X) = 1,D(X) = 4,E(Y) = 1,E( Y2 )= 17,X和Y的 52 。
14、设随机变量X的概率密度为: , 则随机变量的概率密度函数为:。
15、设的联合分布密度函数则,的密度函数, 的独立性为相互独立。
16、设随机变量的概率密度为:,则参数的矩估计量
东莞理工学院(本科)试卷(A卷)
2011 --2012 学年第二学期
《概率论与数理统计》试卷(答案)
开课单位:计算机学院数学教研室 ,考试形式:闭卷,允许带 计算器 入场
题序 一 二 三 总 分
得分
评卷人
注意:以下是本次考试可能用到的分位点以及标准正态分布的分布函数 值:
1.645 1.96 2.1315 1.7531 2.0639 1.7109 0.9772 0.7881 0.8413
10、设某学校外语统考学生成绩X服从正态分布,平均分65分,标准差5 分,则该学校学生的及格率(60分以上)为,成绩在55分到65分之间的 学生所占比例为 44.72% 。
11、设X服从参数为λ的泊松分布,且已知,则λ= 1 。
12、设随机变量X ~ N(10,9),Y ~ N(10,16),且X与Y相互独立, 则X+Y服从分布,P(X–Y>5) = 0.1587 。
3、三个人独立破译一个密码,他们单独破译的概率分别为,则此密码能
被破译的概率为 0.6

4、 在区间[0,1]上等可能任取两个数,则这两个数之和小于的概率 为。
5、 已知某对夫妇有三个小孩,在已知至少有一个女孩的条件下,
至少还有一个男孩的概率为。
6、有甲乙两台设备生产相同的产品,甲生产的产品占60%,次品率为
4、 某饮料生产商声称其生产的某种瓶装饮料中营养成分A的含量不低于 6克,现随机抽取25瓶该饮料,测得其营养成分A含量的平均值为5.65 克,样本标准差为1.2克。试问该饮料生产商的声明是否真实可信(显 著水平)?
解::, :
显著水平,拒绝域:,即 计算统计量,在接受域, 接受,该饮料生产商的声明是可信的。
8、设顾客在某银行的窗口等待的服务时间X(以分钟计)服从指数分 布,的密度函数为
若等待超过10分钟他就离开,他去一次银行没办成事就离开的概率为 ;他一个月要去银行5次,则他至少有一次没办成事就离开的概率为 。
9、假设某公路上每分钟通过的汽车数可以用泊松(Poisson)分布来描述。 则该公路在某一分钟内没有一辆汽车通过的概率为。该公路平均一分钟 内通过的汽车数为 10 辆。
三、应用题(共6分)
得分
一家人寿保险公司里有10000人参加保险,每人每年付10元保费, 在一年内一个人意外死亡的概率为0.005,死者家属可向保险公司领到 1000元的赔偿费。求:保险公司一年在该险种获利不少于5万元的概 率。 解:设人意外死亡的人数为,则~
由中心极限定理,近似服从正态分布,即~ 保险公司一年在该险种获利为,获利不少于5万元,则 ,得 保险公司一年在该险种获利不少于5万元的概率
(1)接收机收到信号0的概率 =
(2)当接收机收到信号0时,发报机是发出信号0的概率 2、 设随机变量X,Y的概率密度分别为:
,且随机变量X,Y相互独立。 (1)求的联合概率密度(3分); (2)计算概率值(3分)。 解:(1)相互独立,的联合概率密度=
= (2)令,,
则=== = 3、 从总体~中抽取容量为16的一个样本,样本均值和样本方差分别 是:, () (1)求总体均值的置信度为0.95的置信区间(3分); (2)求总体方差 的置信度为0.95的置信区间(3分)。 解:(1)总体均值的置信度为0.95的置信区间为 即,即,即 (2)总体方差 的置信度为0.95的置信区间为 即,即
10%;乙生产的产品占40%,次品率为20%。(1) 若随机地从这批产品中
抽出一件,抽到次品的概率为 0.14
;(2)若随机地从这批产品
中抽出一件,检验出为次品,则该次品属于甲厂生产的概率是。
7、、某公司业务员平均每见两个客户可以谈成一笔生意,他一天见了六 个客户,设他谈成的生意为笔,则服从的分布为,他正好谈成两笔生意 的概率为, 1.5 。
相关文档
最新文档