各种排序算法小结
十大经典排序算法总结
⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。
数据结构排序算法总结表格
在计算机科学中,排序算法是用于对数据进行排序的一种算法。以下是一些常见的排序算法,总结在一张表格中:
算法名称
描述
时间复杂度
空间复杂度
稳定性
冒泡排序
通过重复地比较相邻元素并交换位置,将最大(或最小)的元素移到数组的末尾。
O(n²)
O(1)
是
选择排序
在未排序的序列中找到最小(或最大)的元素,将其放在已排序
插入排序
将一个元素插入到已排序的序列中,保持序列的有序性。
O(n²)
O(1)
是
希尔排序
将数组划分为多个子序列,然后分别对子序列进行插入排序,最后再进行一次插入排序。
O(n²)
O(1)
是
快速排序
选择一个元素作为基准,将数组划分为两个子序列,一个子序列的所有元素都比基准小,另一个子序列的所有元素都比基准大。递归地对子序列进行排序。
O(n log n)
O(1)(如果从数组创建堆时)
是(但是不稳定)
基数排序
通过按位(或数字的其他属性)对元素进行比较和交换位置来排序数组。是一种稳定的排序算法。
O(nk)(k是数字的位数)
O(n)(如果使用外部存储)
是
O(n log n) 到 O(n²)(最坏情况下)
O(log n) 到 O(n)(递归调用的开销)
否(但是快速选择是稳定的)
归并排序
将数组划分为两个子数组,分别对子数组进行排序,然后将两个已排序的子数组合并成一个有序的数组。递归地进行这个过程。
O(n log n)
O(n)(合并时)
是
堆排序
将数组构建成一个大顶堆或小顶堆,然后不断地将堆顶元素与堆尾元素交换,并重新调整堆结构。重复这个过程直到所有元素都已排序。
各种排序方法总结
选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:l og2(n)*n堆排序:l og2(n)*n希尔排序:算法的复杂度为n的1.2次幂这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(lo g2(n)*n) 其他的情况只会比这种情况差,最差的情况是每次选择到的midd le都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
排序的几种方式
排序的几种方式在日常生活中,我们经常需要对事物进行排序,以便更好地组织和理解信息。
排序是一种将元素按照一定的规则进行排列的方法,可以应用于各种领域,如数字排序、字母排序、时间排序等。
本文将介绍几种常用的排序方式,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是一种简单直观的排序方法,通过比较相邻元素的大小,将较大的元素逐渐“冒泡”到右侧,较小的元素逐渐“沉底”到左侧。
这个过程会不断重复,直到所有元素都按照升序排列。
冒泡排序的基本思想是从第一个元素开始,依次比较相邻的两个元素,如果前面的元素大于后面的元素,则交换它们的位置。
经过一轮比较后,最大的元素会“冒泡”到最右侧,然后再对剩下的元素进行相同的比较,直到所有元素都有序排列。
二、选择排序选择排序是一种简单直观的排序方法,它的基本思想是每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到所有元素都有序排列。
选择排序的过程可以分为两个部分:首先,在未排序的序列中找到最小(或最大)的元素,然后将其放到已排序序列的末尾;其次,将剩下的未排序序列中的最小(或最大)元素找到,并放到已排序序列的末尾。
这个过程会不断重复,直到所有元素都有序排列。
三、插入排序插入排序是一种简单直观的排序方法,它的基本思想是将待排序的元素逐个插入到已排序序列的适当位置,最终得到一个有序序列。
插入排序的过程可以分为两个部分:首先,将第一个元素看作已排序序列,将剩下的元素依次插入到已排序序列的适当位置;其次,重复上述过程,直到所有元素都有序排列。
插入排序的过程类似于整理扑克牌,将新抓到的牌插入到已有的牌中。
四、快速排序快速排序是一种常用的排序方法,它的基本思想是通过一趟排序将待排序序列分割成独立的两部分,其中一部分的所有元素都小于另一部分的所有元素。
然后对这两部分继续进行排序,直到整个序列有序。
快速排序的过程可以分为三个步骤:首先,从序列中选择一个基准元素;其次,将比基准元素小的元素放在左侧,比基准元素大的元素放在右侧;最后,递归地对左右两个部分进行排序。
所有排序的原理
所有排序的原理排序是将一组数据按照某种特定顺序进行排列的过程。
在计算机科学中,排序是一种基本的算法问题,涉及到许多常见的排序算法。
排序算法根据其基本原理和实现方式的不同,可以分为多种类型,如比较排序、非比较排序、稳定排序和非稳定排序等。
下面将详细介绍排序的原理和各种排序算法。
一、比较排序的原理比较排序是指通过比较数据之间的大小关系来确定数据的相对顺序。
所有常见的比较排序算法都基于这种原理,包括冒泡排序、插入排序、选择排序、归并排序、快速排序、堆排序等。
比较排序算法的时间复杂度一般为O(n^2)或O(nlogn),其中n是待排序元素的数量。
1. 冒泡排序原理冒泡排序是一种简单的比较排序算法,其基本思想是从待排序的元素中两两比较相邻元素的大小,并依次将较大的元素往后移,最终将最大的元素冒泡到序列的尾部。
重复这个过程,直到所有元素都有序。
2. 插入排序原理插入排序是一种简单直观的比较排序算法,其基本思想是将待排序序列分成已排序和未排序两部分,初始状态下已排序部分只包含第一个元素。
然后,依次将未排序部分的元素插入到已排序部分的正确位置,直到所有元素都有序。
3. 选择排序原理选择排序是一种简单直观的比较排序算法,其基本思想是每次从待排序的元素中选择最小(或最大)的元素,将其放到已排序部分的末尾。
重复这个过程,直到所有元素都有序。
4. 归并排序原理归并排序是一种典型的分治策略下的比较排序算法,其基本思想是将待排序的元素不断地二分,直到每个子序列只包含一个元素,然后将相邻的子序列两两归并,直到所有元素都有序。
5. 快速排序原理快速排序是一种常用的比较排序算法,其基本思想是通过一趟排序将待排序的元素分割成两部分,其中一部分的元素均比另一部分的元素小。
然后,对这两部分元素分别进行快速排序,最终将整个序列排序完成。
6. 堆排序原理堆排序是一种常用的比较排序算法,其基本思想是利用堆这种数据结构对待排序的元素进行排序。
排序算法十大经典方法
排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。
以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。
2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。
3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。
4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。
5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。
6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。
7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。
8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。
9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。
10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。
以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。
十大经典排序算法(动图演示)
⼗⼤经典排序算法(动图演⽰)0、算法概述0.1 算法分类⼗种常见排序算法可以分为两⼤类:⽐较类排序:通过⽐较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为⾮线性时间⽐较类排序。
⾮⽐较类排序:不通过⽐较来决定元素间的相对次序,它可以突破基于⽐较排序的时间下界,以线性时间运⾏,因此也称为线性时间⾮⽐较类排序。
0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前⾯,⽽a=b,排序之后a仍然在b的前⾯。
不稳定:如果a原本在b的前⾯,⽽a=b,排序之后 a 可能会出现在 b 的后⾯。
时间复杂度:对排序数据的总的操作次数。
反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机内执⾏时所需存储空间的度量,它也是数据规模n的函数。
1、冒泡排序(Bubble Sort)冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述⽐较相邻的元素。
如果第⼀个⽐第⼆个⼤,就交换它们两个;对每⼀对相邻元素作同样的⼯作,从开始第⼀对到结尾的最后⼀对,这样在最后的元素应该会是最⼤的数;针对所有的元素重复以上的步骤,除了最后⼀个;重复步骤1~3,直到排序完成。
1.2 动图演⽰1.3 代码实现function bubbleSort(arr) {var len = arr.length;for (var i = 0; i < len - 1; i++) {for (var j = 0; j < len - 1 - i; j++) {if (arr[j] > arr[j+1]) { // 相邻元素两两对⽐var temp = arr[j+1]; // 元素交换arr[j+1] = arr[j];arr[j] = temp;}}}return arr;}2、选择排序(Selection Sort)选择排序(Selection-sort)是⼀种简单直观的排序算法。
有序排序(高效排序)
有序排序(高效排序)引言有序排序是在计算机科学中非常常见且重要的概念。
它是将一组元素按照一定规则排列的过程。
高效排序是指在排序过程中尽量减少比较和交换的次数,以提高排序的效率和性能。
常见的有序排序算法下面是几种常见的有序排序算法:1. 冒泡排序: 冒泡排序是一种简单的排序算法,它通过不断交换相邻的元素,将最大的元素逐步地移动到最后。
它的时间复杂度为O(n^2)。
2. 插入排序: 插入排序是一种直观而简单的排序算法,它通过构建有序序列,对未排序的元素逐个插入到已排序序列的合适位置。
它的时间复杂度为O(n^2)。
3. 快速排序: 快速排序是一种高效的分治排序算法,它通过选择一个基准元素,将数组分成两个子数组,然后递归地对子数组进行排序。
它的平均时间复杂度为O(nlogn)。
4. 归并排序: 归并排序是一种稳定的分治排序算法,它将数组不断分成两个子数组,递归地对子数组进行排序,然后将两个有序子数组合并成一个有序数组。
它的时间复杂度为O(nlogn)。
5. 堆排序: 堆排序是一种比较高效的排序算法,它使用堆数据结构来实现排序过程。
它的时间复杂度为O(nlogn)。
如何选择合适的有序排序算法在实际应用中,如何选择合适的有序排序算法取决于以下几个因素:1. 数据规模: 如果数据规模较小,可以选择冒泡排序或插入排序等简单算法。
如果数据规模较大,则应该考虑使用更高效的排序算法,如快速排序或归并排序。
2. 数据特点: 如果数据已经基本有序,插入排序可能是一种更好的选择。
如果数据分布比较均匀,快速排序可能更适合。
3. 空间复杂度: 如果对内存空间有限制,应该选择使用原地排序算法,如快速排序或堆排序。
否则,可以使用归并排序等其他排序算法。
总结有序排序是计算机科学中的重要概念,常见的都序排序算法有冒泡排序、插入排序、快速排序、归并排序和堆排序。
选择合适的有序排序算法应根据数据规模、数据特点和空间复杂度等因素进行考虑。
排序的五种方法
排序的五种方法一、冒泡排序。
冒泡排序就像水里的泡泡一样,大的泡泡慢慢往上冒。
它的原理是比较相邻的元素,如果顺序不对就交换位置。
比如说有一堆数字,就从第一个数字开始,和它后面的数字比,如果前面的比后面的大,就把它们换过来。
这样一轮一轮地比较,每一轮都会把最大的数字像泡泡一样“冒”到最后面。
这个方法很简单,但是如果数据很多的话,就会比较慢啦。
就像一个小蜗牛,虽然能到达终点,但是速度有点慢哟。
二、选择排序。
选择排序呢,就像是在一群小伙伴里选最高的那个。
它先在未排序的序列里找到最小(或者最大)的元素,然后把这个元素放到已排序序列的末尾。
就好比在一群小朋友里,先找出最矮的那个小朋友,让他站在最前面,然后再在剩下的小朋友里找最矮的,依次类推。
这个方法比冒泡排序在某些情况下会快一点,不过它也有自己的小脾气,不是在所有数据情况下都超级高效的呢。
三、插入排序。
插入排序就像是我们平时整理扑克牌一样。
假设我们手里已经有一部分排好序的牌,然后拿到一张新牌,就把这张新牌插入到合适的位置。
对于一组数字也是这样,从第二个数字开始,把它插入到前面已经排好序的数字里合适的地方。
如果这个数字比前面的大,就往后放,如果比前面的小,就往前找合适的位置插进去。
这个方法在数据比较有序的情况下,速度还是挺快的,就像一个聪明的小助手,能很快地把东西整理好。
四、快速排序。
快速排序就像是一个很厉害的魔法师。
它先选一个基准值,然后把数组里的数字分成两部分,一部分比基准值小,一部分比基准值大。
然后再对这两部分分别进行同样的操作,就像把一个大问题分成很多小问题,然后各个击破。
这个方法在大多数情况下速度都非常快,就像一阵旋风,能迅速把数据排好序。
不过它也有点小复杂,就像魔法师的魔法一样,不是那么容易一下子就完全理解的呢。
五、归并排序。
归并排序就像是两个队伍在合并。
它把数组分成两部分,然后分别对这两部分进行排序,排好序之后再把这两部分合并起来。
这个过程就像是两个已经排好队的小队伍,要合并成一个大队伍,在合并的时候还要保证顺序正确。
数据排序技巧
数据排序技巧在现代数字化时代,大量的数据涌现出来,如何对这些数据进行排序成为了一项必备的技能。
数据排序可以提高数据的可读性、搜索效率和数据处理的速度。
本文将介绍一些常见的数据排序技巧,帮助读者掌握数据排序的基本方法。
一、冒泡排序法冒泡排序法是一种简单直观的排序方法。
它通过比较相邻的两个元素,如果它们的顺序不正确,则交换它们的位置。
通过多次的遍历和比较,将最大(或最小)的元素不断“冒泡”到最前面(或最后面),从而完成排序。
冒泡排序的步骤如下:1. 遍历数据元素,从第一个元素开始,依次比较相邻的两个元素。
2. 如果顺序不正确,则交换它们的位置。
3. 继续遍历比较相邻的元素,直到遍历完所有的元素。
4. 重复上述步骤,直到所有元素都按照要求排序。
冒泡排序的时间复杂度为O(n^2),它是一种效率较低的排序方法,适用于数据量较小的情况。
二、快速排序法快速排序法是一种常用且高效的排序方法。
它使用了分治的思想,将一个大问题拆分成若干个小问题进行解决。
快速排序的步骤如下:1. 选择一个基准元素(通常为第一个元素),将数据分成两部分,一部分小于基准元素,一部分大于基准元素。
2. 递归地对两部分数据进行排序。
3. 合并排序后的两部分数据。
快速排序的时间复杂度为O(nlogn),它是一种较为高效的排序方法,适用于各种规模的数据。
三、归并排序法归并排序法是一种稳定且高效的排序方法。
它采用了分治的思想,将一个大问题拆分成若干个小问题进行解决,并在合并的过程中完成排序。
归并排序的步骤如下:1. 将数据拆分成若干个小的子序列。
2. 对每个子序列递归地进行排序。
3. 将排好序的子序列进行合并,得到完整的有序序列。
归并排序的时间复杂度为O(nlogn),它是一种稳定的排序方法,适用于各种规模的数据。
四、堆排序法堆排序法是一种利用堆数据结构进行排序的方法。
堆是一种完全二叉树,它满足堆的性质,即对于每个非叶子节点,其值都大于等于(或小于等于)它的子节点的值。
十种排序方法
十种排序方法排序是计算机科学中常见的操作,它将一组数据按照一定的规则进行重新排列,以便更方便地进行查找、比较和分析。
在本文中,我将介绍十种常见的排序方法,并对它们的原理和特点进行详细讲解。
一、冒泡排序冒泡排序是一种简单直观的排序算法,它重复地遍历待排序的元素,比较相邻的两个元素,并按照规定的顺序交换它们,直到整个序列有序为止。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
二、选择排序选择排序是一种简单直观的排序算法,它每次从待排序的元素中选择最小(或最大)的元素,放到已排序序列的末尾,直到整个序列有序为止。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
三、插入排序插入排序是一种简单直观的排序算法,它将待排序的元素插入到已排序序列的合适位置,使得插入之后的序列仍然有序。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
四、希尔排序希尔排序是插入排序的一种改进算法,它通过将待排序的元素分组,分组进行插入排序,然后逐步缩小分组的间隔,直到间隔为1,最后进行一次完整的插入排序。
希尔排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
五、归并排序归并排序是一种分治排序算法,它将待排序的序列分成两个子序列,分别进行排序,然后将已排序的子序列合并成一个有序序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
六、快速排序快速排序是一种分治排序算法,它通过选择一个基准元素,将待排序的序列分成两个子序列,一边存放比基准元素小的元素,一边存放比基准元素大的元素,然后对两个子序列进行递归排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
七、堆排序堆排序是一种选择排序算法,它通过构建一个最大堆(或最小堆),将堆顶元素与堆的最后一个元素交换,并对剩余的元素进行调整,直到整个序列有序为止。
堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。
五种常用的排序算法详解
五种常用的排序算法详解排序算法是计算机科学中的一个重要分支,其主要目的是将一组无序的数据按照一定规律排列,以方便后续的处理和搜索。
常用的排序算法有很多种,本文将介绍五种最常用的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是最简单的排序算法之一,其基本思想是反复比较相邻的两个元素,如果顺序不对就交换位置,直至整个序列有序。
由于该算法的操作过程如同水中的气泡不断上浮,因此称之为“冒泡排序”。
冒泡排序的时间复杂度为O(n^2),属于较慢的排序算法,但由于其实现简单,所以在少量数据排序的场景中仍然有应用。
以下是冒泡排序的Python实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```二、选择排序选择排序也是一种基本的排序算法,其思想是每次从未排序的序列中选择最小数,然后放到已排序的序列末尾。
该算法的时间复杂度同样为O(n^2),但与冒泡排序相比,它不需要像冒泡排序一样每次交换相邻的元素,因此在数据交换次数上略有优势。
以下是选择排序的Python代码:```pythondef selection_sort(arr):n = len(arr)for i in range(n-1):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```三、插入排序插入排序是一种简单直观的排序算法,其基本思想是通过构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入该元素。
6种排序的心得体会
6种排序的心得体会排序是计算机科学中最基础也是最重要的算法之一,它的使用非常广泛。
通过对多种排序算法的学习和实践,我深刻地认识到了排序的重要性以及不同排序算法的特点和适用场景。
在本文中,我将分享6种排序算法的心得体会,并总结出它们的优缺点以及在实际应用中的适用范围。
首先,插入排序是一种简单直观的排序算法,适用于数据量较小的情况。
我个人认为它的最大优点在于实现简单,不需要额外的存储空间。
插入排序的基本思路是将待排序的数据一个个插入到已经排序好的数据列中,并保持已排序列的有序性。
然而,插入排序的缺点也很明显,即时间复杂度为O(n^2),在处理大规模数据时效率较低。
其次,冒泡排序是一种交换排序的算法,它通过相邻元素之间的比较和交换来进行排序。
冒泡排序的核心思想是将最大(最小)的元素不断往后(或往前)冒泡,直到整个数组有序。
我的体会是冒泡排序虽然简单易懂,但是时间复杂度为O(n^2),效率不高。
尤其是在处理逆序序列时,冒泡排序的性能表现尤为差劲。
接下来,选择排序是一种简单直观的排序算法,它的核心思想是找到数据中最小(或最大)的元素并将其放在起始位置,然后再从剩余的未排序元素中找到最小(或最大)的元素放在已排序序列的末尾。
选择排序的主要优点是比较次数固定,适用于数据量不大且对内存空间要求较高的情况。
然而,选择排序的时间复杂度仍为O(n^2),而且它每次只能移动一个元素,因此在处理大规模数据时效率低下。
再次,快速排序是一种高效的排序算法,它采用了分治的思想。
快速排序的基本思路是通过一个主元(一般为待排序数组的第一个元素)将数组分成两个部分,左边的部分都小于主元,右边的部分都大于主元,然后在两个部分分别进行快速排序,直到整个数组有序。
快速排序的时间复杂度为O(nlogn),具有较好的平均性能。
我的体会是快速排序在处理大规模数据时具有明显的优势,而且它是原地排序算法,不需要额外的存储空间。
然而,快速排序的最坏情况下时间复杂度为O(n^2),需要进行优化。
排序的几种方法范文
排序的几种方法范文排序是计算机科学中的一个基本概念,常用于将数据按照一定的规则进行排列。
排序算法根据其具体实现和时间复杂度的不同,可以分为多种方法。
下面将介绍常见的几种排序方法及其特点:1. 冒泡排序(Bubble Sort):冒泡排序是最简单的排序算法之一,它的基本思想是通过不断比较相邻的元素,将较大的元素向后移动,直到整个序列有序。
具体实现过程中,通过多次遍历序列,每次比较相邻元素并交换位置,直到最终有序。
冒泡排序的时间复杂度为O(n^2),其中n是待排序序列的长度。
因此,当待排序序列较大时,冒泡排序的效率较低。
2. 选择排序(Selection Sort):选择排序是一种简单但低效的排序算法。
它的基本思想是每次通过选择最小(或最大)的元素,并将其放置在已排序序列的末尾。
具体实现过程中,遍历待排序序列,每次选择最小(或最大)的元素,并与当前位置交换,直到整个序列有序。
选择排序的时间复杂度为O(n^2),其中n是待排序序列的长度。
与冒泡排序相比,选择排序的交换次数较少,因此理论上比冒泡排序要稍快一些。
3. 插入排序(Insertion Sort):插入排序是一种简单且常用的排序算法。
它的基本思想是将待排序序列分为已排序和未排序两部分,每次从未排序序列中选择一个元素,并插入到已排序序列中的适当位置。
具体实现过程中,通过将待排序元素与已排序部分从后往前进行比较,并将较大的元素后移,直到找到合适的位置插入。
插入排序的时间复杂度为O(n^2),其中n是待排序序列的长度。
在待排序序列基本有序的情况下,插入排序的效率较高,因为此时每次插入元素的比较次数较少。
4. 快速排序(Quick Sort):快速排序是一种高效的排序算法,它利用了分治的思想。
它的基本思想是选择一个基准元素,将比基准元素小的元素放在左边,比基准元素大的元素放在右边,然后分别对左右两部分进行递归排序。
具体实现过程中,通过不断选择基准元素和分割序列,并进行递归排序,直到整个序列有序。
六大经典算法
六大经典算法经典算法是计算机科学中非常重要的一部分,它们被广泛应用于各种领域,包括数据结构、排序、搜索、图论和机器学习等。
下面我将介绍六大经典算法,分别是:冒泡排序、快速排序、插入排序、选择排序、归并排序和二分查找。
一、冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的列表,比较相邻的元素,并按照大小顺序交换它们。
通过多次遍历,将最大的元素逐渐“冒泡”到列表的末尾,直到整个列表有序为止。
二、快速排序快速排序是一种高效的排序算法,它采用分治的思想,将一个待排序的列表不断划分为两个子列表,然后分别对子列表进行排序,最后将排序好的子列表合并起来。
快速排序的关键在于选择一个基准元素,并根据基准元素将列表划分为左右两个子列表,然后递归地对子列表进行排序。
三、插入排序插入排序是一种简单直观的排序算法,它的工作原理是将一个元素插入到已排序的列表中的适当位置,从而得到一个新的有序列表。
插入排序的核心思想是将待排序的列表分为已排序和未排序两部分,然后依次将未排序部分的元素插入到已排序部分中。
四、选择排序选择排序是一种简单的排序算法,它每次从待排序的列表中选择最小(或最大)的元素,然后将其放到已排序的列表的末尾。
通过多次选择最小(或最大)元素,选择排序可以得到一个有序的列表。
五、归并排序归并排序是一种高效的排序算法,它采用分治的思想,将一个待排序的列表递归地划分为两个子列表,然后分别对子列表进行排序,最后将排序好的子列表合并起来。
归并排序的关键在于将两个有序的子列表合并成一个有序的列表。
六、二分查找二分查找是一种高效的查找算法,它适用于有序列表。
二分查找的核心思想是不断地将待查找的区间分为两部分,然后根据目标值与中间值的大小关系,确定接下来要查找的区间,直到找到目标值或查找区间为空。
总结:以上六大经典算法分别是冒泡排序、快速排序、插入排序、选择排序、归并排序和二分查找。
这些算法在计算机科学中具有重要的地位,它们不仅可以用来解决排序和查找问题,还可以应用于其他领域,如图论、机器学习等。
各种排序算法的稳定性和时间复杂度小结
各种排序算法的稳定性和时间复杂度小结选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:log2(n)*n堆排序:log2(n)*n希尔排序:算法的复杂度为n的1.2次幂关于快速排序分析这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(log2(n)*n)其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。
首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
15种排序算法
15种排序算法
1. 冒泡排序 - 依次比较相邻元素的大小,将较大的数向后移动,直到没有交换
2. 选择排序 - 选择最小的元素,放到数组的起始位置,再从剩余元
素中选择最小的,以此类推
3. 插入排序 - 将一个元素插入已经排好序的序列中,从后向前比较
并移动元素
4. 希尔排序 - 将数组拆分成若干个子序列进行插入排序,缩小增量,直到增量为1
5. 归并排序 - 将数组分成两部分,分别排序,然后合并两个有序数
组
6. 快速排序 - 选取一个基准元素,将小于基准元素的放在左边,大
于基准元素的放在右边,然后分别对左右两边再递归快速排序
7. 堆排序 - 将数组建立一个最大/小堆,然后依次取出堆顶元素,再
将剩余元素重建堆
8. 计数排序 - 计算每个元素的出现次数,然后计算出每个元素应该
在排序后的序列中的位置
9. 桶排序 - 将元素分配到各个桶中,然后对每个桶进行排序,再依
次将各个桶中的元素输出到序列中
10. 基数排序 - 从低位到高位依次将元素排序,相同位上的元素按照
相同方式进行排序
11. 合并排序 - 将多个有序数组合并成一个有序数组,采用分治的思
想
12. 鸡尾酒排序 - 进行双向冒泡排序,先将最大的元素放到最后,再
将最小的元素放到前面,如此交替进行
13. 地精排序 - 选取一个随机数作为划分元素,将小于该随机数的元
素放在左边,大于该随机数的元素放在右边,然后对左右两边递归排
序
14. 跳跃表排序 - 利用跳跃表结构,快速查找元素并插入有序序列中
15. 非递归归并排序 - 利用非递归的方式实现归并排序,将序列分解成多个子序列,依次合并子序列。
各个常用的排序算法的适用场景详细分析
各个常用的排序算法的适用场景详细分析1. 适用场景分析总览排序算法是计算机科学中的一个重要概念,它能够将一组无序数据按照特定规则排列成有序的序列。
在实际应用中,不同的排序算法在不同的场景中具有各自的优势和适用性。
本文将详细分析常用的几种排序算法的适用场景,并加以比较。
2. 冒泡排序冒泡排序是最基本的排序算法之一,它通过相邻元素之间的比较和交换来实现排序。
由于其简单易懂的特点,适用于数据量较小、或者已有部分有序的场景。
冒泡排序的时间复杂度为O(n^2),在大数据量排序时效率较低。
3. 插入排序插入排序是一种简单直观的排序算法,通过将未排序元素逐个插入已排序部分的合适位置来实现排序。
它适用于数据量较小、或者已有部分有序的场景,其时间复杂度为O(n^2)。
插入排序相较于冒泡排序在一定程度上有一定的优化。
4. 选择排序选择排序通过每次选取最小(或最大)的元素来排序,每次找到的最小(或最大)元素与未排序部分的首位元素进行交换。
选择排序适用于数据量较小、或者对内存占用要求较高的场景。
它的时间复杂度为O(n^2),相对于冒泡排序和插入排序而言,选择排序更稳定。
5. 快速排序快速排序是一种基于分治思想的排序算法,其通过递归将数组划分为较小和较大的两部分,并逐步将排序问题划分为更小规模的子问题进行处理。
快速排序适用于数据量较大的情况,具有较好的时间复杂度,平均情况下为O(nlogn)。
然而,当输入数据已基本有序时,快速排序的效率会变得较低。
6. 归并排序归并排序也是一种分治思想的排序算法,它将一个数组分成两个子数组,分别对每个子数组进行排序,然后再将两个已排序的子数组进行合并。
归并排序适用于对稳定性要求较高的场景,时间复杂度为O(nlogn)。
相较于快速排序,归并排序对已有序的数组进行排序效率更高。
7. 堆排序堆排序是一种通过维护最大(或最小)堆的性质来实现排序的算法。
它适用于对内存占用要求较高的场景,时间复杂度为O(nlogn)。
数据的排序方法
数据的排序方法在数学学科中,排序是一个非常基础且重要的概念。
通过排序,我们可以将一组数据按照一定的规则进行整理,使得数据更加有序,方便我们进行分析和比较。
在日常生活中,排序也是非常常见的操作,比如我们要按照身高排队、按照成绩排名等等。
本文将介绍几种常见的数据排序方法,并分析它们的特点和适用场景。
一、冒泡排序法冒泡排序法是最简单直观的排序方法之一,它的原理是通过相邻元素的比较和交换来实现排序。
具体步骤如下:1. 从第一个元素开始,依次比较相邻的两个元素的大小。
2. 如果前一个元素大于后一个元素,则交换它们的位置。
3. 继续比较下一对相邻元素,重复上述步骤,直到最后一对元素。
4. 重复以上步骤,直到所有元素都排好序。
冒泡排序法的时间复杂度为O(n^2),其中n表示数据的个数。
由于每次排序都会将一个最大(或最小)的元素冒泡到最后,因此称为冒泡排序。
二、选择排序法选择排序法也是一种简单直观的排序方法,它的原理是每次从未排序的数据中选择最小(或最大)的元素,放到已排序的数据的末尾。
具体步骤如下:1. 在未排序的数据中找到最小(或最大)的元素。
2. 将其与未排序数据的第一个元素交换位置。
3. 重复以上步骤,直到所有元素都排好序。
选择排序法的时间复杂度也为O(n^2),但是相比冒泡排序法,选择排序法的交换次数更少,因此性能略优于冒泡排序法。
三、插入排序法插入排序法是一种稳定的排序方法,它的原理是将未排序的元素逐个插入到已排序的数据中,形成一个有序的序列。
具体步骤如下:1. 将第一个元素视为已排序的序列。
2. 从未排序的数据中取出一个元素,插入到已排序的序列中的正确位置。
3. 重复以上步骤,直到所有元素都插入到已排序的序列中。
插入排序法的时间复杂度也为O(n^2),但是在实际应用中,插入排序法对于部分有序的数据表现出色,因为它的内循环可以提前终止。
四、快速排序法快速排序法是一种高效的排序方法,它的原理是通过不断地划分数据区间,将小于某个元素的数据放在它的左边,大于某个元素的数据放在它的右边,然后对左右两个区间进行递归排序。
数字的排序根据给定规则对数字进行排序
数字的排序根据给定规则对数字进行排序数字的排序是一项非常常见的任务,在日常生活和工作中经常用到。
而数字的排序可以通过不同的规则来进行,常见的包括升序和降序排序。
本文将根据给定的规则对数字进行排序,并介绍一些常见的排序算法。
一、升序排序升序排序是按照数字从小到大的顺序进行排序。
以下是一种简单的升序排序算法示例:1. 输入一组数字列表。
2. 从左到右遍历列表,选取当前位置的数字作为最小值。
3. 继续遍历列表,如果遇到比当前最小值更小的数字,则更新最小值。
4. 完成一次遍历后,将最小值与当前位置的数字交换位置。
5. 继续从下一个位置开始重复上述步骤,直到遍历完成。
这是一种简单但效率较低的排序算法,称为选择排序。
它的时间复杂度为O(n^2),其中n是数字的个数。
二、降序排序降序排序是按照数字从大到小的顺序进行排序。
以下是一种简单的降序排序算法示例:1. 输入一组数字列表。
2. 从左到右遍历列表,选取当前位置的数字作为最大值。
3. 继续遍历列表,如果遇到比当前最大值更大的数字,则更新最大值。
4. 完成一次遍历后,将最大值与当前位置的数字交换位置。
5. 继续从下一个位置开始重复上述步骤,直到遍历完成。
这也是一种简单但效率较低的排序算法,同样的时间复杂度为O(n^2)。
三、快速排序快速排序是一种常用的排序算法,它采用分治的策略来提高排序效率。
以下是快速排序的过程示例:1. 选择一个基准数,可以是列表中任意一个数字。
2. 将列表中比基准数小的数字放在左边,比基准数大的数字放在右边。
3. 对左右两边的子列表分别重复上述步骤,直到每个子列表只剩下一个数字。
4. 完成排序。
快速排序的时间复杂度为O(nlogn),具有较高的效率。
四、归并排序归并排序也是一种常用的排序算法,它通过将列表分成若干个子列表并分别排序,最后合并成一个有序的列表。
以下是归并排序的过程示例:1. 将列表分成两个子列表,分别进行排序。
2. 将排序好的子列表合并为一个有序的列表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种排序算法小结排序算法是一种基本并且常用的算法。
由于实际工作中处理的数量巨大,所以排序算法对算法本身的速度要求很高。
而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。
在后面我将给出详细的说明。
对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。
我将按照算法的复杂度,从简单到难来分析算法。
第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。
第二部分是高级排序算法,复杂度为O(Log2(N))。
这里我们只介绍一种算法。
另外还有几种算法因为涉及树与堆的概念,所以这里不于讨论。
第三部分类似动脑筋。
这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。
同时也可以让我们从另外的角度来认识这个问题。
第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。
由于是模板函数可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。
现在,让我们开始吧:一、简单排序算法由于程序比较简单,所以没有加什么注释。
所有的程序都给出了完整的运行代码,并在我的VC环境下运行通过。
因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么问题的。
在代码的后面给出了运行过程示意,希望对理解有帮助。
1.冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:#include<iostream.h>void BubbleSort(int*pData,int Count){int iTemp;for(int i=1;i<Count;i++){for(int j=Count-1;j>=i;j--){if(pData[j]<pData[j-1]){iTemp=pData[j-1];pData[j-1]=pData[j];pData[j]=iTemp;}}}}void main(){int data[]={10,9,8,7,6,5,4};BubbleSort(data,7);for(int i=0;i<7;i++)cout<<data[i]<<"";cout<<"\n";}倒序(最糟情况)第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)第一轮:7,8,10,9->7,8,9,10(交换1次)循环次数:6次交换次数:6次其他:第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)第一轮:7,8,10,9->7,8,9,10(交换1次)循环次数:6次交换次数:3次上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,显然,次数越多,性能就越差。
从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。
写成公式就是1/2*(n-1)*n。
现在注意,我们给出O方法的定义:若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n)=O(g(n))。
(呵呵,不要说没学好数学呀,对于编程数学是非常重要的!!!)现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。
所以f(n)=O(g(n))=O(n*n)。
所以我们程序循环的复杂度为O(n*n)。
再看交换。
从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。
其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
乱序时处于中间状态。
正是由于这样的原因,我们通常都是通过循环次数来对比算法。
2.交换法:交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#include<iostream.h>void ExchangeSort(int*pData,int Count){int iTemp;for(int i=0;i<Count-1;i++){for(int j=i+1;j<Count;j++){if(pData[j]<pData[i]){iTemp=pData[i];pData[i]=pData[j];pData[j]=iTemp;}}}}void main(){int data[]={10,9,8,7,6,5,4};ExchangeSort(data,7);for(int i=0;i<7;i++)cout<<data[i]<<"";cout<<"\n";}倒序(最糟情况)第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)第一轮:7,8,10,9->7,8,9,10(交换1次)循环次数:6次交换次数:6次其他:第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)第一轮:7,8,10,9->7,8,9,10(交换1次)循环次数:6次交换次数:3次从运行的表格来看,交换几乎和冒泡一样糟。
事实确实如此。
循环次数和冒泡一样也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。
由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。
3.选择法:现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中选择最小的与第二个交换,这样往复下去。
#include<iostream.h>void SelectSort(int*pData,int Count){int iTemp;int iPos;for(int i=0;i<Count-1;i++){iTemp=pData[i];iPos=i;for(int j=i+1;j<Count;j++){if(pData[j]<iTemp){iTemp=pData[j];iPos=j;}}pData[iPos]=pData[i];pData[i]=iTemp;}}void main(){int data[]={10,9,8,7,6,5,4};SelectSort(data,7);for(int i=0;i<7;i++)cout<<data[i]<<"";cout<<"\n";}倒序(最糟情况)第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)//iTemp临时存放最小数第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)循环次数:6次交换次数:2次其他:第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)循环次数:6次交换次数:3次遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。
所以算法复杂度为O(n*n)。
我们来看他的交换。
由于每次外层循环只产生一次交换(只有一个最小值)。
所以f(n)<=n所以我们有f(n)=O(n)。
所以,在数据较乱的时候,可以减少一定的交换次数。
4.插入法:插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张#include<iostream.h>void InsertSort(int*pData,int Count){int iTemp;int iPos;for(int i=1;i<Count;i++){iTemp=pData[i];iPos=i-1;while((iPos>=0)&&(iTemp<pData[iPos])){pData[iPos+1]=pData[iPos];iPos--;}pData[iPos+1]=iTemp;}}void main(){int data[]={10,9,8,7,6,5,4};InsertSort(data,7);for(int i=0;i<7;i++)cout<<data[i]<<"";cout<<"\n";}倒序(最糟情况)第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)循环次数:6次交换次数:3次其他:第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)循环次数:4次交换次数:2次上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,因为其循环次数虽然并不固定,我们仍可以使用O方法。