铸铁低碳钢的力学性质实验报告
铸铁低碳钢拉伸实验报告
铸铁低碳钢拉伸实验报告铸铁低碳钢拉伸实验报告引言:铸铁低碳钢是一种常见的金属材料,广泛应用于建筑、汽车制造、机械加工等领域。
本实验旨在通过拉伸实验来研究铸铁低碳钢的力学性能,为相关工程应用提供参考数据。
实验方法:1. 实验材料准备:选择一块铸铁低碳钢试样,尺寸为20mm×5mm×5mm,并进行表面处理,确保试样表面光滑。
2. 实验装置:使用万能试验机进行拉伸实验,设置合适的拉伸速度和加载方式。
3. 实验步骤:a. 将试样夹在拉伸夹具上,确保试样处于水平状态。
b. 设置拉伸速度为5mm/min,并开始加载。
c. 实时记录试样的拉伸力和位移数据。
d. 当试样发生断裂时,停止加载并记录最大拉伸力和断口形态。
实验结果:通过实验记录的数据,我们可以得到铸铁低碳钢在拉伸过程中的力学性能。
1. 拉伸曲线分析:拉伸曲线是描述拉伸过程中应力和应变关系的重要指标。
通过绘制拉伸曲线,可以获得以下参数:a. 极限抗拉强度(UTS):拉伸曲线中的最大应力值,表示材料在受力下的最大强度。
b. 屈服强度(YS):拉伸曲线中的比例极限点,表示材料开始发生塑性变形的应力值。
c. 断裂强度(FS):拉伸曲线中的断裂点,表示材料在拉伸过程中的最终强度。
2. 断口形态分析:断口形态是材料断裂后的表面形貌,可以反映材料的韧性、脆性和断裂模式。
常见的断口形态有韧窝断口、脆性断口和混合断口等。
通过观察铸铁低碳钢的断口形态,可以了解其断裂特点和材料内部结构。
讨论与分析:根据实验结果,我们可以对铸铁低碳钢的力学性能进行讨论与分析。
1. 强度与韧性:铸铁低碳钢的极限抗拉强度和屈服强度是衡量其强度的重要指标。
较高的极限抗拉强度和屈服强度意味着材料具有较高的抗拉能力和抗变形能力。
然而,铸铁低碳钢的韧性相对较低,容易发生断裂。
2. 断口形态:观察铸铁低碳钢的断口形态,可以发现其主要为韧窝断口。
这表明铸铁低碳钢在拉伸过程中具有一定的塑性变形能力,但仍然存在脆性断裂的倾向。
低碳钢和铸铁扭转实验报告
低碳钢和铸铁扭转实验报告低碳钢和铸铁扭转实验报告引言:在现代工业中,钢和铸铁是最常用的金属材料之一。
它们在建筑、汽车制造、航空航天等领域扮演着重要的角色。
本实验旨在比较低碳钢和铸铁的力学性能,特别是在扭转试验中的表现。
实验设计:本实验使用了一台扭转试验机,通过施加扭矩来测试不同材料的扭转强度和变形能力。
实验中使用了相同的试样尺寸和几何形状,并确保试样表面的光洁度一致。
实验过程:1. 准备工作:清洁和标记试样,确保试样表面无杂质和损伤。
2. 安装试样:将试样固定在扭转试验机上,确保试样与扭转轴线平行。
3. 施加负载:逐渐增加扭矩,记录每个扭矩值下的变形情况。
4. 测量数据:使用应变计和位移传感器等设备,测量试样的应变和位移。
实验结果:通过对低碳钢和铸铁试样进行扭转实验,得到了以下结果:1. 扭转强度:低碳钢表现出较高的扭转强度,能够承受更大的扭矩而不发生破坏。
相比之下,铸铁的扭转强度较低,容易发生塑性变形和断裂。
2. 变形能力:低碳钢在扭转过程中表现出较好的变形能力,能够经受较大的扭转角度而不失去其原有形状。
而铸铁则在受到较小扭矩时就会发生明显的变形和断裂。
3. 韧性:低碳钢具有较高的韧性,能够在扭转过程中吸收更多的能量。
而铸铁的韧性较低,容易发生脆性断裂。
实验讨论:以上实验结果表明,低碳钢在扭转试验中表现出更好的力学性能。
这可以归因于低碳钢的晶格结构和化学成分。
低碳钢由铁和少量碳组成,碳的存在使得钢具有更好的强度和塑性。
相比之下,铸铁中的碳含量较高,导致其较低的强度和韧性。
然而,需要注意的是,实验结果可能受到一些因素的影响。
例如,试样的制备和处理过程可能存在差异,这可能导致实验结果的偏差。
此外,实验中只考虑了扭转加载情况下的性能比较,而在实际应用中,材料还需要满足其他力学要求,如拉伸和压缩等。
结论:通过本实验,我们对低碳钢和铸铁在扭转试验中的性能进行了比较。
结果显示,低碳钢具有更高的扭转强度和变形能力,以及更好的韧性。
低碳钢和铸铁的压缩实验报告
低碳钢和铸铁的压缩实验报告低碳钢和铸铁的压缩实验报告引言:低碳钢和铸铁是常见的金属材料,在工业和建筑领域广泛应用。
本实验旨在通过对低碳钢和铸铁进行压缩实验,研究它们的力学性能和变形行为,为工程设计和材料选择提供参考。
实验方法:1. 实验材料准备:选择一块低碳钢和一块铸铁样品,确保样品表面光洁无瑕疵。
2. 实验设备准备:准备一台万能材料试验机,具备压缩实验功能,并校准仪器。
3. 实验参数设置:设置合适的压缩速度和加载方式,确保实验过程稳定可控。
4. 实验操作步骤:a) 将低碳钢样品放置在试验机上,固定好位置。
b) 调整试验机参数,开始进行压缩实验。
c) 记录实验过程中的压力、位移和时间等数据。
d) 实验结束后,取下样品,进行观察和测量。
实验结果与分析:1. 低碳钢的压缩实验结果:在实验过程中,低碳钢样品经受了逐渐增加的压力,位移也随之增加。
压力-位移曲线呈现出明显的弹性阶段、屈服阶段和塑性阶段。
弹性阶段:在开始加载时,低碳钢样品表现出良好的弹性恢复性,即当加载力移除后,样品能够恢复到原来的形状。
屈服阶段:随着加载力的增加,低碳钢样品逐渐超过其屈服强度,开始发生塑性变形。
此时,样品的位移增加速度明显加快。
塑性阶段:在超过屈服强度后,低碳钢样品发生了塑性变形,位移继续增加,但增速较前两个阶段缓慢。
实验数据显示,低碳钢样品的屈服强度为XXX,极限强度为XXX。
2. 铸铁的压缩实验结果:铸铁样品在压缩实验中呈现出与低碳钢不同的变形行为。
压力-位移曲线显示,铸铁样品的弹性阶段较短,几乎没有明显的弹性恢复。
铸铁的屈服阶段很短暂,随着加载力的增加,样品迅速发生塑性变形。
与低碳钢不同,铸铁样品的位移增加速度非常快,表明其较低的塑性变形能力。
实验数据显示,铸铁样品的屈服强度为XXX,极限强度为XXX。
结论:通过对低碳钢和铸铁的压缩实验,我们可以得出以下结论:1. 低碳钢具有较好的弹性恢复性能和较高的塑性变形能力,适用于需要承受较大变形的结构。
低碳钢和铸铁压缩实验报告
竭诚为您提供优质文档/双击可除低碳钢和铸铁压缩实验报告篇一:低碳钢和铸铁的拉伸与压缩试验低碳钢和铸铁的拉伸与压缩试验一、实验目的1.测定低碳钢在拉伸时的下屈服强度ReL、抗拉强度Rm、断后伸长率A和断面收缩率Z。
观察低碳钢在拉伸过程中的各种现象(包括屈服、强化、缩颈及断裂),并绘制拉伸图(F-?L曲线)。
2.测定铸铁的抗拉强度Rm。
3.测定铸铁的抗压强度?较。
bc,观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比二、实验设备与试样材料试验机,试样分划机或冲点机,游标卡尺,低碳钢和铸铁的拉伸试样,压缩试样。
三、实验步骤1.低碳钢拉伸试验(1)试样准备为便于观察试样标距范围内伸长沿轴向的分布情况和测量拉断后的标距Lu,在试样平行长度内涂上快干着色涂料,然后用专门的划线机,在标距L0范围内每隔10mm(对长试样)或每隔5mm(对短试样)刻划一根圆周线,或用冲点机冲点标记,将标距L0分成10格。
因直径d0沿试样长度不均匀,故用游标卡尺在标距的两端及中间三个横截面Ⅰ、Ⅱ、Ⅲ处,在互相垂直的两个直径方向上各测量一次,记入表1-1,算出各自的平均直径,取其中最小的一个作为原始直径d0,计算试样的最小原始横截面面积s0,s0取三位有效数字。
(2)试验机准备根据低碳钢的抗拉强度Rm和试样原始横截面面积s0,由公式Fm=Rms0估算拉断试样所需的最大力Fm。
根据估算的Fm的大小,选择试验机合适的量程。
试验机调“零”。
(3)安装试样将试件的一段夹持在固定夹头内,移动可动夹头至适当位置,可靠地夹好试件的另一端。
(4)检查及试机请教师检查以上步骤完成情况,获得认可后在比例极限内施力至10kn,然后卸力至接近零点,以检查试验机工作是否正常。
(5)施力测读启动试验机加载部分,缓慢均匀地施力。
注意观察试件的拉伸图,参照图5-8所示的几种屈服图形,确定下屈服力FeL,记入表1-2。
过了屈服阶段后,可用较快的速度施力,直至试样断裂为止。
材料力学实验报告扭转实验
材料力学实验报告扭转实验一、实验目的1、测定低碳钢和铸铁在扭转时的力学性能,包括扭转屈服极限、扭转强度极限等。
2、观察低碳钢和铸铁在扭转过程中的变形现象,分析其破坏形式和原因。
3、熟悉扭转试验机的工作原理和操作方法。
二、实验设备1、扭转试验机2、游标卡尺三、实验原理在扭转实验中,材料受到扭矩的作用,产生扭转变形。
扭矩与扭转角之间的关系可以通过试验机测量得到。
对于圆形截面的试件,其扭转时的应力分布为:表面最大切应力:$\tau_{max} =\frac{T}{W_p}$其中,$T$为扭矩,$W_p$为抗扭截面系数,对于实心圆截面,$W_p =\frac{\pi d^3}{16}$,$d$为试件的直径。
当材料达到屈服极限时,对应的扭矩为屈服扭矩$T_s$;当材料断裂时,对应的扭矩为极限扭矩$T_b$。
四、实验材料本次实验采用低碳钢和铸铁两种材料的圆柱形试件,其尺寸如下:低碳钢试件:直径$d_1 = 10mm$,标距$L_1 = 100mm$铸铁试件:直径$d_2 = 10mm$,标距$L_2 = 100mm$五、实验步骤1、测量试件的直径,在不同位置测量多次,取平均值。
2、安装试件,确保其中心线与试验机的轴线重合。
3、启动试验机,缓慢加载,观察扭矩和扭转角的变化。
4、当低碳钢试件出现屈服现象时,记录屈服扭矩$T_s$。
5、继续加载,直至试件断裂,记录极限扭矩$T_b$。
6、取下试件,观察其破坏形式。
六、实验结果及分析1、低碳钢试件屈服扭矩$T_s = 45 N·m$极限扭矩$T_b = 68 N·m$计算屈服应力:$\tau_s =\frac{T_s}{W_p} =\frac{45×16}{\pi×10^3} ≈ 226 MPa$计算强度极限:$\tau_b =\frac{T_b}{W_p} =\frac{68×16}{\pi×10^3} ≈ 358 MPa$低碳钢试件在扭转过程中,首先发生屈服,表现为沿横截面产生明显的塑性变形,形成屈服线。
低碳钢和铸铁的压缩试验报告
低碳钢和铸铁的压缩试验报告压缩试验报告实验目的:本次实验旨在比较低碳钢和铸铁在压缩试验中的力学特性,为材料选择及设计提供参考依据。
实验原理:在压缩试验中,样品受到垂直于其长轴方向上的荷载,经过变形后产生应变和应力。
通过测量荷载和变形量,可以计算出样品的抗压强度、屈服强度、模量等参数,从而评估其力学特性。
实验步骤:1. 准备样品:从市场上购买低碳钢和铸铁的圆柱形样品,并进行外观检查,确保表面无明显缺陷。
2. 将样品放入试验机夹持装置中,调整夹持力和位置,使样品处于水平状态。
3. 进行压缩试验:按照预设荷载值进行试验,逐步增加荷载直至样品破坏为止。
实验过程中记录荷载、变形量,并注意观察样品破坏形态。
4. 分析数据:根据实验结果计算出样品的抗压强度、屈服强度、模量等参数,并进行比较和分析。
实验结果及分析:对低碳钢和铸铁样品进行了压缩试验,得到的实验结果如下:低碳钢样品:荷载(N)变形量(mm)抗压强度(MPa)屈服强度(MPa)模量(GPa)0 0 0 0 0100000 0.3 250 220 66150000 0.5 375 330 69200000 0.7 500 420 72250000 0.8 625 530 73300000 0.9 750 660 74350000 1.0 875 800 76400000 1.1 1000 950 78铸铁样品:荷载(N)变形量(mm)抗压强度(MPa)屈服强度(MPa)模量(GPa)0 0 0 0 050000 0.05 62.5 50 18100000 0.1 125 100 20150000 0.2 250 150 21200000 0.3 375 200 22300000 0.7 875 360 24350000 0.8 1000 440 25400000 0.9 1250 550 26通过对比两种材料的实验数据可以发现,在相同荷载下,低碳钢的抗压强度和屈服强度均高于铸铁,且随着荷载的增加,两者的差距也逐渐增大。
低碳钢和铸铁的扭转实验报告doc(一)2024
低碳钢和铸铁的扭转实验报告doc(一)低碳钢和铸铁的扭转实验报告引言概述:本文是关于低碳钢和铸铁材料在扭转实验中的研究报告。
扭转实验是一种常见的力学实验方法,可用于评估材料的扭转性能及其在实际工程中的应用潜力。
本文将从实验设计、实验过程、实验结果和讨论等方面对低碳钢和铸铁在扭转实验中的行为进行详细阐述。
正文:1. 实验设计1.1 选择材料:低碳钢和铸铁1.2 实验目的:比较低碳钢和铸铁在扭转实验中的性能差异1.3 实验装置:扭转实验机、力传感器、扭转角度传感器等2. 实验过程2.1 试样制备:根据标准规范,制备相应尺寸的低碳钢和铸铁试样2.2 装配试样:将试样固定在扭转实验机上,保持试样处于正常运转状态2.3 参数设置:根据实验要求,设置扭转实验机的转速和扭矩参数2.4 数据记录:利用实验装置的传感器,记录扭矩和扭转角度的随时间变化情况2.5 实验重复:对于每个材料类型,重复三次实验,以确保结果的可靠性3. 实验结果3.1 低碳钢材料的扭转性能结果3.1.1 扭转角度随时间的变化曲线3.1.2 扭矩随时间的变化曲线3.1.3 扭转刚度的计算结果3.1.4 最大扭转角度及断裂点的确定3.2 铸铁材料的扭转性能结果3.2.1 扭转角度随时间的变化曲线3.2.2 扭矩随时间的变化曲线3.2.3 扭转刚度的计算结果3.2.4 最大扭转角度及断裂点的确定4. 数据分析与讨论4.1 低碳钢与铸铁的扭转性能比较4.1.1 扭转角度和扭矩的趋势对比4.1.2 扭转刚度的比较4.2 对低碳钢和铸铁在实际工程中的应用潜力进行讨论 4.2.1 强度和韧性的比较4.2.2 材料成本和可加工性的考量4.2.3 抗腐蚀性能的评估5. 结论本实验研究了低碳钢和铸铁在扭转实验中的表现,并进行了对比分析和讨论。
根据实验结果,可以得出结论:低碳钢在扭转性能方面可能具有更好的性能和应用潜力,但铸铁在特定工程应用中可能更为适用。
然而,进一步的研究和分析仍有待开展,以深入了解这两种材料的性能特点和实际应用潜力。
材料力学低碳钢铸铁拉伸实验报告
材料力学低碳钢铸铁拉伸实验报告材料力学实验报告实验目的:1.了解和掌握材料拉伸试验的基本原理和操作方法;2.通过拉伸试验获取低碳钢和铸铁的力学性能参数,如抗拉强度、屈服强度、延伸率等;3.分析和对比低碳钢和铸铁的力学性能,并探讨其差异。
实验器材:1.拉伸试验机2.低碳钢和铸铁试样3.卡尺4.万能试验机5.整定尺实验步骤:1.试样制备利用卡尺测量低碳钢和铸铁试样的尺寸。
根据实验要求,制备符合标准的试样。
2.实验装置搭建将试样夹持于拉伸试验机上,确保试样夹持牢固。
3.实验参数设定启动拉伸试验机,设置拉伸速度为固定值。
根据试验标准,设置合适的拉伸速度。
4.开始拉伸试验启动拉伸试验机,进行拉伸实验。
记录试样在拉伸过程中所产生的变形、力值等数据。
5.绘制力与变形曲线利用万能试验机绘制力与变形曲线。
在拉伸试验过程中,通过力传感器和位移传感器实时记录和绘制曲线。
6.计算低碳钢和铸铁的力学性能参数根据拉伸试验数据,计算低碳钢和铸铁的抗拉强度、屈服强度、延伸率等重要力学性能参数。
实验数据:实验结果及分析:1.低碳钢的力学性能参数:通过拉伸试验数据计算得出低碳钢的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。
2.铸铁的力学性能参数:通过拉伸试验数据计算得出铸铁的抗拉强度为XXXMPa,屈服强度为XXXMPa,延伸率为XXX%。
3.力学性能参数对比及分析:比较低碳钢和铸铁的力学性能参数,并分析其差异。
比如,低碳钢的抗拉强度和屈服强度较高,延伸率较低,说明低碳钢的强度较大,但延展性较差;而铸铁的抗拉强度和屈服强度较低,延伸率较高,说明铸铁的强度相对较低,但延展性较好。
结论:通过本次拉伸实验,我们获取并分析了低碳钢和铸铁的力学性能参数。
通过对比两种材料的实验结果,我们发现它们在抗拉强度、屈服强度和延伸率等方面存在明显差异。
这些数据和结论为进一步研究材料力学性能提供了重要依据。
实验中的不确定因素和改进措施:1.实验设备和试样不同批次或品质的差异可能会对实验结果产生一定影响。
低碳钢铸铁的扭转破坏实验报告(1)
低碳钢铸铁的扭转破坏实验报告(1)
低碳钢铸铁的扭转破坏实验报告
一、实验目的
通过扭转试验,探究低碳钢铸铁的扭转破坏特点,并了解其力学性质。
二、实验原理
扭转试验是一种力学性质的测试方法,通常用于评估材料的力学性能
和研究其力学行为。
在扭转试验中,样品受到一定的扭转力和力矩,
逐渐变形,并最终破坏。
低碳钢铸铁的力学性能由材料的成分和热处理工艺等决定。
其主要特
点包括良好的塑性和韧性,高强度,并具有一定的抗腐蚀性。
三、实验步骤
1.将低碳钢铸铁样品放置在扭转试验机的夹具中。
2.在试验机上设置合适的转速和扭转力。
3.开始进行扭转试验,观察样品的变形情况,并记录下扭转力与扭转
角度的数据。
4.当样品发生破坏时,停止试验并记录下此时的扭转力和扭转角度。
5.拆卸样品,观察和记录其破坏形态和特点。
四、数据分析
通过实验得到的数据,可以绘制出低碳钢铸铁样品在扭转试验中的力-位移曲线。
根据力-位移曲线,可以计算出该材料的剪切模量、剪切强度等参数,从而了解其力学性质。
同时,观察和记录样品的破坏形态和特点,可以进一步分析低碳钢铸铁的扭转破坏特点。
五、结论
通过实验可以发现,低碳钢铸铁具有较高的剪切模量和剪切强度,在扭转试验中呈现出良好的塑性和韧性。
其破坏形态主要表现为样品表面的裂纹和断裂。
因此,低碳钢铸铁材料适用于要求高强度和抗腐蚀性的机械制造领域。
低碳钢和铸铁的扭转实验报告
低碳钢和铸铁的扭转实验报告一、实验目的。
本实验旨在通过对低碳钢和铸铁进行扭转实验,比较它们的扭转性能,探讨材料的力学性能差异,为工程材料的选择提供参考。
二、实验原理。
扭转是指材料在受到外力作用下发生的一种变形形式。
在扭转实验中,通过施加扭矩,使试样发生扭转变形,从而测定材料的扭转性能。
通过实验测得的扭转角度和扭矩数据,可以计算出材料的剪切模量和剪切应力等力学性能参数。
三、实验步骤。
1. 制备低碳钢和铸铁的试样,保证试样尺寸符合标准要求;2. 将试样固定在扭转试验机上,并校准好仪器;3. 施加扭矩,记录扭转角度和扭矩数据;4. 根据实验数据计算出材料的剪切模量和剪切应力。
四、实验数据与结果。
通过实验测得,低碳钢的扭转角度随着施加扭矩的增加而线性增加,而铸铁的扭转角度则呈现出非线性增长的趋势。
在相同的扭矩作用下,低碳钢的扭转角度明显小于铸铁,说明低碳钢具有更高的抗扭转性能。
通过计算得到的剪切模量和剪切应力数据也印证了这一结果。
五、实验分析与讨论。
低碳钢和铸铁的扭转性能差异主要源于其微观结构和化学成分的不同。
低碳钢由于含有较少的碳元素,具有较细的晶粒结构和较高的塑性,因此在扭转时能够更好地抵抗变形。
而铸铁的碳含量较高,晶粒较粗大,因此在扭转时容易发生塑性变形,导致扭转角度较大。
六、结论。
通过本次实验,我们得出结论,低碳钢具有较高的抗扭转性能,适合用于对扭转性能要求较高的工程结构中;而铸铁的扭转性能较差,适合用于一些不太注重扭转性能的场合。
七、参考文献。
[1] 钢铁材料力学性能测试标准。
[2] 铸铁材料力学性能测试手册。
八、致谢。
感谢实验室的老师和同学们在实验过程中的帮助和支持。
以上就是本次低碳钢和铸铁的扭转实验报告的全部内容,希望能对大家有所帮助。
低碳钢和铸铁扭转实验报告
低碳钢和铸铁扭转实验报告一、实验目的1、观察低碳钢和铸铁在扭转过程中的变形现象,比较它们的力学性能差异。
2、测定低碳钢的剪切屈服极限和剪切强度极限,以及铸铁的抗扭强度。
3、熟悉扭转试验机的工作原理和操作方法。
二、实验设备1、扭转试验机2、游标卡尺三、实验原理1、低碳钢扭转低碳钢属于塑性材料,在扭转过程中,其变形经历了弹性阶段、屈服阶段和强化阶段。
在弹性阶段,扭矩与扭转角呈线性关系,材料符合胡克定律。
当扭矩达到屈服扭矩时,试件表面出现沿横截面的滑移线,进入屈服阶段。
屈服阶段过后,材料进入强化阶段,变形继续增加,扭矩也随之增大,直至试件断裂。
2、铸铁扭转铸铁属于脆性材料,在扭转过程中,其变形很小,几乎没有明显的屈服阶段。
当扭矩达到一定值时,试件突然断裂。
四、实验步骤1、测量试件的直径,在不同位置测量多次,取平均值。
2、安装试件,确保试件与扭转试验机的夹头同轴。
3、启动扭转试验机,缓慢加载,观察试件的变形情况,并记录扭矩和扭转角的数据。
4、当低碳钢试件出现屈服现象时,记录屈服扭矩;当试件断裂时,记录最大扭矩。
5、对于铸铁试件,记录其断裂时的扭矩。
6、实验结束后,取下试件,观察其断口形状。
五、实验数据处理与分析1、低碳钢直径测量:测量低碳钢试件的三个不同位置的直径,分别为 d1 =1002mm,d2 = 998mm,d3 = 1000mm,平均值 d =(d1 + d2 + d3) / 3 = 1000mm。
屈服扭矩 Ts = 50 N·m最大扭矩 Tb = 80 N·m根据公式计算剪切屈服极限τs 和剪切强度极限τb:τs = Ts /(πd³/16) = 50×16 /(π×10³) ≈ 251 MPaτb = Tb /(πd³/16) = 80×16 /(π×10³) ≈ 402 MPa2、铸铁直径测量:测量铸铁试件的三个不同位置的直径,分别为 d1 =1005mm,d2 = 1003mm,d3 = 1004mm,平均值 d =(d1 + d2 +d3) / 3 = 1004mm。
低碳钢和铸铁的扭转实验报告
低碳钢和铸铁的扭转实验报告一、实验背景二、实验步骤1.实验材料准备:从实验室仓库中取出低碳钢和铸铁两种材料,分别切割成相同尺寸的试样。
2.实验装置搭建:使用扭转试验机搭建扭转实验装置。
将试样夹紧在扭转试验机上的夹具上,确保试样稳固。
3.扭转实验参数设置:根据实验要求,设置扭转速度、载荷范围和记录数据的采样频率等参数。
4.实施扭转实验:开始扭转实验,逐渐增加载荷,直至试样发生破坏。
5.数据记录和分析:记录实验过程中的数据,包括扭转力和扭转角度等。
绘制载荷-扭转角度曲线,并比较低碳钢和铸铁的力学性能。
三、实验结果与分析通过实验记录的数据,我们可以得到载荷-扭转角度曲线。
根据实验结果,我们可以得出结论:1.扭转强度:从载荷-扭转角度曲线中可以得知,低碳钢的扭转强度明显高于铸铁。
在相同载荷下,低碳钢试样的扭转角度较小。
这表明低碳钢具有更高的抗弯刚度和耐疲劳性能。
2.断裂特性:低碳钢试样的断裂面一般较光滑,而铸铁试样的断裂面通常呈现比较粗糙的形态。
这说明低碳钢的延展性较好,而铸铁的断裂韧性相对较低。
3.力学性能:根据实验结果可以计算出低碳钢和铸铁的扭转刚度。
低碳钢的扭转刚度明显高于铸铁,这意味着低碳钢具有更好的力学性能和抗变形能力。
四、实验结论通过对低碳钢和铸铁的扭转实验比较1.低碳钢具有较高的扭转强度和抗变形能力,适用于对力学性能要求较高的工程结构中。
2.铸铁的扭转韧性较低,适用于对抗冲击性和磨损性要求较高的场合。
3.在实际工程中,根据具体的应用需求和环境条件,选择适当材料对于确保工程质量和安全至关重要。
五、实验改进1.增加试样数量:本实验只使用了少量试样,如果增加试样数量,结果的可靠性将会有所提高。
2.扭转速度的影响:本实验未考虑扭转速度对试样扭转性能的影响,今后可以进行不同扭转速度下的实验,以进一步了解材料的力学性能。
3.其他材料比较:本实验只比较了低碳钢和铸铁的扭转性能,今后可以将其他材料(如不锈钢、铝合金等)纳入比较范围,以全面了解不同材料的力学性能。
低碳钢和铸铁在拉伸试验中的力学性能【范本模板】
低碳钢和铸铁在拉伸和压缩时的力学性能根据材料在常温,静荷载下拉伸试验所得的伸长率大小,将材料区分为塑性材料和脆性材料。
它是由试验来测定的。
工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。
1、低碳钢拉伸实验在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:(1)弹性阶段在拉伸的初始阶段,ζ—ε曲线为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。
线性段的最高点则称为材料的比例极限(ζp ),线性段的直线斜率即为材料的弹性摸量E 。
线性阶段后,ζ-ε曲线不为直线,应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。
卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζe ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。
(2)屈服阶段超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。
使材料发生屈服的应力称为屈服应力或屈服极限(ζs ).当材料屈服时,如果用砂纸将试件表面 1打磨,会发现试件表面呈现出与轴线成45°斜纹。
这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。
(3)强化阶段经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化.若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线,其斜率与比例阶段的直线段斜率大致相等。
当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变.卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。
因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。
低碳钢、铸铁拉伸试验
低碳钢、铸铁拉伸试验一、实验目的本试验以低碳钢和铸铁,了解塑性材料在简单拉伸时的机械性质。
它是力学性能试验中最基本最常用的一个。
1. 了解材料拉伸时力与变形的关系,观察试件破坏现象。
2.测定强度数据。
3.测定塑性材料的塑性指标:拉伸时的伸长率A,截面收缩率Z。
二、实验原理进行拉伸试验时,外力必须通过试样轴线,以确保材料处于单向应力状态。
一般试验机都设有自动绘图装置,用以记录试样的拉伸图即F-ΔL曲线,形象地体现了材料变形特点以及各阶段受力和变形的关系。
但是F-ΔL曲线的定量关系不仅取决于材质而且受试样几何尺寸的影响。
三、实验步骤1.测定试样直径:拉伸时取试样三个截面(两端及中间),在相互垂直两个方向各测量一次直径,取其算术平均值表示该处直径,取三次算术平均值中的最小值作为试样计算直径。
2.装好绘图仪:选择合适的绘图比例,将记录笔装在笔架上,记录纸卷于卷纸筒上。
3.指针调零:①先开动油泵电动机,打开送油阀,将活动平台上升起少许,然后关闭油阀。
②转动摆杆上的平衡铊,使摆杆保持铅垂位置。
③再转动水平齿杆,使指针对准“零”点。
4进行试验:控制试验机进油阀,用适当的速度对试样加力。
注意观察测力指针的转动,自动绘图的情况和相应的实验现象。
读取屈服荷载FS和极限荷载Fb。
铸铁是典型的脆性材料,。
其拉伸过程较低碳钢简单,可近似认为是经弹性阶段直接过渡到断裂。
其破坏断口沿横截面方向,说明铸铁的断裂是由拉应力引起,其强度指标只有R m。
由拉伸曲线可见,铸铁断后伸长率甚小,所以铸铁常在没有任何预兆的情况下突然发生脆断。
因此这类材料若使用不当,极易发生事故。
铸铁断口与正应力方向垂直,断面平齐为闪光的结晶状组织,是典型的脆状断口。
焊接试验一、实验原理焊条电弧焊是利用焊条与工件之间建立起来的稳定燃烧的电话,使焊条与工件局部熔化,从而获得牢固焊接接头的工艺方法。
焊接过程中,焊条与工件之间燃烧的电弧热熔化焊条端部和工件的接缝处,在焊条端部迅速熔化的金属以细小溶滴经弧柱过渡到已经熔化的金属中,并与之融合一起形成溶池。
材料力学 低碳钢 铸铁 压缩实验报告
压缩实验报告
一、实测F-△L曲线绘制
1、低碳钢曲线图
2、铸铁曲线图
二、描述压缩破坏的全过程,分析其实验现象,附上相应的实验图片,并对比两者差异。
1、低碳钢分析结果
答:压缩破坏全过程:在屈服阶段以前,低碳钢试件的变形为弹性变形,压缩量随载荷增大而成比例增大,而超过屈服阶段之后,低碳钢试件由原来的圆柱型逐渐被压成鼓形,继续加压,试样越来越扁,但没发生断裂。
2、铸铁分析结果
答:铸铁受压时,在其所受载荷达到最大前,会产生较大的塑性变形,在载荷达到最大后,铸铁试件最终被压成鼓形,大致沿与试件的轴线成约45°的斜面发生剪切错动而破坏。
差异:低碳钢为塑性材料,其抗压屈服极限与抗拉屈服极限相近,随着载荷增大而发生塑性形变,但不会发生断裂;而铸铁为脆性材料,故没有屈服现象,其抗压强度远大于抗拉强度,随着压缩载荷的增大,铸铁会因为达到剪切极限而被剪切破坏。
三、低碳钢为什么得不到抗压极限强度?
答:低碳钢为塑性材料,在屈服阶段以前,其变形为弹性变形,但进入强化阶段后,低碳钢试件压缩时的应力σ随着应变值ε的增长迅速增大,试件越压越扁,受压面积越来越大,承受的载荷也越来越大,但低碳钢试件可以被压成极薄的平板,没有发生断裂,所以其抗压极限强度无法测定,故其力学性能通常由拉伸试验确定。
四、实验中遇到的问题及其解决方案。
答:铸铁压缩实验时,通过试验机获得的曲线在部分阶段与预期不符。
解决方法:及时询问相关实验老师,了解到可能是实验偶然误差或是
铸铁自身存在其它杂质导致的。
低碳钢和铸铁拉伸实验报告
实验一低碳钢拉伸实验
一、实验目的
1、测定低碳钢的上屈服强度R eH,下屈服强度R eL,抗拉强度R m,断后伸长率A 和断面收缩率Z。
2、观察低碳钢在拉伸过程中的各种现象,绘制拉伸曲线图。
二、实验设备、仪器和工具
1、万能材料试验机
2、游标卡尺
3、低碳钢试件
三、实验成果计算与分析
2、按比例绘制低碳钢的F-L
曲线。
四、思考题
1、试述低碳钢拉伸过程四个阶段的力学特性。
2、材料的拉压性能指标包括哪些?
五、对实验的建议和感想
实验二铸铁拉伸实验
一、实验目的
1、测定铸铁的抗拉强度R m。
2、观察铸铁在拉伸过程中的各种现象,绘制拉伸曲线图。
3、通过实测数据综合分析比较低碳钢和铸铁在拉伸时的力学性能。
二、实验设备、仪器和工具
1、万能材料试验机
2、游标卡尺
3、铸铁试件
三、实验成果计算与分析
2、按比例绘制低碳钢的F-L
曲线。
四、思考题
1、比较低碳钢和铸铁的拉伸力学性能。
五、对实验的建议和感想。
低碳钢铸铁扭转实验报告
一、实验目的1. 比较低碳钢和铸铁在扭转试验中的性能差异;2. 了解低碳钢和铸铁在扭转过程中的变形和破坏形式;3. 学习材料力学的基本原理,提高实验操作技能。
二、实验原理扭转试验是材料力学实验中的一种基本试验,用于测定材料的扭转性能。
在扭转试验中,试样受到一对相互垂直的力矩作用,产生扭转变形。
根据胡克定律,扭转应力和扭转角之间存在线性关系。
当试样达到剪切屈服极限时,扭矩不再随扭转角线性增加,出现屈服平台。
当试样破坏时,扭矩达到最大值。
三、实验设备及试样1. 实验设备:扭转试验机、游标卡尺、百分表、砂轮机、钢尺等;2. 实验材料:低碳钢、铸铁;3. 实验试样:圆轴试样,直径约为10mm。
四、实验步骤1. 将低碳钢和铸铁试样分别固定在扭转试验机的夹头上;2. 启动试验机,缓慢增加扭矩,同时记录扭矩值;3. 观察试样在扭转过程中的变形和破坏形式;4. 记录试样破坏时的扭矩值;5. 使用游标卡尺测量试样破坏后的直径变化;6. 对试样断口进行观察和分析。
五、实验结果与分析1. 低碳钢试样在扭转试验过程中,当扭矩达到屈服极限时,出现屈服平台。
试样破坏时,扭矩达到最大值。
试样破坏后,直径变化较大,断口呈平面状,属于剪切破坏;2. 铸铁试样在扭转试验过程中,当扭矩达到屈服极限时,出现屈服平台。
试样破坏时,扭矩达到最大值。
试样破坏后,直径变化较小,断口呈斜面状,与轴线成45°~55°角,属于剪切破坏。
六、实验结论1. 低碳钢和铸铁在扭转试验中的性能存在差异。
低碳钢具有较好的塑性和韧性,而铸铁具有较好的脆性;2. 低碳钢和铸铁在扭转过程中的变形和破坏形式不同。
低碳钢试样破坏后,断口呈平面状,而铸铁试样破坏后,断口呈斜面状;3. 低碳钢和铸铁的扭转性能与其材料性能密切相关。
七、实验讨论1. 实验过程中,低碳钢和铸铁试样的扭转性能差异可能与材料的化学成分、组织结构等因素有关;2. 实验过程中,低碳钢和铸铁试样的变形和破坏形式可能与材料的屈服极限、抗拉强度等因素有关;3. 实验过程中,低碳钢和铸铁试样的扭转性能对工程应用具有重要意义,可根据实际需求选择合适的材料。
低碳钢铸铁的扭转破坏实验报告
低碳钢铸铁的扭转破坏实验报告实验名称:低碳钢和铸铁的扭转破坏实验实验目的:1.了解低碳钢和铸铁的力学性能差异;2.掌握扭转实验的基本原理和方法;3.通过实验结果,验证低碳钢和铸铁的扭转破坏方式及其性能差异。
实验器材和材料:1.扭转试验机;2.低碳钢试样;3.铸铁试样。
实验原理:扭转试验是通过施加扭转力矩来研究材料的扭转破坏性能。
力矩的大小和材料的扭转角度之间存在着一定的线性关系。
在实验中,我们将分别采用低碳钢和铸铁两种材料制备的圆柱形试样,将其固定在扭转试验机上,并施加一定的扭转力矩,观察材料的破坏情况,进而对比两种材料的扭转破坏性能。
实验步骤与方法:1.准备工作:a.检查扭转试验机的工作状态,确保其正常运行;b.准备低碳钢和铸铁试样,选取相同尺寸和形状的圆柱形试样。
2.材料试样的制备:a.将低碳钢和铸铁试样进行去污处理,以保证试样表面的清洁度;b.对试样进行标记,以防混淆;c.确定试样的尺寸和形状要求,进行切割和打磨。
3.实验操作:a.将试样分别固定在扭转试验机的夹具上;b.设置扭转力矩,并调整试验机的工作状态,待试验机稳定后,开始施加扭转力矩;c.持续施加扭转力矩,观察试样的破坏情况,记录下破坏时的扭转角度和施加的力矩;d.分别对低碳钢和铸铁试样进行多次实验,以提高实验的准确性和可靠性。
4.数据处理与分析:a.计算并绘制低碳钢和铸铁试样的扭转曲线图,描述扭转角度和施加力矩之间的关系;b.对比分析低碳钢和铸铁试样的扭转破坏情况,评估两种材料的力学性能差异;c.根据实验结果,解释低碳钢和铸铁试样的扭转破坏机制。
实验结果和讨论:通过多次实验及样品的扭转破坏情况,我们得到了低碳钢和铸铁的扭转曲线图,并进行了对比分析。
从实验结果中可以看出,低碳钢的扭转强度较铸铁高,且破坏形式为蠕变断裂,而铸铁的扭转强度较低,容易发生拗断破坏。
低碳钢的高强度和蠕变断裂模式可以归因于其晶体结构的紧密性和合金元素的影响。
低碳钢中的碳含量较低,晶界强度较高,抗拉强度也相应增加。
低碳钢铸铁的扭转破坏实验报告
低碳钢铸铁的扭转破坏实验报告实验目的:通过对低碳钢和铸铁的扭转破坏实验,研究不同材料的扭转性能及破坏特点。
实验原理:扭转实验是一种常用的材料力学性能测试方法,用来研究材料的扭转强度、扭转刚度和扭转变形能力。
扭转实验时,将试样固定在两个固定夹具之间,然后在样品两端施加扭矩,使样品发生扭转变形。
通过测量施加的扭矩和样品的扭转角度,可以计算出样品的扭转应力和扭转模量。
实验步骤:1.准备样品:选择相同尺寸的低碳钢和铸铁试样,保证试样的几何形状和尺寸一致。
2.搭建实验装置:将试样固定在扭转实验机的夹具上,保证试样与夹具之间的接触面积均匀,并且夹具可以固定试样,以防止试样的滑动或移位。
3.施加扭矩:调整实验机的扭转角度和速度,开始施加扭矩。
记录下施加的扭矩大小和扭转角度。
4.观察破坏情况:当试样发生破坏时,记录下破坏发生的扭转角度。
同时,观察试样的破坏形态和裂纹分布情况。
5.数据处理:根据实验数据计算低碳钢和铸铁的扭转强度和扭转模量,比较两者的差异。
分析破坏形态和裂纹分布情况,总结不同材料的扭转性能和破坏特点。
实验结果:通过对低碳钢和铸铁试样进行扭转实验后,得到了相应的数据和结果。
根据数据分析计算出低碳钢和铸铁的扭转强度和扭转模量,并比较两者差异。
同时,观察试样的破坏形态和裂纹分布情况。
实验结论:根据实验结果和数据分析,得出以下结论:1.低碳钢的扭转强度和扭转模量较高,表现出较好的扭转性能。
2.铸铁的扭转强度和扭转模量较低,表现出较差的扭转性能。
3.低碳钢和铸铁的破坏形态和裂纹分布有所不同,低碳钢可能会出现塑性变形和断裂,而铸铁可能会出现脆性断裂。
4.低碳钢适用于承受较大扭转力和变形的场景,而铸铁适用于对扭转强度和刚度要求较低的场景。
以上为低碳钢和铸铁的扭转破坏实验报告,通过实验得出了不同材料的扭转性能和破坏特点,为工程领域的材料选择提供了参考依据。
低碳钢和铸铁拉伸实验报告
低碳钢和铸铁拉伸实验报告实验目的,通过对低碳钢和铸铁的拉伸实验,探究它们的力学性能和拉伸特性。
实验原理,拉伸试验是通过加载试样,使其在拉伸力的作用下逐渐拉伸,以破坏试样为结束,来确定材料的拉伸性能。
在拉伸试验中,我们通常关注材料的屈服点、抗拉强度、断裂伸长率等参数。
实验步骤,首先,准备好低碳钢和铸铁的试样。
然后,将试样固定在拉伸试验机上,施加逐渐增大的拉伸力,记录拉伸过程中的应力-应变曲线。
最后,观察试样的断裂形态,并计算出材料的力学性能参数。
实验结果,通过拉伸试验得到的应力-应变曲线可以清晰地反映出低碳钢和铸铁的拉伸性能。
从曲线上我们可以看出,低碳钢的屈服点较高,抗拉强度也较大,而铸铁的屈服点较低,但断裂伸长率较高。
这说明低碳钢具有较好的强度和刚性,而铸铁具有较好的韧性。
实验分析,低碳钢和铸铁的力学性能差异主要来自其组织和化学成分的不同。
低碳钢中碳含量较低,具有较细的晶粒和均匀的组织结构,因此具有较高的强度;而铸铁中含有较多的碳和硅等合金元素,使其具有较大的断裂伸长率和较好的耐磨性。
结论,通过本次拉伸实验,我们对低碳钢和铸铁的力学性能有了更深入的了解。
低碳钢具有较好的强度和刚性,适用于要求高强度的场合;而铸铁具有较好的韧性和耐磨性,适用于要求耐磨性能的场合。
在工程实践中,我们可以根据材料的不同特点,选择合适的材料应用于不同的工程领域。
总结,拉伸实验是一种常用的材料力学性能测试方法,通过实验我们可以全面了解材料的力学性能和拉伸特性。
在工程实践中,我们需要根据材料的具体特点,选择合适的材料以满足工程需求,从而保障工程的质量和安全。
希望本次实验能对大家有所启发,谢谢阅读。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程力学实验报告
实验组别:组
实验者姓名:实验日期:
实验一金属的拉伸实验
一、实验目的及要求
1.观察材料拉伸时的负荷位移曲线,了解拉伸变形的几个阶段。
2.测定低碳钢材料的屈服强度,拉伸强度,延伸率和断面吸收率。
3.测定铸铁材科抗拉强度,延伸率,断面吸收率。
4.比较低碳钢与铸铁拉伸时的力学性质。
5.比较了解电子万能材料试验机构构造及工作原理。
二、实验原理
用拉伸力将试样拉伸,一般拉至断裂以便测定其力学性能。
三、实验设备
机器型号:CSS-44100电子万能材料试验机
量程:最大扭荷100KN
测量直径的量具:千分尺精度:0.01mm
测量长度的量具:游标卡尺精度:0.02mm
四、实验步骤
1.测量试样尺寸,在试样上做出标距标记
2.试验机准备
3.安装试样
4.进行试验
5.储存试验结果,并取下试样
6.测量断后试样尺寸
7.恢复原状
五、实验数据及计算结果
六、绘制低碳钢拉伸时的应力应变曲线铸铁拉伸时的应力应变曲线
七、画出低碳钢和铸铁的断口草图,并说明其特征
九、思考题
用统一材料制作的长、短比例制件各一根,拉伸试验所测得的屈服强度、抗拉强度、断面收缩率和延伸率都相同吗?
答:相同,因为延伸收缩率与试件的标距长度有关,比例试件的横截面积和长度存在一定比例关系。
实验二金属的压缩实验
低碳钢铸铁
一、材料力学压缩试验目的及要求
1.测定压缩时低碳钢的屈服强度和铸铁的抗压强度
2.观察低碳钢和铸铁试样压缩时的变形和破坏特征
二、实验原理
用压缩力将试样压缩,一般延性材料压至屈服,脆性材料压至断裂以测定压缩时的力学性能
三、实验设备
1.电子万能材料试验机
2.游标卡尺
3.千分尺
四、实验步骤
1.测量试样尺寸
2.试验机准备
3.安装试样
4.进行试验
5.结束工作,恢复原样
五、实验数据及计算结果
3.试样破坏断面形状图及破坏原因分析
破坏面示意图
破坏原因分析
低碳钢为代表的塑性材料,由于硬度小,富有延展性,抗压强度低,在压缩过程中,当应力小于屈服应力时,其变形情况与拉伸时基本相同;但当达到屈服应力后,试件会产生横向塑性变形,随着压力的继续增加,试件的横截面面积不断变大,同时由于试样两端面与试验机支承垫板间存在摩擦力,约束了这种横向变形,故试样出现显著的鼓胀,呈鼓形.
以铸铁材料为代表的脆性金属材料,由于塑性变形很小,所以尽管有端面摩擦,鼓胀效应却并不明显。
当应力达到一定值后,试样在与轴线大约成45°~55°的方向上发生破裂。
这种现象是由于脆性材料的抗剪强度低于抗压强度,从而使试样被剪断。
说明铸铁试样轴线呈45度的斜面上产生的剪切力最大。
低碳钢压缩受力曲线 铸铁压缩受力曲线
六、思考题
1.由低碳钢和铸铁的拉伸和压缩试验结果,比较延伸性材料和脆性材料的力学性能和破坏特征
答:铸铁拉伸时没有明显的屈服和颈缩现象,拉伸变形很小,延伸率也很小,断面为横断面,断口呈颗粒状;铸铁压缩时发生明显的塑性形变,断口较光滑,断口平面与轴线夹角大约45°
低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段而铸铁没有。
铸铁承受压缩的能力远远大于承受拉伸的能力,属于脆性材料,其抗压能力比抗拉能力好,作为受压构件使用。
而低碳钢为塑性材料抗拉与抗压性能接近,适用于受拉构件。
2.根据铸铁试样的压缩破坏的形式,分析其破坏原因,并与其拉伸破坏做比较
答:铸铁压缩时发生明显的塑性形变,断口较光滑,断口平面与轴线夹角大约45°这是由于在断口位置剪应力已达到能抵抗的最大值,抗剪先于抗压达到极限,因而呈斜面剪切破坏。
铸铁压缩曲线与拉伸曲线相比,可得抗压程度比抗拉程度高。
实验三金属的扭转实验
一、实验目的
1.观察比较低碳钢和铸铁材料在扭转过程中的变形现象及破坏形式
2.测定低碳钢的抗扭屈服极限τs和抗扭强度极限τb
3.测定铸铁材料的抗扭强度极限τb
二、实验原理
对实验试样施加一定的扭矩,直到试样破坏,由此测得此材料在扭转时的力学性能指标
三、实验设备
1.NDS-I型电子式扭转试验机
2.游标卡尺
四、实验步骤
1.测量试样尺寸
2.试验机准备
(1)输入实验参数
(2)选择试验机量程
3.安装试样
4.进行试验
5.结束工作,恢复原状
五、实验数据及计算结果
破坏形势图
低碳钢扭转所受扭矩曲线 铸铁扭转所受扭矩曲线
六、思考题
1.低碳钢和铸铁材料的扭转破坏有何不同?根据断口形式分析其破坏原因。
答:铸铁发生断裂,低碳钢发生扭转边形。
碳原子使构件稳定。
低碳钢内含少量碳,韧性较好,而铸铁内含大量碳,
较为脆硬。
3. 分析比较塑性材料和脆性材料在拉伸压缩及扭转时的变形情况和破坏特点,
并归纳这两种材料的机械性能。
塑性材料 脆性材料 刚度(变形)
明显
不明显
低碳钢
铸铁
4.脆性金属与塑性金属在化学工程中的应用。
答:
一,塑性金属可用于一些小仪器,如镊子,球磨机等;
二,支座一般用抗压性能较好的脆性金属;
三,化学工程中常用到高温加热条件,选择塑性材料的变形抗力更合适。