七年级上册数学绝对值知识点总结与经典例题详细讲解

合集下载

初中数学七年级上册《绝对值》知识简要与举例

初中数学七年级上册《绝对值》知识简要与举例

初中数学七年级上册《绝对值》知识简要与举例1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.2.理解绝对值的意义,应注意以下三点:(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.(3)学习了绝对值的几何意义后,数轴的概念、画法、利用数轴比较数的大小、相反数以及绝对值,借助数轴,这些知识便都联系到一起了.3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.4.绝对值的三种表达方法.(1)文字语言表达法(绝对值的概念):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.(2)用数学式子法:设a为任意有理数,则(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点离开原点的距离.[例1]判断题(2)|-0.01|<0.( )(3)-(-4)<|-4|.( )(4)|a|=a.( )(5)当a≤0时,|a|+a=0.( )答案:(1)√;(2)×;(3)×;(4)×;(5)√.说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.[例2]填空题(5)______________与它的绝对值互为相反数;(6)如果|a|=|-7|,那么a=________.说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.[例3]a为何值时,下列各式成立?(1)|a|=a;(2)|a|=-a;(3)|a|≥a;(4)|a|<a;(5)|a|=5;(6)|a|=-5.解:(1)a≥0;(2)a≤0;(3)a为任意有理数时,都使|a|≥a成立;(4)a为任意有理数时,|a|<a都不成立;(5)a=±5;(6)a为任意有理数时,|a|=-5都不成立.说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、(4)小题还要准确理解有理数大小的比较法则.[例4]比较大小:[例5]把下列各数按照从大到小的顺序用“>”连接起来:说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.[例6](1)若a>3,则|a-3|=________;(2)若a=3,则|a-3|=________;(3)若a<3,则|a-3|=________.分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).解:(1)a>3时,|a-3|=a-3;(2)a=3时,|a-3|=0;(3)a<3时,|a-3|=-(a-3)说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。

《绝对值》知识简要与举例

《绝对值》知识简要与举例

《绝对值》知识简要与举例1.绝对值的概念是代数的重要概念之一,它是学习代数后续内容的基础.同时,利用绝对值的概念,能使我们进一步认识已学过的概念.例如,我们可以把任何一个有理数看成是由符号与绝对值两部分组成;又如,互为相反数的两个数,其实质是绝对值相等而符号相反的两个数.像-6和6,它们的符号相反,而其绝对值|-6|=|6|=6.2.理解绝对值的意义,应注意以下三点:(1)绝对值的非负性即任何一个数a的绝对值,总是非负的.即|a|≥0.当a≠0时,|a|>0;当a=0时,|a|=0.(2)绝对值相等的两个数或相等,或互为相反数.如|2|=|+2|=2,|+2|=|-2|=2.一般地,若|x|=|y|,则有x=y或x=-y.3.用正负数可以表示具有相反意义的量.但在实际生产和生活中,有时不考虑方向性.如:计算汽车的耗油量时,知道行驶单位路程的耗油量,只需求出汽车行驶的总路程,便可求出耗油量,与行驶的方向无关而汽车所走的路程就只需用正数表示,因此,引出绝对值的概念.4.绝对值的三种表达方法.(1)文字语言表达法(绝对值的概念):一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.(2)用数学式子法:设a为任意有理数,则(3)绝对值的几何意义:一个数的绝对值就是表示这个数的点离开原点的距离.[例1]判断题(2)|-0.01|<0.( )(3)-(-4)<|-4|.( )(4)|a|=a.( )(5)当a≤0时,|a|+a=0.( )答案:(1)√;(2)×;(3)×;(4)×;(5)√.说明:在有理数的大小比较中,如果含有绝对值或相反数时,可先化简,然后再进行比较.[例2]填空题(5)______________与它的绝对值互为相反数;(6)如果|a|=|-7|,那么a=________.说明:如果两个数相等或互为相反数,那么这两个数的绝对值相等;反之,如果这两个数的绝对值相等,那么这两个数相等或互为相反数.[例3]a为何值时,下列各式成立?(1)|a|=a;(2)|a|=-a;(3)|a|≥a;(4)|a|<a;(5)|a|=5;(6)|a|=-5.解:(1)a≥0;(2)a≤0;(3)a为任意有理数时,都使|a|≥a成立;(4)a为任意有理数时,|a|<a都不成立;(5)a=±5;(6)a为任意有理数时,|a|=-5都不成立.说明:本题解决的关键是牢固掌握绝对值的非负性,即|a|≥0.另外,(3)、(4)小题还要准确理解有理数大小的比较法则.[例4]比较大小:[例5]把下列各数按照从大到小的顺序用“>”连接起来:说明:学了绝对值的概念之后,比较两有理数大小的基本方法,我们便有了两种:(1)数轴法;(2)绝对值法.在这小节的后一部分,介绍了利用绝对值比较两个负数的大小的办法.这既可巩固绝对值的概念,又把比较有理数大小的方法提高了一步.利用绝对值来比较两有理数大小的方法是我们常用的方法之一.前面提到绝对值的概念是代数中重要的概念之一,我们应该很好地掌握它.[例6](1)若a>3,则|a-3|=________;(2)若a=3,则|a-3|=________;(3)若a<3,则|a-3|=________.分析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a -3>0,即a-3为正,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a -3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).解:(1)a>3时,|a-3|=a-3;(2)a=3时,|a-3|=0;(3)a<3时,|a-3|=-(a-3)说明:由本题的解法说明,化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性.否则会出现错误,如|a-3|=a-3(×).。

七年级知识点绝对值

七年级知识点绝对值

七年级知识点绝对值绝对值是数学中的重要概念,也是中学数学的一个基本知识点。

在七年级的数学课上,学生首先需要学习到绝对值的定义和性质,然后学会用绝对值求解各种实际问题。

本文将对七年级知识点绝对值进行详细的介绍。

一、绝对值的定义和性质绝对值的定义:对于任意实数x,其绝对值为非负数,记为|x|,它的定义如下:当x > 0时,|x| = x ;当x = 0时,|x| = 0 ;当x < 0时,|x| = -x 。

绝对值的性质:1. |x|≥0,即绝对值是非负数。

2. |x|= | -x |,即绝对值的值与它的相反数的值相等。

3. |x·y|= |x|·|y|,即绝对值的乘积等于各自的绝对值再相乘。

4. 对于任意实数x和y,|x+y|≤|x|+|y|,即两数的绝对值之和不大于它们的和的绝对值。

二、绝对值的运算法则1. 求相反数时,先取绝对值再取反。

2. 求倒数时,先取绝对值再取倒数。

3. 求和差积时,要先算绝对值。

三、绝对值的应用1. 在求距离问题中,绝对值可用于求两点之间的距离。

2. 在解方程时,有时需要用到绝对值,例如|x|=a可表示x=a或x=-a。

3. 在计算误差时,常用绝对值,如当真实值为a,测量值为b 时,误差为|b-a|。

四、练习题1. 请计算 |-8|÷2+|5-9|×|-1|的结果。

答案:32. 请将不等式 2|x-3|+1 < 5|x-1| 简化。

答案: 0 < 3|x-1|,即|x-1| > 0.3. 请解方程 3|x+1|-5=4x+11。

答案: x=-3或8/3。

4. 请计算直线A(-3,-1)和直线B(6,5)之间的距离。

答案:√74/2。

五、小结绝对值是七年级数学中比较重要的知识点,理解和掌握它的定义、性质和运算法则,以及应用于解决实际问题的方法,是学好数学的关键之一。

在学习过程中,要多加练习,不断提高自己的数学能力。

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!

七上数学【绝对值压轴题】三种题型汇总,含例题解析,更易读懂!例题1、【归纳】(1)观察下列各式的大小关系:|-2|+|3|>|-2+3||-6|+|3|>|-6+3||-2|+|-3|=|-2-3||0|+|-8|=|0-8|归纳:|a|+|b|_____|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【应用】(2)根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.【延伸】(3)a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.参考答案:(1)≥(2)由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m-n=13,则n=m-13,|m+m -13|=1,m=7或6当m为负数,n为正数时,-m+n=13,则n=m+13,|m+m+13|=1,m=-7或-6综上所述,m为±6或±7(3)分析:若按a、b、c中0的个数进行分类,可以分成四类:第一类:a、b、c三个数都不等于0①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除第二类:a、b、c三个数中有1个0 【结论同第(1)问】①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|第三类:a、b、c三个数中有2个0①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除第四类:a、b、c三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除综上所述:1个负数2个正数、1个正数2个负数、1个0,1个正数和1个负数.例题2、已知:b是最小的正整数,且a、b满足(c-5)^2 +|a+b|=0(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,线段AB的中点为M,线段BC的中点为N,P为动点,其对应的数为x,点P在线段MN上运动(包括端点).①求x的取值范围.②化简式子|x+1|-|x-1|+2|x-4/9|(写出化简过程).详细解析考点:数轴的定义,绝对值的性质分析:本题考查了数轴与绝对值,需掌握绝对值的性质,正确理解AB,BC的变化情况是关键;第(1)题根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c 的值;第②题以①为分界点,根据x的范围分0≤x≤4/9、4/9<x≤1、1<x≤3确定x+1,x-1,x-4/9的符号,然后根据绝对值的意义即可化简.解答:(1)根据题意得:c-5=0,a+b=0,b=1,∴a=-1,b=1,c=5.(2)①(-1+1)÷2=0,(1+5)÷2=3,∴x的取值范围为:0≤x≤3.②当0≤x≤4/9时,x+1>0,x-1<0,x-4/9≤0,∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)-2(x-4/9)=x+1+x-1-2x+8/9=8/9;当4/9<x≤1时,x+1>0,x-1≤0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1+(x-1)+2(x-4/9)=x+1+x-1+2x-8/9=4x-8/9;当1<x≤3时,x+1>0,x-1>0,x-4/9>0.∴|x+1|-|x-1|+2|x-4/9|=x+1-(x-1)+2(x-4/9)=x+1-x+1+2x-8/9=2x-10/9;例题3、数轴上从左到右的三个点A,B,C 所对应数的分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c 的值.(2)若原点O在A,B两点之间,求 |a|+|b|+ |b-c| 的值.(3)若O是原点,且OB=17,求a+b-c的值.参考答案(1)以B为原点,点A,C对应的数分别-2017,1000,a+b+c=-2017+0+1000=-1017.(2)当原点O在A,B两点之间时,|a|+|b|=2017,|b-c|=1000,∴ |a|+|b|+|b-c|2017 +1000 = 3017 .附另解:点 A,B,C 对应的数分别 b-2017,b,b+1000,∴ |a|+|b|+|b-c|=2017-b+b+1000= 3017 .(3)若原点O在点B的左边,则点A,B,C 所对应数分别是 a=-2000,b=17, c=1017,则 a+b-c=-2000+17-1017=-3000;若原点O在点B的右边,则点A,B,C所对应数分别是a=-2034,b=-17, c=983,则 a+b-c=-2034+(-17)-983=-3034绝对值压轴题小结绝对值作为初一数学的重点和难点,解题时一定要注意分类讨论。

初一数学绝对值知识点与经典例题

初一数学绝对值知识点与经典例题

绝对值的性质及化简【绝对值的几何意义】一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . (距离具有非负性)【绝对值的代数意义】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:① 取绝对值也是一种运算,运算符号是“| |”,求一个数的绝对值,就是根据性质去掉绝对值符号.② 绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相 反数;0的绝对值是0.③ 绝对值具有非负性,取绝对值的结果总是正数或0.④ 任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负 号,绝对值是5.【求字母a 的绝对值】 ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:|a|≥0如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =【绝对值的其它重要性质】(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;(5)||a|-|b|| ≤ |a ±b| ≤ |a|+|b|a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离.【去绝对值符号】基本步骤,找零点,分区间,定正负,去符号。

【绝对值不等式】(1)解绝对值不等式必须设法化去式中的绝对值符号,转化为一般代数式类型来解;(2)证明绝对值不等式主要有两种方法:A)去掉绝对值符号转化为一般的不等式证明:换元法、讨论法、平方法;B)利用不等式:|a|-|b|≦|a+b|≦|a|+|b|,用这个方法要对绝对值内的式子进行分拆组合、添项减项、使要证的式子与已知的式子联系起来。

人教版初一数学 绝对值(基础)知识讲解

人教版初一数学 绝对值(基础)知识讲解

绝对值(基础)【学习目标】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小;4. 理解并会熟练运用绝对值的非负性进行解题.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a -b >0,则a >b ;若a -b =0,则a =b ;若a -b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1ab =,则a b =;若1a b<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】类型一、绝对值的概念1.求下列各数的绝对值.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.【答案与解析】 解法一:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭. 解法二:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0. 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.已知一个数的绝对值等于2009,则这个数是________.【答案】2009或-2009【解析】根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法都要注意若一个数的绝对值是正数,则此数有两个,且互为相反数. 举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【变式2】如果|x |=2,那么x =_____ _ ; 如果|-x |=2,那么x =______. 如果|x -2|=1,那么x = ; 如果|x |>3,那么x 的范围是 .【答案】2-2+或;2-2+或;1或3;x>3或x<-3【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 .【答案】6或-6类型二、比较大小3.比较下列有理数大小:(1)-1和0; (2)-2和|-3| ;(3)13⎛⎫-- ⎪⎝⎭和12- ;(4)1--______0.1--【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--= ⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭. (4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【点评】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【变式1】比大小: 653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000; 1.38-______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】(山东临沂)下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1【答案】C 类型三、绝对值非负性的应用4. 已知|2-m|+|n-3|=0,试求m-2n的值.【思路点拨】由|a|≥0即绝对值的非负性可知,|2-m|≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m=0,n-3=0所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型四、绝对值的实际应用5.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.举一反三:【变式1】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶.(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.【变式2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).小虫得到的芝麻数为54×2=108(粒).。

七年级数学上册有理数《绝对值》知识点讲解及压轴题专题练习

七年级数学上册有理数《绝对值》知识点讲解及压轴题专题练习

七年级数学上册有理数《绝对值》知识点讲解及压轴题专题练习一、知识点概要1、 取绝对值的符号法则: (0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2、 绝对值的基本性质:①非负性 ②ab a b =• ③(0)a a b b b=≠ ④222a a a == ⑤a b a b +≤+ ⑥a b a b a b -≤-≤+3、 绝对值的几何意义: 从数轴上看,a 表示数学a 的点到原点的距离;a-二、分类经典例题解析 (一) 去绝对值符号化简例1:已知m m =-,化简12m m ---所得的结果是()A 、1-B 、1C 、23m -D 、32m - 例2:已知0a b c <<<,化简式子2a b a b c a b c -++--+- 例3:已知a b c abc x a b c abc=+++,且a 、b 、c 都不等于0,求x 的所有可能的值。

(变式训练)(1)、如果a 、b 、c 是非零有理数,且0a b c ++=,那么a b c abc a b c abc+++的所有可能的值为( )A 、0B 、1或—1C 、2或—2D 、0或—2(2)、有理数a 、b 、c 均不为零,且0a b c ++=,设a b c x b c c a a b =+++++,试求代数式19992002x x -+的值。

例4:化简:① 21x - ② 13x x -+-(分析:零点讨论法)(二) 利用绝对值的几何意义解题例1、如图,已知数轴上点A 、B 、C 所对应的数a 、b 、c 都不为零,且C 是AB 的中点,如果2220a b a c b c a b c +--+--+-=,试确定原点O 的大致位置。

例2:如图,在数轴上有六个点,且AB=BC=CD=DE=EF ,则与点C 所表示的数最接近的整数是( )A 、—1B 、0C 、1D 、2例3:非零整数m 、n ,满足50m n +-=,所有这样的整数组(m ,n )共有: 组 变式训练:若a 、b 、c 为整数,且19991a bc a -+-=,求c a a b b c -+-+-的值b ac B 11-5F E D C B A例4:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB|=|a-b|. ①数轴上表示2和5两点之间的距离是_ _.②数轴上表示-2和-5的两点A 和B 之间的距离是_ _.③数轴上表示1和-3的两点A 和B 之间的距离是_ _.④数轴上表示X 和-1的两点A 和B 之间的距离是(x+1),如果|AB|=2,那么 X 为 ⑤当代数式|x+1|+|x-2|取最小值时,相应的x 的取值范围是_ .最小值为 探究性学习:(一)、某公共汽车运营线路AB 段上有A 、D 、C 、B 四个汽车站,如图现在要在AB 段上修建一个加油站M ,为了使加油站选址合理,要求A 、B 、C 、D 四个汽车站到加油站M 的路程总和最小,试分析加油站M 在何处选址最好?(二)、如果某公共汽车运营线路上有A 、B 、C 、D 、E 五个汽车站(从左至右依次排列),上述问题中加油站建在何处最好?(三)、如果某公共汽车运营线路上有A 、B 、C 、D 、E---- ;共n 个汽车站(从左至右依次排列),上述问题中加油站建在何处最好?D CB A(四)、根据以上结论,求12......616617x x x x -+-++-+-的最小值。

人教版七年级上册数学第1章 有理数 绝对值——绝对值的定义及性质

人教版七年级上册数学第1章 有理数 绝对值——绝对值的定义及性质

)B
知1-练
知识点 3 绝对值的性质
知3-讲
想一想:
互为相反数的两个数的绝对值有什么关系?
原点
-4 -3
-2
-1
0
1
2
3
-3到原点的距离是3 +3到原点的距离是3
互为相反数的两个数的绝对值相等.
知3-讲
1. 一个正数的绝对值是它本身;一个负数的绝对值是 它的相反数;0的绝对值是0.即
(1)如果a>0,那么 a =a;
知识点 2 绝对值的求法
知2-讲
1.几何定义:一般地,数轴上表示数a的点与原点的距
离叫做数a的绝对值,记作 a .
2.代数定义:一个正数的绝对值是它本身;一个负数
的绝对值是它的相反数;0的绝对值是0;任意一个
数的绝对值为唯一非负数.
用式子表示为:
(a a>0);
a
(0 a=0);
-(a a<0).
知2-讲
例1写出下列各数的绝对值:
,0,,,15-4.5,--53. -3 1
4
2
2
导引: 15 是正数,它的绝对值是它本身;0 的绝对值是0 , 4
- 3,-3 1 ,-4.5,-5都是负数,它们的绝
2
2
对值是它们的相反数.
解:15 15 ; 0 0; - 3 3 ; -3 1 3 1 ;
3
2
2
2
知3-练
3 写出下列各式的值,并回答问题.
1
15
=
__1_5___,2.5
=
__2_.5__ ,2 3
=
2 __3___ ;
2
-15
=
___1_5__,-2.5

湘教版-数学-七年级上册-【例题与讲解】绝对值

湘教版-数学-七年级上册-【例题与讲解】绝对值

1.2.3 绝对值1.绝对值的概念及表示(1)绝对值的几何意义我们把在数轴上表示数a 的点与原点的距离叫做数a 的绝对值.记作|a |. 这是绝对值的几何意义,例如:10到原点的距离是10;-10到原点的距离也是10,所以10与-10的绝对值相等,都是10.记作:|10|=10,|-10|=10.谈重点 绝对值的几何意义 绝对值的几何意义与数的正、负无关,只与表示该数的点到原点的距离有关.(2)绝对值的代数意义一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数.用字母表示为:若a >0,则|a |=a ;若a <0,则|a |=-a ;若a =0,则|a |=0.也可以归纳如下:|a |=⎩⎨⎧ a (a >0)0(a =0)-a (a <0)或|a |=⎩⎨⎧a (a ≥0)-a (a <0) 从代数角度来看:绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.【例1】 根据绝对值的概念,求下列各数的绝对值:-1.6,85,0,-10,+10,-a (a >0).分析:85,+10是正数,绝对值等于其本身;-1.6,-10是负数,绝对值等于其相反数;0的绝对值是0;因为a >0,所以-a 是负数,其绝对值等于它的相反数a .解:|-1.6|=1.6;⎪⎪⎪⎪⎪⎪85=85;|0|=0; |-10|=10;|+10|=10;|-a |(a >0)=a .2.绝对值的非负性一个数的绝对值就是表示这个数的点到原点的距离.由于距离是一个非负数,所以任何一个有理数的绝对值都是非负数,即无论a 取何值,都有|a |≥0.例如|2|=2,|-2|=2,|0|=0.一个数在数轴上表示的点离原点的距离越远,绝对值越大;离原点越近,绝对值越小.0的绝对值可以看成是原点到原点的距离,因此仍然是0.谈重点 数的大小与绝对值大小的关系 正数越大,它的绝对值越大;负数越小,它的绝对值越大;绝对值最小的数是0.【例2】 已知|x -4|+|y -1|=0,求x ,y 的值.分析:因为任何有理数的绝对值都是非负数,即|a |≥0,所以|x -4|≥0,|y -1|≥0,而两个非负数之和为0,则两个数均为0,所以可求出x ,y 的值.解:因为|x -4|≥0,|y -1|≥0,又|x -4|+|y -1|=0,所以只能|x -4|=0,|y -1|=0,即x -4=0,y -1=0,因此x =4,y =1. 析规律 非负数的性质 (1)若干个非负数的和仍是非负数;(2)有限个非负数的和为0,则每个非负数都为0;(3)非负数的最小值是0.3.绝对值的求法(1)利用数轴确定一个数的绝对值时,首先确定这个数在数轴上表示的点,然后再看一下这个点到原点的距离即可.(2)利用绝对值计算的法则,首先要判断这个数是正数、零,还是负数.如果绝对值里面的数是非负数,那么这个数的绝对值就是它本身;如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数,此时去掉绝对值号时,就要把绝对值里的数添上括号,再在括号前面加上负号,如|-5|=-(-5)=5.解技巧 求一个式子的绝对值的方法 求一个式子的绝对值时,要先根据题意判断这个式子的正负性,再根据法则化去绝对值符号.【例3】 (1)若a >3,则|a -3|=__________;(2)若a=3,则|a-3|=__________;(3)若a<3,则|a-3|=__________.解析:要想正确地化简|a-3|的结果.关键是确定a-3的符号.当a>3时,a-3>0,即a-3为正数,由正数的绝对值是它本身,可得结果为a-3;当a=3时,a-3=0,所以|a-3|=|0|=0;当a<3时,a-3<0,即a-3为负数,由负数的绝对值等于它的相反数可得|a-3|=-(a-3).答案:(1)a-3(2)0(3)-(a-3)解技巧化简含有字母的式子的绝对值的方法化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性,否则会出现错误.4.绝对值的性质(1)任何一个有理数均有绝对值,这个绝对值是唯一的,并且任何一个有理数都不大于它的绝对值,即x≤|x|;(2)有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是0,且无最大的绝对值;(3)绝对值等于其本身的数是正数或0.反过来,如果一个数的绝对值是其本身,那么这个数必是正数或0;(4)若两个数绝对值的和等于0,则这两个数分别等于0.即若|a|+|b|=0,则a =0,b=0;(5)已知一个数的绝对值,那么它所对应的是两个互为相反数的数.【例4】如图,点A,B在数轴上对应的有理数分别为m,n,则A,B之间的距离是__________.(用含m,n的式子表示)解析:由点A,B在数轴上的位置可得,m<0,n>0,A,B间的距离AB=|m|+|n|=-m+n.答案:-m+n5.利用数轴求绝对值问题一个数a的绝对值就是数轴上表示数a的点与原点的距离.数a的绝对值记作|a|,例如|5|就是5到原点的距离.正数的绝对值等于其本身,负数的绝对值为它的相反数.总结得到:|a |=⎩⎨⎧ a ,a >0,0,a =0,-a ,a <0,可知:任何一个数的绝对值总是非负数,即|a |≥0.绝对值为本身的数是非负数;绝对值最小的数是0.从数轴上观察可知,绝对值为一个正数的数有两个,如|a |=2,则a =±2. 注意:从数轴上正负两个方向考虑.解技巧 利用数轴解决绝对值问题:已知一个数的绝对值求原数时,如果能充分地利用数轴的直观性,能够提高解题的正确性,避免漏解.【例5-1】 实数a ,b 在数轴上的位置如图所示,那么化简|-b |-|a |的结果是( ).A .a -bB .b +aC .b -aD .-b -a解析:从数轴上可以看出a >0,b <0,所以-b >0,即-b 与a 都是正数,它们的绝对值都等于本身,所以|-b |-|a |=-b -a .答案:D【例5-2】 已知a ,b ,c 中的a ,b 均为负数,c 为正数,且|b |>|a |>|c |,(1)在数轴上表示a ,b ,c 的大致位置;(2)比较a ,b ,c 的大小.分析:(1)a ,b 在原点的左侧,c 在原点的右侧,且b 到原点的距离最大,a 到原点的距离其次,c 到原点的距离最小;(2)在数轴上表示的有理数,右边的数总大于左边的数.解:(1)如图所示.(2)b <a <c .6.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.谈重点 化简绝对值符号的关键 化简绝对值符号的关键是判断绝对值符号内的数是正数还是负数.【例6】 化简(1)-⎪⎪⎪⎪⎪⎪-23;(2)+|-24|; (3)⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫+312;(4)|-(-7.5)|;(5)-|-(-0)|. 分析:先判断数的符号,再求绝对值.解:(1)-⎪⎪⎪⎪⎪⎪-23=-23; (2)+|-24|=24;(3)⎪⎪⎪⎪⎪⎪-⎝⎛⎭⎪⎫+312=312; (4)|-(-7.5)|=7.5;(5)-|-(-0)|=-|0|=0.7.学习绝对值的五大误区误区一:认为|a |=a .因为a 可以表示正数、负数、0,由绝对值的意义可知,只有当a ≥0时,|a |=a 才成立.例如:已知实数a ,b 在数轴上的对应位置如图所示,则化简|a |=a ,而|b |=-b .误区二:误认为|a |=|b |,则a =b .事实上,当|a |=|b |时,可能a =b ,也可能a =-b .绝对值从几何意义上来讲是表示某数的点与原点的距离,互为相反数的两个数,虽然分布在原点的两边,但离原点的距离相等,所以互为相反数的两个数绝对值是相等的,不能由两数绝对值相等就简单的断定两数相等,还有可能互为相反数.误区三:忽略由绝对值求原数的双值特点.误认为|x |=a (a ≥0),则x =a .事实上,当|x |=a (a ≥0)时,x =±a .误区四:忽略“0”的特殊性.“0的绝对值是0”可以做两种理解,一种是0的绝对值是它本身(和正数的绝对值相同),另一种是0的绝对值是它的相反数(和负数的绝对值相同).误区五:计算绝对值,混淆绝对值符号与括号的意义.求多个数的绝对值的四则运算,应按顺序去掉绝对值后再进行运算.解含绝对值与相反数双重运算的计算题,应分清层次按照题意一步一步计算.【例7-1】下面推理正确的是().A.若|m|=|n|,则m=nB.若|m|=n,则m=nC.若|m|=-n,则m=nD.若m=n,则|m|=|n|解析:A中,若|m|=|n|,则m=±n;B中,若|m|=n(n一定是非负数),则m =±n,例如|±2|=2,此时m=±2,n=2,显然m=±n;C中,若|m|=-n,则m =n或m=-n,例如|±3|=-(-3)(n一定是非正数),此时m=±3,n=-3,所以m=±n.答案:D【例7-2】若m为有理数,且|-m|=-m,那么m是().A.非正数B.非负数C.负数D.不为零的数解析:根据“正数或零”的绝对值等于它本身可知,-m≥0,所以它的相反数m≤0,即非正数.答案:A【例7-3】填空:(1)-(-4)=__________;(2)-|-4|=__________;(3)|-18|-|-6|=__________(4)如果|a|=|-7|,那么a=__________.解析:(1)因为-(-4)表示-4的相反数,而-4的相反数是4,所以-(-4)=4;(2)因为-|-4|表示|-4|的相反数,而|-4|=4,所以-|-4|=-4;(3)因为|-18|=18,|-6|=6,所以|-18|-|-6|=18-6=12;(4)由绝对值的意义可知绝对值是7的数有两个是±7,所以a=±7.答案:(1)4(2)-4(3)12(4)±7。

七年级数学上册有理数—绝对值(含解析)

七年级数学上册有理数—绝对值(含解析)

七年级数学上册有理数——绝对值考试要求:重难点:绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-;(3)ab a b =⋅;a ab b =(0)b ≠; (4)222||||a a a ==;a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.例题精讲:【例1】到数轴原点的距离是2的点表示的数是( )A 、±2B 、2C 、-2D 、4【难度】1星【解析】此题要全面考虑,原点两侧各有一个点到原点的距离为2,即表示2和-2的点.【答案】根据题意,知到数轴原点的距离是2的点表示的数,即绝对值是2的数,应是±2.故选A.点评:利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.【例2】下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥【难度】2星【解析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【答案】①0是有理数,|0|=0,故本小题错误;②互为相反数的两个数的绝对值相等,故本小题错误;③互为相反数的两个数的绝对值相等,故本小题正确;④有绝对值最小的有理数,故本小题错误;⑤由于数轴上的点和实数是一一对应的,所以所有的有理数都可以用数轴上的点来表示,故本小题正确;⑥只有符号不同的两个数互为相反数,故本小题错误.所以③⑤正确.故选B.点评:本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.【例3】如果a的绝对值是2,那么a是()A、2B、-2C、±2D、【难度】1星【解析】根据题意可知:绝对值等于2的数应该是±2.【答案】2的绝对值是2,-2的绝对值也是2,所以a的值应该是±2.故选C.点评:本题考查了绝对值的概念,学生要熟练掌握.【例4】若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a【难度】2星【解析】:本题考查有理数的绝对值问题,如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零【答案】:解:∵a<0,∴|a|=-a.4a+7|a|=4a+7|-a|=4a-7a=-3a.选C.【例5】一个数与这个数的绝对值相等,那么这个数是()A、1,0B、正数C、非正数D、非负数【难度】1星【解析】:根据绝对值的性质进行解答即可.【答案】解:因为一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,所以一个数与这个数的绝对值相等,那么这个数是非负数.故选D.【例6】已知|x|=5,|y|=2,且xy>0,则x-y的值等于()A、7或-7B、7或3C、3或-3D、-7或-3【难度】2星【解析】先根据绝对值的定义求出x、y的值,再由xy>0可知x、y同号,根据此条件求出x、y的对应值即可.【答案】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵xy >0,∴当x=5时,y=2,此时x-y=5-2=3;当x=-5时,y=-2,此时x-y=-5+2=-3.故选C .点评:本题考查的是绝对值的性质及有理数的加减法,熟知绝对值的性质是解答此题的关键.【例7】若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数 【难度】2星 【解析】本题作为选择题可用排除法进行解答,由于 是分式,所以x ≠0,故可排除C 、D ;再根据x 的取值范围进行讨论即可.【答案】:解:∵ 是分式, ∴x ≠0,∴可排除C 、D ,∵当x >0时,原式可化为 =1,故A 选项错误.故选B .点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【例8】已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是( )A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b【难度】3星【解析】根据绝对值的定义,可知a>0,b<0时,|a|=a,|b|=-b,代入|a|<|b|<1,得a<-b<1,由不等式的性质得-b>a,则1-b>1+a,又1+a>1,1>-b>a,进而得出结果.【答案】∵a>0,∴|a|=a;∵b<0,∴|b|=-b;又∵|a|<|b|<1,∴a<-b<1;∴1-b>1+a;而1+a>1,∴1-b>1+a>-b>a.故选D.点评:本题主要考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0;互为相反数的绝对值相等.【例9】已知a、b互为相反数,且|a-b|=6,则|b-1|的值为()A、2B、2或3C、4D、2或4【难度】2星【解析】根据互为相反数的两数和为0,又因为|a-b|=6,可求得b的值,代入即可求得结果判定正确选项.【答案】∵a、b互为相反数,∴a+b=0,∵|a-b|=6,∴b=±3,∴|b-1|=2或4.故选D.点评:此题把相反数和绝对值的运算结合求解.先根据相反数求出b的值,再确定绝对值符号中代数式的正负,去绝对值符号.【例10】a<0,ab<0,计算|b-a+1|-|a-b-5|,结果为()A、6B、-4C、-2a+2b+6D、2a-2b-6【难度】2星【解析】:根据已知条件先去掉绝对值即可求解.【答案】解:∵a<0,ab<0,∴b-a+1>0,a-b-5<0,∴|b-a+1|-|a-b-5|=b-a+1+a-b-5=-4.故选A.【例11】若|x+y|=y-x,则有()A、y>0,x<0B、y<0,x>0C、y<0,x<0D、x=0,y≥0或y=0,x≤0【难度】4星【解析】根据绝对值的定义,当x+y≥0时,|x+y|=x+y,当x+y≤0时,|x+y|=-x-y.从中得出正确答案.:【答案】解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0∴x=0,y≥0或y=0,x≤0选D.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出x,y的值是解答此题的关键.【例12】已知:x<0<z,xy>0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值()A、是正数B、是负数C、是零D、不能确定符号【难度】4星【解析】:先根据已知条件确定x、y、z的符号及其绝对值的大小,再画出数轴确定出各点在数轴上的位置,根据绝对值的性质即可去掉原式的绝对值,使原式得到化简.【答案】:解:由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=0【例11】给出下面说法:(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m,则m<0;(4)若|a|>|b|,则a>b,其中正确的有()A、(1)(2)(3)B、(1)(2)(4)C、(1)(3)(4)D、(2)(3)(4)【难度】3星【解析】:分别根据绝对值的性质、相反数的定义进行解答.【答案】解:(1)正确,符合绝对值的性质;(2)正确,符合绝对值的性质;(3)正确,符合绝对值的性质;(4)错误,例如a=-5,b=2时,不成立.故选A.(1)相反数的定义:只有符号不同的两个数,叫互为相反数;(2)绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.【例12】已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________【难度】3星【解析】:根据图示,可知有理数a,b,c的取值范围b>1>a>0>c>-1,然后根据它们的取值范围去绝对值并求|c-b|-|b-a|-|a-c|的值.【答案】:解:根据图示知:b>1>a>0>c>-1,∴|c-b|-|b-a|-|a-c|=-c+b-b+a-a+c=0故答案是0.点评:本题主要考查了关于数轴的知识以及有理数大小的比较.【例13】若x<-2,则|1-|1+x||=______若|a|=-a,则|a-1|-|a-2|= ________【难度】3星【解析】根据已知x<-2,则可知1+x<0,x+2<0;再根据绝对值的定义|1-|1+x||逐步去掉绝对值可转化为-2-x根据已知|a|=-a与绝对值的定义,那么a≤0,则|a-1|-|a-2|可去掉绝对值后【答案】∵x<-2,∴1+x<0,x+2<0,则|1-|1+x||=|1-[-(1+x)]|=|2+x|=-2-x;∵|a|=-a,∴a≤0,∴a-1<0,a-2<0,,则|a-1|-|a-2|=1-a-(2-a),=1-a-2+a,=-1.故答案为:-2-x,-1.点评:此题主要考查了绝对值的性质,能够根据已知条件正确地判断出1+x<0、x+2<0、a≤0进而得出a-1<0、a-2<0,这些是解答此题的关键【例14】()2120a b++-=,分别求a b,的值【难度】3星【解析】根据平方和绝对值的非负性解决。

七年级上册数学绝对值必考八大经典题型pdf

七年级上册数学绝对值必考八大经典题型pdf

七年级上册数学绝对值必考八大经典题型题型一:定义考查例1:|-2|的相反数是分析:负数的绝对值等于它的相反数。

答案:-2例2:绝对值大于等于1,小于4的所有正整数和为分析:符合题意的正整数有1、2、3。

答案:6例3:已知|x|=5,则x=,已知|-x|=3,则x=分析:绝对值等于5的数有±5,同理-x=±3,则x=±3。

答案:±5;±3例4:已知|x-2|=3,则x=;已知|2-x|=1,则x=分析:|x-2|=3表示x与2的距离是3,故x=-1或5。

|2-x|=1表示x与2的距离是1,故x=1或3。

答案:-1或5;1或3题型二:非负性例1:已知|a+3|+|b-1|=0,则a+b的值是分析:多个非负数的和为0,则每一个都是0,故a=-3,b=1。

答案:-2例2:已知|a-1|+|b-2|+2|c-3|=0,则a+b+c的值是分析:多个非负数的和为0,则每一个都是0,故a=1,b=2,C=3。

答案:6例3:已知|x|=x,则x0;已知|x|=-x,则x0分析:绝对值具有非负性,所以等式右边一定≥0。

答案:≥;≤例4:已知|x-2|=x-2,则x2;已知|x-2|=2-x,则x2分析:绝对值具有非负性,所以等式右边一定≥0。

答案:≥;≤题型三:去绝对值例1:|3-π|+|π-4|=分析:去绝对值,必须先判断绝对值内的正负,3-π和π-4均为负数,绝对值应取相反数,故原式=π-3+4-π=1答案:1例2:已知|≤x≤5,则||-x|+|x-5|=分析:因为|≤x≤5,所以1-x≤0,x-5≤0,故原式=x-1+5-x=4。

答案:4例3:如图所示,则|a-b|-|2c+b|+|a+c|=分析:由图可知:C,1a-b>0,2c+b<0,a+c<0,故原式=a-b-(-2c-b)+(-a-c)=C答案:C题型四:分类讨论例1:若|a|=5,|b|=7,且|a+b|=a+b,则a-b=分析:a=±5,b=±7,且a+b≥0(非负性);故a=5、b=7,或a=-5,b=7答案:-2或-12例2:若|a|=1,|b|=2,|c|=3,且a>b>c。

人教版初一数学上册绝对值(基础)知识讲解

人教版初一数学上册绝对值(基础)知识讲解

绝对值(基础)【学习目标】1.掌握一个数的绝对值的求法和性质;2.进一步学习使用数轴,借助数轴理解绝对值的几何意义;3.会求一个数的绝对值,并会用绝对值比较两个负有理数的大小; 4. 理解并会熟练运用绝对值的非负性进行解题. 【要点梳理】 要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0. 要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号 正数大于负数 -数为0正数与0:正数大于0 负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小. 【典型例题】类型一、绝对值的概念1.求下列各数的绝对值.112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解. 【答案与解析】 解法一:因为112-到原点距离是112个单位长度,所以111122-=.因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭.解法二:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭.因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0. 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭. 【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法:首先判断这个数是正数、负数还是0.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.2.(2015•毕节市)下列说法正确的是( ) A. 一个数的绝对值一定比0大 B. 一个数的相反数一定比它本身小 C. 绝对值等于它本身的数一定是正数 D. 最小的正整数是1 【答案】D .【解析】A 、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B 、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C 、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D 、最小的正整数是1,正确. 【总结升华】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键. 举一反三:【变式1】求绝对值不大于3的所有整数.【答案】绝对值不大于3的所有整数有-3、-2、-1、0、1、2、3.【变式2】(2015•镇江)已知一个数的绝对值是4,则这个数是 . 【答案】±4.【变式3】数轴上的点A 到原点的距离是6,则点A 表示的数为 . 【答案】6或-6类型二、比较大小3.(2016春•上海校级月考)比较大小: ﹣(﹣1.8)(填“>”、“<”或“=”).【思路点拨】先化简,再比较大小,即可解答. 【答案】<.【解析】解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8, ∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<. 【总结升华】本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.举一反三:【高清课堂:绝对值比大小 356845 典型例题2】 【变式1】比大小: 653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000;1.38-______-1.384; -π______-3.14.【答案】>;=;>;>;<【变式2】下列各数中,比-1小的数是( )A .0B .1C .-2D .2【答案】C【变式3】数a 在数轴上对应点的位置如图所示,则a ,-a ,-1的大小关系是( ).A .-a <a <-1B .-1<-a <aC .a <-1<-aD .a <-a <-1 【答案】C类型三、绝对值非负性的应用4. 已知|2-m|+|n-3|=0,试求m-2n 的值.【思路点拨】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m|=0,|n-3|=0.因此,2-m=0,n-3=0,所以m=2,n=3.【答案与解析】因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0所以|2-m|=0,|n-3|=0即2-m=0,n-3=0所以m=2,n=3故m-2n=2-2×3=-4.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a=b=…=m=0.类型四、绝对值的实际应用5.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大.【点评】绝对值越小,越接近标准.举一反三:【变式1】某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L 的误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检查结果如下表:+0.0018 -0.0023 +0.0025-0.0015 +0.0012 +0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差范围内的)?(2)哪一瓶净含量最接近规定的净含量?【答案】(1)绝对值不超过0.002的有4瓶,分别是检查结果为+0.0018,-0.0015,+0.0012,+0.0010的这四瓶.(2)第6瓶净含量与规定的净含量相差最少,最接近规定的净含量.【变式2】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) .小虫得到的芝麻数为54×2=108(粒) .附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断.【答案】B.【解析】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b. 【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题? 【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80. 可以采用列表法探究其解显然,当x =21时,4x-(25-x)×1=80. 所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。

七年级数学上册有理数 绝对值化简知识点讲解归纳及练习

七年级数学上册有理数 绝对值化简知识点讲解归纳及练习

七年级数学上册有理数 绝对值化简知识点讲解归纳及练习一 考点、热点回顾绝对值的几何意义:一个数的绝对值就是数轴上表示数的点与原点的距离.数的绝对值记a a a 作.a 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对0值是.0③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:符号是负号,绝对值是.5-5求字母的绝对值:a ① ② ③(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(0)(0)a a a a a ≥⎧=⎨-<⎩(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若,则,,0a b c ++=0a =0b =0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即,且;a a ≥a a ≥-(2)若,则或;a b =a b =a b =-(3);;ab a b=⋅a a b b =(0)b ≠(4);222||||a a a ==(5),a b a b a b -≤+≤+对于,等号当且仅当、同号或、中至少有一个时,等号成立;a b a b +≤+a b a b 0对于,等号当且仅当、异号或、中至少有一个时,等号成立.a b a b -≤+a b a b 0绝对值几何意义当时,,此时是的零点值.x a =0x a -=a x a -零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.的几何意义:在数轴上,表示这个数的点离开原点的距离.a 的几何意义:在数轴上,表示数、对应数轴上两点间的距离.a b-a b 二、例题及练习化简绝对值的关键是确定绝对值符号内部分的正负,从而去掉绝对值符号,常用的方法大致有五种类型。

七年级数学上册有理数 绝对值化简知识点讲解归纳及练习

七年级数学上册有理数 绝对值化简知识点讲解归纳及练习

七年级数学上册有理数 绝对值化简知识点讲解归纳及练习一 考点、热点回顾绝对值的几何意义:一个数的绝对值就是数轴上表示数的点与原点的距离.数的绝对值记a a a 作.a 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;的绝对0值是.0③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:符号是负号,绝对值是.5-5求字母的绝对值:a ① ② ③(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(0)(0)a a a a a ≥⎧=⎨-<⎩(0)(0)a a a a a >⎧=⎨-≤⎩利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若,则,,0a b c ++=0a =0b =0c =绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即,且;a a ≥a a ≥-(2)若,则或;a b =a b =a b =-(3);;ab a b=⋅a a b b =(0)b ≠(4);222||||a a a ==(5),a b a b a b -≤+≤+对于,等号当且仅当、同号或、中至少有一个时,等号成立;a b a b +≤+a b a b 0对于,等号当且仅当、异号或、中至少有一个时,等号成立.a b a b -≤+a b a b 0绝对值几何意义当时,,此时是的零点值.x a =0x a -=a x a -零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值.的几何意义:在数轴上,表示这个数的点离开原点的距离.a 的几何意义:在数轴上,表示数、对应数轴上两点间的距离.a b-a b 二、例题及练习化简绝对值的关键是确定绝对值符号内部分的正负,从而去掉绝对值符号,常用的方法大致有五种类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档