2021届重庆市第一中学高三上学期第一次月考数学试题解析
重庆市第一中学校2024-2025学年高三上学期11月月考数学试题(无答案)

【考试时间:11月30日16:15~18:15】数学试题卷注意事项:1.答卷前、考生务必将自已的姓名、准考证号码填写在答题卡上2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题(本大题共8小题、每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数满足,则可以为( )A. B. C. D.2.已知平面向量,则“”是“与的夹角为钝角”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.为等比数列的前项和,若,且,则等于()A.2 B.4050 C. D.4.已知实数满足,则的最小值为( )A.20 B.25 C.30 D.355.若为锐角,已知( )A. B. C. D.6.已知函数的定义域为,若函数与函数的交点为,则( )A.0 B. C.2025 D.40507.已知圆,直线,点为直线上的动点.过点作圆的两条切线,切点分别为.若使得四边形为正方形的点有且只有一个,则实数的值为()A.或B.或5C.3或D.3或58.已知点分别为椭圆的左、右焦点,过点作轴的垂线交椭圆于两点,分别为的内切圆圆心,则的周长是( )z i z z =⋅z 1i -1i +12i +12i -()()1,2,,1a b m ==- 2m <a b n S {}n a n 12a =20222030a a +=2025S 2-4050-x 104x <<1914x x +-αsin cos αα-=cos2α=2525-3535-()f x ()(),22f x f x =--R ()11221x x g x --=-+()f x ()()()112220252025,,,,,,x y x y x y 20251i i x ==∑2025222:(1)4C x y +-=:0l x y m ++=P l P C ,M N PMCN P m 3-5-3-5-12,F F 22:11612x y C +=1F x C ,M N 123,,O O O 12122,,MF F NF F F MN 123O O OC. D.二、多项选择题(本大题共3小题、每小题6分,共18分.在每小题给出的四个选项中,有多个选项是符合题目要求的、全部选对的得6分,部分选对的得部分分,有选借的得0分)9.函数的部分图象如图所示,则下列结论正砳的是( )A.B.C.关于直线对称D.将函数的图象向左平移个单位得到函数的图象10.已知抛物线的焦点为,过点的直线交该抛物线于,两点,点,则下列结论正确的是( )A.B.C.若直线的斜率为1,则D.面积的最小值为11.已知函数,则下列说法正确的是( )A.在上是增函数B.若关于的方程有两个不相等的实根,且,则C.若,不等式恒成立,则的取值范围为2+22+2-()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭2ω=π3ϕ=()f x 11π12x =()f x 5π12()2cos2g x x =24x y =F F ()()1122,,,A y B x y x ()0,1P -1214x x ⋅=-111AF BF+=AB 8AB =ABP ()()e ,ln x f x x g x x x =-=-()ln g x ()1,∞+x ()g x a =12,x x 12x x <1223x x +>0,0a x >∀>()e ln 1xa f f x x x ⎛⎫⋅-+ ⎪⎝⎭…a 2,e ∞⎡⎫+⎪⎢⎣⎭D.若,且,则的最大值为三、填空题(本大题共3小题,每小题5分,共15分)12.若直线与直线平行,则实数__________.13.点为平面直角坐标系的原点,,点满足,点为圆上一动点,则的最小值为__________.14.若数列满足对任意都有,则称数列为上的“凹数列”.已知,若数列为上的“凹数列”,则实数的取值范围是__________.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)记的内角的对边分别为.已知为边的中点,且.(1)求证:;(2)若,求的面积.16.(本小题满分15分)已知数列的前项和为,且.(1)若,求;(2)若数列是单调递增数列,求首项的取值范围.17.(本小题满分15分)某校高三年级在一次数学测验中,各位同学的成绩,现规定:成绩在的同学为“成绩顶尖”,在的同学为“成绩优秀”,低于90分的同学为“不及格”.(1)已知高三年级共有2000名同学,分别求“成绩优秀”和“不及格”的同学人数(小数按四舍五入取整处理);(2)现在要从“成绩顶尖”的甲乙同学和“成绩优秀”的丙丁戊己共6位同学中随机选4人作为代表交流学习心得,在已知至少有一名“成绩顶尖”同学入选的条件下,求同学丙入选的概率:(3)为了了解班级情况,现从某班随机抽取一名同学询问成绩,得知该同学为142分.请问:能否判断该班成绩明显优于或者差于年级整体情况,并说明理由.(参考数据:若,则,()()()12e 1f x g x a a ==>-210x x >>()21ln e ln x ax a a -+-e-21:20l x m y m ++=2:210l x y ++=m =O ()3,0A -P 2PA PO =Q 22:(3)(4)1C x y -+-=PQ PC +{}n a *n ∈N 212n n n a a a +++…{}n a *N 244m n n mn n b +=-{}n b {}*2n n ∈N ∣…m ABC ,,A B C ,,a b c 12cos ,a c B D c a+=+AC sin sin BD ABC a C ∠=BD b =4b =ABC {}n a n n S 1221n n a S n +=+-11a =n S {}n a 1a ()110,100N ξ~[140,150][)130,140()2,X N u σ~()0.6827P u X u σσ-+=……)18.(本小题满分17分)已知双曲线,其左顶点,离心率.(1)求双曲线方程及渐近线方程;(2)过右焦点的直线与双曲线右支交于两点,与渐近线分别交于点,直线分别与直线交于.(i)求的取值范围;(ii )求证:以为直径的圆过定点,并求出该定点.19.(本小题满分17分)已知函数.(1)讨论函数极值点的个数;(2)当时,数列满足:.求证:的前项和满足.()()220.9544,330.9973P u X u P u X u σσσσ-+=-+=…………()2222:10,0x y C a b a b-=>>()2,0A -32e =F ,P Q ,M N ,AP AQ 43x =,R T PQMN RT ()293ln 32f x x ax x =+-+()f x 32a ={}n a ()113,126n n n f a a a a +==+{}n a n 23n n S n <<+。
2021年 第一中学高三上学期第一次月考数学模拟练习解析版配套精选卷

,
,
所以,
即,,
因为函数是定义在实数集上的奇函数,且在区间上是单调递增,所以函数在R上单调递增,所以
【点睛】
对数函数有。
10.
【解析】
【分析】
此题可以先通过对函数进行求导来求出b的值,再通过裂项相消法得出结果。
【详解】
因为函数的图象在点处的切线与直线平行,
所以
所以
【点睛】
裂项相消法:
。
11.
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单项选择题
1.集合,,那么___________.
2.假设复数是虚数单位)是纯虚数,那么实数的值为___________.
3.“〞是“直线与直线互相垂直〞的___________条件〔填“必要不充分〞“充分不必要〞“充要〞或“既不充分又不必要〞〕.
(1)①求椭圆的标准方程;
②假设点在椭圆上,且,求的值.
(2)直线与椭圆相交于两点,假设以为直径的圆经过坐标原点,求实数的值.
19.设函数是奇函数,且当时,取得极小值.
〔1〕求函数的解析式;
〔2〕求使得方程仅有整数根的所有正实数的值;
〔3〕设,,求的最大值.
20.各项均为正数的数列中,设,,且.
(1)设,证明:数列是等比数列;
2021届江苏省徐州市第一中学
高三上学期第一次月考数学试题
数学
考前须知:
1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
第二关 以解析几何中与椭圆相关的综合问题为解答题-(原卷版)

压轴解答题第二关 以解析几何中与椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.类型一 中点问题典例1已知椭圆()2222:10x y C a b a b+=>>的离心率13e =,焦距为2.(1)求椭圆C 的方程;(2)过点()0,2Q 作斜率为()0k k ≠的直线l 与椭圆C 交于A 、B 两点,若x 轴上的一点E 满足AE BE =,试求出点E 的横坐标的取值范围.【来源】河南省温县第一高级中学2021-2022学年高三上学期1月月考文科数学试题【举一反三】已知椭圆C :()222210y x a b a b+=>>的焦距与椭圆2213x y +=的焦距相等,且C 经过抛物线()212y x =- (1)求C 的方程;(2)若直线y kx m =+与C 相交于A ,B 两点,且A ,B 关于直线l :10x ty ++=对称,O 为C 的对称中心,且AOB 的面积为103,求k 的值. 类型二 垂直问题典例2 已知椭圆1C :22221x y a b +=(0a b >>)的离心率为22,1C 的长轴是圆2C :222x y +=的直径.(1)求椭圆的标准方程;(2)过椭圆1C 的左焦点F 作两条相互垂直的直线1l ,2l ,其中1l 交椭圆1C 于P ,Q 两点,2l 交圆2C 于M ,N 两点,求四边形PMQN 面积的最小值.【来源】广东省肇庆市2021届高三二模数学试题【举一反三】已知椭圆222:1(1)x C y a a+=>,离心率63e =.直线:1l x my =+与x 轴交于点A ,与椭圆C 相交于,E F 两点.自点,E F 分别向直线3x =作垂线,垂足分别为11,E F .(Ⅰ)求椭圆C 的方程及焦点坐标;(Ⅱ)记1AEE ,11AE F ,1AFF 的面积分别为1S ,2S ,3S ,试证明1322S S S 为定值. 类型三 面积问题典例3如图,已知椭圆221:12x y Γ+=和抛物线22:3x y Γ=,斜率为正的直线l 与y 轴及椭圆1Γ依次交于P 、A 、B 三点,且线段AB 的中点C 在抛物线2Γ上.(1)求点P 的纵坐标的取值范围;(2)设D 是抛物线2Γ上一点,且位于椭圆1Γ的左上方,求点D 的横坐标的取值范围,使得PCD 的面积存在最大值.【来源】浙江省2022届高三水球高考命题研究组方向性测试Ⅴ数学试题【举一反三】已知椭圆C :22221(x y a b a b+=>>0)的右焦点F 与右准线l :x =4的距离为2.(1)求椭圆C 的方程;(2)若直线():0m y kx t t =+≠与椭圆C 相交于A ,B 两点,线段AB 的垂直平分线与直线m 及x 轴和y 轴分别相交于点D ,E ,G ,直线GF 与右准线l 相交于点H .记AEGF ,ADGH 的面积分别为S 1,S 2,求12S S 的值.【来源】江苏省苏州中学等四校2021-2022学年高三下学期期初联合检测数学试题类型四 范围与定值问题典例4已知椭圆C :()2222 1x y a b c a b +=>>2()2,1P .(1)求C 的方程;(2)若A ,B 是C 上两点,直线AB 与曲线222x y +=相切,求AB 的取值范围. 【来源】重庆市2022届高三下学期开学考试数学试题【举一反三】已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(2,0)F ,过点F 且垂直于x 轴的直线与椭圆相交所得的弦长为2. (1)求椭圆C 的方程;(2)过椭圆内一点P (0,t ),斜率为k 的直线l 交椭圆C 于M ,N 两点,设直线OM ,ON (O 为坐标原点)的斜率分别为k 1,k 2,若对任意k ,存在实数λ,使得12k k k λ+=,求实数λ的取值范围. 【来源】江苏省扬州大学附中2021届高三下学期2月检测数学试题典例5 已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与短轴的两个端点组成的三角形是等腰直角三角形,点(10,1)P 是椭圆C 上一点. (1)求椭圆C 的标准方程;(2)设(,)R s t 是椭圆C 上的一动点,由原点O 向22()()4x s y t -+-=引两条切线,分别交椭圆C 于点P ,Q ,若直线,OP OQ 的斜率均存在,并分别记为12,k k ,求证:12k k ⋅为定值. 【来源】云南省昭通市2022届高三期末数学(理)试题【举一反三】已知椭圆2222:1(0)x y C a b a b +=>>经过两点33,2M ⎭,242N ⎝⎭. (1)求椭圆C 的方程:(2)A 、B 分别为椭圆C 的左、右顶点,点P 为圆224x y +=上的动点(P 不在坐标轴上),P A 与PB 分别与椭圆C 交E 、F 两点,直线EF 交x 轴于H 点,请问点P 的横坐标与点H 的横坐标之积是否为定值?若是,求出这个定值;若不是,说明理由.【来源】江西省景德镇市2022届高三第二次质检数学(理)试题【精选名校模拟】1.已知椭圆2222C :1(0)x y a b a b+=>>的离心率为12,直线1:22l y x =-+与椭圆C 有且仅有一个公共点A .(Ⅰ)求椭圆C 的方程及A 点坐标;(Ⅱ)设直线l 与x 轴交于点B .过点B 的直线与C 交于E ,F 两点,记点A 在x 轴上的投影为G ,T 为BG 的中点,直线AE ,AF 与x 轴分别交于M ,N 两点.试探究||||TM TN ⋅是否为定值?若为定值,求出此定值;否则,请说明理由.【来源】湖南省长沙市第一中学、广东省深圳实验学校2021届高三下学期联考数学试题2.如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点(0,2)A ,右焦点为(c,0)F ,直线AF 交椭圆于B点,且满足||2||AF FB =, 33||2AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值. 【来源】黑龙江省漠河市高级中学2020-2021学年高三上学期第三次摸底考试文科数学试题3.已知椭圆22221(0)x y a b a b +=>>的左焦点为F ,离心率3e = 4.(Ⅰ)求椭圆的方程;(Ⅱ)过点F 的直线l 与椭圆交于M ,N 两点(非长轴端点),MO 的延长线与椭圆交于P 点,求PMN 面积的最大值,并求此时直线l 的方程.【来源】天津市十二区县重点学校2021届高三下学期毕业班联考(一)数学试题4.已知椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F 3G 是椭圆上一点,12GF F △的周长为643+.(1)求椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 交于A ,B 两点,且四边形OAGB 为平行四边形,求证:OAGB 的面积为定值.【来源】陕西省宝鸡市2021届高三下学期高考模拟检测(二)文科数学试题5.已知椭圆()2222:10x y C a b a b +=>>的离心率22e =,过右焦点(),0F c 的直线y x c =-与椭圆交于A ,B 两点,A 在第一象限,且2AF =.(1)求椭圆C 的方程;(2)在x 轴上是否存在点M ,满足对于过点F 的任一直线l 与椭圆C 的两个交点P ,Q ,都有MP MQ ⋅为定值?若存在,求出点M 的坐标;若不存在,说明理由.【来源】河南省济源(平顶山许昌市)2021届高三第二次质量检测理科数学试题6.已知椭圆2222:1(0,0)x y C a b a b+=>>的离心率为12,并且经过()03P ,点.(1)求椭圆C 的方程;(2)设过点P 的直线与x 轴交于N 点,与椭圆的另一个交点为B ,点B 关于x 轴的对称点为B ',直线PB '交x 轴于点M ,求证:OM ON ⋅为定值. 【来源】北京平谷区2021届高三数学一模试题7.已知经过原点O 的直线与离心率为22的椭圆()2222:10x y C a b a b +=>>交于A ,B 两点,1F 、2F 是椭圆C 的左、右焦点,且12AF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)如图所示,设点P 是椭圆C 上异于左右顶点的任意一点,过点Р的椭圆C 的切线与2x =-交于点M .记直线1PF 的斜率为1k ,直线2MF 的斜率为2k ,证明:12k k ⋅为定值,并求出该定值. 【来源】广西南宁市2021届高三一模数学(文)试题8.设O 是坐标原点,以1F 、2F 为焦点的椭圆()2222:10x y C a b a b+=>>的长轴长为2,以12F F 为直径的圆和C 恰好有两个交点. (1)求C 的方程;(2)P 是C 外的一点,过P 的直线1l 、2l 均与C 相切,且1l 、2l 的斜率之积为112m m ⎛⎫-≤≤-⎪⎝⎭,记u 为PO 的最小值,求u 的取值范围.【来源】广东省深圳市2021届高三一模数学试题9.已知点(1,0)A ,点B 是圆221:(1)16O x y ++=上的动点,线段AB 的垂直平分线与1BO 相交于点C ,点C 的轨迹为曲线E . (1)求E 的方程(2)过点1O 作倾斜角互补的两条直线12,l l ,若直线1l 与曲线E 交于,M N 两点,直线2l 与圆1O 交于,P Q 两点,当,,,M N P Q 四点构成四边形,且四边形 MPNQ 的面积为831l 的方程. 【来源】广东省广州市2021届高三一模数学试题10.已知椭圆2222:1(0)x y C a b a b+=>>的离心率是12,椭圆C 过点31,2⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程;(2)已知12,F F 是椭圆C 的左、右焦点,过点2F 的直线l (不过坐标原点)与椭圆C 交于,A B 两点,求11F A F B ⋅ 的取值范围.【来源】东北三省三校(哈师大附中 东北师大附中 辽宁省实验中学 )2020-2021学年高三下学期第一次联合模拟考试文科数学试题11.已知椭圆2222:1x y C a b+=7,离心率为12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M ,N 两点,直线m 的方程为:2x a =-,过点M 作ME 垂直于直线m 交直线m 于点E .(1)求椭圆C 的标准方程;(2)①求证线段EN 必过定点P ,并求定点P 的坐标; ②点O 为坐标原点,求OEN 面积的最大值.【来源】广东省广州市执信中学2022届高三下学期二月月考数学试题12.已知()12,0A -,()22,0A 分别为椭圆C :()222210x y a b a b +=>>的左、右顶点,点31,2H ⎛⎫ ⎪⎝⎭在椭圆上.过点1,02D ⎛⎫⎪⎝⎭的直线交椭圆于两点P ,Q (P ,Q 与顶点1A ,2A 不重合),且直线1A P 与2A Q ,1A Q 与2A P 分别交于点M ,N . (1)求椭圆C 的方程(2)设直线1A P 的斜率为1k ,直线1A Q 的斜率为2k . ①证明:12k k ⋅为定值; ②求DMN 面积的最小值.【来源】山东省潍坊市2021-2022学年高三上学期期末数学试题13.已知椭圆()2222:10x y E a b a b+=>>的右焦点为F ,点A ,B 分别为右顶点和上顶点,点O 为坐标原点,11e OF OA FA+=,OAB 2,其中e 为E 的离心率. (1)求椭圆E 的方程;(2)过点O 异于坐标轴的直线与E 交于M ,N 两点,射线AM ,AN 分别与圆22:4C x y +=交于P ,Q 两点,记直线MN 和直线PQ 的斜率分别为1k ,2k ,问12k k 是否为定值?若是,求出该定值;若不是,请说明理由.【来源】四川省绵阳市2021-2022学年高三上学期第二次诊断性考试理科数学试题14.已知点M 是椭圆C :()222210y x a b a b +=>>上一点,1F ,2F 分别为椭圆C 的上、下焦点,124F F =,当1290F MF ∠=︒,12F MF △的面积为5.(1)求椭圆C 的方程:(2)设过点2F 的直线l 和椭圆C 交于两点A ,B ,是否存在直线l ,使得2OAF 与1OBF △(O 是坐标原点)的面积比值为5:7.若存在,求出直线l 的方程:若不存在,说明理由.【来源】江西省赣州市2022届高三上学期期末数学(文)试题15.已知椭圆2222:1(0)x yC a ba b+=>>过点3P⎛⎝⎭3(1)求椭圆C的方程;(2)在y轴上是否存在点M,过点M的直线l交椭圆C于A,B两点,O为坐标原点,使得三角形AOB的面积1tan2=-∠S AOB若存在,求出点M的坐标;若不存在,说明理由.【来源】江西省赣州市2022届高三上学期期末数学(理)试题。
重庆市第一中学2021-2022高二数学上学期10月月考试题.doc

重庆市第一中学2021-2022高二数学上学期10月月考试题注意事项:1. 答卷前,考生务必将自己的姓名、准考证号码填写在答卷上。
2. 作答时,务必将答案写在答题卡上,写在本试卷及草稿纸上无效。
3. 考试结束后,将答题卡交回。
一、选择题:本题共12小题,每题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1. 若直线的倾斜角为 60,则直线的斜率为 ( ) A .3 B .3- C .3 D .3- 2. 在等差数列}{n a 中,3642=+a a ,则数列}{n a 的前5项之和5S 的值为( ) A .108 B .90 C .72 D .243. 经过点(2,5)A ,(3,6)B -的直线在x 轴上的截距为( ) A .2B .3-C .27-D .274. 在ABC △中,3A π∠=,3BC =,6AB =,则C ∠的大小为( )A .6πB .4π C .2π D .23π 5.方程2222210x y ax ay a a +++++-=表示圆,则a 的范围是( ) A .2a <-或23a >B .223a -<<C .20a -<<D .223a -<<6. 正方体1AC 中,,E F 分别是1,DD BD 的中点,则直线1AD 与EF 所成角的余弦值是( )A .12B .3 C .6 D .6 7. 已知数列}{n a 为等比数列,20,2272474=+=+a a a a ,则101a a 的值为( ) A .16 B .8 C .8- D .16-8. 设21,F F 分别为椭圆1422=+y x 的左、右焦点,点P 在椭圆上,且,则=∠21PF F ( ) A .6π B .4π C .3π D .2π 9. 与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是( )A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=10. 已知点)3,7(P ,圆22:210250M x y x y +--+=,点Q 为在圆M 上一点,点S 在x 轴上,则SP SQ +的最小值为( )A .7B .8C .9D .1011. 如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( ) A .3π B .3π C .4πD .34π 12. 在平面直角坐标系xOy 中,点P 为椭圆C :22221(0)y x a b a b+=>>的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若]3,4[ππα∈,则椭圆C 的离心率的取值范围为( )A .60,⎛⎤⎥ ⎝⎦B .30,⎛⎤⎥ ⎝⎦C .63,⎡⎤⎢⎥⎣⎦D .622,⎡⎤⎢⎥⎣⎦二、填空题:本题共4小题,每题5分,共20分。
函数的单调性+奇偶性(含答案)

函数的单调性+奇偶性(含解析)一、单选题1.函数1()lg(21)f x x =-的定义域为( ) A .1|2x x ⎧⎫>⎨⎬⎩⎭ B .12x x ⎧≥⎨⎩且}1x ≠ C .12x x ⎧⎨⎩且}1x ≠ D .1|2x x ⎧⎫≥⎨⎬⎩⎭2.函数()f x = ) A .1,3⎛⎫-+∞ ⎪⎝⎭ B .1,13⎛⎫- ⎪⎝⎭ C .1,13⎡⎫-⎪⎢⎣⎭ D .1,3⎛⎫-∞- ⎪⎝⎭3.已知函数,若方程有两个实数根,则实数k 的取值范围是( ) A .(−1,−12] B .[−12,0) C .[−1,+∞) D .[−12,+∞) 4.设函数()1,02,0x x x f x b x +≥⎧=⎨+<⎩是R 上的单调增函数,则实数b 的取值范围为( ) A .(),1-∞ B .[)0,+∞ C .(],0-∞ D .(]1,1- 5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A .12x y ⎛⎫= ⎪⎝⎭B .23y x -=C .1y x x =-D .()2ln 1y x =+ 6.设 ()212,11,1x x f x x x ⎧--≤⎪=⎨+>⎪⎩,则()()2f f =( ) A .-2B .2C .5D .267.集合{|,P x y =={|,Q y y ==U =R ,则()U P Q ⋂是( ) A .[)1,+∞B .∅C .[)0,1D .[)1,1- 8.函数x x x f 431)(3-=的单调递减区间是( )A .)2,(--∞B .)2,2(-C .),2(∞+D .),2()2,(+∞⋃--∞9.已知集合214A x x ⎧⎫=⎨⎬⎩⎭∣,集合{B y y ==∣,则A B =( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[1,1]- C .[0,1] D .1[0,]210.若函数()f x 满足()2f x x =+,则()32f x +的解析式是( )A .()3298f x x +=+B .()3232f x x +=+C .()3234f x x +=--D .()3234f x x +=+11.函数f (x )是定义域为R 的奇函数,当x>0时,f (x )=x+1,则当x<0时,f (x )的 表达式为( )A .1)(+-=x x fB .1)(--=x x fC .1)(+=x x fD .1)(-=x x f12.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1B .2C .4D .5二、多选题13.已知函数()f x 是一次函数,满足()()98ff x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =-C .()34f x x =-+D .()34f x x =-- 14.已知函数2,[1,2)x y x ∈-=,下列说法正确的是( )A .函数是偶函数B .函数是非奇非偶函数C .函数有最大值是4D .函数的单调增区间是为(0,2)15.下列函数中,与y x =是同一个函数的是( ) A .3log 3x y = B.3log 3x y = C.y = D .2y = 16.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合-{}1,1,2,4M =-,{}1,2,4,16N =,给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( )A .2y x =B .2y x =+C .2x y =D .2y x三、填空题17.函数()f x =_______.18.偶函数()f x 满足当0x >时,()34f x x =+,则()1f -=_____.19.已知定义在R 上的偶函数()f x 在(0,)+∞上单调递增,则()f x 在(,0)-∞上的单调性是________.20.设,0()ln ,0x e x g x x x ⎧≤=⎨>⎩则1()2g g ⎡⎤=⎢⎥⎣⎦____________.四、解答题21.已知()222f x x x =-+.(1)画出()f x 的图象.(2)根据图象写出()f x 的单调区间和值域.22.用函数的单调性的定义证明函数()4f x x x=+在()2,+∞上是增函数. 23.求解下列函数的定义域(1)(2) 24.求函数1,01(),12x f x x x x ⎧<<⎪=⎨⎪⎩的最值25.已知函数1(),f x a x=-其中0a >。
重庆市第一中学校2023-2024学年高二下学期第一次月考数学试题

重庆市第一中学校2023-2024学年高二下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.在某次学科期末检测后,从全部考生中选取100名考生的成绩(百分制,均为整数)分成[50,60),[)[)60,70,70,80,[80,90),[90,100)五组后,得到频率分布直方图(如右图),则下列说法正确的是()据学校共有的人数,得到关于高一人数的方程,解方程得到高一人数,用人数乘以抽取的比例,得到结果.本题考查分层抽样,在分层抽样之前有一个小型的运算,是一个基础题,运算量不大,可以作为选择和填空出现.分层抽样主要用于个体数量较多,且个体间具有明显差异的,这时采用分层抽样合适.4.D【分析】分甲得2个和甲得1个磁力片两种情况分类求解,再由分类加法计数原理得解.【详解】若甲分得两个磁力片,共有1232C A 6=种分法,若甲只分得一个磁力片,共有2232C A 6=种分法,由分类加法计数原理,可得共有6612+=种分法.故选:D 5.A【分析】根据递推关系式可知数列{}n a 是以6为周期的周期数列,根据周期性和对数运算法则可求得结果.【详解】由题意知:0n a >,31n n a a +=Q ,361n n a a ++\=,6n n a a +\=,即数列{}n a 是以6为周期的周期数列;()()()1234561425361a a a a a a a a a a a a ==Q ,()()()33712202412202412345612ln ln ln ln ln ln a a a a a a a a a a a a a a \++×××+=×××××=+ln1ln 2ln 2=+=.故选:A.6.C【分析】根据题意找出相应的规律,第37个数为第21行第3个数,从而可求解.【详解】由题意可得每行有2个数且从第3行开始计数,所以第37项为“杨辉三角”中第21行第3个数,所以20n =,3r =,所以3122020C C 190-==.故C 正确.故选:C.=。
重庆市第一中学2024-2025学年高三上学期适应性月考(一)数学试题

重庆市第一中学2024-2025学年高三上学期适应性月考(一)数学试题一、单选题1.已知集合(){}22log 13A x x =<−≤,{}5,6,7,8B =,则集合A B ⋂的子集个数为( ) A .16B .8C .4D .22.已知m ∈R ,n ∈R ,则“228m n +>”是“4mn >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数()()22,2,1,2,x x x f x f x x −⎧+≥⎪=⎨+<⎪⎩则()2log 3f =( )A .83B .103C .356D .3764.已知角α,β都是锐角,且tan α,tan β是方程2430x x −+=的两个不等实根则()cos αβ+=( )A .5−B .5−C D .55.我校田径队有十名队员,分别记为,,,,,,,,,A B C D E F G H J K ,为完成某训练任务,现将十名队员分成甲、乙两队.其中将,,,,A B C D E 五人排成一行形成甲队,要求A 与B 相邻,C 在D 的左边,剩下的五位同学排成一行形成乙队,要求F 与G 不相邻,则不同的排列方法种数为( ) A .432B .864C .1728D .25926.在ABC V 中,若sin :sin :sin 2:5:6A B C =,且AC =ABC V 的外接圆的面积为( ) A .4πB .8πC .16πD .64π7.若()*n n ∈N 次多项式()()1212100n n n n n n P t a t a t a t a t a a −−=++⋅⋅⋅+++≠满足()cos cos n P x nx =,则称这些多项式()n P t 为切比雪夫多项式.如,由2cos 22cos 1θθ=−可得切比雪夫多项式()2221P x x =−,同理可得()3343P x x x =−.利用上述信息计算sin 54︒=( )A B C D .488.若eln1.5a =,0.15e 4b −=,98c =(其中e 为自然对数的底数),则实数a ,b ,c 的大小关系是( ) A .c b a >>B .c a b >>C .b a c >>D .b c a >>二、多选题9.下列关于概率统计的知识,其中说法正确的是( ) A .数据1−,0,2,4,5,6,8,9的第25百分位数是1 B .已知随机变量(),XB n p ,若()40E X =,()30D X =,则160n =C .若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且()()1P N M P N +=,则M 与N 相互独立D .若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线132y x =−+上,则这组样本数据的相关系数为12−10.若0x >,0y >,且22x y +=,则下列结论正确的是( )A .224x y +的最小值为2B .24x y +的最小值为C .()sin 123x y ++>D .若实数1z >,则2232121x x y z xy z ⎛⎫++−⋅+ ⎪−⎝⎭的最小值为811.已知函数()2cos sin sin 21f x x x x =−++,则下列说法正确的是( )A .函数()f x 的一个周期为πB .函数()f x 的一个对称中心为π,4⎛− ⎝C .函数()f x 在区间π,04⎡⎤−⎢⎥⎣⎦上单调递增 D .方程()f x =3π11π,44⎛⎤⎥⎝⎦上共有6个不同实根三、填空题12.已知函数()()3f x x ax a =+∈R 在1x =处取得极值,则函数()f x 的极大值为 .13.已知函数()()ππcos 0,22f x x ωϕωϕ⎛⎫=+>−<< ⎪⎝⎭,直线π9x =和点5π,018⎛⎫⎪⎝⎭是()f x 的一组相邻的称轴和对称中心,且()f x 在区间ππ,63⎛⎫⎪⎝⎭上单调递减,则ϕ= .14.函数()f x 及其导函数()f x '的定义域均为R ,()()2f x f x x −=+,且()()1T x f x ='+为奇函数,()2512n f n ='=∑ .四、解答题15.锐角ABC V 的内角,,A B C 所对的边分别为,,a b c ,若2cos 2b a B c +=,且a =3b =. (1)求边c 的值;(2)求内角A 的角平分线AD 的长.16.已知函数()2ππsin sin 12cos 442x f x x x x ⎛⎫⎛⎫⎛⎫=−+−− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)若123x f ⎛⎫= ⎪⎝⎭,求πsin 26x ⎛⎫− ⎪⎝⎭的值;(2)若先将()f x 的图象上每个点的横坐标变为原来12倍,再将函数图象向右平移π4个单位,将函数图象上每个点的纵坐标变为原来的2数()g x 图象,求()g x 在ππ,86x ⎛⎫∈− ⎪⎝⎭上的值域和单调递减区间.17.某工厂生产某款电池,在满电状态下能够持续放电时间不低于10小时的为合格品,工程师选择某台生产电池的机器进行参数调试,在调试前后,分别在其产品中随机抽取样本数据进行统计,制作了如下的22⨯列联表:(1)根据表中数据,依据0.01α=的独立性检验,能否认为参数调试与产品质量有关联; (2)现从调试前的样本中按合格和不合格,用分层随机抽样法抽取8件产品重新做参数调试,再从这8件产品中随机抽取3件做对比分析,记抽取的3件中合格的件数为X ,求X 的分布列和数学期望;(3)用样本分布的频率估计总体分布的概率,若现在随机抽取调试后的产品1000件,记其中合格的件数为Y ,求使事件“Y k =”的概率最大时k 的取值.参考公式及数据:()()()()22()n ad bc a b c d a c b d χ−=++++,其中n a b c d =+++.18.在平面直角坐标系中,若点(),T x y 绕着原点O 逆时针旋转θ角后得到点(),T x y ''',则cos sin x x y θθ=−',sin cos y x y θθ=+'.已知曲线1C 绕原点顺时针旋转π4后得到曲线2C :2xy =.(1)求曲线1C 的方程;(2)已知1F ,2F 分别是曲线1C 的上、下焦点,M ,N 是曲线1C 上两动点且它们分布在y 轴同侧、x 轴异侧,12MF NF ∥,若1212MF NF MF NF λ+=⋅,求实数λ的值;(3)在(2)问中,若2MF 与1NF 的交点为P ,则是否存在两个定点1T ,2T ,使得12PT PT +为定值?若存在,求1T ,2T 的坐标;若不存在,请说明理由.19.已知曲线()2e cos mxf x x mx =⋅+(m ∈R ,e 为自然对数的底数)在0x =处的切线的倾斜角为π4,函数()2sin 1g x x x =++.(1)若函数()()2x f x x ϕ=−在区间[],t t −上单调递增,求实数t 的最大值;(2)证明:函数()f x 的图象与函数()g x 的图象在[]0,5πx ∈内有5个不同的交点; (3)记(2)中的5个交点分别为A ,B ,C ,D ,E ,横坐标依次为0x ,1x ,2x ,3x ,4x (01234x x x x x <<<<),求证:01324x x x x x +−>−.。
重庆市第一中学2024-2025学年高一上学期10月月考数学试题

重庆市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}{}432A B x x ==,,则A B =I ( )A .2163x x ⎧⎫<≤⎨⎬⎩⎭ B .{}316x x ≤<C .223x x ⎧⎫<≤⎨⎬⎩⎭D .{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是( ) A .230,1x x x ∀≥+≤ B .230,1x x x ∀<+≤ C .230,1x x x ∃<+≤D .230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1f xg x +的定义域为( )A .()4,3-B .()2,5-C .1,33⎛⎫⎪⎝⎭D .1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是( )A .2a ≥B .2a >C .6a >D .6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A .{31}mm -<<∣ B .{3m m <-∣或1}m > C .{13}mm -<<∣D .{1mm <-∣或3}m > 6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是( ) A .30,2⎛⎫⎪⎝⎭B .30,2⎡⎫⎪⎢⎣⎭C .()0,1D .[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是( )AB .34a a b ++的最小值为7+C .()()11a b ++的最大值为94D .2232a b a b +++的最小值为16 8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为( ) A .2048B .2024C .1024D .512二、多选题9.已知,,a b c ∈R ;则下列不等式一定成立的有( ) A .若0ab ≠且a b <,则11a b> B .若0a b >>,则20242024b b a a +<+ C .若,a bcd >>,则ac bd >D .()221222a b a b ++≥--10.下列说法正确的是( )A .若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B .若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C .若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D .“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有( )A .()()101320272024f f λ+=B .当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C .当0λ<时,()f x 在区间[]2024,2025上单调递减D .当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题12.已知集合{}210A xx =-=∣,则集合A 有个子集. 13.已知集合[]()(){}1,4,10A B xx a ax ==+-≤∣,若A B B =U 且0a ≥,则实数a 的取值范围是.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为.四、解答题15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围. 16.已知函数()f x =A ,集合{}321B xx =->∣. (1)求A B U ;(2)集合{}321M xa x a =-≤≤-∣,若M ()R A ð,求实数a 的取值范围. 17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值; (2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >L,则有*12,2n a a a n n n+++∈≥N L ,当且仅当12n a a a ===L 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11k k ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=- ⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=; ③对任意32x >,恒有()0f x <; ④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞ ⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.。
2021-2022学年重庆一中八年级(上)第一次月考数学试卷(10月份)(解析版)

2021-2022学年重庆一中八年级第一学期第一次月考数学试卷(10月份)一、选择题:(本大题12个小题,每小题4分,共48分).1.9的相反数是()A.B.﹣C.9D.﹣92.下列电视台标志中是轴对称图形的是()A.B.C.D.3.估计(2+)÷的值应在()之间.A.7和8B.8和9C.9和10D.10和114.下列事件中确定事件是()A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上5.下列计算正确的是()A.=3B.×=C.=8a3b3D.6.下列几组数据中不能作为直角三角形三边长的是()A.0.5、1.2、1.3B.、3、2C.9、40、41D.32、42、527.《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,若设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则可列方程组为()A.B.C.D.8.下列说法中正确的有()个.①(﹣1,﹣x2)位于第三象限;②的平方根是3;③若x+y=0,则点P(x,y)在第二、四象限角平分线上;④点A(2,a)和点B(b,﹣3)关于x轴对称,则a+b的值为5;⑤点N(1,n)到x轴的距离为n.A.1B.2C.3D.49.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(100,50)B.(50,50)C.(25,50)D.(26,50)10.如图,在边长为7的正方形ABCD中,E为BC边上一点,F为AD边上一点,连接AE、EF,将△ABE沿EF折叠,使点A恰好落在CD边上的A′处,若A′D=2,则B′E 的长度为()A.B.C.D.211.某客运公司的特快巴士与普通巴士同时从甲地出发,以各自的速度匀速向乙地行驶,普通巴士到达乙地后停止行驶,特快巴士到达乙地后,停留30分钟,然后按原路以另一速度匀速返回甲地,已知两辆巴士分别距乙地的路程y(千米)与行驶时间x(小时)之间的图象如图所示,则下列说法错误的是()A.普通巴士的速度是60km/hB.特快巴士返回甲地时的速度为80km/hC.行驶过程中,特快巴士与普通巴士的相遇时间为4小时D.普通巴士到达乙地时,特快巴士与甲地之间的距离为185千米12.如图,Rt△ABC中,∠ACB=90°且CA=CB,D为△ABC外一点,连接AD,过D作DE⊥DA交BC于点E,F为DE上一点且DF=DA,连接BF,CD.将线段CD绕点C 逆时针旋转90°到线段CG,连接DG分别交BF、BA于点M、N,连接BG、CF.下列结论:①BM=FM;②CG=DM;③∠BCG>AND;④CF+AD>DG;⑤若BG=2,BC=,CF=,则S四边形ADFC=2+.其中正确的个数为()A.2个B.3个C.4个D.5个二、填空题:(本大题共8个小题,每小题3分,共24分)请将每小题的正确答案直接填在答题卡中对应的横线上.13.(﹣1)2021+(3﹣π)0=.14.新冠疫情爆发至今全球各个国家受到不同程度的影响,印度作为受疫情影响较严重的国家,已有累计确诊病例约3300万,数据3300万用科学记数法可表示为.15.若代数式有意义,则x的取值范围是.16.已知是关于x,y的二元一次方程组的解,则m+2n的值为.17.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球4个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数n=.18.如图,长方体中,AB=6m,BC=4m,BE=2m,一只蚂蚁从点A出发沿长方体表面爬行到点F,至少需要爬行米.19.国庆期间,小艾同学和小一同学相约在某小区门口一同出发,各自骑自行车前往距离2000米的欢乐谷游玩,出发后不久,小艾突感身体不适,于是在路旁休息了4分钟后再次出发,以1.2倍之前的速度冲向终点,小一同学则在到达终点之后立即原路原速返回迎接小艾同学,最终陪同小艾同学骑完了全程.在整个骑行过程中,变速前后小艾同学、小一同学两人均保持匀速,且途中掉头时间忽略不计,小艾同学、小一同学两人相距的路程y(米)与出发的时间x(秒)之间的关系如图所示.则第二次相遇时,小艾、小一两位同学距离终点米.20.开学伊始,各校新生都组织了军训,某校军训汇演的场地为一块长方形地块,某班准备学生在场地内站成行距、列距均为1m的方阵,场地边缘不站人,且最靠边的行、列距离边缘都是1m.但后来发现这样安排只能刚好站下参加汇演的所有女性,就决定男生站在边缘一圈的位置,且行、列与女生对齐,发现刚好占满所有可以站人的位置.汇演时男生挥舞彩旗,女性摇动啦啦球,采购彩旗和啦啦球时发现啦啦球的单价是彩旗的4倍,而啦啦球的总价是彩旗总价的 4.8倍.如果场地面积不超过60m2.那么场地的面积为.三、解答题:(本大题共7个小题,其中22、24题各8分,21、23、25-27题各10分,共66分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.(1)﹣()(2+);(2)解方程组:.22.已知:在△ABC中,AB=AC,BD⊥AC交AC于D.(1)尺规作图:作线段BC的垂直平分线交BD于O,交BC于E,连接CO;(2)若∠BAC=56°,求∠DOC的度数.23.先化简,再求值:[(3a+2b)(a﹣b)﹣(2a+b)(2a﹣b)+b(2a+b)]÷(a),其中+b2+2b+1=0.24.为选拔同学参加全市组织的青少年科学知识竞赛,重庆一中在全校进行了“请党放心,强国有我”科学知识竞赛,并对八年级(3)班全体同学本次知识竞赛成绩进行了统计,我们将成绩分为A、B、C、D、E五类,制成了如下不完整的条形统计图和扇形统计图(如图所示).请你根据统计图中的信息,解答下列问题:(1)八年级(3)班学生总人数是人;在扇形统计图中,a的值是;(2)若八年级(3)班得C等级的同学人数是得E等级的同学人数的4倍,请将条形统计图补充完整;(3)若等级为A表示优秀,等级为B表示良好,等级为C表示合格,等级为D表示不合格,等级为E表示差,根据本次统计结果,估计全校2000名学生中知识竞赛成绩在合格及以上的学生大约有多少人?25.体育与健康是学校素质教育的重要组成部分,为了活跃校园气氛,增强学生的集体观念,培养学生团队合作的精神.某学校将于11月份举办学生趣味运动会,计划用7380元购买足球和篮球共43个,分别作为运动会团体一、二等奖的奖品.已知足球的单价为180元,篮球的单价为160元.(1)学校计划购买足球和篮球各多少个?(列二元一次方程组解决该问题)(2)某老师按计划到商场购买足球和篮球时,正好赶上商场对商品价格进行调整,足球单价下降了a%,篮球单价上涨了a%,最终经费比计划节省了774元,求a的值.26.如图,在平面直角坐标系内,点B是x轴上的点,点A是y轴上的点,将△AOB沿直线AB翻折使点O落在C点处,过C点作CD⊥y轴交y轴于点D,已知C(4,8).(1)直接写出A、B两点的坐标;(2)若在x轴上存在某点N,使得以A、B、C.N四点为顶点的四边形面积为40,求N 点的坐标;(3)若P点是y轴上一动点,当△PAB为等腰三角形时,请直接写出点P的坐标.27.任意一个四位正整数,如果它的千位数字与百位数字的和是7,十位数字与个位数字的和为8,那么我们把这样的数称为“七上八下数”.例如:3453 的千位数字与百位数字的和为:3+4=7,十位数字与个位数字的和为:5+3=8,所以3453是一个七上八下数”:3452的十位数字与个位数字的和为:5+2≠8,所以3452不是一个“七上八下数”.(1)判断2571和4425是不是“七上八下数”?并说明理由;(2)若对于一个七上八下数m,交换其百位数字和十位数字得到新数m',并且定义F (m)=,若F(m)与m个位数字的135倍的和刚好为一个正整数的平方,求出满足条件的所有“七上八下数”m,并说明理由.四、解答题:(本题共12分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.28.如图,在△ABC中,∠A=45°.(1)如图1,若AC=6,BC=2,求△ABC的面积;(2)如图2,D为△ABC外的一点,连接CD,BD且CD=CB,∠ABD=∠BCD.过点C作CE⊥AC交AB的延长线于点E.求证:BD+2AB=AC;(3)如图3,在(2)的条件下,作AP平分∠CAE交CE于点P,过E点作EM⊥AP交AP的延长线于点M,点K为直线AC上的一个动点,连接MK,过M点作MK'⊥MK,且始终满足MK'=MK,连接AK',若AC=4,请直接写出AK'+MK'取得最小值时(AK'+MK′)2的值.参考答案一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个选项,其中只有一个是正确的,请将正确答案的代号在答题卡中对应的方框涂黑.1.9的相反数是()A.B.﹣C.9D.﹣9【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.解:9的相反数是﹣9,故选:D.2.下列电视台标志中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.解:A、是轴对称图形,本选项符合题意;B、不是轴对称图形,本选项不符合题意;C、不是轴对称图形,本选项不符合题意;D、不是轴对称图形,本选项不符合题意;故选:A.3.估计(2+)÷的值应在()之间.A.7和8B.8和9C.9和10D.10和11【分析】先化简原式,估算出的范围,再求出2+2的范围,即可得出选项.解:原式=2+2,∵9<15<16,∴3<<4,∵3.82=14.44,3.92=15.21,∴3.8<<4,∴7.6<2<8,∴9.6<2+2<10,∴(2+)÷的值应在9和10之间.故选:C.4.下列事件中确定事件是()A.掷一枚均匀的硬币,正面朝上B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上【分析】确定事件包括必然事件和不可能事件.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解:A、掷一枚均匀的硬币,正面朝上是随机事件;B、买一注福利彩票一定会中奖是随机事件;C、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,即确定事件;D、掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上是随机事件.故选:C.5.下列计算正确的是()A.=3B.×=C.=8a3b3D.【分析】直接利用二次根式的性质以及积的乘方运算法则和二次根式的加减运算法则分别化简得出答案.解:A.无法化简,故此选项不合题意;B.×==,故此选项符合题意;C.(ab)3=2a3b3,故此选项不合题意;D.+无法计算,故此选项不合题意;故选:B.6.下列几组数据中不能作为直角三角形三边长的是()A.0.5、1.2、1.3B.、3、2C.9、40、41D.32、42、52【分析】根据如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.解:A、0.52+1.22=1.32,能组成直角三角形,故此选项不合题意;B、22+32=()2,能组成直角三角形,故此选项不合题意;C、92+402=412,能组成直角三角形,故此选项不合题意;D、∵32=9,42=16,52=25,9+16=25,不能组成三角形,更不能组成直角三角形,故此选项符合题意.故选:D.7.《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,若设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则可列方程组为()A.B.C.D.【分析】直接利用5个大桶加上1个小桶可以盛米3斛,1个大桶加上5个小桶可以盛米2斛,分别得出等式组成方程组求出答案.解:设1个大桶可以盛米x斛,1个小桶可以盛米y斛,则,故选:A.8.下列说法中正确的有()个.①(﹣1,﹣x2)位于第三象限;②的平方根是3;③若x+y=0,则点P(x,y)在第二、四象限角平分线上;④点A(2,a)和点B(b,﹣3)关于x轴对称,则a+b的值为5;⑤点N(1,n)到x轴的距离为n.A.1B.2C.3D.4【分析】①根据平面直角坐标系中的点的坐标特点判断即可;②根据平方根的定义判断即可;③根据第二、四象限角平分线上的点的横坐标与纵坐标的和等于0判断即可;④直接利用关于x轴对称点的性质(横坐标不变,纵坐标互为相反数)得出a,b的值,进而得出答案;⑤根据点到x轴的距离等于纵坐标的绝对值判断即可.解:当x=0时,(﹣1,﹣x2)位于x轴上,故①说法错误;的平方根是±3,故②说法错误;若x+y=0,则点P(x,y)在第二、四象限角平分线上,故③说法正确;∵点A(2,a)与点B(b,﹣3)关于x轴对称,∴a=3,b=2,∴a+b的值是:3+2=5.故④说法正确;⑤点N(1,n)到x轴的距离为|n|.故⑤说法错误;说法中正确的有②,共2个.故选:B.9.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第100次跳动至点P100的坐标是()A.(100,50)B.(50,50)C.(25,50)D.(26,50)【分析】根据题意,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到P100的横坐标.解:经过观察可得:P1和P2的纵坐标均为1,P3和P4的纵坐标均为2,P5和P6的纵坐标均为3,因此可以推知P99和P100的纵坐标均为100÷2=50;其中4的倍数的跳动都在y轴的右侧,那么第100次跳动得到的横坐标也在y轴右侧.P1横坐标为1,P4横坐标为2,P8横坐标为3,依此类推可得到:P n的横坐标为n÷4+1(n 是4的倍数).故点P100的横坐标为:100÷4+1=26,纵坐标为:100÷2=50,点P第100次跳动至点P100的坐标是(26,50).故选:D.10.如图,在边长为7的正方形ABCD中,E为BC边上一点,F为AD边上一点,连接AE、EF,将△ABE沿EF折叠,使点A恰好落在CD边上的A′处,若A′D=2,则B′E 的长度为()A.B.C.D.2【分析】由正方形的性质和折叠的性质可得AB=BC=CD=7,∠B=∠C=90°,A'C=CD﹣A'D=5,AE=AE',BE=B'E,由勾股定理可求B'E的长度.解:∵四边形ABCD是正方形,∴AB=BC=CD=7,∠B=∠C=90°,∴A'C=CD﹣A'D=5,∵△ABE沿EF折叠,使点A恰好落在CD边上的A′处,∴AE=A'E,BE=B'E,在Rt△ABE中,AE2=AB2+BE2,在Rt△A'CE中,A'E2=A'C2+EC2,∴49+BE2=25+(7﹣BE)2,∴BE==B'E,故选:C.11.某客运公司的特快巴士与普通巴士同时从甲地出发,以各自的速度匀速向乙地行驶,普通巴士到达乙地后停止行驶,特快巴士到达乙地后,停留30分钟,然后按原路以另一速度匀速返回甲地,已知两辆巴士分别距乙地的路程y(千米)与行驶时间x(小时)之间的图象如图所示,则下列说法错误的是()A.普通巴士的速度是60km/hB.特快巴士返回甲地时的速度为80km/hC.行驶过程中,特快巴士与普通巴士的相遇时间为4小时D.普通巴士到达乙地时,特快巴士与甲地之间的距离为185千米【分析】根据题意和函数图象中的数据,可以先计算出普通巴士的速度,从而可以判断A;再计算出特快巴士的速度,从而判断B;然后根据图象中的时间,可以计算出行驶过程中,特快巴士与普通巴士的相遇时间,从而可以判断C,再计算出普通巴士到达乙地时,特快巴士与甲地之间的距离,即可判断D.解:由图象可得,普通巴士的速度是:(300﹣120)÷3=60(km/h),故选项A不符合题意;特快巴士返回甲地时的速度为:300÷(7﹣3﹣)=80(km/h),故选项B不符合题意;设行驶过程中,特快巴士与普通巴士的相遇时间为a小时,60a+80(a﹣3﹣)=300,解得a=4,故选项C不符合题意;普通巴士到达乙地时用的时间为:300÷60=5(小时),∴普通巴士到达乙地时,特快巴士与甲地之间的距离为:80×(7﹣5)=180(千米),故选项D符合题意;故选:D.12.如图,Rt△ABC中,∠ACB=90°且CA=CB,D为△ABC外一点,连接AD,过D作DE⊥DA交BC于点E,F为DE上一点且DF=DA,连接BF,CD.将线段CD绕点C 逆时针旋转90°到线段CG,连接DG分别交BF、BA于点M、N,连接BG、CF.下列结论:①BM=FM;②CG=DM;③∠BCG>AND;④CF+AD>DG;⑤若BG=2,BC=,CF=,则S四边形ADFC=2+.其中正确的个数为()A.2个B.3个C.4个D.5个【分析】先证明△BCG≌△ACD,得到对应边,对应角相等,依次得出①正确和③错误,由等腰直角三角形的性质和勾股定理得出②正确,由三角形的三边关系得出④正确,利用勾股定理逆定理和三角形的面积计算公式即可判定⑤正确,从而得出结论.解:连接AF,∵∠ACB=90°,∠GCD=90°,∴∠7=∠5,又∵CA=CB且CD=CG,∴△BCG≌△ACD(SAS),∴BG=AD,∠2=∠CAD,∴BG=AD=DF,∵∠ADE=90°,∴∠CAD+∠CED=360°﹣∠ACB﹣∠ADE=180°,∴∠CAD=∠1,∴∠1=∠2,∴∠3=∠1+∠4=∠2+∠4=∠GBM,又∵∠DMF=∠GMB,BG=DF,∴△DMF≌△GMB(AAS),∴GM=DM,BM=FM,故①正确;∵CD2+CG2=DG2,∴2CG2=(2DM)2,CD=,∴,故②正确;∵CF+AD=CF+DF>CD,即CF+AD>,故④正确;∵∠CAN=∠CDN=45°,∠8=∠NDC+∠6,∠8=∠NAC+∠5,∴∠5=∠6,∴∠7=∠6,故③错误;如图,连接AF,若BG=2,BC=,CF=,∴BG=AD=DF=2,∴AF2=AD2+DF2=8,即AF=2,∴AF2+CF2=BC2=AC2,∴AF⊥CF,∴S四边形ADFC=S△ADF+S△AFC==2+,故⑤正确,∴正确的个数为4个,故选:C.二、填空题:(本大题共8个小题,每小题3分,共24分)请将每小题的正确答案直接填在答题卡中对应的横线上.13.(﹣1)2021+(3﹣π)0=0.【分析】直接利用有理数的乘方运算法则、零指数幂的性质分别化简,再利用有理数的加减运算法则计算得出答案.解:原式=﹣1+1=0.故答案为:0.14.新冠疫情爆发至今全球各个国家受到不同程度的影响,印度作为受疫情影响较严重的国家,已有累计确诊病例约3300万,数据3300万用科学记数法可表示为 3.3×107.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.解:3300万=33000000=3.3×107.故答案为:3.3×107.15.若代数式有意义,则x的取值范围是x>﹣4.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.解:由题意得:x+4>0,解得:x>﹣4,故答案为:x>﹣4.16.已知是关于x,y的二元一次方程组的解,则m+2n的值为7.【分析】根据二元一次方程的解的定义解决此题.解:由题得:﹣3+2n=8,﹣m﹣2=2.∴m=﹣4,n=.∴m+2n=﹣4+2×=﹣4+11=7.故答案为:7.17.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球4个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数n=5.【分析】根据口袋中装有白球6个,黑球4个,黄球n个,故球的总个数为6+4+n,再根据黄球的概率公式列式解答即可.解:∵口袋中装有白球6个,黑球4个,黄球n个,∴球的总个数为6+4+n,∵从中随机摸出一个球,摸到黄球的概率为,∴=,解得,n=5.经检验,n=5是分式方程的解.故答案为:5.18.如图,长方体中,AB=6m,BC=4m,BE=2m,一只蚂蚁从点A出发沿长方体表面爬行到点F,至少需要爬行6米.【分析】蚂蚁经过两个面有三种爬行路线,分别将其展开成长方形,利用勾股定理求其对角线即可.解:如图,若从前面再到上面可得:AF==6,如图,若从前面再到右面可得:AF==4,如图,若从左面再到上面可得:AF==2,∵6<4,∴蚂蚁从点A出发沿长方体表面爬行到点F,至少需要爬行6米,故答案为:6.19.国庆期间,小艾同学和小一同学相约在某小区门口一同出发,各自骑自行车前往距离2000米的欢乐谷游玩,出发后不久,小艾突感身体不适,于是在路旁休息了4分钟后再次出发,以1.2倍之前的速度冲向终点,小一同学则在到达终点之后立即原路原速返回迎接小艾同学,最终陪同小艾同学骑完了全程.在整个骑行过程中,变速前后小艾同学、小一同学两人均保持匀速,且途中掉头时间忽略不计,小艾同学、小一同学两人相距的路程y(米)与出发的时间x(秒)之间的关系如图所示.则第二次相遇时,小艾、小一两位同学距离终点204米.【分析】根据题意和函数图象中的数据,可以先计算出小一的速度,然后即可计算出小艾开始的速度和后来的速度,再根据小艾突感身体不适,于是在路旁休息了4分钟后再次出发,可以求得当小一到达终点时小艾走的路程,然后即可求得他们第二次相遇时,小一从终点到他们相遇的时间,此时小一从终点到他们相遇走的路程就是小艾、小一两位同学距离终点的距离.解:由图象可得,小一在第500秒到达终点,故小一的速度为:2000÷500=4(米/秒),前70秒,小艾比小一多走70米,故小艾开始的速度为:4+70÷70=4+1=5(米/秒),后来的速度为:5×1.2=6(米/秒),当小一到达终点时,小艾走的路程为:70×5+(500﹣70﹣4×60)×6=1490(米),小一从终点返回到与小艾相遇用的时间为:(2000﹣1490)÷(4+6)=51(秒),故第二次相遇时,小艾、小一两位同学距离终点:4×51=204(米),故答案为:204.20.开学伊始,各校新生都组织了军训,某校军训汇演的场地为一块长方形地块,某班准备学生在场地内站成行距、列距均为1m的方阵,场地边缘不站人,且最靠边的行、列距离边缘都是1m.但后来发现这样安排只能刚好站下参加汇演的所有女性,就决定男生站在边缘一圈的位置,且行、列与女生对齐,发现刚好占满所有可以站人的位置.汇演时男生挥舞彩旗,女性摇动啦啦球,采购彩旗和啦啦球时发现啦啦球的单价是彩旗的4倍,而啦啦球的总价是彩旗总价的 4.8倍.如果场地面积不超过60m2.那么场地的面积为33m2或50m2.【分析】先设出相应未知数,再根据题意列出方程,利用实际问题的限制要求,得到a 和>的取值范围,在范围内判断求解即可.解:设长方形地块的长为am,宽为bm,彩旗的单价为x元/个;由题意可知女生占地的长为(a﹣2)m,宽为(b﹣2)m,由间隔均为1m,可得女生人数为(a﹣2+1)(b﹣2+1),即为(ab﹣a﹣b+1)人,由于男生站在边缘一圈的位置,且行、列与女生对齐,发现刚好占满所有可以站人的位置,所以男生人数为2(a+I)+2(b﹣1),即为(2a+2b)人;∵采购彩旗和啦啦球时发现啦啦球的单价是彩旗的4倍,而啦啦球的总价是彩旗总价的4.8倍,∴4.8(2a+2b)x=4(ab﹣a﹣b+1)x,化简得:ab+1=(a+b),∵长方形地块学生横纵间距都是1m,且刚好站满,a和b都是正整数,且a≥3,b≥3,∴ab≤60且(a+b)为5的整数倍,∴a+b=10或a+b=15,∴ab=33或ab=50.故答案为:33m2或50m2.三、解答题:(本大题共7个小题,其中22、24题各8分,21、23、25-27题各10分,共66分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.21.(1)﹣()(2+);(2)解方程组:.【分析】(1)利用完全平方公式和平方差公式计算;(2)利用加减消元法解方程组.解:(1)原式=18﹣6+1﹣×(﹣)(+)=19﹣6﹣×(2﹣3)=19﹣6+=19﹣5;(2),①×5+②得15x+2x=25+26,解得x=3,把x=3代入①得9﹣y=5,解得y=4,∴方程组的解为.22.已知:在△ABC中,AB=AC,BD⊥AC交AC于D.(1)尺规作图:作线段BC的垂直平分线交BD于O,交BC于E,连接CO;(2)若∠BAC=56°,求∠DOC的度数.【分析】(1)利用基本作图作BC的垂直平分线;(2)根据线段垂直平分线的性质得到点A、O、E共线,OB=OC,再利用等腰三角形的性质和等腰三角形的性质得∠ABC=∠ACB=62°,接着利用互余计算出∠DBC=28°,然后根据等腰三角形的性质和三角形外角性质计算∠DOC的度数.解:(1)如图,点O、E为所作;(2)∵AB=AC,OE垂直平分BC,∴点A、O、E共线,OB=OC,∵AB=AC,∴∠ABC=∠ACB=(180°﹣∠BAC)=(180°﹣56°)=62°,∵BD⊥AC,∴∠ODC=90°,∴∠DBC=90°﹣62°=28°,∵OB=OC,∴∠OBC=∠OCB=28°,∴∠DOC=∠OBC+∠OCB=56°.23.先化简,再求值:[(3a+2b)(a﹣b)﹣(2a+b)(2a﹣b)+b(2a+b)]÷(a),其中+b2+2b+1=0.【分析】直接利用乘法公式以及多项式乘多项式、单项式乘多项式运算法则分别化简,再利用整式的除法运算法则计算,结合非负数的性质得出a,b的值,代入计算得出答案.解:原式=[(3a2﹣3ab+2ab﹣2b2)﹣(4a2﹣b2)+2ab+b2]÷(a)=(3a2﹣3ab+2ab﹣2b2﹣4a2+b2+2ab+b2]÷(a)=(﹣a2+ab)÷(a)=﹣a2÷(a)+ab÷(a)=﹣3a+3b,∵+b2+2b+1=0,∴+(b+1)2=0,∴a﹣2=0,b+1=0,解得:a=2,b=﹣1,∴原式=﹣3×2+3×(﹣1)=﹣6﹣3=﹣9.24.为选拔同学参加全市组织的青少年科学知识竞赛,重庆一中在全校进行了“请党放心,强国有我”科学知识竞赛,并对八年级(3)班全体同学本次知识竞赛成绩进行了统计,我们将成绩分为A、B、C、D、E五类,制成了如下不完整的条形统计图和扇形统计图(如图所示).请你根据统计图中的信息,解答下列问题:(1)八年级(3)班学生总人数是50人;在扇形统计图中,a的值是20;(2)若八年级(3)班得C等级的同学人数是得E等级的同学人数的4倍,请将条形统计图补充完整;(3)若等级为A表示优秀,等级为B表示良好,等级为C表示合格,等级为D表示不合格,等级为E表示差,根据本次统计结果,估计全校2000名学生中知识竞赛成绩在合格及以上的学生大约有多少人?【分析】(1)用B等级的人数除以所占的百分比求出八年级(3)班学生总人数,用D 等级的人数除以总人数,即可得出a;(2)设E等级的同学有x人,则C等级的同学人数有4x,根据总人数是50,列出方程,求出x的值,从而补全统计图;(3)用全校的总人数乘以知识竞赛成绩在合格及以上的学生所占的百分比即可.解:(1)八年级(3)班学生总人数是:12÷24%=50(人),a%=×100%=20%,即a=20;故答案为:50,20;(2)设E等级的同学有x人,则C等级的同学人数有4x,根据题意得:8+12+4x+10+x=50,解得:x=4,则4x=4×4=16,则E等级的同学有4人,则C等级的同学人数有16人,补全统计图如下:(3)2000×=1440(人),答:估计全校2000名学生中知识竞赛成绩在合格及以上的学生大约有1440人.25.体育与健康是学校素质教育的重要组成部分,为了活跃校园气氛,增强学生的集体观念,培养学生团队合作的精神.某学校将于11月份举办学生趣味运动会,计划用7380元购买足球和篮球共43个,分别作为运动会团体一、二等奖的奖品.已知足球的单价为180元,篮球的单价为160元.(1)学校计划购买足球和篮球各多少个?(列二元一次方程组解决该问题)(2)某老师按计划到商场购买足球和篮球时,正好赶上商场对商品价格进行调整,足球单价下降了a%,篮球单价上涨了a%,最终经费比计划节省了774元,求a的值.【分析】(1)设学校计划购买足球x个,篮球y个,利用总价=单价×数量,结合用7380元购买足球和篮球共43个,即可得出关于x,y的二元一次方程组,解之即可得出学校计划购买足球和篮球的数量;(2)利用总价=单价×数量,结合商场对商品价格进行调整后可节省774元,即可得出关于a的一元一次方程,解之即可得出a的值.。
2021届重庆市第一中学校高三上学期第三次月考数学试题(解析版)

2021届重庆市第一中学校高三上学期第三次月考数学试题一、单选题1.复数z 满足21iz i=-,则复数z 的虚部为()A .﹣1B .1C .iD .﹣i【答案】B【分析】利用复数的除法运算化简211ii i=-+-,再利用复数的代数形式求出结果.【详解】解:∵()()()()2121211112i i i i i z i i i i ++====-+--+,则复数z 的虚部为1.故选:B .【点睛】本题考查复数的除法运算.复数的除法运算关键是分母“实数化”,其一般步骤如下:(1)分子、分母同时乘分母的共轭复数;(2)对分子、分母分别进行乘法运算;(3)整理、化简成实部、虚部分开的标准形式.2.已知集合{}22,A xx x Z =<∈∣,则A 的真子集共有()个A .3B .4C .6D .7【答案】D【分析】写出集合{1,0,1}A =-,即可确定真子集的个数.【详解】因为{}22,{1,0,1}A xx x Z =<∈=-∣,所以其真子集个数为3217-=.故选:D.【点睛】本题考查集合的真子集个数问题,属于简单题.3.已知某圆锥的母线长为4,底面圆的半径为2,则圆锥的全面积为()A .10πB .12πC .14πD .16π【答案】B【分析】首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.【详解】底面周长是:2×2π=4π,则侧面积是:14π48π2⨯⨯=,底面积是:π×22=4π,则全面积是:8π+4π=12π.故选B .【点睛】本题考查了圆锥的全面积计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的()倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.22【答案】B【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg0.1E E =,∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈.故选:B .【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.5.向量,a b 满足||1a = ,a 与b 的夹角为3π,则||a b - 的取值范围为()A .[1,)+∞B .[0,)+∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎫+∞⎪⎢⎪⎣⎭【答案】D【分析】把||a b -用数量积表示后结合函数的性质得出结论.【详解】22222||()2121cos 3a b a b a a b b b b π-=-=-⋅+=-⨯⨯+ 21b b -+= 2134423b ⎛⎫=+≥⎪⎝⎭- ,所以3||2a b -≥ .1||2b = 时取得最小值.故选:D .【点睛】本题考查平面向量的模,解题关键是把模用向量的数量积表示,然后结合二次函数性质得出结论.6.已知三棱锥P ABC -,过点P 作PO ⊥面,ABC O 为ABC ∆中的一点,,PA PB PB PC ⊥⊥,PC PA ⊥,则点O 为ABC ∆的()A .内心B .外心C .重心D .垂心【答案】D【分析】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,可得BC ⊥PA ,由PO ⊥平面ABC 于O ,BC ⊂面ABC ,PO ⊥BC ,可得BC ⊥AE ,同理可以证明CO ⊥AB ,又BO ⊥AC .故O 是△ABC 的垂心.【详解】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,∴BC ⊥PA ,∵PO ⊥平面ABC 于O ,BC ⊂面ABC ,∴PO ⊥BC ,∴BC ⊥平面APE ,∵AE ⊂面APE ,∴BC ⊥AE ;同理可以证明CO ⊥AB ,又BO ⊥AC .∴O 是△ABC 的垂心.故选D .【点睛】本题主要考查了直线与平面垂直的性质,解题时要注意数形结合,属于基本知识的考查.7.设sin5a π=,b =,2314c ⎛⎫= ⎪⎝⎭,则()A .a c b <<B .b a c <<C .c a b<<D .c b a<<【答案】C【分析】借助中间量1和12比较大小即可.【详解】解:由对数函数y x =在()0,∞+单调递增的性质得:1b =>=,由指数函数12xy ⎛⎫= ⎪⎝⎭在R 单调递减的性质得:2413311142212c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<=,由三角函数sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增的性质得1sin sin 562a ππ=>=.所以c ab <<.故选:C.【点睛】本题考查利用函数的单调性比较大小,考查运算能力,化归转化思想,是中档题.本题解题的关键在于借助中间量1和12,尤其在比较a 与c 的大小时,将c 变形得24331142c ⎛⎫⎛⎫= ⎪ =⎪⎝⎭⎝⎭,进而与12比较大小是重中之核心步骤.8.已知三棱锥P ABC -的四个顶点均在同一个确定的球面上,且BA BC ==,2ABC π∠=,若三棱锥P ABC -体积的最大值为3,则其外接球的半径为()A .2B .3C .4D .5【答案】A【分析】由题意分析知三棱锥P ABC -体积的最大时,P ,O ,O '共线且O P '⊥面ABC ,P 在大于半球的的球面上,根据棱锥体积公式求得||O P ',进而应用勾股定理求外接球的半径.【详解】由题意知:AC 中点O '为面ABC 外接圆圆心,若外接球球心为O ,半径为R ,三棱锥P ABC -体积的最大时,P ,O ,O '共线且O 在P ,O '之间,∴1||33P ABC ABC V S O P -'=⋅⋅= ,1||||32ABC S BA BC =⋅⋅= ,即||3O P '=,||||32AC O C '==,所以()22222'|||'|33O C OC OO R R =-=--=,解得2R =,故选:A【点睛】关键点点睛:理解三棱锥P ABC -体积的最大时P 的位置及与球心、底面外接圆圆心的关系,结合棱锥体积公式、勾股定理求球体半径.二、多选题9.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中错误..的是()A .若,,//m n m n αβ⊂⊂,则//αβB .若,m n m α⊂⊥,则n α⊥C .若,m n αα^Ì,则m n ⊥D .若//,,m n αβαβ⊂⊂,则//m n【答案】ABD【分析】根据空间线、面关系,结合空间关系相关图例以及线线、线面、面面间的平行、垂直判定与性质,即可知选项的正误.【详解】A :,,//m n m n αβ⊂⊂,α、β不一定平行,错误.B :,m n m α⊂⊥,n 不一定垂直于α,错误.C :由线面垂直的性质:,m n αα^Ì,则必有m n ⊥,正确.D ://,,m n αβαβ⊂⊂,m 、n 不一定平行,错误.故选:ABD10.下列函数中,在(0,1)内是减函数的是()A .||12x y ⎛⎫= ⎪⎝⎭B .212log y x =C .121=+y x D .2log sin y x=【答案】ABC【分析】根据复合函数的单调性判断确定选项中各函数是否为减函数即可.【详解】A :1(2t y =为减函数,||t x =在(0,1)上为增函数,所以||12x y ⎛⎫= ⎪⎝⎭为减函数;B :12log y t =为减函数,2t x =在(0,1)上为增函数,所以212log y x =为减函数;C :1y t =为减函数,21t x =+在(0,1)上为增函数,所以121=+y x 为减函数;D :2log y t =为增函数,sin t x =在(0,1)上为增函数,所以2log sin y x =为增函数;故选:ABC【点睛】结论点睛:对于复合函数的单调性有如下结论1、内外层函数同增或同减为增函数;2、内外层函数一增一减为减函数;11.下列关于函数1()2sin 26f x x π⎛⎫=+⎪⎝⎭的图像或性质的说法中,正确的为()A .函数()f x 的图像关于直线83x π=对称B .将函数()f x 的图像向右平移3π个单位所得图像的函数为12sin 23y x π⎛⎫=+ ⎪⎝⎭C .函数()f x 在区间5,33ππ⎛⎫-⎪⎝⎭上单调递增D .若()f x a =,则1cos 232a x π⎛⎫-=⎪⎝⎭【答案】AD 【分析】令1262x k πππ+=+得到对称轴,即可判断A ;根据平移变换知识可判断B ;求出其单调增区间即可判断C ;利用配角法即可判断D.【详解】对于A ,令1262x k πππ+=+()k ∈Z ,解得22()3x k k Z ππ=+∈,当1k =时,得83x π=,故A 正确;对于B ,将函数()f x 的图像向右平移3π个单位,得112sin[()]2sin 2362y x x ππ=-+=,故B 错误;对于C ,令122()2262k x k k Z πππππ-+<+<+∈4244()33k x k k Z ππππ⇒-+<<+∈,故C 错误;对于D ,若12sin()26x a π+=,则11cos()sin[()]23223x x πππ-=+-=1sin()262ax π+=,故D 正确.故选:AD【点睛】方法点睛:函数()sin (0,0)y A x B A ωϕω=++>>的性质:(1)max min =+y A B y A B =-,.(2)周期2π.T ω=(3)由()ππ2x k k +=+∈Z ωϕ求对称轴(4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.12.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有()A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】由()()f x f x x '<知:()()0xf x f x x'-<,令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >;A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+;B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+;C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <;D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小.故选:ABC【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<,1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=.2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.三、填空题13.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【解析】由题意,根据球的体积公式343V R π=,则343233R ππ=,解得2R =,又根据球的表面积公式24S R π=,所以该球的表面积为24216S ππ=⋅=.14.设向量a ,b 不平行,向量a b λ+ 与2a b + 平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则{12,k k λ==,所以12λ=.【解析】向量共线.15.一般把数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则第21行从左至右的第4个数字应是____________.【答案】228【分析】由题知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,从左到右第4个数字为228.【详解】观察数据可知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,所以第21行从左到右第4个数字为228.故答案为:228.【点睛】关键点睛:本题考查合情推理、数列的前n 项和,解题关键要善于观察发现数据特征,考查了学生的逻辑思维能力、数据处理能力、运算求解能力,综合性较强,属于较难题型.四、双空题16.已知等比数列{}n a 的公比为q ,且101a <<,20201a =,则q 的取值范围为______;能使不等式12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立的最大正整数m =______.【答案】(1,)+∞4039【分析】根据已知求得1a 的表达式,由此求得q 的取值范围.根据12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立列不等式,化简求得m 的取值范围,从而求得最大正整数m .【详解】由已知201911201911a qa q =⇒=,结合101a <<知2019101q <<,解得1q >,故q 的取值范围为(1,)+∞.由于{}n a 是等比数列,所以1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列.要使12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立则1212111m ma a a a a a +++≤+++ 即()111111111m m a q a q q q⎛⎫-⎪-⎝⎭≤--,将120191a q=代入整理得:40394039m q q m ≤⇒≤故最大正整数4039m =.故答案为:(1,)+∞;4039【点睛】本小题主要考查等比数列的性质,考查等比数列前n 项和公式,属于中档题.五、解答题17.在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,M 是线段AB 的中点,1160,22,2,DAB AB CD DD C M ∠=︒====(1)求证:1//C M 平面11A ADD ;(2)求异面直线 CM 与1DD 所成角的余弦值.【答案】(1)证明见解析;(2)14.【分析】(1)易得1111//,C D MA C D MA =,则四边形11AMC D 为平行四边形,得到11//C M D A ,再利用线面平行的判定定理证明.(2)由//CM DA ,将异面直线CM 与1DD 成的角,转化为 DA 与1DD 相交所成的角,然后在1ADD ,利用余弦定理求解.【详解】(1)因为四边形ABCD 是等腰梯形,且2AB CD =,所以//AB DC .又由M 是AB 的中点,因此//CD MA 且CD MA =.如图所示:连接1AD ,在四棱柱1111ABCD A B C D -中,因为1111//,CD C D CD C D =,可得1111//,C D MA C D MA =,所以四边形11AMC D 为平行四边形.因此11//C M D A ,又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD ,所以1//C M 平面11A ADD .(2)因为//CM DA ,所以异面直线CM 与1DD 成的角,即为 DA 与1DD 相交所成的直角或锐角,在1ADD中,1C M =,所以111,2AD AD DD ===,由余弦定理可得:22211111cos 24AD DD AD ADD AD DD +-∠==-⋅,所以异面直线CM 和1DD 余弦值为14.【点睛】方法点睛:判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.已知数列{}n a 满足:13a =,且对任意的n *∈N ,都有1,1,n n a a +成等差数列.(1)证明数列{}1n a -等比数列;(2)已知数列{}n b 前n 和为n S ,条件①:()1(21)n n b a n =-+,条件②:11n n n b a +=-,请在条件①②中仅选择一个条件作为已知条件.............来求数列{}n b 前n 和n S .【答案】(1)证明见解析;(2)答案不唯一,具体见解析.【分析】(1)由条件得121n n a a +=-,利用等比数列定义可得证.(2)选条件①得(21)2nn b n =+,选条件②得1(1)()2nn b n =+⋅利用错位相减法可得解.【详解】(1)由条件可知112n n a a ++=,即121n n a a +=-,∴()1121n n a a +-=-,且112a -=∴{}1n a -是以112a -=为首项,2q =为公比的等比数列,∴12nn a -=,∴()21nn a n N*=+∈(2)条件①:()1(21)(21)2nn n b a n n =-+=+,123325272(21)2nn S n =⋅+⋅+⋅+++⋅ 23412325272(21)2n n S n +=⋅+⋅+⋅+++⋅利用错位相减法:123413222222222(21)2nn n S n +-=⋅+⋅+⋅+⋅++⋅+⋅- 118(12)6(21)212n n n S n -+--=++⋅--化简得()12(21)2n n S n n N +*=-+∈条件②:11(1)()12nn n n b n a +==+⋅-231111234(1)2222n nS n =⋅+⋅+⋅+++⋅ 234111111234(1)22222n n S n +=⋅+⋅+⋅+++⋅ 利用错位相减法:23411111111(1)222222n n n S n +=++++-+⋅ 1111[1()]11421(1)12212n n n S n -+-=+-+⋅-化简得()13(3)(2n n s n n N *=-+∈【点睛】错位相减法求和的方法:如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解;在写“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式19.已知椭圆C 的两个焦点分别为12(1,0),(1,0)F F -,短轴的两个端点分别为12,B B .且122B B =.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 与椭圆C 相交于P ,Q 两点,且11F P FQ ⊥ ,求直线l 的方程.【答案】(1)2212x y +=;(2)10x +-=,或10x -=.【分析】(1)由题干条件可得c 和b 的值,进而求出2a 的值,从而求出椭圆方程;(2)首先考虑斜率不存在的情况,不符合题意;当斜率存在时,联立方程,可得()22121222214,2121k k x x x x k k -+=⋅=++,又110F P FQ ⋅= ,向量坐标化可得()()()2221212111110k x x k x x k F P FQ ⋅--==++++uuu r uuu r ,代入1212,x x x x +⋅,化简,即可求出k 的取值,从而求出直线方程.【详解】解(1)由条件可知:1c =,又122B B =,所以1b =,则22a =,所以椭圆C 的方程为2212x y +=(2)当直线l 的斜率不存在时,其方程为1x =,不符合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得()()2222214210k x k x k +-+-=,()2810k ∆=+>,设()()1122,,,P x y Q x y ,则()22121222214,2121k k x x x x k k -+=⋅=++,()()1111221,,1,F P x y F Q x y =+=+ ,∵110F P FQ ⋅= ,即()()()()()22212121212111110x x y y k x x k x x k +++=+--+++=,即()()()222222221411()102121k k kk k k k -+--++=++化简得:2201172k k =+-解得217,77k k ==±.故直线l的方程为10x +-=,或10x --=.【点睛】方法点睛:(1)将向量转化为坐标的关系;(2)联立直线和椭圆,求出两根之和,两根之积;(3)将两根之和和两根之积代入坐标关系中,解出k .20.已知()cossin 222x x x f x ⎛⎫=+ ⎪⎝⎭,记ABC 的内角,,A B C 的对边分别为,,a b c .(1)求()f B 的取值范围;(2)当4a =,433b =,且()f B 取(1)中的最大值时,求ABC 的面积.【答案】(1)30,12⎛+ ⎝⎦;(2)833或433【分析】(1)利用公式对函数化简,根据B 角的范围,求函数值域.(2)由(1)求出B 的大小,利用正弦定理和三角形面积公式即可求出结果.【详解】(1)2()cossin sin cos 222222x x x x x x f x ⎛⎫=+=+ ⎪⎝⎭13(cos 1)3sin sin 2232x x x π+⎛⎫=+=++ ⎪⎝⎭因为B 为三角形的内角,所以(0,)B π∈所以4,333B πππ⎛⎫+∈ ⎪⎝⎭,所以3()0,12f B ⎛∈+ ⎝⎦(2)34()11,,23333f B B B ππππ⎛⎫⎛⎫=++=+∈ ⎪ ⎝⎭⎝⎭,,326B B πππ∴+==,由正弦定理得:4343sin 1sin sin sin 22a b A A B A =⇒=⇒=()0,,3A A ππ∈∴=,或23A π=,若3A π=,则2C π=,183sin 23ABC S ab C ==若23π=A ,则6π=C,1sin 23==ABC S ab C 【点睛】本题考查了三角恒等变换、正弦定理和三角形面积公式等基本数学知识,考查了数学运算能力和逻辑推理能力,属于中档题目.21.在直三棱柱111ABC A B C -中,112,120,,AB AC AA BAC D D ==∠=分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交,AB AC 于点,M N .(1)证明:平面1A MN ⊥平面11ADD A ;(2)求二面角1A A M N --的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)根据线面垂直的判定定理即可证明MN ⊥平面ADD 1A 1;又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)建立空间坐标系,利用向量法求出平面的法向量,利用向量法进行求解即可.【详解】(1)证明:∵AB=AC ,D 是BC 的中点,∴BC ⊥AD ,∵M ,N 分别为AB ,AC 的中点,∴MN ∥BC ,∴MN ⊥AD ,∵AA 1⊥平面ABC,MN ⊂平面ABC ,∴AA 1⊥MN ,∵AD,AA 1⊂平面ADD 1A 1,且AD∩AA 1=A ,∴MN ⊥平面ADD 1A 1∴,又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)设AA 1=1,如图:过A 1作A 1E ∥BC ,建立以A 1为坐标原点,A 1E ,A 1D 1,A 1A 分别为x ,y ,z 轴的空间直角坐标系如图:则A 1(0,0,0),A(0,0,1),∵P 是AD 的中点,∴M ,N 分别为AB ,AC 的中点.则31,,122M ⎛⎫ ⎪ ⎪⎝⎭,31,,122N ⎛⎫- ⎪ ⎪⎝⎭,则131,,122A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,)NM = ,设平面AA 1M 的法向量为(),,m x y z=,则100m AM m A A ⎧⋅=⎪⎨⋅=⎪⎩,得10220x y z z ++=⎨⎪=⎩,令1x =,则y =,则()1,m =,同理设平面A 1MN 的法向量为(),,n x y z=,则100n A M n NM ⎧⋅=⎨⋅=⎩,得310220x y z ++=⎪⎨⎪=⎩,令2y =,则1z =-,则()0,2,1n =-,则()15cos ,5m n m n m n ⋅===-⋅,∵二面角A-A 1M-N 是锐二面角,∴二面角A-A 1M-N 的余弦值是155.【点睛】本题主要考查直线垂直的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.22.已知21()(1)2xf x e ax b x =---.其中常数 2.71828e ≈⋅⋅⋅⋅⋅⋅.(1)当2,4a b ==时,求()f x 在[1,2]上的最大值;(2)若对任意0,()a f x >均有两个极值点()1212,x x x x <,(ⅰ)求实数b 的取值范围;(ⅱ)当a e =时,证明:()()12f x f x e +>.【答案】(1)max ()1f x e =-;(2)(ⅰ)1b >;(ⅱ)证明见解析.【分析】(1)由题得2()4(1)x f x e x x =---,()24x f x e x '=--,()2x f x e ''=-,由[1,2]x ∈,可得()0f x ''>,即()'f x 在[1,2]上单增,且2(2)80f e -'=<,即()0f x '<,可知()f x 在[1,2]上单减,求得max ()(1)1f x f e ==-.(2)(ⅰ)利用两次求导可得(,ln )x a ∈-∞时,()'f x 单减;(ln ,)x a ∈+∞时,()'f x 单增,再由()f x 有两个极值点,知(ln )ln 0f a a a a b =--<',即ln b a a a >-恒成立,构造函数()ln g a a a a =-,利用导数求其最大值,可得实数b 的取值范围;(ⅱ)设()()(2),(1)h x f x f x x ''=--<,求导可得()h x 在(,1)-∞单增,得到()(2)f x f x ''<-,可得()()112f x f x ''<-,()()122f x f x ''->,结合()'f x 在(1,)+∞上单增,可得()()122f x f x >-,得到()()()()2222122222222x x f x f x f x f x e e ex ex e -+>-+=+-+-,构造22()22x x M x e e ex ex e -=+-+-,(1)x >,再利用导数证明()2(1)M x M e >=,即可得到()()12f x f x e+>【详解】(1)由2,4a b ==得,2()4(1)x f x e x x =---,求导()24x f x e x '=--,()2x f x e ''=-,[1,2]x ∈ ,2[,]x e e e ∴∈,20x e ∴->,即()0f x ''>()f x '∴在[1,2]上单增,且2(2)80f e -'=<,即[1,2]x ∀∈,()0f x '<,()f x ∴在[1,2]上单减,max ()(1)1f x f e ∴==-.(2)(ⅰ)求导()x f x e ax b '=--,因为对任意0,()a f x >均有两个极值点12,x x ,所以()0f x '=有两个根,求二阶导()x f x e a ''=-,令()0f x ''=,得ln x a=当(,ln )x a ∈-∞时,()0f x ''<,()'f x 单减;当(ln ,)x a ∈+∞时,()0f x ''>,()'f x 单增,由()0f x '=有两个根12,x x ,知(ln )ln 0f a a a a b =--<',即ln b a a a >-对任意0a >都成立,设()ln g a a a a =-,求导()ln g a a '=-,令()0g a '=,得1a =,当(0,1)x ∈时,()0g a '>,()g a 单增;当(1,)x ∈+∞时,()0g a '<,()g a 单减,max (()1)1g g a =∴=,1b ∴>又0,,()ba b f e x f x a -⎛⎫''-=>→+∞→+∞ ⎪⎝⎭Q ,所以实数b 的取值范围是:1b >.(ⅱ)当a e =时,()x f x e ex b '=--,()x f x e e ''=-,令()0f x ''=,得1x =当(,1)x ∈-∞时,()0f x ''<,()'f x 单减;当(1,)x ∈+∞时,()0f x ''>,()'f x 单增,又12,x x 是()0f x '=的两根,且12x x <,121,1x x <∴>,121x ∴->设()()(2),(1)h x f x f x x ''=--<,即22(2)2()2,(1)xxx xe ex b ee x b e e ex e x h x --⎡⎤=-=-------+<⎣⎦,则2()2220x x h x e e e e e -=+->-='()h x ∴在(,1)-∞单增,()(1)0h x h ∴<=,即()(2)f x f x ''<-又11,x <,()()112f x f x ''∴<-,()()122f x f x ''∴->又()f x ' 在(1,)+∞上单增,122x x ∴->,即1222x x x <-<,又()f x 在()12,x x 上单减,()()122f x f x ∴>-()()()()2222122222222x x f x f x f x f x e e ex ex e-∴+>-+=+-+-令22()22x x M x e e ex ex e -=+-+-,(1)x >则2()22x x M x e e ex e -'=--+,2()20x x M x e e e -''=+-≥()M x '∴在(1,)+∞单增,且(1)0M '=,()0M x '∴>,故()M x 在(1,)+∞单增又21x > ,()2(1)M x M e ∴>=,即()()12f x f x e+>【点睛】方法点睛:本题考查利用导数研究函数的单调性,求极值,最值,以及证明不等式,证明不等式的方法:若证明()()f x g x <,(,)x a b ∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知(,)x a b ∈时,有()0F x <,即证明了()()f x g x <,考查学生的函数与方程思想,化归与转化思想,考查逻辑思维能力与推理论证能力,属于难题.。
重庆市万州第一中学2024-2025学年高二上学期第一次月考数学试题

重庆市万州第一中学2024-2025学年高二上学期第一次月考数学试题一、单选题1.“1m =”是“直线1:(1)10l x m y +++=与直线2:(1)10l m x my +--=垂直”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.下列可使非零向量,,a b c构成空间的一组基底的条件是()A .,,a b c两两垂直B .b cλ= C .a mb nc =+D .0a b c ++= 3.如图,在四面体OABC 中,,,OA a OB b OC c ===,点M 在线段OA 上,且2,OM MA N=为BC 中点,则MN等于()A .111322a b c ++B .111322a b c -+C .111222a b c +- D .111322a b c-++ 4.已知向量(3,2,3)a =--,(2,1,2)b x =-- ,且a 与b 的夹角为钝角,则x 的取值范围是A .(5,)-+∞B .77(5,(,)33-⋃+∞C .(,5)-∞-D .7(,)3+∞5.如图,一束光线从()1,0A 出发,经直线10x y ++=反射后又经过点()6,5B -,则光线从A 到B 走过的路程为()AB .CD .6.如图所示,在棱长为2的正方体1111ABCD A B C D -中,直线1B D ⋂平面1ACD E =,F 是BC 的中点,G 是线段1B F 上的动点,则直线GE 与侧面11ADD A 的交点P 的轨迹长为()AB C .D 7.过定点A 的直线20ax y +-=与过定点B 的直线420x ay a -+-=交于点P (P 与A ,B 不重合),则PAB 周长的最大值为()A4+B .4+C .6D .88.如图,在直三棱柱111ABC A B C -中,1,1AC AB AC AB CC ⊥===,E 是线段AB 的中点,在1A BC 内有一动点P (包括边界),则PA PE +的最小值是()A .2B .3C .6D .3二、多选题9.下列说法正确的是()A 10y ++=的倾斜角为120B .方程21y k x -=+与方程()21y k x -=+可表示同一直线C .经过点()2,1P ,且在x ,y 轴上截距互为相反数的直线方程为10x y --=D .过两点()()111222P x y P x y ,,,的直线都可用方程()()()()211211x x y y y y x x --=--表示10.在长方体1111ABCD A B C D -中,14,2,6,AB AD AA P ===为长方体1111ABCD AB C D -表面上一动点,则1PA PC ⋅的值可能是()A .15-B .10-C .5-D .211.伊帕姆维泽蒂博物馆收藏的达・芬奇方砖,在正六边形上画了正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则()A .122CG AA PF=- B .直线CQ 与平面1111D C B A 所成角的正弦值为23C .异面直线CQ 与BDD .点1C 到直线CQ 三、填空题12.已知某直线的一般式为320x +=,则此直线的倾斜角为.13.已知点(2,1)P --和直线:(12)(13)20l x y λλλ++-+-=,则点P 到直线l 的距离的取值范围是.14.如图,已知点A 是圆台1O O 的上底面圆1O 上的动点,,B C 在下底面圆O 上,11AO =,12OO =,3BO =,BC =则直线AO 与平面1O BC 所成角的正弦值的最大值为.四、解答题15.已知直线l 经过()()2,1,1,2P Q --两点.(1)求直线l 的方程;(2)若直线m 与l,求直线m 的方程.16.已知向量()()()1,3,2,2,1,4,5,1,a b c x ==-=.(1)若a c ⊥,求实数x 的值;(2)若,,a b c不能构成空间向量的一个基底,求实数x 的值.17.如图,AB 是圆的直径,MA 与圆所在的平面垂直,C 是圆上不同于A 、B 的一点.(1)求证:平面MAC ⊥平面MBC ;(2)若2,1,2AB AC MA ===,求二面角C MB A --的正弦值.18.在ABC V 中,90C ∠=︒,3BC =,6AC =,D ,E 分别是AC ,AB 上的点,满足DE BC ∥,且DE 经过ABC V 的重心.将ADE V 沿DE 折起到1A DE △的位置,使1AC CD ⊥,存在动点M 使()110A M A D λλ=>如图所示.(1)求证:1A C ⊥平面BCDE ;(2)当12λ=时,求二面角C MB E --的正弦值;(3)设直线BM 与平面1A BE 所成线面角为θ,求sin θ的最大值.19.棱柱1111ABCD A B C D -的所有棱长都等于2,60ABC ∠=,平面11AAC C ⊥平面ABCD ,160A AC ∠= .(1)证明:1BD AA ⊥;(2)求平面1DAA 与平面11A ACC 夹角的余弦值;(3)在直线1CC 上是否存在点P ,使//BP 平面11DA C ?若存在,求出点P 的位置.。
重庆市第一中学校2023-2024学年高一上学期10月月考数学试题

B. 2 4
C.
1 2
D. 2 2
4.如图,已知全集U R ,集合 A x Z | x2 9 0 , B x | x 2 0,则图中阴影部
分表示的集合中的元素个数为( )
A.7
B.6
C.5
D.4
5.设实数 a,b 满足 1 1 1,则下列不等式一定成立的是( ) ba
A. a b
则说明理由.
18.关于 x 的不等式 x2 a 2 x 2a 0 a R 的解集为 A ,
(1)求 A ;
(2) B x | 5 2x 1 a 2 7 ,若 A 是 B 的真子集,求 a 的取值范围.
19.已知函数 f x x2 2x 1, x R ,命题 p : x 0, 2, f x a ;命题 q:已知
B. ab b2
C.
a b
a b
1 1
D. a b ab 1
6.已知 p :“ (x m)2 3 x m ”是 q :“ x2 3x 4 0 ”成立的必要不充分条件,则实数 m 的
取值范围为( )
A. ,4 4,
B. , 4 4,
C. 4,4
D.4, 4
7.已知集合 A x | x 2 ax 1 0, x R , B {x | x 0} ,若 A B ,则实数 a 的取值
C. x 0,3x 2 0
D. x 0,3x 2 0
2.已知集合 A x | x2 x 2 0 , B {x | x 3 x 0} ,则 A B ( )
A.0, 2
B. 0, 2
C. 1, 3
D. 1, 3
3.若
0
x
1 2
,则
x 1 2x 的最大值是(
重庆市第一中学校2022-2023学年高一上学期第一次月考数学试题

重庆市第一中学校2022-2023学年高一上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知命题p :()1,x ∃∈+∞,使215x +>,则( )A .命题p 的否定为“()1,x ∃∈+∞,使215x +≤”B .命题p 的否定为“(],1x ∃∈-∞,使215x +≤”C .命题p 的否定为“()1,x ∀∈+∞,使215x +≤”D .命题p 的否定为“(],1x ∀∈-∞,使215x +≤”2.已知集合{}20,21,31A a a a =+++,若1A -∈,则实数a =( )A .-1B .-2C .-3D .-1或-2 3.已知集合{}==32,Z M x x n n ∈-,{}==6+1,Z N x x n n ∈,则=M N ⋃( ) A .M B .N C .∅ D .Z 4.已知x >1,则141y x x =+-的最小值为( ) A .16 B .8 C .4 D .25.重庆一中计划面向高一学生开设“科技与创新”,“人文与阅读”两类选修课,为了解学生对这两类选修课的兴趣,对高一某班共46名学生调查发现,喜欢“科技与创新”类的学生有34名,喜欢“人文与阅读”类的学生有18名,两类均不喜欢的有6名,则只喜欢“科技与创新”类选修课的学生有( )名.A .34B .22C .12D .6 6.设实数a ,b ,c ,d 满足110a b <<,d <c <0,则下列不等式一定成立的是( )A .b >a >0B .22ad bc <C .a -c >b -dD .c d a b>7.若对于任意实数x ,[]x 表示不超过x 的最大整数,例如1=,1=,[]1.62-=-,那么“[][]=x y ”是“1x y -<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.已知实数x ,y 满足2243x y xy +-=,则( )A .1xy ≥B .22x y +≤C .2x y +≥D .2244x y +≤二、多选题9.已知p :“x ∀∈R ,()2110x a x -++>恒成立”为真命题,下列选项可以作为p 的充分条件的有( )A .0a -3<<B .3a ≤-或1a ≥C .01a <<D .31a -<<10.已知集合{}2=23>0A x x x --,{}2=++0B x ax bx c ≤(0a ≠),若A B ⋃=R ,{}=3<4A B x x ⋂≤,则( )A .0a <B .63bc a >-C .关于x 的不等式20ax bx c -+>解集为{<4x x -或}>1xD .关于x 的不等式20ax bx c -+>解集为{}4<<1x x -11.已知0,0a b >>,且+=1a b ,则说法正确的为( )A B .222a b +的最小值为34 C .22ab a b +的最大值为14 D .1114a b ++的最小值为9812.已知有限集{}12,,,(2,)N n A a a a n n =≥∈,如果A 中元素(1,2,3,,)i a i n =⋯满足1212n n a a a a a a +++=⨯⨯⨯,就称A 为“完美集”下列结论中正确的有( )A .集合{11--不是“完美集”B .若1a 、2a 是两个不同的正数,且{}12,a a 是“完美集”,则1a 、2a 至少有一个大于2C .n =2的“完美集”个数无限D .若*N i a ∈,则“完美集”A 有且只有一个,且n =3三、填空题13.已知集合{}=2+10A x x ≤,{}2=23+9<0B x x x --,则()R A B ⋂=______. 14.关于x 的不等式203x x +≤-的解集为______.15.已知集合+3=<0-4x A x x ⎧⎫⎨⎬⎩⎭,(){}2=2+2+7+7<0B x x k x k ,若A B ⋂中恰有一个整数,则实数k 的取值范围为______.16.已知a >b >0,且a +b =1,则411()a b b a b a b b++---的最小值为______.四、解答题17.已知全集(){}2=45<0U x x x x ∈--N ,集合{}21,2,A m =,{}2=5+4=0B x x x -. (1)若2+1U a B ∈且a U ∈,求实数a 的值;(2)设集合()=U C A B ⋂,若C 的真子集共有3个,求实数m 的值.18.已知集合2{|0,0}x x ax b a ++=>有且仅有两个子集.(1)求222a b -的最大值;(2)当且仅当12x x x <<时,函数2y x ax b =++的图像落在直线y c =的下方,且122128x x b x x b c++=-,求c 的值. 19.已知集合(){}=,=2+1,R M a b b a a ∈,()()(){}22=,=2+2312,R N x y y m m x m x x ---∈. (1)当m =1时,求M N ;(2)若15m ≤-,求关于x 的不等式0y ≤的解集. 20.北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量.公司决定立即对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入()216006x -万作为技改费用,投入1505x ⎛⎫+ ⎪⎝⎭万元作为宣传费用.试问:当该商品改革后的销售量a 至少应达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.21.对于函数32(1)(1)(0)y mx ax b x b a =++-+-≠,若存在0x ∈R ,使得320000(1)(1)mx ax b x b x ++-+-=成立,则称0x 为函数32(1)(1)(0)y mx ax b x b a =++-+-≠的“囧点”.(1)当m =2,a =-3,b =2时,求函数32(1)(1)(0)y mx ax b x b a =++-+-≠的“囧点”;(2)当m =0时,对任意实数b ,函数32(1)(1)(0)y mx ax b x b a =++-+-≠恒有“囧点”,求a 的取值范围.22.若实数x ,y ,m 满足x m y m -<-,则称x 比y 接近m ,(1)请判断命题:的真假,并说明理由;(2)已知x >0,y >0,若222224xy xy p x y x y =+++,证明:1比p ; (3)判断:“x 比y 接近m ”是“232x y m y x+->-”的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分又不必要条件),并加以证明.答案:1.C 2.B 3.A 4.B 5.B 6.D 7.A 8.D 9.ACD 10.BC 11.ACD12.BCD 13.13,2⎡⎤--⎢⎥⎣⎦ 14.(][),12,3-∞⋃ 15.[)1,2 16.12 17.(1)1(2)m = 18.(1)2 (2)4 19.(1)13,0,,422M N ⎧⎫⎛⎫⎛⎫⋂=-⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭ 20.(1)40元 (2)当该商品改革后的销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.21.(1)“囧点”1=1x ,212x =- (2)10a -≤<22.(1)命题:”为真,理由略 (2)证明略(3)“x 比y 接近m ”是“31x y m x y+-<--”必要不充分条件,证明见解析。
高三数学上学期第一次月考试题 文扫描 试题

HY中学2021届高三数学上学期第一次月考试题文〔扫描版〕创作人:历恰面日期:2020年1月1日一中第一期联考文科数学答案命题、审题组老师 杨昆华 彭力 杨仕华 王佳文 张波 毛孝宗 丁茵 易孝荣 江明 李春宣一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCBCDADDCAAB1. 解析:由题意,因为集合{}1>=x x A ,所以=B A {}31<<x x ,选B . 2. 解析:因为2i 12i i i)i)(1(1i)i(1i 1i 2+=-=-+-=+,选C . 3. 解析:18=0.4540,选B . 4. 解析:由得54)cos(-=--αβα,即54cos )cos(-==-ββ,又πβ(∈,)23π,所以0sin <β,且53cos 1sin 2-=--=ββ,选C .5. 解析:在长、宽、高分别为2,1,1的长方体中截得该三棱锥A DBC -,那么最长棱为2222116AB =++=,选D .6. 解析:对于B ,函数的周期是π,不是π4;对于C ,函数在3π=x 时不取最值;对于D ,当∈x 65(π-,)6π时,34(32ππ-∈+x ,)32π,函数不是单调递增,选A . 7. 解析:因为()()11f x f x -=+,所以()f x 的图象关于直线1x =对称,选D .8. 解析:由垂径定理可知直线CM 的斜率为2-,所以直线CM 的方程是)2(21--=+x y ,即032=-+y x ,选D .9. 解析:设外接球的半径为R ,因为PA ⊥平面ABC ,所以BC PA ⊥,又BC AB ⊥,所以BC PB ⊥,设PC 的中点为O ,易知:OA OB OC OP ===,故O 为四面体P ABC -的外接球的球心,又2PA AB BC ===,所以22AC =,23PC =,半径3R =,四面体P ABC -的外接球的外表积为()24312ππ=,选C .10. 解析:由()y f x =,()01f =-排除B ,()f x 是偶函数排除C,()20f =和()40f =排除D ,选A .11. 解析:由题设得3=ab,2)(12=+=a b e ,所以b e a +2362322323322=≥+=+=aa a a ,选A . 12. 解析:由余弦定理及22b ac a -=得,22222cos b a c ac B a ac =+-=+,所以有2cos c a B a =+,因此sin 2sin cos sin C A B A =+,故有()sin 2sin cos sin A B A B A +=+,即()sin sin A B A =-,因为三角形ABC 为锐角三角形,所以A B A =-,即2B A =,所以022A π<<,所以04A π<<,又3B A A +=,所以32A ππ<<,所以63A ππ<<,综上,64A ππ⎛⎫∈ ⎪⎝⎭, 所以()sin sin 22cos 2,3sin sin B At A A A===∈,选B .二、填空题13. 解析:由22a b a b -=+解得0a b ⋅=,所以向量a 与b 夹角为90︒. 14. 解析:N=126+146+96+136=288⨯⨯⨯⨯.15. 解析:由图知,直线4z y x =-过()1,0时,4y x -有最小值1-. 16. 解析:由得()()22log 1933f x x x -=+++,所以()()6f x f x +-=,因为2lg 3⎛⎫ ⎪⎝⎭与3lg 2⎛⎫⎪⎝⎭互为相反数,所以23lg lg 632f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以3lg 22f ⎛⎫=- ⎪⎝⎭. 三、解答题〔一〕必考题17. 解:〔1〕证明:设1122n n nn a a d ---=那么122n n n a a d --= 所以1122n n n a a d ++-=,11122222n n n n n n a a da a d++--==-所以}{12n na a +-是首项为4,公比为2的等比数列. ………6分〔2〕因为{}2n n a 是等差数列,所以1221122=-=a a d ,所以11(1)22n n a a n d =+-⨯ , 所以1()22nn a n =-所以123113531222...()2()222222n n n S n n -=⨯+⨯+⨯++-+-① 2311333222...()2()22222n n n S n n +=⨯+⨯++-+-②由①-②得23111=2+2+2...2()222n n n S n +-⨯++-- 13=(n-)232n n S ++. ………12分18. 解:〔1〕 选派B 同学参加比拟适宜.理由如下:1(7580808385909295)858A x =+++++++=,1(7879818284889395)858B x =+++++++=,22222221[(7885)(7985)(8185)(8285)(8485)(8885)8B S =-+-+-+-+-+-+22(9385)(9585)]35.5-+-=,22222221[(7585)(8085)(8085)(8385)(8585)(9085)8A S =-+-+-+-+-+-+22(9285)(9585)]41-+-=,从A B x x =,22B A S S <可以看出:A ,B 两位同学的平均程度一样而B 的成绩较稳定,所以选派B 参加比拟适宜. ………7分〔2〕任选派两人有(,)A B ,(,)A C ,(,)A D ,(,)A E ,(,)B C ,(,)B D ,(,)B E ,(,)C D ,(,)C E ,(,)D E 一共10种情况;所以A ,B ,C 三人中至多有一人参加英语口语竞赛有7种情况; 所以710P =. ………12分19. 解:〔1〕在直角梯形ABCD 中,2BC AD AB ⋅=,即AB ADBC AB=, 因为90DAB PBC ∠=∠=, 所以tan AB ACB BC ∠=,tan ADABD AB∠=, 所以ABD ACB ∠=∠,又因为90ACB BAC ∠+∠=, 所以90ABD BAC ∠+∠=,即AC BD ⊥图2的四棱锥1P ABCD -中,1P A AB ⊥,由题知1P A AD ⊥,那么1P A ⊥平面ABCD , 所以1BD P A ⊥,又1P AAC A =所以BD ⊥平面1P AC . ………6分(2)在图1中,因为AB =,1AD =,2BC AD AB ⋅=,所以3BC =因为PAD ∆∽PBC ∆,所以13PA AD PA PB BC ==⇒=,即1P A = 由〔1〕知1P A ⊥平面ABCD ,那么1C P BD V -1P CBD V -=1P CBD V -=111111133332324CBD S P A BC AB P A ∆⋅⋅=⨯⋅⋅=⨯⨯=. ………12分20. 解:〔1〕由椭圆定义知,224AF BF AB a ,又222AF BF AB ,得43ABa ,l 的方程为y x c ,其中22c a b .设11(,)A x y ,22(,)B x y ,将y x c 代入22221x y a b 得,2222222()2()0a b x a cx a c b . 那么212222-a c x x a b ,2221222)a cb x x a b (.因为直线AB 的倾斜角为4π,所以212122()4ABx x x x ,由43AB a 得,222443a ab a b ,即222a b .所以C的离心率2222c a b e a a. ………6分 (2) 设AB 的中点为0,0()N x y ,由〔1〕知,2120222--23x x a c c x a b ,003cy x c .由PA PB 得,PN 的斜率为-1,即001-1y x ,解得,3c ,32a ,3b .所以椭圆C 的方程为221189x y . ………12分21. 解:〔1〕()f x 的定义域为(,)-∞+∞,因为()e x f x a '=+,由(0)0f '=,得1a =-, 所以()e 2x f x x =--,由()e 10x f x '=->得0x >,由()e 10x f x '=-<得0x <,所以()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞. ………6分 (2) 因为0x >,所以()e 1e 1xxm x -<+可化为e 1e 1x x x m +<-,令e 1()e 1x x x F x +=-,那么()2e (e 2)()e 1x x x x F x --'=-, 由〔1〕得()e 2x f x x =--在(0,)+∞上单调递增,而(1)e 30f =-<,2(2)e 40f =->,所以()f x 在(1,2)上存在唯一的0x , 使0()0f x =,所以()F x 在0(0,)x 上单调递减,在0(,)x +∞上单调递增, 所以0()F x 是()F x 00e 20x x --=得00e 2x x =+, 所以00000000e 1(2)1()11e 1x x x x x F x x x +++===++-, 又因为012x <<,所以02()3F x <<,所以[]max 2m =. ………12分 〔二〕选考题:第22、23题中任选一题做答。
重庆市第一中学校 2024-2025学年九年级上学期第一次月考数学试题

重庆市第一中学校 2024-2025学年九年级上学期第一次月考数学试题一、单选题1.tan 45︒的值为( )AB C .1 D 2.重庆今年夏天连续高温,9月7日是二十四节气中的“白露”,“白露”是反映自然界寒气增长的重要节气,下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )A .B .C .D . 3.下列计算正确的是( )A .339a a a ⋅=B .624a a a +=C .()32626a a =D .22434a a a += 4.下列函数中,y 是x 的二次函数的是( )A .221y x =+B . 2y x =C .yD . 23y x =- 5.如图,AF 是BAC ∠的角平分线,DF AC ∥,若60BDF ∠=︒,则1∠的度数为( )A .20︒B .25︒C .30︒D .45︒6.如图,ABC V 与DEF V 位似,点O 为位似中心,且DEF V 的面积是ABC V 面积的9倍,则:OC OF =( )A .1:2B .1:3C .1:4D .1:97.估计( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 8.已知抛物线212y x x c =-++的图象经过()1,A m -,()3,B m ,()12,C y -,()22,D y 四个点,则( )A .12y y >B .12y y ≥C .12y y <D .12y y ≤9.如图,正方形ABCD 的对角线AC ,BD 交于点O ,点E ,F 分别是OC ,OD 上的两点,且BE CF =,过点F 作FG FC ⊥交AB 点G ,若EBC α∠=,则AFG ∠用含α的式子表示为( )A .2αB .45α︒-C .902α︒-D .22.5α︒+10.已知整式1110m m m m M a x a x a x a --=++++L ,1110n n n n N b x b x b x b --=++++L ,其中12,,,m m a a --L 0120,,,,n n a b b b --L 为自然数,,,,m n m a n b 为正整数,且满足:110110,m m n n a a a a m b b b b n --++++=++++=L L ,记S M N =+,T M N =-.则下列说法:①当1x =时,若51S T =⎧⎨=⎩,则32m n =⎧⎨=⎩;②当3m =时,满足条件的整式M 共有10个;③不存在任何一个m n =,使得4342S x x x =++;其中正确的个数是( )A .0B .1C .2D .3二、填空题11.计算:)0112-+=. 12.若一个正多边形的边数是12,则这个正多边形的一个外角的度数为.13.现有四张正面分别标有数字2,1,2,3-的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀后,随机抽取一张记下数字后放回,背面朝上洗均匀后再随机抽取一张记下数字,前后两次抽取的数字之积为奇数的概率为.14.二次函数225y x x =+-的顶点坐标是 .15.如图,正比例函数2y x =与反比例函数(0)k y k x=≠的图象相交于A ,C 两点,过点A 作x 轴的垂线变x 轴于点B ,连接BC ,若ABC V 的面积为6,则k 的值为.16.若关于x 的不等式组()133535x x x m x +⎧-<⎪⎨⎪-≥-+⎩有解且至多有4个整数解,关于y 的分式方程22433y m m y y+=---的解为整数,则所有满足条件的整数m 的和为. 17.如图,在矩形ABCD 中,点O 是对角线AC 的中点,连接OD ,将AOD △延OD 翻折,得到EOD △,连接EC .若5AB =,12AD =,则EC =.18.若一个四位自然数各个数位上的数字互不相同且均不为0,满足百位数字比千位数字大2,十位数字比个位数字大2,那么称这个四位数为“中二数”,一个“中二数”A 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()P A a b c d =+++,若()P A 被9除余2,则A 的最大值为;若另一个“中二数”B 的千位数字为m ,个位数字为n ,且()()P A P B 是3的倍数,则A B -的最小值为.三、解答题19.计算:(1)()()()2122a a a ---+; (2)232111m m m m m -⎛⎫+-÷ ⎪--⎝⎭. 20.如图,在四边形ABCD 中,AD BC ∥,BD 是对角线.(1)用尺规完成以下基本作图:作线段BD 的垂直平分线EF ,分别交BD ,AD ,BC 于点O ,E ,F ,连接BE ,DF .(只保留作图痕迹) (2)在(1)问所作的图形中,求证:四边形BFDE 为菱形.(请完成下面的填空) 证明:∵EF 垂直平分BD∴________①_________,EF BD ⊥∵//AD BC∴________②_________在EDO V 和FBO △中____________EDO FBO DO BO ∠=∠⎧⎪=⎨⎪⎩③ ∴()EDO FBO ASA △△≌∴______④_______.∴四边形BFDE 为菱形(两条对角线互相垂直平分的四边形为菱形)在作图过程中,进一步研究还可发现,夹在一组平行线间的线段的垂直平分线与平行线相交后,可以得到一个特殊四边形,请你依照题意完成下面命题:夹在一组平行线间的线段的垂直平分线与平行线相交后.顺次连接两交点及线段两端点所组成的四边形是________⑤_________.21.近日,北京新中考改革政策的发布受到全社会的广泛关注,其中体育科目总分由40分提升至70分,在中考的总分占比从6.06%大幅提升至13.2%,这一举措足以见对国家中小学体育的重视.北京某校为了解目前九年级学生的体育锻炼情况,随机抽取甲、乙两个班备10名学生进行一分钟跳绳测试,若一分钟跳绳个数为x .根据测定标准划分等级为:0155x ≤<“不合格”,155170x ≤<“及格”,170185x ≤<“良好”,185x ≥“优秀”.学校对两个班学生一分钟跳绳个数相关数据收集、整理、描述、分析如下:甲、乙两个班所抽学生的跳绳成绩统计表乙班所抽学生的跳绳成绩统计图其中,乙班跳绳成绩“优秀”的跳绳个数分别为:185,187,188,188,188,210 根据以上信息,解答下列问题:(1)上述图表中a =________,b =________,(2)根据以上数据,你认为该年级甲班与乙班哪个班的学生一分钟跳绳成绩更好?请说明理由(写出一条理由即可);(3)该校九年级共有学生3200人,请估计该校九年级一分钟跳绳成绩为“优秀”(185x ≥)的学生共有多少人?22.今年中秋节期间,节令商品销售非常火爆,某超市推出了A 、B 两款月饼礼盒.已知A 礼盒售价为100元盒,B 礼盒售价为200元/盒,该超市9月16日销售A 、B 两款礼盒共350盒,销售额为50000元.(1)该超市9月16日A 、B 款礼盒的销量分别为多少盒?(2)9月17日正好是中秋佳节,超市为减少库存,开展了“情满中秋·礼迎国庆”的促销活动,A 款礼盒按原价打八折出售,销量在9月16日的基础上增加了50%,超市调研发现,B 款礼盒每降价1元,日销量就在9月16日的基础上增加1盒,若要使得9月17日超市的销售额达到54000元,则B 款礼盒的促销价应定为多少元?23.如图,在ABC V 中,5AB AC ==,6BC =,AD BC ⊥于点D ,动点P 从点B 出发.沿折线B A C →→运动,到达点C 时停止运动,设点P 运动的路程为()010x x <<,连接DP ,ADP △的面积为1y ,ABC V 的面积与点P 的运动路程x 的比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中.画出函数1y ,2y 的图象,并写出函数1y 的一条性质;(3)结合函数图象,请直接写出函数12y y >时x 的取值范围(近似值保留小数点后一位,误差不超过0.2).24.周末妈妈和小明在位于小明家A 西北方向的书店B 看书.回家时,小明想先沿BC 去位于家A 的正西方向、距家C 处取包裹,然后再沿CA 回家;妈妈想先沿BD 去位于家A 的北偏西15︒方向的干洗店取衣服.然后再沿DA 回家.已知书店B 位于菜鸟驿站C 的北偏东15︒方向、干洗店D 的南偏西75︒方向. 1.41≈ 1.73≈)(1)求小明家与书店的距离AB (结果保留整效);(2)小明和妈妈回家的路程相差多少米(结果保留整数)?25.如图,在平面直角坐标系中,抛物线233384y x x =--与x 轴交于A ,B 两点,与y 轴交于点C ,且点A 在点B 的右侧,连接AC ,BC .(1)求直线AC 的解析式;(2)如图,点P 是直线AC 下方抛物线上的一个动点,连接PA ,PC ,点M 和点N 是直线AC 上的两个动点(点M 在点N 的下方),且52MN =,连接BM ,PN ,当3PAC S =V 时,求BM MN PN ++的最小值;(3)将该抛物线沿CA 方向平移使得新抛物线与x 轴的左交点恰好是点A ,与x 轴的右交点记为点D .点Q 是新抛物线上的一个动点,当90QDA OBC ∠+∠=︒时,直接写出所有符合条件的点Q 的坐标.26.四边形ABCD 中,90BAD ∠=︒,连接BD ,AC 交于点O ,且满足AC BD ⊥,线段AD 的中垂线交DC 延长线于点E ,AED CAD ∠=∠.(1)如图1,1tan 3ODC ∠=,6AC =,求线段OC 的长. (2)如图2,连接BE ,过点O 作OF CD ∥交AD 于点F .若B E A O =,求证:BD OF AB -=.(3)如图3,在(1)的条件下.点M 是射线DB 上的动点,点P 为线段AB 的中点,连接AM ,过点P 作PN AM ⊥于点N ,将线段AM 绕着点A 逆时针旋转90︒至线段AM ',点N 旋转后的对应点记作点N ',连接BN ',MN ',DN ',当B D N 'V 的面积最小时,请直接写出此时BMN ADN S S ''△△的值.。
重庆市第一中学2024届高三上学期开学考试数学试题(原卷版)

三、填空题:本题共4小题,每小题5分,共20分.
13.若随机变量 ,且 ,则 ________.
14.二项式 展开式的常数项是__________.
15.已知函数 满足 ,若 在其定义域内单调递减,则正实数m的取值范围为_________.
16.已知函数 定义域为 , ,且满足 ,其中 为 的导函数,若不等式 恒成立,则正实数 的最小值为_________.
(1)求 的单调区间;
(2)对任意实数 均有 成立,求实数 的取值范围.
20.甲、乙两人轮流投篮,约定甲先投,先投中者获胜,直到有人获胜或每人都已投球 次时投篮结束,其中 为给定正整数.设甲每次投中的概率为 ,乙每次投中的概率为 ,且各次投篮互不影响.
(1)当 时,求甲获胜的概率;
(2)设投篮结束时甲恰好投篮 次,求 的数学期望 .(答案用含 的最简式子表示).
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.集合 的真子集个数为()
A.7B.8C.15D.16
2.已知符号函数 则“ ”是“ ”的()
A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件
3.已知函数 ,则 ()
A. D.6
四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.
17.已知正方体 的棱长为2,设 分别为棱 的中点.
(1)证明: 平面 ;
(2)求二面角 平面角的余弦值.
18.设等差数列 的前 项之和为 ,且满足: .
(1)求 的通项公式;
(2)设 ,求证: .
19.已知 、 分别为定义域为 的偶函数和奇函数,且 .
21.已知椭圆 的左顶点为 ,上顶点为 ,右焦点为 ,设 为坐标原点,线段 的中点为 ,且满足 .
重庆市第一中学校2024届高三下学期5月月考测试数学试题(含答案与解析)_6502

重庆第一中学2024届高三下期5月月考试题数 学本试卷满分150分,考试时间120分钟注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.作答时,务必将答案写在答题卡上,写在本卷或者草稿纸上无效.3.考试结束后,请将本试卷和答题卡一并交回.满一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2,3A =,{}2log 1B x x =<,则A B ⋂=R ð( )A. {}3B. {}2,3C. {}1,2,3D. {}0,2,32. 已知{}n a 是实数集内的等比数列,满足21a =,681a =,则4a =( ) A. 3B. 3-或3C. 9D. 9-或93. 已知圆锥的轴截面为正三角形,该圆锥的侧面积数值与其体积数值相等,则该圆锥的底面积为( ) A. 3πB. 12πC. 27πD. 48π4. 已知定义在R 上函数()f x 是奇函数,且当0x ≥时,()()2log 3x a f x =++,则()3f -=( ) A. 1B. 1-C. 2D. 2-5. 如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有( )种.A. 10B. 20C. 60D. 1206. 已知正数a ,b 满足111a b+=,则3ab b +的最小值为( ) A. 8B. 9C. 10D. 12的7. 已知直线y x =与函数()ln y x a b =++的图象相切(,a b ∈R ),则e a b +(e 为自然对数的底数)的最小值为( ) A. 0B. 1C. 2D. e8. “四二一广场”是重庆第一中学校文化地标(如图1),广场中心的建筑形似火炬宛若花开,三朵“花瓣”都是拓扑学中的莫比乌斯带(如图2).将莫比乌斯带投影到平面上,会得到无穷大符号“∞”.在平面直角坐标系中,设线段AB 长度为2a (0a >),坐标原点O 为AB 中点且点A ,B 均在x 轴上,若动点P 满足2PA PB a ⨯=,那么点P 的轨迹称为双纽线,其形状也是无穷大符号“∞”(如图3).若1a =,点P 在第一象限且3cos 4POB ∠=,则PA =( )A.12B.C.D. 2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知随机变量X 和Y ,下列说法正确是( )A. X 和Y 是分类变量,则2χ值越大,则判断“X 与Y 独立”的把握越大B. 若()()E X E Y =,则()()D X Y D =C. 若1~9,3X B ⎛⎫ ⎪⎝⎭,则()2D X = D. 若()2~0,Y N σ,则()()11P Y P Y <=>-10. 已知中心在原点,焦点在x 轴上的双曲线两个焦点分别为1F ,2F ,过2F线相交于点P,若12PF F =,则双曲线的离心率可能是( )A.B.1+C.1+D.2的的11. 冒泡排序是一种计算机科学领域的较简单的排序算法.其基本思想是:通过对待排序序列{}12,,,n x x x 从左往右,依次对相邻两个元素{}1,k k x x +(1k =,2,L,n 1-)比较大小,若1k k x x +>,则交换两个数的位置,使值较大的元素逐渐从左移向右,就如水底下的气泡一样逐渐向上冒,重复以上过程直到序列中所有数都是按照从小到大排列为止.例如:对于序列{}2,1,4,3进行冒泡排序,首先比较{}2,1,需要交换1次位置,得到新序列{}1,2,4,3,然后比较{}2,4,无需交换位置,最后比较{}4,3,又需要交换1次位置,得到新序列{}1,2,3,4,最终完成了冒泡排序.同样地,序列{}1,4,2,3需要依次交换{}4,2,{}4,3完成冒泡排序.因此,{}2,1,4,3和{}1,4,2,3均是交换2次的序列.现在对任一个包含n 个不等实数的序列进行冒泡排序(3n ≥),设在冒泡排序中序列需要交换的最大次数为n a ,只需要交换1次的序列个数为n b ,只需要交换2次的序列个数为n c ,则下列说法正确的有( ) A. ()12n n n a -=B. 1n b n =-C. 11n n c c n +=+-D. 222n n n c --=三、填空题:本题共3小题,每小题5分,共15分.12. 已知复数z 的共轭复数是z ,若20242i i z z z ⋅=⋅+,则z =___________. 13. 已知()()cos 2sin f x x x ϕ=++的最大值为3,则tan2ϕ=___________.14. 如图,已知棱长均为4正四棱锥P -ABCD 中,M 和N 分别为棱AB 、PC 的中点,过M 和N 可以作平面α使得//PB α,则平面α截正四棱锥P -ABCD 所得的截面面积为___________.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且1cos 2a C cb -=. (1)求A 的大小;的(2)若sin 3sin C B =,BC 边上的中线AD,求ABC 的面积.16. 在一种新能源产品的客户调查活动中发现,某小区10位客户有4人是该产品的潜在用户,小刘负责这10人的联系工作,他先随机选择其中5人安排在上午联系,剩余5人下午联系. (1)设上午联系的这5人中有ξ个潜在用户,求的ξ分布列与期望;(2)小刘逐一依次联系,直至确定所有潜在用户为止,求小刘6次内即可确定所有潜在用户的概率. 17. 如图,直三棱柱111ABC A B C -侧棱长为2,2AC =,AB BC =,D ,E ,F 分别为11A B ,1BB ,BC 的中点.(1)证明:平面DEF ⊥平面11ACC A ;(2)若直线DE 与平面ABC 所成的角大小为π4,求二面角A DE F --的余弦值. 18. 已知()2,0F -,()3,0A ,直线l :92x =-,动点P 到l 的距离为d ,满足32PF d =,设点P 的轨迹为C ,过点F 作直线1l ,交C 于G ,H 两点,过点F 作与1l 垂直的直线2l ,直线l 与2l 交于点K ,连接AG ,AH ,分别交直线l 于M ,N 两点. (1)求C 的方程; (2)证明:KN KM =;(3)记GMK ,HNK 的面积分别为1S ,2S ,四边形AGKH 的面积为3S ,求312S S S +的范围.19. 函数极限是现代数学中非常重要的概念,函数()f x 在0x x =处的极限定义如下:0∀ε>,存在正数δ,当00x x δ<-<时,均有()f x A ε-<,则称()f x 在0x x =处的极限为A ,记为()lim f x A =,例如:()2f x x =在1x =处的极限为2,理由是:0∀ε>,存在正数2εδ=,当01x δ<-<时,均有222122x x εε-=-<⨯=,所以()lim 22x =.已知函数()()2e g x a x=-,的()(]()()ln ,0,e ,e,xx h x x g x x ∞⎧∈⎪=⎨⎪∈+⎩,(0a >,e 为自然对数的底数).(1)证明:()g x 在e x =处的极限为e a ;(2)若21e=a ,()()12h x h x =,12x x <,求1112x x x ⋅的最大值; (3)若()e lim x A f x →=,用函数极限的定义证明:()()()elim e x f x x g A a →+=+. 参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}0,1,2,3A =,{}2log 1B x x =<,则A B ⋂=R ð( )A. {}3B. {}2,3C. {}1,2,3D. {}0,2,3【答案】D 【解析】【分析】解对数不等式求出集合B ,然后由集合的补集运算和交集运算可得. 【详解】由2log 1x <解得()0,2B =,所以(][),02,B ∞∞=-⋃+R ð, 所以{}0,2,3A B ⋂=R ð. 故选:D2. 已知{}n a 是实数集内的等比数列,满足21a =,681a =,则4a =( ) A. 3 B. 3-或3C. 9D. 9-或9【答案】C 【解析】【分析】由等比中项的性质即可求解.【详解】由等比中项可得,242681a a a ==,又22420a a q q ==>, 于是49a =. 故选:C.3. 已知圆锥的轴截面为正三角形,该圆锥的侧面积数值与其体积数值相等,则该圆锥的底面积为( ) A. 3π B. 12πC. 27πD. 48π【答案】B 【解析】【分析】由轴截面正三角形可得2,l r h ==,进而由圆锥的侧面积数值与其体积数值相等可求半径,从而可得圆锥的底面积. 【详解】几何体如图所示:因为轴截面PAB 是正三角形,所以2,l r h ==.圆锥的侧面积等于2π2πrl r =,圆锥的体积等于231π3r h r =,由圆锥的侧面积数值与其体积数值相等,得232ππr r =,得r =. 故圆锥的底面积为2π12πr =. 故选:B.4. 已知定义在R 上的函数()f x 是奇函数,且当0x ≥时,()()2log 3x a f x =++,则()3f -=( ) A. 1 B. 1-C. 2D. 2-【答案】B 【解析】【分析】定义在R 上的函数()f x 是奇函数,所以()00f =,由此可得a 的值,进而由()3f 可得()3f -的值.【详解】因为()f x 是定义在R 上的奇函数,所以()2log 003a f =+=, 解得2log 3a =-,则()()22log 3lo 3g f x x =+-,()222log log 1o 3632l g f ===-,所以()()331f f -=-=-. 故选:B.5. 如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有( )种.A. 10B. 20C. 60D. 120【答案】A 【解析】【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果. 【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=. 故选:A.6. 已知正数a ,b 满足111a b+=,则3ab b +的最小值为( ) A. 8 B. 9C. 10D. 12【答案】B 【解析】【分析】将111a b +=变形为ab a b =+,代入3ab b +,再通过常数代换和基本不等式可得. 【详解】因为111a b+=,所以ab a b =+,所以()114344559b a ab b a b a b a b a b ⎛⎫+=+=++=++≥+= ⎪⎝⎭,当且仅当33,2a b ==时,等号成立,所以3ab b +的最小值为9.故选:B7. 已知直线y x =与函数()ln y x a b =++的图象相切(,a b ∈R ),则e a b +(e 为自然对数的底数)的最小值为( ) A. 0 B. 1 C. 2 D. e【答案】C 【解析】【分析】设切点为()00,Q x y ,根据切点在切线和曲线上,以及切点处的导数等于切线斜率,联立求解可得1a b +=,则e e 1a a b a +=-+,构造函数()e 1xf x x =-+,利用导数求最小值即可.【详解】设直线y x =与函数()ln y x a b =++的图象相切于点()00,Q x y ,则()0000ln y x y x a b =⎧⎨=++⎩,所以()00ln x a b x ++=,又()1ln x a b x a '⎡⎤++=⎣⎦+,所以011x a =+,即01x a +=,所以0ln1b x +=,即0b x =,所以1a b +=,所以e e 1a a b a +=-+, 令()e 1xf x x =-+,则()e 1xf x '=-,当0x <时,()0f x '<,()f x 在(),0∞-上单调递减; 当0x >时,()0f x '>,()f x 在()0,∞+上单调递增. 所以,当0x =时,()f x 取得最小值()()min 02f x f ==, 所以e a b +的最小值为2. 故选:C8. “四二一广场”是重庆第一中学校文化地标(如图1),广场中心的建筑形似火炬宛若花开,三朵“花瓣”都是拓扑学中的莫比乌斯带(如图2).将莫比乌斯带投影到平面上,会得到无穷大符号“∞”.在平面直角坐标系中,设线段AB 长度为2a (0a >),坐标原点O 为AB 中点且点A ,B 均在x 轴上,若动点P 满足2PA PB a ⨯=,那么点P 的轨迹称为双纽线,其形状也是无穷大符号“∞”(如图3).若1a =,点P 在第一象限且3cos 4POB ∠=,则PA =( ) 的A.12B.C.D. 2【答案】C 【解析】【分析】设(),P x y ,根据双纽线的定义求出点P 的轨迹方程,设,OP r POB θ=∠=,则()cos ,sin P r r q q ,代入方程求出OP ,再在POB 中,利用余弦定理求出PB ,即可得解.【详解】()()1,0,1,0A B -,设(),P x y , 由双纽线的定义得1PA PB ⨯=,1=,化简得()()222222x y x y +=-,显然1OB =,设,OP r POB θ=∠=,则()cos ,sin P r r q q , 代入方程()()222222x y x y +=-,得()422222cos sin 2cos 2r r r θθθ=-=,所以()22912cos 222cos 1221164r θθ⎛⎫==-=⨯⨯-= ⎪⎝⎭,由余弦定理得22211312cos 1214242PB OP OB OP OB POB =+-∠=+-⨯⨯⨯=,所以PB =,所以1PA PB==. 故选:C.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知随机变量X 和Y ,下列说法正确的是( )A. X 和Y 是分类变量,则2χ值越大,则判断“X 与Y 独立”的把握越大B. 若()()E X E Y =,则()()D X Y D =C. 若1~9,3X B ⎛⎫ ⎪⎝⎭,则()2D X = D. 若()2~0,Y N σ,则()()11P Y P Y <=>-【答案】CD 【解析】【分析】根据2χ的意义可判断A ;根据平均数与方差的意义可判断B ;由二项分布的方差公式求解可判断C ;由正态分布的对称性可判断D .【详解】对于A ,2χ值越大,X 和Y 有关系的可能性就越大,则“X 与Y 独立”的把握越小,A 错误; 对于B ,平均数相等,数据的分散程度不一定相等,即方差不一定相等,B 错误; 对于C ,若1~9,3X B ⎛⎫ ⎪⎝⎭,则()129233D X =⨯⨯=,C 正确; 对于D ,若()2~0,Y N σ,则由正态分布的对称性可知()()11P Y P Y <=>-,D 正确.故选:CD10. 已知中心在原点,焦点在x 轴上的双曲线两个焦点分别为1F ,2F ,过2F线相交于点P ,若12PF F =,则双曲线的离心率可能是( )A.B.1+C.1+D.2【答案】AD 【解析】【分析】根据题意,分双曲线的渐近线的斜率ba <和b a>2PF x =,结合余弦定理和双曲线的定义,求得x 的值,进而求得双曲线的离心率,得到答案.【详解】由题意,可得122F F c =,因为12PF F =,则1PF =,设2PF x =,①若双曲线的渐近线的斜率b a <,则2e =<,如图(1)所示,因为过2F 112π3PF F ∠=, 由余弦定理得2222π12422cos3c c x c x =+-⨯⋅⋅,整理得22280x cx c +-=,解得2x c =或4x c =-(舍去),所以1221)a PF PF c =-=-,可得1)a c =-,所以离心率为2c e a ===<,满足题意,所以A 正确;②若双曲线的渐近线的斜率b a >2e =>,如图(1)所示,因为过2F 11π3PF F ∠=, 由余弦定理得222π12422cos3c c x c x =+-⨯⋅⋅,整理得22280x cx c --=,解得4x c =或2x c =-(舍去),所以122(4a PF PF c =-=-,可得(2a c =,所以离心率为22c e a ===+>,满足题意,所以C 正确, 故选:AD.11. 冒泡排序是一种计算机科学领域的较简单的排序算法.其基本思想是:通过对待排序序列{}12,,,n x x x 从左往右,依次对相邻两个元素{}1,k k x x +(1k =,2,L,n 1-)比较大小,若1k k x x +>,则交换两个数的位置,使值较大的元素逐渐从左移向右,就如水底下的气泡一样逐渐向上冒,重复以上过程直到序列中所有数都是按照从小到大排列为止.例如:对于序列{}2,1,4,3进行冒泡排序,首先比较{}2,1,需要交换1次位置,得到新序列{}1,2,4,3,然后比较{}2,4,无需交换位置,最后比较{}4,3,又需要交换1次位置,得到新序列{}1,2,3,4,最终完成了冒泡排序.同样地,序列{}1,4,2,3需要依次交换{}4,2,{}4,3完成冒泡排序.因此,{}2,1,4,3和{}1,4,2,3均是交换2次的序列.现在对任一个包含n 个不等实数的序列进行冒泡排序(3n ≥),设在冒泡排序中序列需要交换的最大次数为n a ,只需要交换1次的序列个数为n b ,只需要交换2次的序列个数为n c ,则下列说法正确的有( ) A. ()12n n n a -=B. 1n b n =-C. 11n n c c n +=+-D. 222n n n c --=【答案】ABD 【解析】【分析】根据题意,不妨设序列的n 个元素为1,2,3,,n ,再根据等差数列前n 项和公式即可判断A ;得出只要交换1次的序列的特征即可判断B ;确定元素1n +在新序列的位置,再分类讨论即可判断C ;结合C 选项,利用累加法即可判断D.【详解】不妨设序列的n 个元素为1,2,3,,n , 对于A ,交换次数最多的序列为{},1,,2,1n n - , 将元素n 冒泡到最右侧,需交换n 1-次, 将元素n 1-冒泡到最右侧,需交换2n -次,L故共需要()()()()()1111122122n n n n n n -+---+-+++== ,故A 正确;对于B ,只要交换1次的序列是将{}1,2,3,,n 中的任意相邻两个数字调换位置的序列,故有n 1-个这样的序列,即1n b n =-,故B 正确;对于C ,当n 个元素的序列顺序确定后,将元素1n +添加进原序列, 使得新序列(共1n +个元素)交换次数也是2, 则元素1n +在新序列的位置只能是最后三个位置, 若元素1n +在新序列的最后一个位置,则不会增加交换次数,故原序列交换次数为2(这样的序列有n c 个), 若元素1n +在新序列的倒数第二个位置,则会增加1次交换,故原序列交换次数为1(这样的序列有1n b n =-个), 若元素1n +在新序列的倒数第三个位置,则会增加2次交换,故原序列交换次数为0(这样的序列有1个), 因此111n n n c c n c n +=+-+=+,故C 错误; 对于D ,考虑3n =时,则序列有{}{}{}{}{}{}1,2,3,1,3,2,2,1,3,2,3,1,3,1,2,3,2,1共6种情况, 交换次数分别为0,1,1,2,2,3,故需要交换2次的序列有{}{}2,3,1,3,1,2共2个,因此32c =, 由C 知1n n c c n +=+,则()()()123121341n n n c c n c n n c n --=+-=+-+-==++++-()()()2122234122n n n n n +---=++++-==,故D 正确. 故选:ABD.【点睛】关键点点睛:在解根数列新定义相关的题目时,理解新定义是解决本题的关键.三、填空题:本题共3小题,每小题5分,共15分.12. 已知复数z 的共轭复数是z ,若20242i i z z z ⋅=⋅+,则z =___________. 【答案】i - 【解析】【分析】设i z a b =+,代入条件中,根据复数相等列方程组求解可得.【详解】设i,,z a b a b =+∈R ,则i z a b =-, 因为()50620244i i 1==,所以()()()2i i i i 1a b a b a b +=+-+,整理得2222i 1b a a b -+=++,所以221220a b b a ⎧++=-⎨=⎩,解得0,1a b ==-,所以i z =-.故答案为:i -13. 已知()()cos 2sin f x x x ϕ=++的最大值为3,则tan 2ϕ=___________.【答案】1- 【解析】【分析】先写出()f x 的展开式,然后利用辅助角公式求最大值,进而得sin 1ϕ=-,从而可得结果. 【详解】()()()cos 2sin cos cos sin 2sin f x x x x x ϕϕϕ=++=+-, 由辅助角公式可得()f x3=,化简得954sin ϕ-=,即sin 1ϕ=-,解得π2π,Z 2k k ϕ=-∈, 所以,()4tanta n 24n ta 1k k ϕππ⎛⎫⎛⎫π-=-=-∈Z ⎪ ⎪⎝⎝⎭=⎭. 故答案为:1-.14. 如图,已知棱长均为4的正四棱锥P -ABCD 中,M 和N 分别为棱AB 、PC 的中点,过M 和N 可以作平面α使得//PB α,则平面α截正四棱锥P -ABCD 所得的截面面积为___________.【答案】【解析】【分析】取AP 中点为E ,取BC 中点为F ,易证明//PB 平面EMFN ,再通过取四等分点G ,可证明截的面就是五边形GEMFN ,最后通过证明四边形EMFN 是矩形,再来计算截面的面积即可.【详解】取AP 中点为E ,取BC 中点为F ,连结四点可得四边形EMFN , 结合题意可知//,//EM PB NF PB ,所以//EM NF ,同理://,//EN AC MF AC ,所以//EN MF ,即四边形EMFN 是平行四边形, 因为//,EM PB EM ⊂平面EMFN , PB ⊄平面EMFN ,所以//PB 平面EMFN , 设MF BD H = ,可得14HB BD =,再在PD 上取点G ,满足14PG PD =,此时//HG PB ,所以//////HG PB EM NF ,可得截面五边形GEMFN , 由正四棱锥可知:PO ⊥平面ABCD ,且MF ⊂平面ABCD ,所以PO MF ⊥,又因为BD MF ⊥,BD PO O = ,BD ⊂平面PBD ,PO ⊂平面PBD ,所以MF ⊥平面PBD , 又因为PB ⊂平面PBD ,所以MF PB ⊥,又因为//NF PB ,所以MF NF ⊥,从而可得四边形EMFN 是矩形,由正四棱锥所有棱长均为4,可知12MF AC ==122EM PB ==,所以四边形EMFN 的面积为2MF EM ⋅==, 再由14HB BD =,//HG PB ,可知:334HG PB ==又因为2EM =,所以三角形EMG 的面积为()32⨯-=12,所以截面五边形GEMFN 的面积为+=故答案为:四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且1cos 2a C cb -=. (1)求A 的大小;(2)若sin 3sin C B =,BC 边上的中线AD ,求ABC 的面积. 【答案】(1)2π3;(2) 【解析】【分析】(1)利用正弦定理边化角,结合sin sin cos cos sin B A C A C =+化简可得;(2)根据正弦定理角化边,由()12AD AB AC =+平方可得2b =,6c =,再由面积公式可得. 【小问1详解】由正弦定理边化角得1sin cos sin sin 2A C CB -=, 又()sin sin sin cos cos sin B A C A C A C =+=+,所以1sin cos sin sin cos cos sin 2-=+A C C A C A C ,即1sin cos sin 2C A C -=,因为()0,π,sin 0C C ∈>,所以1cos 2A =-,因为()0,πA ∈,所以2π3A =. 【小问2详解】由sin 3sin C B =得3c b =,因为()12AD AB AC =+,AD =, 所以()()2222117244AB AC AB AC c b bc =++⋅=+- , 所以2229328b b b +-=,即2b =,所以6c =,所以11sin 2622ABC S bc A ==⨯⨯= 16. 在一种新能源产品的客户调查活动中发现,某小区10位客户有4人是该产品的潜在用户,小刘负责这10人的联系工作,他先随机选择其中5人安排在上午联系,剩余5人下午联系.(1)设上午联系的这5人中有ξ个潜在用户,求的ξ分布列与期望;(2)小刘逐一依次联系,直至确定所有潜在用户为止,求小刘6次内即可确定所有潜在用户概率. 【答案】(1)分布列见详解,()2E ξ=(2)43630【解析】【分析】(1)根据超几何分布的概率公式求出相应概率,即可得分布列,再由期望公式可得期望; (2)6次内确定所有潜在用户有:前4次抽到的全是潜在用户;前4次抽到3个潜在用户,第5次抽到一个潜在用户;前5次抽到3个潜在用户,第6次抽到一个潜在用户,共三种情况,根据组合知识结合古典概型概率公式可得. 【小问1详解】由题知,ξ服从超几何分布,可能取值有0,1,2,3,4,所以()()()504132646464555101010C C C C C C 15100,1,2C 42C 21C 21P P P ξξξ=========, ()()23146464551010C C C C 513,4C 21C 42P P ξξ======.得分布列为:ξ 01 2 3 4P142 521 1021 521 142所以()1510510123424221212142E ξ=⨯+⨯+⨯+⨯+⨯=. 【小问2详解】记确定所有潜在用户所需要的联系次数为X ,则()()()343544456101010C C C 1114,5,6C 210C 63C 21P X P X P X =========. 所以,6次内即可确定所有潜在用户的概率为111432106321630++=. 17. 如图,直三棱柱111ABC A B C -的侧棱长为2,2AC =,AB BC =,D ,E ,F 分别为11A B ,1BB ,BC 的中点.的(1)证明:平面DEF ⊥平面11ACC A ; (2)若直线DE 与平面ABC 所成的角大小为π4,求二面角A DE F --的余弦值. 【答案】(1)证明见解析(2 【解析】【分析】(1)取AC 的中点O ,连接OB ,以点O 为原点建立空间直角坐标系,证明两个平面的法向量垂直即可;(2)建立空间直角坐标系,求出相关点的坐标,利用向量法求解即可. 【小问1详解】取AC 的中点O ,连接OB , 因为AB BC =,所以OB AC ⊥,如图,以点O 为原点,OA OB 所在直线为,x y 轴,在平面11ACC A 内过O 作垂线为z 轴, 建立空间直角坐标系,设OB b =, 则()11,,2,0,,1,,,02222b b D E b F ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,故()1,,1,1,0,222b DE DF ⎛⎫=-=- ⎪⎝⎭,设平面DEF 的法向量为(),,n x y z =,则有102220b n DE x y z n DF x z ⎧⋅=+-=⎪⎨⎪⋅=-=⎩,令2x =,则1,0z y ==, 所以()2,0,1n =,因为y 轴⊥平面11ACC A ,则可取平面11ACC A 的法向量为()0,1,0m =,则0n m ⋅= ,所以n m ⊥ ,所以平面DEF ⊥平面11ACC A ; 【小问2详解】 因为z 轴⊥平面ABC ,则可取平面ABC 的法向量为()0,0,1p =, 因为直线DE 与平面ABC 所成的角大小为π4,所以πcos ,sin4DE p DE p DE p⋅====b =,则()()12,,1,0,02D E A ⎛⎫-- ⎪ ⎪⎝⎭,故111,222DE AD ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,设平面ADE 的法向量为()111,,q x y z =,则有1111111021202q DE x y z q AD x y z ⎧⋅=+-=⎪⎪⎨⎪⋅=+=⎪⎩,令1x =111,0y z ==,所以()q =,所以cos ,n q n q n q ⋅===,由图可知二面角A DE F --锐二面角, 所以二面角A DE F --18. 已知()2,0F -,()3,0A ,直线l :92x =-,动点P 到l 的距离为d ,满足32PF d =,设点P 的轨迹为C ,过点F 作直线1l ,交C 于G ,H 两点,过点F 作与1l 垂直的直线2l ,直线l 与2l 交于点K ,连接AG ,AH ,分别交直线l 于M ,N 两点. (1)求C 的方程; (2)证明:KN KM =;(3)记GMK ,HNK 的面积分别为1S ,2S ,四边形AGKH 的面积为3S ,求312S S S +的范围.【答案】(1)22195x y +=(2)证明见解析 (3)2,23⎛⎤ ⎥⎝⎦【解析】【分析】(1)利用坐标公式代入32PF d =得到C 的轨迹方程22195x y +=;(2)利用方程组思想,先求出交点1122(,),,()G x y H x y 满足的韦达定理,再利用这两个坐标写直线方程去求出交点()11159,223y M x ⎛⎫-- ⎪ ⎪-⎝⎭和()22159,223y N x ⎛⎫-- ⎪ ⎪-⎝⎭,最后利用韦达定理去证明2MN K y y y +=,即可; (3)利用所求的坐标去表示()312=AMN S S S S -+ ,然后把312S S S +转化到韦达定理上来,可得到32221+31S m ⎛⎫= ⎪+⎝⎭,然后求出取值范围即可.小问1详解】为【由()2229329242PF d x y x ⎡⎤=⇒++=+⎣⎦,得到:()22294443681x x y x x +++=++, 即:22225945195x y x y +=⇒+=,所以C 的方程为22195x y +=; 【小问2详解】 证明:要证KN KM =,即证明K 为MN 的中点,如图:易知:1l 的斜率不为0,可设直线方程111222,(,),(,),l x my G x y H x y =-: 联立:221952x y x my ⎧+=⎪⎨⎪=-⎩,消元得:()225920250m y my +--=, 得到()222Δ=400100599009000m m m ++=+>,则1212222025,5959m y y y y m m -+==++, 可得AG 方程为()1133y y x x =--,令92x =-,得到()111523y y x =--, 所以()11159,223y M x ⎛⎫-- ⎪ ⎪-⎝⎭,同理:()22159,223y N x ⎛⎫-- ⎪ ⎪-⎝⎭,即()()121212121515152323255M N y y y y y y x x my my ⎛⎫+=--=-+ ⎪----⎝⎭()()221212221212222520252515155959=52520252525255959m m my y y y m m m m m y y m y y m m m m -⎛⎫-⎛⎫ ⎪-+++=-=- ⎪ ⎪ ⎪--++ ⎪⎝⎭-+++⎝⎭, 直线()22l y m x =-+:,令92x =-,得到52K m y =, 所以有2M N K y y y +=,而M N K x x x ==,所以K 为MN 的中点,即KN KM =;【小问3详解】由()12121219191922224S S MK x NK x MN x x ⎛⎫⎛⎫+=+++=++ ⎪ ⎪⎝⎭⎝⎭, ()()3121219=322AMN S S S S MN S S ⎛⎫-+=+-+ ⎪⎝⎭ , 得:()()312121212193151522=11119594MN S S S x x m y y MN x x ⎛⎫+ ⎪⎝⎭-=-=-+++++++ ()2221559112031559m m m m m +=-=-+++ ()22222262322==1+313131m m m m m ++⎛⎫= ⎪+++⎝⎭, 因为22221+,2313m ⎛⎫⎛⎤∈ ⎪ ⎥+⎝⎭⎝⎦,所以3122,23S S S ⎛⎤∈ ⎥+⎝⎦. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.19. 函数极限是现代数学中非常重要的概念,函数()f x 在0x x =处的极限定义如下:0∀ε>,存在正数δ,当00x x δ<-<时,均有()f x A ε-<,则称()f x 在0x x =处的极限为A ,记为()lim f x A =,例如:()2f x x =在1x =处的极限为2,理由是:0∀ε>,存在正数2εδ=,当01x δ<-<时,均有222122x x εε-=-<⨯=,所以()lim 22x =.已知函数()()2e g x a x =-,()(]()()ln ,0,e ,e,x x h x x g x x ∞⎧∈⎪=⎨⎪∈+⎩,(0a >,e 为自然对数的底数).(1)证明:()g x 在e x =处的极限为e a ;(2)若21e =a ,()()12h x h x =,12x x <,求1112x x x ⋅的最大值; (3)若()e lim x A f x →=,用函数极限的定义证明:()()()elim e x f x x g A a →+=+. 【答案】(1)证明见解析(2)2ee e +(3)证明见解析【解析】【分析】(1)要使得()e g x a ε-<,即e x a ε-<,再根据题意即可得证;(2)利用导数求出函数的单调区间,令()()12h x h x m ==,确定m 的范围,再将1112,x x x 分别用m 表示,构造函数,利用导数求出最大值即可;(3)有()e lim x f x A →=结合(1),对任意正数ε,取122εεε==,112212,,δδδδδδδ≤⎧=⎨>⎩,0∀ε>,当0e x δ<-<时,有()()()()()()()e e f x g x A a f x A g x a +-+=-+-,即可得证.【小问1详解】要使得()e g x a ε-<,即()2e e a x a ε--<,即()e a x ε-<,即e x a ε-<,所以0∀ε>,存在整数a εδ=,当0e x δ<-<时,均有()()e e e g x a a x a x a a εε-=-=⋅-<⋅=,所以()elim e x g x a →=; 【小问2详解】 当0e x <≤时,()ln x h x x =,则()21ln 0x h x x '-=≥, 所以函数()h x 在(]0,e 上单调递增, 当e x >时,()()()221212e e e eh x g x x x ==-=-单调递减,因为()()12h x h x =,12x x <,所以120e x x <<<,令()()12h x h x m ==,因为()()1e e eh g ==,0x →时,()h x ∞→-,x →+∞时,()h x ∞→-, 所以1,e m ∞⎛⎫∈- ⎪⎝⎭,由()1h x m =,得11ln x m x =,得11ln x mx =,得()111e e x mx m x ==,得111e x m x =, 由()2h x m =,得222e e x m =-, 所以()11212e 2e e x m x x m ⋅=-, 令()()2e 2e e m p m m =-,1,e m ∞⎛⎫∈- ⎪⎝⎭, 则()()12e e e m p m m +=--',令()0p m '=,得21e m =-, 当21e m <-时,()0p m '>,当211e em -<<时,()0p m '<, 所以函数()p m 在2,1e ∞⎛⎫-- ⎪⎝⎭上单调递增,在211,ee ⎛⎫- ⎪⎝⎭上单调递减, 所以()2ee max21e e p m p +⎛⎫=-= ⎪⎝⎭, 即1112x x x ⋅的最大值为2e e e +;【小问3详解】 因为()elim x f x A →=, 所以10ε∀>,存在正数1δ,当10e x δ<-<时,均有()1f x A ε-<;由(1)知()elim e x g x a →=, 即20ε∀>,存在正数2δ,当20e x δ<-<时,均有()2e f x a ε-<,对任意正数ε,取122εεε==,112212,,δδδδδδδ≤⎧=⎨>⎩, 0∀ε>,当0e x δ<-<时, 有()()()()()()()e e f x g x A a f x A g x a +-+=-+-()()12e f x A g x a εεε≤-+-=+=,所以()()()elim e x f x g x A a →+=+. 【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。
【原创】(新高考)2020-2021学年上学期高三第一次月考备考金卷 数学(A卷)-学生版

(新高考)2020-2021学年上学期高三第一次月考备考金卷数学(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{20}A x x x =-->,2{430}B x x x =-+<,则A B =( )A .{1x x <-或1}x >B .{23}x x <<C .{13}x x <<D .{12}x x <<2.设复数i z x y =+(其中x ,y 为实数),若x ,y 满足22(2)4x y +-=,则2i z -=( ) A .42i -B .22i -C .2D .43.可知155a -=,41log 5b =,141log 5c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(510.6182-≈称为黄金分割比例),已知一位美女身高160cm ,穿上高跟鞋后肚脐至鞋底的长度约103.8cm ,若她穿上高跟鞋后达到黄金比例身材,则她穿的高跟鞋约是( )(结果保留一位小数)A .8.1cmB .8.0cmC .7.9cmD .7.8cm5.函数cos 2()||xf x x =的图象大致为( ) A .B .C .D .6.回文数是指从左往右读与从右往左读都是一样的正整数,如323,5445等,在所有小于200的三位回文数中任取两个数,则两个回文数的三位数字之和均大于5的概率为( ) A .25B .13C .29D .4157.已知非零向量a ,b 满足||3||=a b 且(3)()+⊥-a b a b ,则a 与b 夹角为( ) A .π3B .π6C .π2D .08.已知n S 为等差数列}{n a 的前n 项和,714S =,68a =,则( ) A .310n a n =- B .24n a n =-C .2319n S n n =-D .231344n S n n =-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.已知直线21:(23)320l m x y --+=和直线2:350l mx y --=平行,则m =( )A .1-B .1C .23D .3210.已知4,n ,9成递增等比数列,则在(4)nx x-的展开式中,下列说法正确的是( ) 此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .二项式系数之和为64B .各项系数之和为1C .展开式中二项式系数最大的项是第4项D .展开式中第5项为常数项11.若椭圆221169x y +=上的一点P 到椭圆焦点的距离之积为a ,当a 取得最大值时,点P 的坐标可能为( ) A .(4,0)-B .(4,0)C .(0,3)D .(0,3)-12.已知函数2222()4()()x x f x x x m m e e--+=-+-+有唯一零点,则m 的值可能为( )A .1B .1-C .2D .2-第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.曲线2()1x f x xe x =+-在0x =处的切线方程为 . 14.已知π1sin()48α+=,则πcos()4α-= ,3πsin()4α+= . 15.兵乓球单打比赛在甲、乙两名运动员进行,比赛采取五局三胜制(即先胜3局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同,且各局比赛结果相互独立,那么甲以3:2获胜的概率为 .16.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为 .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)若数列{}n a 满足1231111231n n a a a na n ++++=+. (1)求数列{}n a 的通项公式;(2)若 ,求数列{}n b 的前n 项和n T . ①2nn n a a b =,②11n n n b a a +=,③(1)nn n b a =-⋅. (从这三个条件中任选一个填入第(2)问的横线中,并回答问题)18.(12分)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知()(sin sin )c a A C -+ (sin )b B A =-.(1)求角C 的大小; (2)求222cos cos 5A B +=且b a >,求sin 2A .19.(12分)如图,在直三棱柱AED BFC -中,底面AED 是直角三角形,且EA AD ⊥,3AB AE AD ===,其中M ,N 分别是AF ,BC 上的点且13FM CN FA CB ==. (1)求证:MN ∥平面CDEF ; (2)求二面角A CF B --的正弦值.20.(12分)某厂加工的零件按箱出厂,每箱有12个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取5个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有4个次品,则对剩下的7个零件逐一检验.已知每个零件检验合格的概率为0.9,每个零件是否检验合格相互独立,且每个零件的人工检验费为3元. (1)设1箱零件人工检验总费用为X 元,求X 的分布列;(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为2元,现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.21.(12分)过点(1,0)E 的直线l 与抛物线22y x =交于A ,B 两点,F 是抛物线的焦点. (1)若直线l 的斜率为3,求||||AF BF +的值; (2)若12AE EB =,求||AB .22.(12分)已知函数222()(12)ln f x x a x a x =+--,当1a <<(1)()f x 有唯一极值点; (2)()f x 有2个零点.(新高考)2020-2021学年上学期高三第一次月考备考金卷数学(A )答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】由题意可知,{1A x x =<-或2}x >,{13}B x x =<<, 则{23}AB x x =<<,故选B .2.【答案】C【解析】∵i z x y =+,∴2i (2)i z x y -=+-,∴2i 2z -===,故选C . 3.【答案】C 【解析】∵1050551-<<=,41log 05b =<,14441log log 5log 415c ==>=, ∴c a b >>,故选C . 4.【答案】B【解析】设该美女穿的高跟鞋为cm x ,则103.810.6181602x =+≈,解得8.0x ≈,故选B . 5.【答案】C【解析】∵易知函数cos 2()||xf x x =为偶函数,排除A ,B 选项; ∵πcosπ2()0π44f ==,当π(0,)4x ∈时,cos20x >,即()0f x >,排除D . 6.【答案】B【解析】列出所有小于200的三位回文数如下:101,111,121,131,141,151,161,171,181,191共10个,从中任取两个数共有210C 45=种情况, 其中两个回文数的三位数字之和均大于5有26C 15=种情况,故所求概率为151453P ==,故选B . 7.【答案】C【解析】∵(3)()+⊥-a b a b ,则(3)()0+⋅-=a b a b ,得22||23||0+⋅-=a a b b ,223||||2-⋅=b a a b ,设a 与b 夹角为θ,则223||||cos 02||||θ-==⋅b a a b ,即夹角为π2. 8.【答案】A【解析】由题意得117211458a d a d +=⎧⎨+=⎩,解得173a d =-⎧⎨=⎩,故231722310n n S n na n ⎧=-⎪⎨⎪=-⎩.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.【答案】AD【解析】∵直线21:(23)320l m x y --+=和直线2:350l mx y --=平行,直线1l 的斜率为21233m k -=,直线2l 的斜率为23m k =,则12k k =,即22333m m-=,解得1m =-或32. 10.【答案】ACD【解析】由4,n ,9成递增等比数列可得6n =, 故6(4x -的二项式系数之和为64,A 正确;令1x =,66(4264x==,则6(4x -的各项系数之和为64,B 错误; 6(4x 的展开式共有7项,则二项式系数最大的项是第4项,C 正确;6(4x的展开式中展开式中第5项4246C(4)(151616x=⨯⨯为常数项,D正确,故答案选ACD.11.【答案】CD【解析】记椭圆221169x y+=的两个焦点分别为1F,2F,故12||||8PF PF+=,可得21212||||||||()162PF PFPF PF+≤=,当且仅当12||||4PF PF==时取等号,即点P位于椭圆的短轴的顶点处时,a取得最大值,此时点P的坐标为点(0,3)或(0,3)-.12.【答案】BC【解析】∵22222222()4()()(2)4()()x x x xf x x x m m e e x m m e e--+--+=-+-+=--+-+,令2t x=-,则22()4()()t tg t t m m e e-=-+-+,定义域为R,22()()4()()()t tg t t m m e e g t--=--+-+=,故函数()g t为偶函数,所以函数()f x的图象关于2x=对称,要使得函数()f x有唯一零点,则(2)0f=,即2482()0m m-+-=,解得1m=-或2,故答案选BC.第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.【答案】10x y--=【解析】()2x xf x e x e x'=+⋅+,(0)1f=-,根据导数的几何意义可知曲线在点(0,1)-处的切线斜率为(0)1k f'==,∴切线方程为1y x+=,即10x y--=.14.【答案】18,【解析】∵π1sin()48α+=,则ππππ1cos()cos[()]sin()42448ααα-=-+=+=,3ππππsin()sin()cos()4244ααα+=++=+,根据22ππsin()cos()144αα+++=,得πcos()48α+=±.15.【答案】316【解析】因为利用比赛规则,那么甲以3:2获胜表示甲在前4局中胜2局,最后一局甲赢,则利用独立重复实验的概率公式可知22241113C()()22216P=⨯⨯⨯=.16.【答案】2【解析】由题意得FA b=,3FB b=,OA a=,由题得tan tanbBOF AOFa∠=∠=,∴24tan tan21()b bb a aBOA BOFbaa+∠==∠=-,整理得222a b=,即2222()a c a=-,∴2232a c=,232e=,即2e=.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)1na n=+;(2)见解析.【解析】(1)1231111231nna a a na n++++=+,当2n≥时,1231111123(1)nna a a n a n-++++=-,两式相减得1111(1)nn nna n n n n-=-=++,∴1na n=+,当1n=时,12a=满足,1na n=+,∴数列{}na的通项公式为1na n=+.(2)选条件① ∵1122n n n a n a n b ++==,∴234123412222n n n T ++=++++,∴34521234122222n n n T ++=++++, 两式相减得123412211(1)121111118212222222212n n n n n n n T -+++-++=++++-=+-- 1223113342242n n n n n +++++=--=-, ∴13322n n n T ++=-. 选条件②: ∵11111(1)(2)12n n n b a a n n n n +===-++++, ∴1111111111233445122224n n T n n n n =-+-+-++-=-=++++. 选条件③:∵(1)nn n b a =-,∴当n 为奇数时,132345(1)11222n n n T n n -=-+-+--+=⨯--=--; 当n 为偶数时,234(1)122n n nT n =-+-+++=⨯=,∴3222n n n T n n ⎧--⎪⎪=⎨⎪⎪⎩,为奇数,为偶数.18.【答案】(1)π4C =;(2)614+. 【解析】(1)由正弦定理得()()(2)c a a c b b a -+=-,故2222c a ab b -=-+,即2222a b c ab +-=,∴2222cos 2a b c C ab +-==, ∵(0,π)C ∈,∴π4C =. (2)∵π4C =,∴3π222B A =-, ∴221cos 21cos 2cos cos 22A BA B +++=+112π2(cos 2cos 2)11(cos 2sin 2)1sin(2)22245A B A A A =++=+-=--=, ∴π32sin(2)45A -=, ∵b a >,∴B A >,即3π4A A ->,得3π8A <, 又∵ABC △为锐角三角形,∴π3ππ442A <-<,∴ππ42A <<.∴π3π48A <<, 则πππ2442A <-<,∴π7cos(2)45A -=, ∴ππππππsin 2sin(2)sin(2)cos cos(2)sin 444444A A A A =-+=-⋅+-⋅ 3227261452210+=⨯+⨯=. 19.【答案】(1)证明见解析;(2)6. 【解析】(1)证明:如下图,分别在FC ,EF 上取点P ,Q ,13CP FQ CF FE ==, 连接NP ,PQ 及MQ ,∵13FM CN FA CB ==,∴13MF FQ MQ AE FA FE ==⇒∥及13MQ AE =,13CN CP NP BF CB CF ==⇒∥且13NP BF =,∴MQ NP ∥,MQ NP =,∴四边形MNPQ 为平行四边形,∴MN QP ∥, 又∵MN ⊄平面CDEF ,QP ⊂平面CDEF ,∴MN ∥平面CDEF .(2)如下图所示,以A 为坐标原点,AE 方向为x 轴正方向,AD 方向为y 轴正方向,AB 方向为z 轴正方向建立空间直角坐标系,则(0,0,0)A ,(3,0,3)F ,(0,3,3)C ,(0,0,3)B ,∴(3,0,3)AF =,(0,3,3)AC =,由题易知平面BCF 的法向量为1(0,0,1)=n , 设平面ACF 的法向量为2(,,)x y z =n ,则2203303300AF x z y z AC ⎧⋅=+=⎧⎪⇒⎨⎨+=⋅=⎩⎪⎩n n ,取1x =,则2(1,1,1)=-n ,∵1212123cos ,3⋅===-⋅n n n n n n ,则二面角A CF B --的正弦值为63.20.【答案】(1)分布列见解析;(2)人工检验,详见解析. 【解析】(1)X 的可能取值为15,36,55(15)0.90.10.590490.000010.5905P X ==+=+=,(36)10.59050.4095P X ==-=,则X 的分布列为(2)由(1)知,()150.5905360.409523.5995E X =⨯+⨯=,∴1000箱零件的人工检验总费用的数学期望为()100023.599523599.5E X =⨯=元.∵1000箱零件的机器检验总费用的数学期望为212100024000⨯⨯=元, 且2400023599.5>,∴应该选择人工检验. 21.【答案】(1)299;(2)352.【解析】设11(,)A x y ,22(,)B x y ,(1)由题意可知直线l 的方程为33y x =-,由2233y x y x ⎧=⎨=-⎩,消去y ,得292090x x -+=,12209x x +=,∴122029||||199AF BF x x p +=++=+=. (2)由12AE EB =,可知212y y =-①, 设直线l 的方程为y kx k =-,由22y x y kx k⎧=⎨=-⎩,消去x ,得2220ky y k --=,2480Δk =+>恒成立, 122y y k+=②,122y y =-③, 由①②③解得1212y y =⎧⎨=-⎩或1212y y =-⎧⎨=⎩,∴122||||1y y k +==,得2114k =,∴135||1184AB =++= 22.【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)()f x 的定义域为(0,)+∞,222222(12)()2(12)a x a x a f x x a x x +--'=+--==2(21)()x x a x+-,当2(0,)x a ∈时,()0f x '<,()f x 单减;当2(,)x a ∈+∞时,()0f x '>,()f x 单增,∴()f x 有唯一极值点.(2)由(1)知()f x 在2(0,)a 单减,在2(,)a +∞单增,∴()f x 在2x a =时取得极小值为2222()(1ln )f a a a a =--, ∵1a e <<21a e <<,2ln 0a >,∴2()0f a <,又∵222221112112()(1)0a f a a e e e e e e-=++=++->, 根据零点存在性定理,函数()f x 在2(0,)a 上有且只有一个零点. ∵ln x x >,222()(12)ln f x x a x a x =+--222(12)x a x a x >+--222(13)(13)x a x x x a =+-=+-,∵1a <<22231210a a a --=->,2231a a ->,∴231x a >-时,()0f x >,根据零点存在性定理,函数()f x 在2(,)a +∞上有且只有一个零点, ∴()f x 有2个零点.。
重庆南开中学2021届高三数学10月月考试题 文(含解析)(1)

重庆南开中学2021届高三10月月考数学(文)试题(解析版)本试卷是高三文科试卷,以基础知识和大体技术为为主导,在注重考查运算能力和分析问题解决问题的能力,知识考查注重基础、注重常规、注重骨干知识,兼顾覆盖面.试题重点考查:不等式、复数、导数、圆锥曲线、数列、函数的性质及图象、三角函数的性质、三角恒等变换与解三角形、等;考查学生解决实际问题的综合能力,是份较好的试卷.【题文】一.选择题:本大题共10小题,每题5分,共50分。
在每题给出的四个备选项中,只有一项为哪一项符合题目要求的.【题文】1.已知A ,B 为两个集合,假设命题:p x A ∀∈,都有2x B ∈,则 A.:p x A ⌝∃∈,使得2x B ∈ B.:p x A ⌝∃∉,使得2x B ∈ C.:p x A ⌝∃∈,使得2x B ∉D.:p x A ⌝∃∉,使得2x B ∉【知识点】命题及其关系A2【答案解析】C 假设命题:p x A ∀∈,都有2x B ∈,那么:p x A ⌝∃∈,使得2x B ∉, 应选C 。
【思路点拨】依照命题的关系确信非P 。
【题文】2. 已知向量(5,6)a =-,(6,5)b =,那么a 与b A.垂直B.不垂直也不平行C .平行且同向D .平行且反向【知识点】平面向量的数量积及应用F3【答案解析】A 因为a b ⋅=(-5)⨯6+6⨯5=0,因此a b ⊥,应选A 。
【思路点拨】依照向量的数量积为0,因此a b ⊥。
【题文】3.设集合{}2|20M x x x =--<,{}|2,N y y x x M ==∈,则集合()R C MN =A.()2,4-B.()1,2-C.(][),12,-∞-+∞D.()(),24,-∞-+∞【知识点】集合及其运算A1【答案解析】C 由题意得M={x 12x -<<},N={x 24x -<<}那么M N ⋂=M, 因此()R C MN =(][),12,-∞-+∞应选C.【思路点拨】先求出M ,N 再求 M N ⋂再求出结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届重庆市第一中学高三上学期第一次月考数学试题一、单选题1.设集合(){}ln 1A y y x ==-,{B y y ==,则A B =()A .[)0,2B .()0,2C .[]0,2D .[)0,1【答案】A【解析】先分别利用对数型函数以及指数型函数求值域的方法求出集合,A B ,注意集合中的代表元素,再利用集合的交集运算求解即可. 【详解】∵(){}ln 1A y y x R ==-=,{[)0,2B y y ===,∴[)0,2AB =.故选:A. 【点睛】本题主要考查了集合间的运算以及对数函数和指数函数.属于较易题.2.设a ,()0,b ∈+∞,A =+,B =,则A ,B 的大小关系是()A .AB < B .A B >C .A B ≤D .A B ≥【答案】B【解析】根据题意计算做差可得22A B >,得到答案. 【详解】由a ,()0,b ∈+∞,得0A =>,0B =>22220A B -=-=>,∴22A B >,故A B >, 故选:B. 【点睛】本题考查了做差法比较大小,意在考查学生的计算能力和推断能力.3.已知直线l 是曲线2y x =的切线,则l 的方程不可能是()A .5210x y -+=B .4210x y -+=C .13690x y -+=D .9440x y -+=【答案】B【解析】利用导数求出曲线2y x =的切线的斜率的取值范围,然后利用导数的几何意义判断各选项中的直线是否为曲线2y x =的切线,由此可得出结论.【详解】对于函数2y x =,定义域为[)0,+∞,则22y '=+>,所以,曲线2y x =的切线l 的斜率的取值范围是()2,+∞.对于A 选项,直线5210x y -+=的斜率为52,令522y '=+=,解得1x =,此时3y =,点()1,3在直线5210x y -+=上,则直线5210x y -+=与曲线2y x =相切;对于B 选项,直线4210x y -+=的斜率为2,该直线不是曲线2y x =的切线;对于C 选项,直线13690x y -+=的斜率为1326>, 令1326y '=+=,解得9x =,此时21y =,点()9,21在直线13690x y -+=上,所以,直线13690x y -+=与曲线2y x=相切;对于D 选项,直线9440x y -+=的斜率为924>, 令924y '==,解得4x =,此时10y =,点()4,10在直线9440x y -+=上,所以,直线9440x y -+=与曲线2y x =相切. 故选:B. 【点睛】本题考查利用导数的几何意义验证函数的切线方程,考查计算能力,属于中等题. 4.中国传统扇文化有着极其深厚的底蕴.一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为()A .(35)π-B .(51)πC .51)πD .52)π【答案】A【解析】根据扇形与圆面积公式,可知面积比即为圆心角之比,再根据圆心角和的关系,求解出扇形的圆心角. 【详解】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则51αβ-=,又2αβπ+=,解得(35)απ=- 故选:A 【点睛】本题考查圆与扇形的面积计算,难度较易.扇形的面积公式:21122S r lr α==,其中α是扇形圆心角的弧度数,l 是扇形的弧长.5.若函数()(),2log 2,xa a x af x x x a⎧<<⎪=⎨->⎪⎩(其中0a >,1a ≠)存在零点,则实数a 的取值范围是() A .()1,11,32⎛⎫⋃⎪⎝⎭B .(]1,3C .()2,3D .(]2,3【答案】C【解析】根据题中所给的函数有零点,结合解析式的特征,求得函数的零点,再根据分段函数的意义再结合式子的特征求得结果. 【详解】因为x a >时,()log (2)a f x x =-,所以2a >,若函数若有零点,则()log 20a x -=,解得3x =, 故3a >,又2a >,∴实数a 的取值范围是()2,3. 故选:C. 【点睛】该题考查的是有关函数的问题,涉及到的知识点有根据分段函数有零点求参数的取值范围,属于简单题目.6.已知02ω<≤,函数()sin f x x x ωω=,对任意R x ∈,都有()3f x f x π⎛⎫-=- ⎪⎝⎭,则ω的值为() A .12B .1C .32D .2【答案】D【解析】化简函数()y f x =的解析式为()2sin 3f x x πω⎛⎫=- ⎪⎝⎭,由题意可知,点,06π⎛⎫⎪⎝⎭是函数()y f x =的一个对称中心,结合02ω<≤可求得ω的值. 【详解】()sin 2sin 3f x x x x πωωω⎛⎫==- ⎪⎝⎭,根据()3f x f x π⎛⎫-=-⎪⎝⎭,得,06π⎛⎫⎪⎝⎭是函数()y f x =的一个对称中心,则2sin 0663f ππωπ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,可得sin 063πωπ⎛⎫-= ⎪⎝⎭, 02ω<≤,0363ππωπ∴-<-≤,所以063πωπ-=,解得2ω=.故选:D. 【点睛】本题考查利用正弦型函数的对称性求参数值,同时也考查了辅助角公式的应用,考查计算能力,属于中等题.7.函数()2cos sin 2f x x x =+的一个单调减区间是()A .,42ππ⎛⎫ ⎪⎝⎭B .0,6π⎛⎫ ⎪⎝⎭C .,2ππ⎛⎫ ⎪⎝⎭D .5,6ππ⎛⎫⎪⎝⎭【答案】A【解析】利用导数求得函数()y f x =的单调递减区间,利用赋值法可得出结果. 【详解】()2cos sin 2f x x x =+,该函数的定义域为R ,()()()222sin 2cos2212sin 2sin 22sin sin 1f x x x x x x x '=-+=--=-+-()()2sin 12sin 1x x =-+-,1sin 1x -≤≤,可得sin 10x +≥,令()0f x '<,可得2sin 10x ->,即1sin 2x >,解得()52266k x k k Z ππππ+<<+∈. 所以,函数()y f x =的单调递减区间为()52,266k k k Z ππππ⎛⎫++∈ ⎪⎝⎭. 当0k =时,函数()y f x =的一个单调递减区间为5,66ππ⎛⎫⎪⎝⎭, 5,,4266ππππ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭, 对任意的k Z ∈,50,2,2666k k πππππ⎛⎫⎛⎫⊄++ ⎪ ⎪⎝⎭⎝⎭,5,2,2266k k ππππππ⎛⎫⎛⎫⊄++ ⎪ ⎪⎝⎭⎝⎭,55,2,2666k k ππππππ⎛⎫⎛⎫⊄++ ⎪ ⎪⎝⎭⎝⎭,故函数()y f x =的一个单调递减区间为,42ππ⎛⎫⎪⎝⎭. 故选:A. 【点睛】本题考查利用导数求解函数的单调区间,考查计算能力,属于中等题. 8.设函数()f x 在R 上存在导数()f x ',对任意的R x ∈,有()()2cos f x f x x +-=,且在[)0,+∞上有()sin f x x '>-,则不等式()cos sin 2f x f x x x π⎛⎫--≥- ⎪⎝⎭的解集是()A .,4π⎛⎤-∞ ⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】构造函数,由已知得出所构造的函数的单调性,再利用其单调性解抽象不等式,可得选项. 【详解】设()()cos F x f x x =-,∵()()2cos f x f x x +-=,即()()cos cos f x x x f x -=--,即()()F x F x =--,故()F x 是奇函数,由于函数()f x 在R 上存在导函数()f x ',所以,函数()f x 在R 上连续,则函数()F x 在R 上连续.∵在[)0,+∞上有()sin f x x '>-,∴()()sin 0F x f x x ''=+>, 故()F x 在[)0,+∞单调递增,又∵()F x 是奇函数,且()F x 在R 上连续,∴()F x 在R 上单调递增, ∵()cos sin 2f x f x x x π⎛⎫--≥-⎪⎝⎭, ∴()cos sin cos 222f x x f x x f x x πππ⎛⎫⎛⎫⎛⎫-≥--=---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即()2F x F x π⎛⎫≥- ⎪⎝⎭,∴2x x π≥-,故4x π≥,故选:B . 【点睛】本题考查运用导函数分析函数的单调性,从而求解抽象不等式的问题,构造合适的函数是解决问题的关键,属于较难题. 二、多选题9.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin sin sin B A C =,则角B 的值不可能是() A .45°B .60°C .75°D .90°【答案】CD【解析】先利用正弦定理得到2b ac =,再利用余弦定理和基本不等式得到0,3B π⎛⎤∈ ⎥⎝⎦,即可判断. 【详解】∵2sin sin sin B A C =, 由正弦定理得: ∴2b ac =,∴2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,当且仅当a c =时取等号, 又0B π<<,故0,3B π⎛⎤∈ ⎥⎝⎦.故选:CD. 【点睛】本题主要考查了正弦定理以及余弦定理,考查了基本不等式.属于较易题. 10.下列说法正确的是() A .“4x π=”是“tan 1x =”的充分不必要条件B .命题:p “若a b >,则22am bm >”的否定是真命题C .命题“0R x ∃∈,0012x x +≥”的否定形式是“R x ∀∈,12x x+>” D .将函数()cos2f x x x =+的图象向左平移4π个单位长度得到()g x 的图象,则()g x 的图象关于点0,4π⎛⎫⎪⎝⎭对称 【答案】ABD【解析】解方程tan 1x =,利用集合的包含关系可判断A 选项的正误;判断命题p 的真假,可判断出该命题的否定的真假,进而可判断B 选项的正误;利用特称命题的否定可判断C 选项的正误;利用图象平移得出函数()y g x =的解析式,利用对称性的定义可判断D 选项的正误. 【详解】对于A 选项,解方程tan 1x =,可得()4x k k Z ππ=+∈,4π⎧⎫⎨⎬⎩⎭ ,4x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭,所以,“4x π=”是“tan 1x =”的充分不必要条件, A 选项正确;对于B 选项,当0m =时,22am bm =,则命题p 为假命题,它的否定为真命题,B 选项正确;对于C 选项,命题“0R x ∃∈,0012x x +≥”的否定形式是“R x ∀∈,12x x+<”,C 选项错误;对于D 选项,将函数()cos2f x x x =+的图象向左平移4π个单位长度, 得到()cos 2sin 2444g x x x x x πππ⎛⎫=+++=-++ ⎪⎝⎭, ()()sin 2sin 244g x x x x x ππ-=---+=-+,则()()2g x g x π+-=,故函数()y g x =的图象关于点0,4π⎛⎫⎪⎝⎭对称,D 选项正确; 故选:ABD. 【点睛】本题考查命题真假的判断,考查了充分不必要条件、命题的否定的真假、特称命题的否定的判断,同时也考查了函数对称性的验证,考查推理能力,属于中等题.11.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer ),简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是() A .()2xf x x =+B .()23g x x x =--C .()21,12,1x x f x x x ⎧-≤⎪=⎨->⎪⎩D .()ln 1f x x =-【答案】BC【解析】只要解方程00()f x x =,观察它有没有实解即可得, 【详解】选项A ,若()00f x x =,则020x =,该方程无解,故A 中函数不是“不动点”函数;选项B ,若()00g x x =,则200230x x --=,解得03x =或-1,故B 中函数是“不动点”函数;选项C ,若()00f x x =,则01x ≤,0021xx -=,或01x >,002x x -=,解得01x =,故C 中函数是:“不动点”函数;选项D ,若()00f x x =,则00ln 1x x -=,该方程无解,故D 中函数不是“不动点”函数. 故选:BC. 【点睛】本题考查新定义“不动点”,解题关键是根据新定义把问题转化为方程有无实数解. 12.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,关于()f x 有下述四个结论,正确的是() A .()f x 的一个周期是2π B .()f x 是非奇非偶函数C .()f x 在(0,)π单调递减D .()f x【答案】ABD【解析】先根据周期函数定义判断选项A ,再根据[]y x =函数的意义,转化()f x 为分段函数判断B 选项,结合三角函数的图象与性质判断C ,D 选项. 【详解】[][]()2sin co (cos in )s s f x x x f x π+=+=,()f x ∴的一个周期是2π,故A 正确;sin11,01,0,2cos1,21sin1,,2()3cos1sin1,,23cos1,,22cos1,,02x x x x f x x x x πππππππππ+=⎧⎪⎛⎫⎪∈ ⎪⎪⎝⎭⎪⎪=⎪⎪⎛⎤⎪-∈ ⎪⎥=⎝⎦⎨⎪⎛⎫⎪-∈ ⎪⎝⎭⎪⎪⎡⎫⎪∈⎪⎢⎪⎣⎭⎪⎛⎫⎪∈- ⎪⎪⎝⎭⎩,()f x ∴是非奇非偶函数,B 正确;对于C ,(0,)2x π∈时,()1f x =,不增不减,所以C 错误;对于D ,[0,)2x π∈,()sin11sin11 1.742f x π=+>+=+>>D 正确. 故选:ABD 【点睛】本题主要考查了函数的周期性,单调性,奇偶性,考查了特例法求解选择题,属于中档题. 三、填空题13.若幂函数()f x 过点()2,8,则满足不等式(3)(1)f a f a -≤-的实数a 的取值范围是______. 【答案】(,2]-∞【解析】先求得幂函数()f x 的解析式,在根据()f x 的单调性求得不等式(3)(1)f a f a -≤-的解集.【详解】设()f x x α=,代入点()2,8,得28,3αα==,所以()3f x x =,所以()f x 在R 上递增,所以(3)(1)31f a f a a a -≤-⇒-≤-,解得2a ≤,所以实数a 的取值范围是(,2]-∞.故答案为:(,2]-∞ 【点睛】本小题主要考查幂函数解析式的求法,考查幂函数的单调性,属于基础题. 14.已知1a >,1b >,则log log 216a b b a +的最小值是______. 【答案】8【解析】利用换底公式可得log log 1a b b a ⨯=,再利用基本不等式可得答案. 【详解】因为1a >,1b >,所以log 0,log 0b a a b >>,因为lg log lg log log 1lg log lg aa b bb b a b a a a b ⎧=⎪⎪⇒⨯=⎨⎪=⎪⎩,所以,log log 2168a b b a +≥==,当log 2a b =时取“=”. 故答案为:8. 【点睛】本题主要考查指数式的运算、考查了换底公式与基本不等式的应用,属于中档题. 15.4cos50tan40-=______.【解析】【详解】4sin 40cos40sin 404cos50tan 40cos 40--=2cos10sin 30cos10sin10cos30cos 40--=,1sin102cos 40⎫-⎪⎝⎭=40340==【考点】三角函数诱导公式、切割化弦思想.16.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,()cos25cos 3A B C ++=-,点P 是ABC 的重心,且27AP =,则c =______.【答案】4【解析】首先根据余弦二倍角公式得到1cos 2A =,设BC 边上的中线为AD ,得到7AD =,从而得到()12AD AB AC =+,再平方解方程即可得到答案. 【详解】因为()cos25cos 3A B C +-+=,所以22cos 5cos 20A A -+=, 所以1cos 2A =或cos 2A =(舍去). 设BC 边上的中线为AD ,如图所示:因为27AP =,所以7AD = 又因为()12AD AB AC =+, 所以()222124AD AB AC AB AC =++⋅, 所以()22172cos 4c b bc A =++,2211722242⎛⎫=++⨯⨯ ⎪⎝⎭c c ,化简得22240c c +-=,解得4c =或6c =-(舍去). 故答案为:4 【点睛】本题主要平面向量数量积的应用,同时考查了余弦二倍角公式,属于简单题. 四、解答题17.已知点()2,1P -在角α的终边上,且02απ≤<. (1)求值:2sin cos 4sin cos αααα-+;(2)若32ππβ<<,且sin 210αβ⎛⎫-= ⎪⎝⎭,求2αβ+的值.【答案】(1)2;(2)724απβ+=. 【解析】先利用同角三角函数的基本关系得到sin ,cos ,tan ααα;(1)原式分子分母同除cos α得到正切,代入已知量即可得出结果;(2)先利用已知角的范围求得5224παπβ<-<,求出cos 2αβ⎛⎫- ⎪⎝⎭,再利用22ααββα⎛⎫+=-+ ⎪⎝⎭,最后利用两角和的余弦公式求解即可得出结果. 【详解】由题意:sin α=,cos α=, 1tan 2α=-,且2παπ<<,(1)2sin cos 2tan 124sin cos 4tan 1αααααα--==++;(2)∵32ππβ<<,224παπ-<-<-,∴5224παπβ<-<,∴cos 210αβ⎛⎫-=- ⎪⎝⎭, ∴cos cos cos cos sin sin 2222ααααββαβαβα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=--- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,2⎛=- ⎭=⎝, ∵5242παβπ<+<, ∴724απβ+=. 【点睛】本题主要考查了同角三角函数的基本关系以及两角和的余弦公式.属于中档题.18.已知函数()22sin 24f x x x π⎛⎫=+- ⎪⎝⎭. (1)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;(2)是否存在实数()2,t ∈+∞,使得()f x 在()2,t 上单调递增?若存在,求出t 的取值范围,若不存在,说明理由.【答案】(1)()[]2,3f x ∈;(2)不存在,理由见解析.【解析】(1)由二倍角公式降幂,再由两角差的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得值域;(2)求出函数的单调区间,由2在减区间内部,得结论. 【详解】解:(1)∵()22sin 24f x x x π⎛⎫=+- ⎪⎝⎭1cos 21sin 212sin 223x x x x x ππ⎡⎤⎛⎫⎛⎫=-+-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.又∵,42x ππ⎡⎤∈⎢⎥⎣⎦,∴22633x πππ≤-≤,即212sin 233π⎛⎫≤+-≤ ⎪⎝⎭x ,∴()[]2,3f x ∈; (2)由222232k x k πππππ-+≤-≤+()k Z ∈得51212k x ππππ-+≤≤+()k Z ∈, 所以()f x 的递增区间是5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈,递减区间是511,1212k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈,令0k =,函数在511,1212ππ⎡⎤⎢⎥⎣⎦上递减,而5112,1212ππ⎡⎤∈⎢⎥⎣⎦,即函数在112,12π⎛⎫⎪⎝⎭上是递减的,故不存在实数()2,t ∈+∞,使得()f x 在()2,t 上递增. 【点睛】本题考查正弦型函数的值域,考查正弦型函数的单调性,解题方法由二倍角公式,两角和与差的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求解. 19.已知R a ∈,函数()1ln f x ax x =--在1x =处取得极值. (1)求函数()f x 的单调区间;(2)若对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的最大值.【答案】(1)函数()f x 在0,1上单调递减,在1,上单调递增;(2)211e -. 【解析】(1)首先对函数求导,根据函数()1ln f x ax x =--在1x =处取得极值,得到()110f a '=-=,求得1a =,根据导数的符号求得其单调区间; (2)将不等式转化为1ln 1x b x x +-≥,之后构造新函数()1ln 1xg x x x=+-,利用导数求得其最小值,进而求得最值,得到结果. 【详解】()11ax f x a x x-'=-=,由()110f a '=-=得1a =,()1ln =--f x x x , (1)()1x f x x-'=,由0f x 得1x >,由0f x 得01x <<,故函数()f x 在0,1上单调递减,在1,上单调递增.(2)()1ln 21x f x bx b x x≥-⇒+-≥, 令()1ln 1x g x x x =+-,则()2ln 2x g x x -'=,由0g x,得2x e >,由0g x ,得20x e <<,故()g x 在()20,e上递减,在()2e ,+∞上递增,∴()()22min 1e1e g x g ==-,即211e b ≤-, 故实数b 的最大值是211e-. 【点睛】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有根据极值点求参数的值,利用导数求函数的单调区间,利用导数求参数的取值范围,属于中档题目. 20.已知函数()1f x x ax =-,其中0a >. (1)求关于x 的不等式()2f x a>的解集; (2)若12a =,求[]0,x m ∈时,函数()f x 的最大值. 【答案】(1)2,a ⎛⎫+∞⎪⎝⎭;(2)2max 2,0121,112,12m m m y m m m m ⎧-<<⎪⎪⎪=≤≤⎨⎪⎪->⎪⎩.【解析】(1)根据分段函数定义域解不等式可求得答案; (2)画出函数()f x 的图象,数形结合可求得()f x 的最大值 【详解】(1)()()()11,11,x ax x af x x x x a α⎧-≥⎪⎪=⎨⎪-<⎪⎩,(0)a >当1x a ≥时,由()2>f x a ,得(12)x ax a ->,1(2)()0ax x a-+>,20ax ->,2x a>, 当1x a <时,由()2>f x a ,即(1)2x ax a ->,220ax x a -+<,令220ax x a-+=,180∆=-<,方程无解,而0a >,所以220ax x a-+<无解,综上所述,2x a >,所以不等式()2f x a >的解集为2,a ⎛⎫+∞ ⎪⎝⎭. (2)12a =时()22,21212,22x x x f x x x x x x ⎧-≤⎪⎪=-=⎨⎪->⎪⎩,∵()112f =,由1122x x -=得另一个根21x =,由()f x 的图像可知,当01m <<时,函数的最大值为()2122m m f m m m ⎛⎫=-=- ⎪⎝⎭;当121m ≤≤时,函数的最大值为12; 当21m >+时,函数的最大值为()22m f m m =-综上所述,函数的最大值为2max2,0121,1212,212mm my mmm m⎧-<<⎪⎪⎪=≤≤+⎨⎪⎪->+⎪⎩.【点睛】本题考查了解分段函数不等式的问题,分段函数求最值的问题,考查了数形结合的思想. 21.重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄O(如图).为吸引游客,准备在门前两条夹角为6π(即AOB∠)的小路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长23AB=且点A,B落在小路上,记弓形花园的顶点为M,且6MAB MBAπ∠=∠=,设OBAθ∠=.(1)将OA,OB用含有θ的关系式表示出来;(2)该山庄准备在M点处修建喷泉,为获取更好的观景视野,如何规划花园(即OA,OB长度),才使得喷泉M与山庄O距离即值OM最大?【答案】(1)43OAθ=;436OBπθ⎛⎫=+⎪⎝⎭;(2)当632OB OA==时,OM取最大值.【解析】(1)在OAB中,利用正弦定理即可将OA,OB用含有θ的关系式表示出来;(2)在OMB△中,由余弦定理得出2OM21632283πθ⎛⎫=-++⎪⎝⎭,结合三角函数的性质,即可得出OM的最大值,再求出,OA OB的长度即可.【详解】(1)在ABC中,由正弦定理可知sin sin6OA ABπθ=,则43OAθ=;同理由正弦定理可得sin sin 6OB ABOABπ=∠,则6OB OAB πθ⎛⎫=∠=+⎪⎝⎭, (2)∵AB =6MAB MBA π∠=∠=,∴2AM BM ==,在OMB △中,由余弦定理可知2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅+ ⎪⎝⎭248sin 4cos 666πππθθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭241cos 24233ππθθ⎛⎫⎛⎫⎛⎫=-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2823cos 228228333πππθθθ⎤⎛⎫⎛⎫⎛⎫=-++++=-++ ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎦, ∵50,6πθ⎛⎫∈ ⎪⎝⎭, ∴2272,333πππθ⎛⎫+∈ ⎪⎝⎭,∴2sin 21,32πθ⎡⎫⎛⎫+=-⎪⎢ ⎪⎪⎝⎭⎣⎭, 当2sin 213πθ⎛⎫+=- ⎪⎝⎭时,即512πθ=时, OM4=+,此时5sin cos cos sin 124646OA πππππ⎫==+=⎪⎭,5551261212OB πππππ⎛⎫⎛⎫=+=-== ⎪ ⎪⎝⎭⎝⎭即当OB OA ==OM 取最大值.【点睛】本题主要考查了正弦定理和余弦定理的实际应用,涉及了三角函数求值域,属于中档题.22.已知函数()sin ln()f x x a x b =++,()g x 是()f x 的导函数.(1)若0a >,当1b =时,函数()g x 在(,4)π内有唯一的极小值,求a 的取值范围; (2)若1a =-,1e 2b π<<-,试研究()f x 的零点个数.【答案】(1)(0,25sin 4)a ∈-;(2)()f x 有3个零点. 【解析】(1)先求导得2sin )(1)(ag x x x '=--+,求出2()0(1)a g ππ'=-<+()4sin 425a g '=--,再由sin 4025a --≤和sin 4025a-->两种情况讨论求得a 的取值范围;(2)分析可知,只需研究(,)b π-时零点的个数情况,再分(,),(,)22x b x πππ∈-∈两种情形讨论即可. 【详解】解:(1)当1b =时,si ()(l )n 1n f x a x x =++,cos 1()()x x ag f x x '==++, 2sin )(1)(a g x x x '=--+()0a >在(),4π是增函数,2()0(1)ag ππ'=-<+,(4)sin 425ag '=--, 当(4)sin 4025ag '=--≤时,()g x 在(,4)π是减函数,无极值; 当(4)sin 4025ag '=-->时,0(,4)x π∃∈,使得00()g x '=, 从而()g x 在0(,)x π单调递减,在0(,4)x 单调递增,0x 为()g x 唯一的极小值点,所以()0,25sin 4a ∈-(2)当1a =-时,()sin ln()f x x x b =-+,(1,)2b e π∈-,可知,(i )(),x π∈+∞时,()0f x <,无零点;所以只需研究(,)b π-,1()cos f x x x b'=-+, (ii )(,)2x ππ∈时,1()cos 0f x x x b'=-<+,可知()f x 单调递减, ()1ln()1ln()02222f b e ππππ=-+>-+-=,()0f π<,存在唯一的(,)2s ππ∈,()0f s =;(iii )当(,)2x b π∈-,21()sin ()f x x x b ''=-++是减函数,且21(0)00f b''=+>,21()102()2f b ππ''=-+<+ 则1(0,)2x π∃∈,1()0f x ''=,()f x '在1(,)b x -是增函数,1()2x π,是减函数,并且 lim ()0x b f x +→-'<,()1010f b'=->,1()022f b ππ'=-<+, 所以2(,0)x b ∃∈-,2()0f x '=;3(0,)2x π∃∈,3()0f x '=,且知()f x()f x 在()2,b x -减,在()23,x x 增,在3(,)2x π减,又因为()lim 0x b x f +→->,()00ln 0f b =-<,()02f π>,(,0)m b ∃∈-,()0f m =, (0,)2n π∃∈,()0f n =,综上所述,由(i )(ii )(iii )可知,()f x 有3个零点. 【点睛】本题主要考查利用导数研究函数的极值和零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.。